1
|
Adak S, Ye N, Calderone LA, Duan M, Lubeck W, Schäfer RJB, Lukowski AL, Houk KN, Pandelia ME, Drennan CL, Moore BS. A single diiron enzyme catalyses the oxidative rearrangement of tryptophan to indole nitrile. Nat Chem 2024; 16:1989-1998. [PMID: 39285206 PMCID: PMC11611611 DOI: 10.1038/s41557-024-01603-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 07/12/2024] [Indexed: 09/25/2024]
Abstract
Nitriles are uncommon in nature and are typically constructed from oximes through the oxidative decarboxylation of amino acid substrates or from the derivatization of carboxylic acids. Here we report a third nitrile biosynthesis strategy featuring the cyanobacterial nitrile synthase AetD. During the biosynthesis of the eagle-killing neurotoxin, aetokthonotoxin, AetD transforms the 2-aminopropionate portion of 5,7-dibromo-L-tryptophan to a nitrile. Employing a combination of structural, biochemical and biophysical techniques, we characterized AetD as a non-haem diiron enzyme that belongs to the emerging haem-oxygenase-like dimetal oxidase superfamily. High-resolution crystal structures of AetD together with the identification of catalytically relevant products provide mechanistic insights into how AetD affords this unique transformation, which we propose proceeds via an aziridine intermediate. Our work presents a unique template for nitrile biogenesis and portrays a substrate binding and metallocofactor assembly mechanism that may be shared among other haem-oxygenase-like dimetal oxidase enzymes.
Collapse
Affiliation(s)
- Sanjoy Adak
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Naike Ye
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Meng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Wilson Lubeck
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Rebecca J B Schäfer
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - April L Lukowski
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | | | - Catherine L Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Chen CC, Li H, Huang JW, Guo RT. Structural and molecular insights of two unique enzymes involved in the biosynthesis of a natural halogenated nitrile. FEBS J 2024; 291:5123-5132. [PMID: 39308083 DOI: 10.1111/febs.17279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 01/07/2025]
Abstract
Organohalogen compounds exhibit wide-ranging bioactivities and potential applications. Understanding natural biosynthetic pathways and improving the production of halogenated compounds has garnered significant attention. Recently, the biosynthetic pathway of a cyanobacterial neurotoxin, aetokthonotoxin, was reported. It contains two unique enzymes: a single-component flavin-dependent halogenase AetF and a new type of nitril synthase AetD. The crystal structures of these enzymes in complex with their cofactors and substrates that were recently reported will be presented here. The AetF structures reveal a tri-domain architecture, the transfer direction of the hydride ion, a possible path to deliver the hypohalous acid, and the unusual bispecific substrate-recognition mode. The AetD structures demonstrate that the nitrile formation should occur through the action of a diiron cluster, implying that the enzyme should be capable of catalyzing the nitrile formation of alternative amino acids. This information is of central importance for understanding the mechanism of action as well as the applications of these two the-first-of-its-kind enzymes.
Collapse
Affiliation(s)
- Chun-Chi Chen
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Hao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Jian-Wen Huang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Rey-Ting Guo
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
3
|
Martínková L, Kotik M, Kulik N, Křístková B, Šťastná K, Winkler M. Aldoxime dehydratases: production, immobilization, and use in multistep processes. Appl Microbiol Biotechnol 2024; 108:518. [PMID: 39545989 PMCID: PMC11568032 DOI: 10.1007/s00253-024-13272-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 11/17/2024]
Abstract
The synthesis of nitriles is of utmost importance for preparative organic chemistry. The classical routes are often associated with disadvantages such as toxicity of the reagents and drastic conditions. The uses of enzymes like aldoxime dehydratases (Oxds) and hydroxynitrile lyases constitute attractive benign alternatives. In this review, we summarize the recent trends regarding Oxds. Thousands of oxd genes were sequenced but less than thirty Oxds were investigated on protein level. We give an overview of these Oxds, their sequence analysis, conditions required for their overexpression, and their purification and assays. We then focus on the use of Oxds especially in multistep reactions combining the chemical or chemoenzymatic synthesis of aldoximes from different starting materials with the enzymatic dehydration of aldoximes to nitriles, possibly followed by the hydration of nitriles to amides. Progress in Oxd immobilization is also highlighted. Based on data published mainly in the last 5 years, we evaluate the industrial prospects of these enzyme processes in comparison with some other innovations in nitrile synthesis. KEY POINTS: • Aldoxime dehydratases (Oxds) are promising for cyanide-free routes to nitriles • A comprehensive overview of wet-lab explored Oxds is provided • Recent trends include combining Oxds with other enzymes or chemical catalysts.
Collapse
Affiliation(s)
- Ludmila Martínková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 00, Prague, Czech Republic.
| | - Michael Kotik
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 00, Prague, Czech Republic
| | - Natalia Kulik
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, 379 81, Třeboň, Czech Republic
| | - Barbora Křístková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 00, Prague, Czech Republic
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Katarína Šťastná
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 00, Prague, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 44, Prague, Czech Republic
| | - Margit Winkler
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria.
- Austrian Centre of Industrial Biotechnology GmbH, Krenngasse 37, 8010, Graz, Austria.
| |
Collapse
|
4
|
Liu M, Li S. Nitrile biosynthesis in nature: how and why? Nat Prod Rep 2024; 41:649-671. [PMID: 38193577 DOI: 10.1039/d3np00028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Covering: up to the end of 2023Natural nitriles comprise a small set of secondary metabolites which however show intriguing chemical and functional diversity. Various patterns of nitrile biosynthesis can be seen in animals, plants, and microorganisms with the characteristics of both evolutionary divergence and convergence. These specialized compounds play important roles in nitrogen metabolism, chemical defense against herbivores, predators and pathogens, and inter- and/or intraspecies communications. Here we review the naturally occurring nitrile-forming pathways from a biochemical perspective and discuss the biological and ecological functions conferred by diversified nitrile biosyntheses in different organisms. Elucidation of the mechanisms and evolutionary trajectories of nitrile biosynthesis underpins better understandings of nitrile-related biology, chemistry, and ecology and will ultimately benefit the development of desirable nitrile-forming biocatalysts for practical applications.
Collapse
Affiliation(s)
- Mingyu Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| |
Collapse
|
5
|
Křístková B, Martínková L, Rucká L, Kotik M, Kulik N, Rädisch R, Winkler M, Pátek M. Immobilization of aldoxime dehydratases on metal affinity resins and use of the immobilized catalysts for the synthesis of nitriles important in fragrance industry. J Biotechnol 2024; 384:12-19. [PMID: 38373531 DOI: 10.1016/j.jbiotec.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Nitriles have a wide range of uses as building blocks, solvents, and alternative fuels, but also as intermediates and components of flavors and fragrances. The enzymatic synthesis of nitriles by aldoxime dehydratase (Oxd) is an emerging process with significant advantages over conventional approaches. Here we focus on the immobilization of His-tagged Oxds on metal affinity resins, an approach that has not been used previously for these enzymes. The potential of the immobilized Oxd was demonstrated for the synthesis of phenylacetonitrile (PAN) and E-cinnamonitrile, compounds applicable in the fragrance industry. A comparison of Talon and Ni-NTA resins showed that Ni-NTA with its higher binding capacity was more suitable for the immobilization of Oxd. Immobilized Oxds were prepared from purified enzymes (OxdFv from Fusarium vanettenii and OxdBr1 from Bradyrhizobium sp.) or the corresponding cell-free extracts. The immobilization of cell-free extracts reduced time and cost of the catalyst production. The immobilized OxdBr1 was superior in terms of recyclability (22 cycles) in the synthesis of PAN from 15 mM E/Z-phenylacetaldoxime at pH 7.0 and 30 °C (100% conversion, 61% isolated yield after product purification). The volumetric and catalyst productivity was 10.5 g/L/h and 48.3 g/g of immobilized protein, respectively.
Collapse
Affiliation(s)
- Barbora Křístková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague CZ-142 00, Czech Republic; Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technická 5, Prague CZ-166 28, Czech Republic
| | - Ludmila Martínková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague CZ-142 00, Czech Republic.
| | - Lenka Rucká
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague CZ-142 00, Czech Republic
| | - Michael Kotik
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague CZ-142 00, Czech Republic
| | - Natalia Kulik
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, Třeboň CZ-37981, Czech Republic
| | - Robert Rädisch
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague CZ-142 00, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, Prague CZ-128 44, Czech Republic
| | - Margit Winkler
- Institute of Molecular Biotechnology, Faculty of Technical Chemistry, Chemical and Process Engineering, Biotechnology, Graz University of Technology, Petersgasse 14, Graz A-8010, Austria; Austrian Center of Industrial Biotechnology GmbH, Krenngasse 37, Graz A-8010, Austria
| | - Miroslav Pátek
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague CZ-142 00, Czech Republic
| |
Collapse
|
6
|
Yamaguchi T, Asano Y. Nitrile-synthesizing enzymes and biocatalytic synthesis of volatile nitrile compounds: A review. J Biotechnol 2024; 384:20-28. [PMID: 38395363 DOI: 10.1016/j.jbiotec.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
Nitriles (R-CN) comprise a broad group of chemicals industrially produced and used in fine chemicals, pharmaceuticals, and bulk applications, polymer chemistry, solvents, etc. Nitriles are important starting materials for producing carboxylic acids, amides, amines, and several other compounds. In addition, some volatile nitriles have been evaluated for their potential as ingredients in fragrance and flavor formulations. However, many nitrile synthesis methods have drawbacks, such as drastic reaction conditions, limited substrate scope, lack of readily available reagents, poor yields, and long reaction times. In contrast to chemical synthesis, biocatalytic approaches using enzymes can produce nitriles without harsh conditions, such as high temperatures and pressures, or toxic compounds. In this review, we summarize the nitrile-synthesizing enzymes from microorganisms, plants, and animals. Furthermore, we introduce several examples of biocatalytic synthesis of volatile nitrile compounds, particularly those using aldoxime dehydratase.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Biotechnology Research Center and Department of Biotechnology, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
7
|
Pei X, Xiao Q, Feng Y, Chen L, Yang F, Wang Q, Li N, Wang A. Enzymatic properties of a non-classical aldoxime dehydratase capable of producing alkyl and arylalkyl nitriles. Appl Microbiol Biotechnol 2023; 107:7089-7104. [PMID: 37733049 DOI: 10.1007/s00253-023-12767-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023]
Abstract
Nitriles are of significant interest in the flavor and fragrance industries with potential application in cosmetics due to their higher stability than analogous aldehydes. However, the traditional methods to prepare nitriles need toxic reagents and hash conditions. This work aimed to develop a chemoenzymatic strategy to synthesize nitriles from natural aldehydes with aldoxime as the intermediate. A non-classical aldoxime dehydratase (Oxd) was discovered from the fungus Aspergillus ibericus (OxdAsp) to catalyze the dehydration of aldoximes to corresponding nitriles under mild conditions. The amino acid sequence of OxdAsp exhibits an approximately 20% identity with bacterial Oxds. OxdAsp contains a heme prosthetic group bound with the axial H287 in the catalytic pocket. The structure models of OxdAsp with substrates suggest that its catalytic triad is Y138-R141-E192, which is different from the classically bacterial Oxds of His-Arg-Ser/Thr. The catalytic mechanism of OxdAsp was proposed based on the mutagenesis of key residues. The hydroxyl group of the substrate is fixed by E192 to increase its basicity. Y138 acts as a general acid-based catalyst, and its phenolic proton is polarized by the adjacent R141. The protonated Y138 would donate a proton to the hydroxyl group of the substrate and eliminate a water molecule from aldoxime to produce nitrile. The recombinant OxdAsp can efficiently dehydrate citronellal oxime and cinnamaldoxime to citronellyl nitrile and cinnamonitrile in aqueous media, which are applied as fragrance ingredients in the food and cosmetic fields. KEY POINTS: • A novel aldoxime dehydratase from the Aspergillus genus was first characterized as a heme-binding protein. • The catalytic mechanism was predicted based on the molecular interactions of the catalytic pocket with the substrate. • A chemoenzymatic strategy was developed to synthesize nitriles from natural aldehydes with aldoxime as the intermediate.
Collapse
Affiliation(s)
- Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Qinjie Xiao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yumin Feng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Li Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Fengling Yang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qiuyan Wang
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Nanxing Li
- Zhejiang Medicine Co. Ltd, Xinchang, 312500, China
| | - Anming Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
8
|
Adak S, Ye N, Calderone LA, Schäfer RJB, Lukowski AL, Pandelia ME, Drennan CL, Moore BS. Oxidative rearrangement of tryptophan to indole nitrile by a single diiron enzyme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551874. [PMID: 37577561 PMCID: PMC10418191 DOI: 10.1101/2023.08.03.551874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Nitriles are uncommon in nature and are typically constructed from oximes via the oxidative decarboxylation of amino acid substrates or from the derivatization of carboxylic acids. Here we report a third strategy of nitrile biosynthesis featuring the cyanobacterial nitrile synthase AetD. During the biosynthesis of the 'eagle-killing' neurotoxin, aetokthonotoxin, AetD converts the alanyl side chain of 5,7-dibromo-L-tryptophan to a nitrile. Employing a combination of structural, biochemical, and biophysical techniques, we characterized AetD as a non-heme diiron enzyme that belongs to the emerging Heme Oxygenase-like Diiron Oxidase and Oxygenase (HDO) superfamily. High-resolution crystal structures of AetD together with the identification of catalytically relevant products provide mechanistic insights into how AetD affords this unique transformation that we propose proceeds via an aziridine intermediate. Our work presents a new paradigm for nitrile biogenesis and portrays a substrate binding and metallocofactor assembly mechanism that may be shared among other HDO enzymes.
Collapse
Affiliation(s)
- Sanjoy Adak
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Naike Ye
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Logan A. Calderone
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Rebecca J. B. Schäfer
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - April L. Lukowski
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Maria-Eirini Pandelia
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Catherine L. Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093, United States
| |
Collapse
|
9
|
Engineered aldoxime dehydratase to enable the chemoenzymatic conversion of benzyl amines to aromatic nitriles. Bioorg Chem 2023; 134:106468. [PMID: 36933338 DOI: 10.1016/j.bioorg.2023.106468] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
A chemoenzymatic strategy has been implemented to synthesize nitriles from benzyl amines under mild conditions. Aldoxime dehydratase (Oxd) plays a decisive role to convert aldoximes into corresponding nitriles. However, natural Oxds commonly exhibit extremely low catalytic capacity toward benzaldehyde oximes. Here, we engineered the OxdF1 from Pseudomonas putida F1 to enhance its catalytic efficiency toward benzaldehyde oximes by a semi-rational design strategy. The protein structure-based CAVER analysis indicates that M29, A147, F306, and L318 are located adjacent to the substrate tunnel entrance of OxdF1, which were responsible for the transportation of substrate into the active site. After two rounds of mutagenesis, the maximum activities of the mutants L318F and L318F/F306Y were 2.6 and 2.8 U/mg respectively, which were significantly higher than the wild OxdF1 of 0.7 U/mg. Meanwhile, the lipase type B from Candida antarctica was functionally expressed in Escherichia coli cells to selectively oxidize benzyl amines to aldoximes using urea-hydrogen peroxide adduct (UHP) as an oxidant in ethyl acetate. To merge the oxidation and dehydration reactions, a reductive extraction solution was added to remove the residue UHP, which is critical to eliminate its inhibition on the Oxd activity. Consequently, nine benzyl amines were efficiently converted into corresponding nitriles by the chemoenzymatic sequence.
Collapse
|
10
|
Hinzmann M, Yavuzer H, Hinzmann A, Gröger H. Database-driven In Silico-Identification and Characterization of Novel Aldoxime Dehydratases. J Biotechnol 2023; 367:81-88. [PMID: 36907356 DOI: 10.1016/j.jbiotec.2023.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
Aldoxime dehydratases (Oxds) are a unique class of enzymes, which catalyzes the dehydration of aldoximes to nitriles in an aqueous environment. Recently, they gained attention as a catalyst for a green and cyanide-free alternative to established nitrile syntheses, which often require the use of toxic cyanides and harsh reaction conditions. Up to now only thirteen aldoxime dehydratases have been discovered and biochemically characterized. This raised the interest for identifying further Oxds with, e.g., complementary properties in terms of substrate scope. In this study, 16 novel genes, presumably encoding aldoxime dehydratases, were selected by using a commercially available 3DM database based on OxdB an Oxd from Bacillus sp. OxB-1. Out of 16 proteins, six enzymes with aldoxime dehydratases activity were identified, which differ in their substrate scope and activity. While some novel Oxds showed better performance for aliphatic substrate such as n-octanaloxime compared to the well characterized OxdRE from Rhodococcus sp. N-771, some showed activity for aromatic aldoximes, leading to an overall high usability of these enzymes in organic chemistry. The applicability for organic synthesis was underlined by converting 100 mM n-octanaloxime at a 10 mL scale within 5 h with the novel aldoxime dehydratase OxdHR as whole-cell catalyst (33 mgbww/mL).
Collapse
Affiliation(s)
- Michael Hinzmann
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Hilmi Yavuzer
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Alessa Hinzmann
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| |
Collapse
|
11
|
Křístková B, Rädisch R, Kulik N, Horvat M, Rucká L, Grulich M, Rudroff F, Kádek A, Pátek M, Winkler M, Martínková L. Scanning aldoxime dehydratase sequence space and characterization of a new aldoxime dehydratase from Fusarium vanettenii. Enzyme Microb Technol 2023; 164:110187. [PMID: 36610228 DOI: 10.1016/j.enzmictec.2022.110187] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/30/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
The aim of this work was to map the sequence space of aldoxime dehydratases (Oxds) as enzymes with great potential for nitrile synthesis. Microbes contain an abundance of putative Oxds but fewer than ten Oxds were characterized in total and only two in fungi. In this work, we prepared and characterized a new Oxd (protein gb|EEU37245.1 named OxdFv) from Fusarium vanettenii 77-13-4. OxdFv is distant from the characterized Oxds with a maximum of 36% identity. Moreover, the canonical Oxd catalytic triad RSH is replaced by R141-E187-E303 in OxdFv. R141A and E187A mutants did not show significant activities, but mutant E303A showed a comparable activity as the wild-type enzyme. According to native mass spectrometry, OxdFv contained almost 1 mol of heme per 1 mol of protein, and was composed of approximately 88% monomer (41.8 kDa) and 12% dimer. A major advantage of this enzyme is its considerable activity under aerobic conditions (25.0 ± 4.3 U/mg for E,Z-phenylacetaldoxime at pH 9.0 and 55 °C). Addition of sodium dithionite (reducing agent) and Fe2+ was required for this activity. OxdFv favored (aryl)aliphatic aldoximes over aromatic aldoximes. Substrate docking in the homology model of OxdFv showed a similar substrate specificity. We conclude that OxdFv is the first characterized Oxd of the REE type.
Collapse
Affiliation(s)
- Barbora Křístková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic; Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague, Czech Republic
| | - Robert Rädisch
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic; Department of Genetics and Microbiology, Faculty of Sciences, Charles University, Viničná 5, CZ-128 44 Prague, Czech Republic
| | - Natalia Kulik
- Laboratory of Structural Biology and Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Zámek 136, CZ-373 33 Nové Hrady, Czech Republic
| | - Melissa Horvat
- Institute of Molecular Biotechnology, Faculty of Technical Chemistry, Chemical and Process Engineering, Biotechnology, Graz University of Technology, Petersgasse 14, A-8010 Graz, Austria
| | - Lenka Rucká
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - Michal Grulich
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/OC-163, A-1060 Vienna, Austria
| | - Alan Kádek
- Laboratory of Structural Biology and Cell Signaling, BIOCEV - Institute of Microbiology, Czech Academy of Sciences, Průmyslová 595, CZ-252 50 Vestec, Czech Republic; Leibniz Institute of Virology (LIV), Martinistraße 52, D-20251 Hamburg, Germany; European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany
| | - Miroslav Pátek
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - Margit Winkler
- Institute of Molecular Biotechnology, Faculty of Technical Chemistry, Chemical and Process Engineering, Biotechnology, Graz University of Technology, Petersgasse 14, A-8010 Graz, Austria; Austrian Center of Industrial Biotechnology GmbH, Krenngasse 37, A-8010 Graz, Austria
| | - Ludmila Martínková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic.
| |
Collapse
|
12
|
Gao H, Chen JY, Peng Z, Feng L, Tung CH, Wang W. Bioinspired Iron-Catalyzed Dehydration of Aldoximes to Nitriles: A General N-O Redox-Cleavage Method. J Org Chem 2022; 87:10848-10857. [PMID: 35914249 DOI: 10.1021/acs.joc.2c01122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inspired by OxdA that operates biocatalytic aldoxime dehydration, we have developed an efficient iron catalyst, Cp*Fe(1,2-Cy2PC6H4O) (1), which rapidly converts various aliphatic and aromatic aldoximes to nitriles with release of H2O at room temperature. The catalysis involves redox activation of the N-O bond by a 1e- transfer from the iron catalyst to the oxime. Such redox-mediated N-O cleavage was demonstrated by the isolation of a ferrous iminato intermediate from the reaction of the ketoxime substrate. This iron-catalyzed acceptorless dehydration approach represents a general method for the preparation of nitriles, and it also delivers salicylonitriles by catalyzing the Kemp elimination reaction.
Collapse
Affiliation(s)
- Hongjie Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jia-Yi Chen
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhiqiang Peng
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wenguang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.,College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
13
|
Abstract
Amyloids are protein aggregates bearing a highly ordered cross β structural motif, which may be functional but are mostly pathogenic. Their formation, deposition in tissues and consequent organ dysfunction is the central event in amyloidogenic diseases. Such protein aggregation may be brought about by conformational changes, and much attention has been directed toward factors like metal binding, post-translational modifications, mutations of protein etc., which eventually affect the reactivity and cytotoxicity of the associated proteins. Over the past decade, a global effort from different groups working on these misfolded/unfolded proteins/peptides has revealed that the amino acid residues in the second coordination sphere of the active sites of amyloidogenic proteins/peptides cause changes in H-bonding pattern or protein-protein interactions, which dramatically alter the structure and reactivity of these proteins/peptides. These second sphere effects not only determine the binding of transition metals and cofactors, which define the pathology of some of these diseases, but also change the mechanism of redox reactions catalyzed by these proteins/peptides and form the basis of oxidative damage associated with these amyloidogenic diseases. The present review seeks to discuss such second sphere modifications and their ramifications in the etiopathology of some representative amyloidogenic diseases like Alzheimer's disease (AD), type 2 diabetes mellitus (T2Dm), Parkinson's disease (PD), Huntington's disease (HD), and prion diseases.
Collapse
Affiliation(s)
- Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
14
|
He HY, Niikura H, Du YL, Ryan KS. Synthetic and biosynthetic routes to nitrogen-nitrogen bonds. Chem Soc Rev 2022; 51:2991-3046. [PMID: 35311838 DOI: 10.1039/c7cs00458c] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The nitrogen-nitrogen bond is a core feature of diverse functional groups like hydrazines, nitrosamines, diazos, and pyrazoles. Such functional groups are found in >300 known natural products. Such N-N bond-containing functional groups are also found in significant percentage of clinical drugs. Therefore, there is wide interest in synthetic and enzymatic methods to form nitrogen-nitrogen bonds. In this review, we summarize synthetic and biosynthetic approaches to diverse nitrogen-nitrogen-bond-containing functional groups, with a focus on biosynthetic pathways and enzymes.
Collapse
Affiliation(s)
- Hai-Yan He
- Department of Chemistry, University of British Columbia, Vancouver, Canada. .,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Haruka Niikura
- Department of Chemistry, University of British Columbia, Vancouver, Canada.
| | - Yi-Ling Du
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
| | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
15
|
Matsui D, Muraki N, Chen K, Mori T, Ingram AA, Oike K, Gröger H, Aono S, Asano Y. Crystal structural analysis of aldoxime dehydratase from Bacillus sp. OxB-1: Importance of surface residues in optimization for crystallization. J Inorg Biochem 2022; 230:111770. [DOI: 10.1016/j.jinorgbio.2022.111770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022]
|
16
|
Efficient biosynthesis of nucleoside cytokinin angustmycin A containing an unusual sugar system. Nat Commun 2021; 12:6633. [PMID: 34789759 PMCID: PMC8599513 DOI: 10.1038/s41467-021-26928-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022] Open
Abstract
Angustmycin A has anti-mycobacterial and cytokinin activities, and contains an intriguing structure in which an unusual sugar with C5′-C6′ dehydration is linked to adenine via an N-glycosidic bond. However, the logic underlying the biosynthesis of this molecule has long remained obscure. Here, we address angustmycin A biosynthesis by the full deciphering of its pathway. We demonstrate that AgmD, C, A, E, and B function as d-allulose 6-phosphate 3-epimerase, d-allulose 6-phosphate pyrophosphokinase, adenine phosphoallulosyltransferase, phosphoribohydrolase, and phosphatase, respectively, and that these collaboratively catalyze the relay reactions to biosynthesize angustmycin C. Additionally, we provide evidence that AgmF is a noncanonical dehydratase for the final step to angustmycin A via a self-sufficient strategy for cofactor recycling. Finally, we have reconstituted the entire six-enzyme pathway in vitro and in E. coli leading to angustmycin A production. These results expand the enzymatic repertoire regarding natural product biosynthesis, and also open the way for rational and rapid discovery of other angustmycin related antibiotics. Angustmycin A is a nucleoside antibiotic having anti-mycobacterial and cytokinin activities. Here, the authors report the whole pathway leading to angustmycin A biosynthesis in Streptomyces and achieve the heterologous production of angustmycin A in E. coli.
Collapse
|
17
|
Zheng D, Asano Y. A Cyanide‐free Biocatalytic Process for Synthesis of Complementary Enantiomers of 4‐Chloro‐3‐hydroxybutanenitrile From Allyl Chloride. ChemCatChem 2021. [DOI: 10.1002/cctc.202100835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Daijun Zheng
- Biotechnology Research Center and Department of Biotechnology Toyama Prefectural University 5180 Kurokawa Imizu Toyama 939-0398 Japan)
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology Toyama Prefectural University 5180 Kurokawa Imizu Toyama 939-0398 Japan)
| |
Collapse
|
18
|
Chen Z, Mao F, Zheng H, Xiao Q, Ding Z, Wang A, Pei X. Cyanide-free synthesis of aromatic nitriles from aldoximes: Discovery and application of a novel heme-containing aldoxime dehydratase. Enzyme Microb Technol 2021; 150:109883. [PMID: 34489036 DOI: 10.1016/j.enzmictec.2021.109883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/15/2021] [Accepted: 07/27/2021] [Indexed: 01/03/2023]
Abstract
Aromatic nitriles are important structural motifs that frequently existed in pharmaceutical drugs. Due to the convenient synthesis of aldoximes from aldehydes, the dehydration of aldoximes to corresponding nitriles by aldoxime dehydratases (Oxds) is considered as a safe and robust enzymatic production route. Although the Oxd genes are widely distributed in microbial kingdom, so far less than ten Oxds were expressed and further characterized. In this study, we found 26 predicted putative Oxd genes from the GenBank database using a genome mining strategy. The Oxd gene from Pseudomonas putida F1 was cloned and functionally expressed in Escherichia coli BL21 (DE3). The amino acid sequence of OxdF1 shows high identities of 33∼85 % to other characterized Oxds, and contained a ferrous heme as the catalytic site. The optimum reaction pH and temperature of recombinant OxdF1 were 7.0 and 35 °C, respectively. OxdF1 was stable in pH 7.0 potassium phosphate buffer at 30 °C, and its half-life was approximately 3.8 h. OxdF1 can efficiently dehydrate aromatic and heterocyclic aldoximes to nitriles, such as 2-bromobenzaldoxime, 2-chloro-6-fluorobenzaldoxime, thiophene-2-carboxaldoxime, and pyridine-3-aldoxime. Therefore, the recombinant OxdF1 shows a potential application in the cyanide-free synthesis of aromatic nitriles.
Collapse
Affiliation(s)
- Zhiji Chen
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Feiying Mao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Haoteng Zheng
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qinjie Xiao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhihao Ding
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Anming Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
19
|
Yavuzer H, Asano Y, Gröger H. Rationalizing the Unprecedented Stereochemistry of an Enzymatic Nitrile Synthesis through a Combined Computational and Experimental Approach. Angew Chem Int Ed Engl 2021; 60:19162-19168. [PMID: 33886145 PMCID: PMC8456930 DOI: 10.1002/anie.202017234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Indexed: 01/08/2023]
Abstract
In this contribution, the unique and unprecedented stereochemical phenomenon of an aldoxime dehydratase‐catalyzed enantioselective dehydration of racemic E‐ and Z‐aldoximes with selective formation of both enantiomeric forms of a chiral nitrile is rationalized by means of molecular modelling, comprising in silico mutations and docking studies. This theoretical investigation gave detailed insight into why with the same enzyme the use of racemic E‐ and Z‐aldoximes leads to opposite forms of the chiral nitrile. The calculated mutants with a larger or smaller cavity in the active site were then prepared and used in biotransformations, showing the theoretically predicted decrease and increase of the enantioselectivities in these nitrile syntheses. This validated model also enabled the rational design of mutants with a smaller cavity, which gave superior enantioselectivities compared to the known wild‐type enzyme, with excellent E‐values of up to E>200 when the mutant OxdRE‐Leu145Phe was utilized.
Collapse
Affiliation(s)
- Hilmi Yavuzer
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Yasuhisa Asano
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
20
|
Yavuzer H, Asano Y, Gröger H. Rationalizing the Unprecedented Stereochemistry of an Enzymatic Nitrile Synthesis through a Combined Computational and Experimental Approach. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hilmi Yavuzer
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Yasuhisa Asano
- Biotechnology Research Center Toyama Prefectural University 5180 Kurokawa Imizu Toyama 939-0398 Japan
| | - Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| |
Collapse
|
21
|
Protein engineering of the aldoxime dehydratase from Bacillus sp. OxB-1 based on a rational sequence alignment approach. Sci Rep 2021; 11:14316. [PMID: 34253740 PMCID: PMC8275659 DOI: 10.1038/s41598-021-92749-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 06/08/2021] [Indexed: 12/31/2022] Open
Abstract
Recently, the program INTMSAlign_HiSol for identifying aggregation hotspots in proteins only requiring secondary structure data was introduced. We explored the utility of this program further and applied it for engineering of the aldoxime dehydratase from Bacillus sp. OxB-1. Towards this end, the effect of inverting the hydropathy at selected positions of the amino acid sequence on the enzymatic activity was studied leading to 60% of our constructed variants, which showed improved activity. In part, this activity increase can be rationalised by an improved heme incorporation of the variants. For example, a single mutation gave a 1.8 fold increased enzymatic activity and 30% improved absolute heme incorporation.
Collapse
|
22
|
Chen K, Wang Z, Ding K, Chen Y, Asano Y. Recent progress on discovery and research of aldoxime dehydratases. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
23
|
Hinzmann A, Betke T, Asano Y, Gröger H. Synthetic Processes toward Nitriles without the Use of Cyanide: A Biocatalytic Concept Based on Dehydration of Aldoximes in Water. Chemistry 2021; 27:5313-5321. [PMID: 33112445 PMCID: PMC8049032 DOI: 10.1002/chem.202001647] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 10/22/2020] [Indexed: 11/29/2022]
Abstract
While belonging to the most fundamental functional groups, nitriles represent a class of compound that still raises challenges in terms of an efficient, cost‐effective, general and, at the same time, sustainable way for their synthesis. Complementing existing chemical routes, recently a cyanide‐free enzymatic process technology based on the use of an aldoxime dehydratase (Oxd) as a biocatalyst component has been developed and successfully applied for the synthesis of a range of nitrile products. In these biotransformations, the Oxd enzymes catalyze the dehydration of aldoximes as readily available substrates to the nitrile products. Herein, these developments with such enzymes are summarized, with a strong focus on synthetic applications. It is demonstrated that this biocatalytic technology has the potential to “cross the bridge” between the production of fine chemicals and pharmaceuticals, on one hand, and bulk and commodity chemicals, on the other.
Collapse
Affiliation(s)
- Alessa Hinzmann
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Tobias Betke
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Yasuhisa Asano
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
24
|
Bago Rodriguez AM, Schober L, Hinzmann A, Gröger H, Binks BP. Effect of Particle Wettability and Particle Concentration on the Enzymatic Dehydration of n-Octanaloxime in Pickering Emulsions. Angew Chem Int Ed Engl 2021; 60:1450-1457. [PMID: 33119950 PMCID: PMC7839585 DOI: 10.1002/anie.202013171] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Indexed: 12/24/2022]
Abstract
Pickering emulsion systems have emerged as platforms for the synthesis of organic molecules in biphasic biocatalysis. Herein, the catalytic performance was evaluated for biotransformation using whole cells exemplified for the dehydration of n-octanaloxime to n-octanenitrile catalysed by an aldoxime dehydratase (OxdB) overexpressed in E. coli. This study was carried out in Pickering emulsions stabilised solely with silica particles of different hydrophobicity. We correlate, for the first time, the properties of the emulsions with the conversion of the reaction, thus gaining an insight into the impact of the particle wettability and particle concentration. When comparing two emulsions of different type with similar stability and droplet diameter, the oil-in-water (o/w) system displayed a higher conversion than the water-in-oil (w/o) system, despite the conversion in both cases being higher than that in a "classic" two-phase system. Furthermore, an increase in particle concentration prior to emulsification resulted in an increase of the interfacial area and hence a higher conversion.
Collapse
Affiliation(s)
| | - Lukas Schober
- Faculty of ChemistryBielefeld UniversityUniversitätsstrasse 2533615BielefeldGermany
| | - Alessa Hinzmann
- Faculty of ChemistryBielefeld UniversityUniversitätsstrasse 2533615BielefeldGermany
| | - Harald Gröger
- Faculty of ChemistryBielefeld UniversityUniversitätsstrasse 2533615BielefeldGermany
| | | |
Collapse
|
25
|
Hashimoto Y, Ube Y, Doi S, Kumano T, Kobayashi M. Metal chaperone, NhpC, involved in the metallocenter biosynthesis of nitrile hydratase. J GEN APPL MICROBIOL 2021; 67:24-32. [DOI: 10.2323/jgam.2020.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yoshiteru Hashimoto
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba
- Microbiology Research Center for Sustainability (MiCS), The University of Tsukuba
| | - Yuko Ube
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba
| | - Shiori Doi
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba
| | - Takuto Kumano
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba
- Microbiology Research Center for Sustainability (MiCS), The University of Tsukuba
| | - Michihiko Kobayashi
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba
- Microbiology Research Center for Sustainability (MiCS), The University of Tsukuba
| |
Collapse
|
26
|
Bago Rodriguez AM, Schober L, Hinzmann A, Gröger H, Binks BP. Effect of Particle Wettability and Particle Concentration on the Enzymatic Dehydration of
n
‐Octanaloxime in Pickering Emulsions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Lukas Schober
- Faculty of Chemistry Bielefeld University Universitätsstrasse 25 33615 Bielefeld Germany
| | - Alessa Hinzmann
- Faculty of Chemistry Bielefeld University Universitätsstrasse 25 33615 Bielefeld Germany
| | - Harald Gröger
- Faculty of Chemistry Bielefeld University Universitätsstrasse 25 33615 Bielefeld Germany
| | | |
Collapse
|
27
|
Martí S, Tuñón I, Moliner V, Bertran J. Are Heme-Dependent Enzymes Always Using a Redox Mechanism? A Theoretical Study of the Kemp Elimination Catalyzed by a Promiscuous Aldoxime Dehydratase. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sergio Martí
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | - Iñaki Tuñón
- Departament de Química Física, Universitat de València, 46100 Burjassot, Spain
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | - Joan Bertran
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
28
|
Hinzmann A, Glinski S, Worm M, Gröger H. Enzymatic Synthesis of Aliphatic Nitriles at a Substrate Loading of up to 1.4 kg/L: A Biocatalytic Record Achieved with a Heme Protein. J Org Chem 2019; 84:4867-4872. [PMID: 30844280 DOI: 10.1021/acs.joc.9b00184] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A biocatalytic approach toward linear aliphatic nitriles being widely used as industrial bulk chemicals has been developed that runs at high substrate loadings of up to 1.4 kg/L as demonstrated for the synthesis of n-octanenitrile. This substrate loading is one of the highest ever reported in biocatalysis and to best of our knowledge the highest obtained for a water-immiscible product in aqueous medium. It is noteworthy that the biotransformation at such a high substrate loading was achieved by means of a metalloprotein bearing an iron-containing heme subunit in the active site. In detail, an aldoxime dehydratase from Bacillus sp. OxB-1 was used as a biocatalyst for a dehydration of aldoximes as readily available starting materials due to their easy preparation from aliphatic aldehydes through spontaneous condensation with hydroxylamine as bulk chemical. Excellent conversions toward the nitriles in the two-phase system were achieved and the products are easily separated from the reaction mixture without the need for further purification. Aliphatic nitriles are used in industry as solvents and intermediates for the production of surfactants and life sciences products.
Collapse
Affiliation(s)
- Alessa Hinzmann
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry , Bielefeld University , Universitätsstrase 25 , 33615 Bielefeld , Germany
| | - Sylvia Glinski
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry , Bielefeld University , Universitätsstrase 25 , 33615 Bielefeld , Germany
| | - Marion Worm
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry , Bielefeld University , Universitätsstrase 25 , 33615 Bielefeld , Germany
| | - Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry , Bielefeld University , Universitätsstrase 25 , 33615 Bielefeld , Germany
| |
Collapse
|
29
|
Davidson M, McNamee M, Fan R, Guo Y, Chang WC. Repurposing Nonheme Iron Hydroxylases To Enable Catalytic Nitrile Installation through an Azido Group Assistance. J Am Chem Soc 2019; 141:3419-3423. [PMID: 30759343 DOI: 10.1021/jacs.8b13906] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Three mononuclear nonheme iron and 2-oxoglutarate dependent enzymes, l-Ile 4-hydroxylase, l-Leu 5-hydroxylase and polyoxin dihydroxylase, are previously reported to catalyze the hydroxylation of l-isoleucine, l-leucine, and l-α-amino-δ-carbamoylhydroxyvaleric acid (ACV). In this study, we showed that these enzymes can accommodate leucine isomers and catalyze regiospecific hydroxylation. On the basis of these results, as a proof-of-concept, we demonstrated that the outcome of the reaction can be redirected by installation of an assisting group within the substrate. Specifically, instead of canonical hydroxylation, these enzymes can catalyze non-native nitrile group installation when an azido group is introduced. The reaction is likely to proceed through C-H bond activation by an Fe(IV)-oxo species, followed by azido-directed C≡N bond formation. These results offer a unique opportunity to investigate and expand the reaction repertoire of Fe/2OG enzymes.
Collapse
Affiliation(s)
- Madison Davidson
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Meredith McNamee
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Ruixi Fan
- Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Yisong Guo
- Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Wei-Chen Chang
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695 , United States
| |
Collapse
|
30
|
Betke T, Maier M, Gruber-Wölfler H, Gröger H. Biocatalytic production of adiponitrile and related aliphatic linear α,ω-dinitriles. Nat Commun 2018; 9:5112. [PMID: 30504854 PMCID: PMC6269433 DOI: 10.1038/s41467-018-07434-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/01/2018] [Indexed: 11/29/2022] Open
Abstract
Linear α,ω-dinitriles are important precursors for the polymer industry. Most prominently, adiponitrile is produced on an annual scale of ca. 1 million tons. However, a drawback of today’s dominating process is the need for large amounts of highly toxic hydrogen cyanide. In this contribution, an alternative approach towards such linear dinitriles is presented based on dehydration of readily available α,ω-dialdoximes at ambient conditions by means of aldoxime dehydratases. In contrast to existing production routes this biocatalytic route enables a highly regio- and chemoselective approach towards dinitriles without the use of hydrogen cyanide or harsh reaction conditions. In addition, a selective synthesis of adiponitrile with substrate loadings of up to 100 g/L and high yields of up to 80% was achieved. Furthermore, a lab scale process on liter scale leading to > 99% conversion at 50 g/L underlines the potential and robustness of this method for technical applicability. Typically, preparation of the polymer precursors α,ω-dinitriles requires hydrogen cyanide. Here, the authors use aldoxime hydratase to produce adiponitrile and related aliphatic linear dinitriles under ambient conditions starting from readily available substrates without needing hydrogen cyanide.
Collapse
Affiliation(s)
- Tobias Betke
- Chair of Organic Chemistry I, Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Manuel Maier
- Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13/III, 8010, Graz, Austria
| | - Heidrun Gruber-Wölfler
- Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13/III, 8010, Graz, Austria
| | - Harald Gröger
- Chair of Organic Chemistry I, Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany.
| |
Collapse
|
31
|
Overproduction and characterization of the first enzyme of a new aldoxime dehydratase family in Bradyrhizobium sp. Int J Biol Macromol 2018; 115:746-753. [PMID: 29698761 DOI: 10.1016/j.ijbiomac.2018.04.103] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 11/23/2022]
Abstract
Almost 100 genes within the genus Bradyrhizobium are known to potentially encode aldoxime dehydratases (Oxds), but none of the corresponding proteins have been characterized yet. Aldoximes are natural substances involved in plant defense and auxin synthesis, and Oxds are components of enzymatic cascades enabling bacteria to transform, utilize and detoxify them. The aim of this work was to characterize a representative of the highly conserved Oxds in Bradyrhizobium spp. which include both plant symbionts and members of the soil communities. The selected oxd gene from Bradyrhizobium sp. LTSPM299 was expressed in Escherichia coli, and the corresponding gene product (OxdBr1; GenBank: WP_044589203) was obtained as an N-His6-tagged protein (monomer, 40.7 kDa) with 30-47% identity to Oxds characterized previously. OxdBr1 was most stable at pH ca. 7.0-8.0 and at up to 30 °C. As substrates, the enzyme acted on (aryl)aliphatic aldoximes such as E/Z-phenylacetaldoxime, E/Z-2-phenylpropionaldoxime, E/Z-3-phenylpropionaldoxime, E/Z-indole-3-acetaldoxime, E/Z-propionaldoxime, E/Z-butyraldoxime, E/Z-valeraldoxime and E/Z-isovaleraldoxime. Some of the reaction products of OxdBr1 are substrates of nitrilases occurring in the same genus. Regions upstream of the oxd gene contained genes encoding a putative aliphatic nitrilase and its transcriptional activator, indicating the participation of OxdBr1 in the metabolic route from aldoximes to carboxylic acids.
Collapse
|
32
|
Betke T, Higuchi J, Rommelmann P, Oike K, Nomura T, Kato Y, Asano Y, Gröger H. Biocatalytic Synthesis of Nitriles through Dehydration of Aldoximes: The Substrate Scope of Aldoxime Dehydratases. Chembiochem 2018; 19:768-779. [PMID: 29333684 DOI: 10.1002/cbic.201700571] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Indexed: 11/05/2022]
Abstract
Nitriles, which are mostly needed and produced by the chemical industry, play a major role in various industry segments, ranging from high-volume, low-price sectors, such as polymers, to low-volume, high-price sectors, such as chiral pharma drugs. A common industrial technology for nitrile production is ammoxidation as a gas-phase reaction at high temperature. Further popular approaches are substitution or addition reactions with hydrogen cyanide or derivatives thereof. A major drawback, however, is the very high toxicity of cyanide. Recently, as a synthetic alternative, a novel enzymatic approach towards nitriles has been developed with aldoxime dehydratases, which are capable of converting an aldoxime in one step through dehydration into nitriles. Because the aldoxime substrates are easily accessible, this route is of high interest for synthetic purposes. However, whenever a novel method is developed for organic synthesis, it raises the question of substrate scope as one of the key criteria for application as a "synthetic platform technology". Thus, the scope of this review is to give an overview of the current state of the substrate scope of this enzymatic method for synthesizing nitriles with aldoxime dehydratases. As a recently emerging enzyme class, a range of substrates has already been studied so far, comprising nonchiral and chiral aldoximes. This enzyme class of aldoxime dehydratases shows a broad substrate tolerance and accepts aliphatic and aromatic aldoximes, as well as arylaliphatic aldoximes. Furthermore, aldoximes with a stereogenic center are also recognized and high enantioselectivities are found for 2-arylpropylaldoximes, in particular. It is further noteworthy that the enantiopreference depends on the E and Z isomers. Thus, opposite enantiomers are accessible from the same racemic aldehyde and the same enzyme.
Collapse
Affiliation(s)
- Tobias Betke
- Chair of Organic Chemistry I, Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany.,Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Jun Higuchi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Philipp Rommelmann
- Chair of Organic Chemistry I, Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Keiko Oike
- Chair of Organic Chemistry I, Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Taiji Nomura
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yasuo Kato
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yasuhisa Asano
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Harald Gröger
- Chair of Organic Chemistry I, Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| |
Collapse
|
33
|
Nitrile Metabolizing Enzymes in Biocatalysis and Biotransformation. Appl Biochem Biotechnol 2018; 185:925-946. [DOI: 10.1007/s12010-018-2705-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/19/2018] [Indexed: 11/26/2022]
|
34
|
Rommelmann P, Betke T, Gröger H. Synthesis of Enantiomerically Pure N-Acyl Amino Nitriles via Catalytic Dehydration of Oximes and Application in a de Novo Synthesis of Vildagliptin. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.7b00169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Philipp Rommelmann
- Chair of Organic Chemistry
I, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Tobias Betke
- Chair of Organic Chemistry
I, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Harald Gröger
- Chair of Organic Chemistry
I, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| |
Collapse
|
35
|
Yamada M, Hashimoto Y, Kumano T, Tsujimura S, Kobayashi M. New function of aldoxime dehydratase: Redox catalysis and the formation of an unexpected product. PLoS One 2017; 12:e0175846. [PMID: 28410434 PMCID: PMC5391958 DOI: 10.1371/journal.pone.0175846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/31/2017] [Indexed: 11/21/2022] Open
Abstract
In general, hemoproteins are capable of catalyzing redox reactions. Aldoxime dehydratase (OxdA), which is a unique heme-containing enzyme, catalyzes the dehydration of aldoximes to the corresponding nitriles. Its reaction is a rare example of heme directly activating an organic substrate, unlike the utilization of H2O2 or O2 as a mediator of catalysis by other heme-containing enzymes. While it is unknown whether OxdA catalyzes redox reactions or not, we here for the first time detected catalase activity (which is one of the redox activities) of wild-type OxdA, OxdA(WT). Furthermore, we constructed a His320 → Asp mutant of OxdA [OxdA(H320D)], and found it exhibits catalase activity. Determination of the kinetic parameters of OxdA(WT) and OxdA(H320D) revealed that their Km values for H2O2 were similar to each other, but the kcat value of OxdA(H320D) was 30 times higher than that of OxdA(WT). Next, we examined another redox activity and found it was the peroxidase activity of OxdAs. While both OxdA(WT) and OxdA(H320D) showed the activity, the activity of OxdA(H320D) was dozens of times higher than that of OxdA(WT). These findings demonstrated that the H320D mutation enhances the peroxidase activity of OxdA. OxdAs (WT and H320D) were found to catalyze another redox reaction, a peroxygenase reaction. During this reaction of OxdA(H320D) with 1-methoxynaphthalene as a substrate, surprisingly, the reaction mixture changed to a color different from that with OxdA(WT), which was due to the known product, Russig’s blue. We purified and identified the new product as 1-methoxy-2-naphthalenol, which has never been reported as a product of the peroxygenase reaction, to the best of our knowledge. These findings indicated that the H320D mutation not only enhanced redox activities, but also significantly altered the hydroxylation site of the substrate.
Collapse
Affiliation(s)
- Masatoshi Yamada
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiteru Hashimoto
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takuto Kumano
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Seiya Tsujimura
- Division of Materials Science, Faculty of Pure and Applied Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Michihiko Kobayashi
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
36
|
Miao Y, Metzner R, Asano Y. Kemp Elimination Catalyzed by Naturally Occurring Aldoxime Dehydratases. Chembiochem 2017; 18:451-454. [PMID: 28120515 DOI: 10.1002/cbic.201600596] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Indexed: 11/10/2022]
Abstract
Recently, the Kemp elimination reaction has been extensively studied in computational enzyme design of new catalysts, as no natural enzyme has evolved to catalyze this reaction. In contrast to in silico enzyme design, we were interested in searching for Kemp eliminase activity in natural enzymes with catalytic promiscuity. Based on similarities of substrate structures and reaction mechanisms, we assumed that the active sites of naturally abundant aldoxime dehydratases have the potential to catalyze the non-natural Kemp elimination reaction. We found several aldoxime dehydratases that are efficient catalysts of this reaction. Although a few natural enzymes have been identified with promiscuous Kemp eliminase activity, to the best of our knowledge, this is a rare example of Kemp elimination catalyzed by naturally occurring enzymes with high catalytic efficiency.
Collapse
Affiliation(s)
- Yufeng Miao
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Richard Metzner
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|
37
|
Dooley-Cullinane TM, O’Reilly C, Coffey L. Real-time PCR detection of aldoxime dehydratase genes in nitrile-degrading microorganisms. Antonie van Leeuwenhoek 2016; 110:271-279. [DOI: 10.1007/s10482-016-0786-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/11/2016] [Indexed: 11/30/2022]
|
38
|
Abe T, Hashimoto Y, Sugimoto S, Kobayashi K, Kumano T, Kobayashi M. Amide compound synthesis by adenylation domain of bacillibactin synthetase. J Antibiot (Tokyo) 2016; 70:435-442. [DOI: 10.1038/ja.2016.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/07/2016] [Accepted: 08/29/2016] [Indexed: 11/09/2022]
|
39
|
Abstract
Sesamin is one of the major lignans found in sesame oil. Although some microbial metabolites of sesamin have been identified, sesamin-metabolic pathways remain uncharacterized at both the enzyme and gene levels. Here, we isolated microorganisms growing on sesamin as a sole-carbon source. One microorganism showing significant sesamin-degrading activity was identified as Sinomonas sp. no. 22. A sesamin-metabolizing enzyme named SesA was purified from this strain and characterized. SesA catalyzed methylene group transfer from sesamin or sesamin monocatechol to tetrahydrofolate (THF) with ring cleavage, yielding sesamin mono- or di-catechol and 5,10-methylenetetrahydrofolate. The kinetic parameters of SesA were determined to be as follows: Km for sesamin = 0.032 ± 0.005 mM, Vmax = 9.3 ± 0.4 (μmol⋅min(-1)⋅mg(-1)), and kcat = 7.9 ± 0.3 s(-1) Next, we investigated the substrate specificity. SesA also showed enzymatic activity toward (+)-episesamin, (-)-asarinin, sesaminol, (+)-sesamolin, and piperine. Growth studies with strain no. 22, and Western blot analysis revealed that SesA formation is inducible by sesamin. The deduced amino acid sequence of sesA exhibited weak overall sequence similarity to that of the protein family of glycine cleavage T-proteins (GcvTs), which catalyze glycine degradation in most bacteria, archaea, and all eukaryotes. Only SesA catalyzes C1 transfer to THF with ring cleavage reaction among GcvT family proteins. Moreover, SesA homolog genes are found in both Gram-positive and Gram-negative bacteria. Our findings provide new insights into microbial sesamin metabolism and the function of GcvT family proteins.
Collapse
|
40
|
Acharya G, Kaur G, Subramanian S. Evolutionary relationships between heme-binding ferredoxin α + β barrels. BMC Bioinformatics 2016; 17:168. [PMID: 27089923 PMCID: PMC4835899 DOI: 10.1186/s12859-016-1033-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/12/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The α + β barrel superfamily of the ferredoxin-like fold consists of a functionally diverse group of evolutionarily related proteins. The barrel architecture of these proteins is formed by either homo-/hetero-dimerization or duplication and fusion of ferredoxin-like domains. Several members of this superfamily bind heme in order to carry out their functions. RESULTS We analyze the heme-binding sites in these proteins as well as their barrel topologies. Our comparative structural analysis of these heme-binding barrels reveals two distinct modes of packing of the ferredoxin-like domains to constitute the α + β barrel, which is typified by the Type-1/IsdG-like and Type-2/OxdA-like proteins, respectively. We examine the heme-binding pockets and explore the versatility of the α + β barrels ability to accommodate heme or heme-related moieties, such as siroheme, in at least three different sites, namely, the mode seen in IsdG/OxdA, Cld/DyP/EfeB/HemQ and siroheme decarboxylase barrels. CONCLUSIONS Our study offers insights into the plausible evolutionary relationships between the two distinct barrel packing topologies and relate the observed heme-binding sites to these topologies.
Collapse
Affiliation(s)
- Giriraj Acharya
- CSIR-Institute of Microbial Technology (IMTECH), Sector 39-A, Chandigarh, India
| | - Gurmeet Kaur
- CSIR-Institute of Microbial Technology (IMTECH), Sector 39-A, Chandigarh, India
| | | |
Collapse
|
41
|
Hyodo K, Kitagawa S, Yamazaki M, Uchida K. Iron-Catalyzed Dehydration of Aldoximes to Nitriles Requiring Neither Other Reagents Nor Nitrile Media. Chem Asian J 2016; 11:1348-52. [DOI: 10.1002/asia.201600085] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Kengo Hyodo
- Department of Material Chemistry; Faculty of Science and Technology; Ryukoku University; Seta Otsu Shiga 520-2194 Japan
| | - Saki Kitagawa
- Department of Material Chemistry; Faculty of Science and Technology; Ryukoku University; Seta Otsu Shiga 520-2194 Japan
| | - Masayuki Yamazaki
- Department of Material Chemistry; Faculty of Science and Technology; Ryukoku University; Seta Otsu Shiga 520-2194 Japan
| | - Kingo Uchida
- Department of Material Chemistry; Faculty of Science and Technology; Ryukoku University; Seta Otsu Shiga 520-2194 Japan
| |
Collapse
|
42
|
Ghosh C, Mukherjee S, Seal M, Dey SG. Peroxidase to Cytochrome b Type Transition in the Active Site of Heme-Bound Amyloid β Peptides Relevant to Alzheimer’s Disease. Inorg Chem 2016; 55:1748-57. [DOI: 10.1021/acs.inorgchem.5b02683] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Chandradeep Ghosh
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Soumya Mukherjee
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Manas Seal
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
43
|
Vila MA, Pazos M, Iglesias C, Veiga N, Seoane G, Carrera I. Toluene Dioxygenase-Catalysed Oxidation of Benzyl Azide to Benzonitrile: Mechanistic Insights for an Unprecedented Enzymatic Transformation. Chembiochem 2016; 17:291-5. [PMID: 26663213 DOI: 10.1002/cbic.201500653] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Indexed: 01/01/2023]
Abstract
Enzymatic dioxygenation of benzyl azide by toluene dioxygenase (TDO) produces significant amounts of the cis-cyclohexadienediol derived from benzonitrile, along with the expected azido diols. We demonstrate that TDO catalyses the oxidation of benzyl azide to benzonitrile, which is further dioxygenated to produce the observed cis-diol. A proposed mechanism for this transformation involves initial benzylic monooxygenation followed by a nitrene-mediated rearrangement to form an oxime, which is further dehydrated to afford the nitrile. To the best of our knowledge, this is the first report of enzymatic oxidation of an alkyl azide to a nitrile. In addition, the described oxime-dehydration activity has not been reported for Rieske dioxygenases.
Collapse
Affiliation(s)
- María Agustina Vila
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Av. General Flores 2124, C.P. 11800, Montevideo, Uruguay
| | - Mariana Pazos
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Av. General Flores 2124, C.P. 11800, Montevideo, Uruguay
| | - César Iglesias
- Cátedra de Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Av. General Flores 2124, C.P. 11800, Montevideo, Uruguay
| | - Nicolás Veiga
- Cátedra de Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de la República., Av. General Flores 2124, C.P. 11800, Montevideo, Uruguay
| | - Gustavo Seoane
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Av. General Flores 2124, C.P. 11800, Montevideo, Uruguay
| | - Ignacio Carrera
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Av. General Flores 2124, C.P. 11800, Montevideo, Uruguay.
| |
Collapse
|
44
|
Kumano T, Takizawa Y, Shimizu S, Kobayashi M. Nitrile-synthesizing enzyme: Gene cloning, overexpression and application for the production of useful compounds. J GEN APPL MICROBIOL 2016; 62:174-80. [DOI: 10.2323/jgam.2016.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Takuto Kumano
- Institute of Applied Biochemistry, and Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Yuko Takizawa
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University
| | - Sakayu Shimizu
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University
| | - Michihiko Kobayashi
- Institute of Applied Biochemistry, and Graduate School of Life and Environmental Sciences, University of Tsukuba
| |
Collapse
|
45
|
Kumano T, Suzuki T, Shimizu S, Kobayashi M. Nitrile-synthesizing enzyme: Screening, purification and characterization. J GEN APPL MICROBIOL 2016; 62:167-73. [DOI: 10.2323/jgam.2016.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Takuto Kumano
- Institute of Applied Biochemistry, and Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Takahisa Suzuki
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University
| | - Sakayu Shimizu
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University
| | - Michihiko Kobayashi
- Institute of Applied Biochemistry, and Graduate School of Life and Environmental Sciences, University of Tsukuba
| |
Collapse
|
46
|
Celis AI, DuBois JL. Substrate, product, and cofactor: The extraordinarily flexible relationship between the CDE superfamily and heme. Arch Biochem Biophys 2015; 574:3-17. [PMID: 25778630 PMCID: PMC4414885 DOI: 10.1016/j.abb.2015.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/06/2015] [Accepted: 03/08/2015] [Indexed: 12/21/2022]
Abstract
PFam Clan 0032, also known as the CDE superfamily, is a diverse group of at least 20 protein families sharing a common α,β-barrel domain. Of these, six different groups bind heme inside the barrel's interior, using it alternately as a cofactor, substrate, or product. Focusing on these six, an integrated picture of structure, sequence, taxonomy, and mechanism is presented here, detailing how a single structural motif might be able to mediate such an array of functions with one of nature's most important small molecules.
Collapse
Affiliation(s)
- Arianna I Celis
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States
| | - Jennifer L DuBois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States.
| |
Collapse
|
47
|
A new synthetic route to N-benzyl carboxamides through the reverse reaction of N-substituted formamide deformylase. Appl Environ Microbiol 2013; 80:61-9. [PMID: 24123742 DOI: 10.1128/aem.02429-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we isolated a new enzyme, N-substituted formamide deformylase, that catalyzes the hydrolysis of N-substituted formamide to the corresponding amine and formate (H. Fukatsu, Y. Hashimoto, M. Goda, H. Higashibata, and M. Kobayashi, Proc. Natl. Acad. Sci. U. S. A. 101:13726-13731, 2004, doi:10.1073/pnas.0405082101). Here, we discovered that this enzyme catalyzed the reverse reaction, synthesizing N-benzylformamide (NBFA) from benzylamine and formate. The reverse reaction proceeded only in the presence of high substrate concentrations. The effects of pH and inhibitors on the reverse reaction were almost the same as those on the forward reaction, suggesting that the forward and reverse reactions are both catalyzed at the same catalytic site. Bisubstrate kinetic analysis using formate and benzylamine and dead-end inhibition studies using a benzylamine analogue, aniline, revealed that the reverse reaction of this enzyme proceeds via an ordered two-substrate, two-product (bi-bi) mechanism in which formate binds first to the enzyme active site, followed by benzylamine binding and the subsequent release of NBFA. To our knowledge, this is the first report of the reverse reaction of an amine-forming deformylase. Surprisingly, analysis of the substrate specificity for acids demonstrated that not only formate, but also acetate and propionate (namely, acids with numbers of carbon atoms ranging from C1 to C3), were active as acid substrates for the reverse reaction. Through this reaction, N-substituted carboxamides, such as NBFA, N-benzylacetamide, and N-benzylpropionamide, were synthesized from benzylamine and the corresponding acid substrates.
Collapse
|
48
|
Mukherjee S, Dey SG. Heme Bound Amylin: Spectroscopic Characterization, Reactivity, and Relevance to Type 2 Diabetes. Inorg Chem 2013; 52:5226-35. [DOI: 10.1021/ic4001413] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Soumya Mukherjee
- Department of Inorganic
Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India 700032
| | - Somdatta Ghosh Dey
- Department of Inorganic
Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India 700032
| |
Collapse
|