1
|
Dhar M, Berg MA. Efficient, nonparametric removal of noise and recovery of probability distributions from time series using nonlinear-correlation functions: Photon and photon-counting noise. J Chem Phys 2024; 161:034116. [PMID: 39028845 DOI: 10.1063/5.0212157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/28/2024] [Indexed: 07/21/2024] Open
Abstract
A preceding paper [M. Dhar, J. A. Dickinson, and M. A. Berg, J. Chem. Phys. 159, 054110 (2023)] shows how to remove additive noise from an experimental time series, allowing both the equilibrium distribution of the system and its Green's function to be recovered. The approach is based on nonlinear-correlation functions and is fully nonparametric: no initial model of the system or of the noise is needed. However, single-molecule spectroscopy often produces time series with either photon or photon-counting noise. Unlike additive noise, photon noise is signal-size correlated and quantized. Photon counting adds the potential for bias. This paper extends noise-corrected-correlation methods to these cases and tests them on synthetic datasets. Neither signal-size correlation nor quantization is a significant complication. Analysis of the sampling error yields guidelines for the data quality needed to recover the properties of a system with a given complexity. We show that bias in photon-counting data can be corrected, even at the high count rates needed to optimize the time resolution. Using all these results, we discuss the factors that limit the time resolution of single-molecule spectroscopy and the conditions that would be needed to push measurements into the submicrosecond region.
Collapse
Affiliation(s)
- Mainak Dhar
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Mark A Berg
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| |
Collapse
|
2
|
Rodgers ML, Sun Y, Woodson SA. Ribosomal Protein S12 Hastens Nucleation of Co-Transcriptional Ribosome Assembly. Biomolecules 2023; 13:951. [PMID: 37371531 DOI: 10.3390/biom13060951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Ribosomal subunits begin assembly during transcription of the ribosomal RNA (rRNA), when the rRNA begins to fold and associate with ribosomal proteins (RPs). In bacteria, the first steps of ribosome assembly depend upon recognition of the properly folded rRNA by primary assembly proteins such as S4, which nucleates assembly of the 16S 5' domain. Recent evidence, however, suggests that initial recognition by S4 is delayed due to variable folding of the rRNA during transcription. Here, using single-molecule colocalization co-transcriptional assembly (smCoCoA), we show that the late-binding RP S12 specifically promotes the association of S4 with the pre-16S rRNA during transcription, thereby accelerating nucleation of 30S ribosome assembly. Order of addition experiments suggest that S12 helps chaperone the rRNA during transcription, particularly near the S4 binding site. S12 interacts transiently with the rRNA during transcription and, consequently, a high concentration is required for its chaperone activity. These results support a model in which late-binding RPs moonlight as RNA chaperones during transcription in order to facilitate rapid assembly.
Collapse
Affiliation(s)
- Margaret L Rodgers
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
- The Laboratory of Biochemistry and Genetics, The National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20892, USA
| | - Yunsheng Sun
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sarah A Woodson
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
3
|
Maksimova E, Kravchenko O, Korepanov A, Stolboushkina E. Protein Assistants of Small Ribosomal Subunit Biogenesis in Bacteria. Microorganisms 2022; 10:microorganisms10040747. [PMID: 35456798 PMCID: PMC9032327 DOI: 10.3390/microorganisms10040747] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023] Open
Abstract
Ribosome biogenesis is a fundamental and multistage process. The basic steps of ribosome assembly are the transcription, processing, folding, and modification of rRNA; the translation, folding, and modification of r-proteins; and consecutive binding of ribosomal proteins to rRNAs. Ribosome maturation is facilitated by biogenesis factors that include a broad spectrum of proteins: GTPases, RNA helicases, endonucleases, modification enzymes, molecular chaperones, etc. The ribosome assembly factors assist proper rRNA folding and protein–RNA interactions and may sense the checkpoints during the assembly to ensure correct order of this process. Inactivation of these factors is accompanied by severe growth phenotypes and accumulation of immature ribosomal subunits containing unprocessed rRNA, which reduces overall translation efficiency and causes translational errors. In this review, we focus on the structural and biochemical analysis of the 30S ribosomal subunit assembly factors RbfA, YjeQ (RsgA), Era, KsgA (RsmA), RimJ, RimM, RimP, and Hfq, which take part in the decoding-center folding.
Collapse
Affiliation(s)
| | | | - Alexey Korepanov
- Correspondence: (A.K.); (E.S.); Tel.: +7-925-7180670 (A.K.); +7-915-4791359 (E.S.)
| | - Elena Stolboushkina
- Correspondence: (A.K.); (E.S.); Tel.: +7-925-7180670 (A.K.); +7-915-4791359 (E.S.)
| |
Collapse
|
4
|
Dunsing V, Petrich A, Chiantia S. Multicolor fluorescence fluctuation spectroscopy in living cells via spectral detection. eLife 2021; 10:e69687. [PMID: 34494547 PMCID: PMC8545396 DOI: 10.7554/elife.69687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/07/2021] [Indexed: 01/20/2023] Open
Abstract
Signaling pathways in biological systems rely on specific interactions between multiple biomolecules. Fluorescence fluctuation spectroscopy provides a powerful toolbox to quantify such interactions directly in living cells. Cross-correlation analysis of spectrally separated fluctuations provides information about intermolecular interactions but is usually limited to two fluorophore species. Here, we present scanning fluorescence spectral correlation spectroscopy (SFSCS), a versatile approach that can be implemented on commercial confocal microscopes, allowing the investigation of interactions between multiple protein species at the plasma membrane. We demonstrate that SFSCS enables cross-talk-free cross-correlation, diffusion, and oligomerization analysis of up to four protein species labeled with strongly overlapping fluorophores. As an example, we investigate the interactions of influenza A virus (IAV) matrix protein 2 with two cellular host factors simultaneously. We furthermore apply raster spectral image correlation spectroscopy for the simultaneous analysis of up to four species and determine the stoichiometry of ternary IAV polymerase complexes in the cell nucleus.
Collapse
Affiliation(s)
- Valentin Dunsing
- Universität Potsdam, Institute of Biochemistry and BiologyPotsdamGermany
| | - Annett Petrich
- Universität Potsdam, Institute of Biochemistry and BiologyPotsdamGermany
| | - Salvatore Chiantia
- Universität Potsdam, Institute of Biochemistry and BiologyPotsdamGermany
| |
Collapse
|
5
|
Hodge SR, Berg MA. Nonlinear measurements of kinetics and generalized dynamical modes. I. Extracting the one-dimensional Green's function from a time series. J Chem Phys 2021; 155:024122. [PMID: 34266246 DOI: 10.1063/5.0053422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Often, a single correlation function is used to measure the kinetics of a complex system. In contrast, a large set of k-vector modes and their correlation functions are commonly defined for motion in free space. This set can be transformed to the van Hove correlation function, which is the Green's function for molecular diffusion. Here, these ideas are generalized to other observables. A set of correlation functions of nonlinear functions of an observable is used to extract the corresponding Green's function. Although this paper focuses on nonlinear correlation functions of an equilibrium time series, the results are directly connected to other types of nonlinear kinetics, including perturbation-response experiments with strong fields. Generalized modes are defined as the orthogonal polynomials associated with the equilibrium distribution. A matrix of mode-correlation functions can be transformed to the complete, single-time-interval (1D) Green's function. Diagonalizing this matrix finds the eigendecays. To understand the advantages and limitation of this approach, Green's functions are calculated for a number of models of complex dynamics within a Gaussian probability distribution. Examples of non-diffusive motion, rate heterogeneity, and range heterogeneity are examined. General arguments are made that a full set of nonlinear 1D measurements is necessary to extract all the information available in a time series. However, when a process is neither dynamically Gaussian nor Markovian, they are not sufficient. In those cases, additional multidimensional measurements are needed.
Collapse
Affiliation(s)
- Stuart R Hodge
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Mark A Berg
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| |
Collapse
|
6
|
Levy M, Falkovich R, Daube SS, Bar-Ziv RH. Autonomous synthesis and assembly of a ribosomal subunit on a chip. SCIENCE ADVANCES 2020; 6:eaaz6020. [PMID: 32494616 PMCID: PMC7159907 DOI: 10.1126/sciadv.aaz6020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/22/2020] [Indexed: 05/03/2023]
Abstract
Ribosome biogenesis is an efficient and complex assembly process that has not been reconstructed outside a living cell so far, yet is the most critical step for establishing a self-replicating artificial cell. We recreated the biogenesis of Escherichia coli's small ribosomal subunit by synthesizing and capturing all its ribosomal proteins and RNA on a chip. Surface confinement provided favorable conditions for autonomous stepwise assembly of new subunits, spatially segregated from original intact ribosomes. Our real-time fluorescence measurements revealed hierarchal assembly, cooperative interactions, unstable intermediates, and specific binding to large ribosomal subunits. Using only synthetic genes, our methodology is a crucial step toward creation of a self-replicating artificial cell and a general strategy for the mechanistic investigation of diverse multicomponent macromolecular machines.
Collapse
|
7
|
Duss O, Stepanyuk GA, Puglisi JD, Williamson JR. Transient Protein-RNA Interactions Guide Nascent Ribosomal RNA Folding. Cell 2019; 179:1357-1369.e16. [PMID: 31761533 DOI: 10.1016/j.cell.2019.10.035] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/18/2019] [Accepted: 10/28/2019] [Indexed: 11/28/2022]
Abstract
Ribosome assembly is an efficient but complex and heterogeneous process during which ribosomal proteins assemble on the nascent rRNA during transcription. Understanding how the interplay between nascent RNA folding and protein binding determines the fate of transcripts remains a major challenge. Here, using single-molecule fluorescence microscopy, we follow assembly of the entire 3' domain of the bacterial small ribosomal subunit in real time. We find that co-transcriptional rRNA folding is complicated by the formation of long-range RNA interactions and that r-proteins self-chaperone the rRNA folding process prior to stable incorporation into a ribonucleoprotein (RNP) complex. Assembly is initiated by transient rather than stable protein binding, and the protein-RNA binding dynamics gradually decrease during assembly. This work questions the paradigm of strictly sequential and cooperative ribosome assembly and suggests that transient binding of RNA binding proteins to cellular RNAs could provide a general mechanism to shape nascent RNA folding during RNP assembly.
Collapse
Affiliation(s)
- Olivier Duss
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Galina A Stepanyuk
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
8
|
Meng L, He S, Zhao XS. Determination of Equilibrium Constant and Relative Brightness in FRET-FCS by Including the Third-Order Correlations. J Phys Chem B 2017; 121:11262-11272. [PMID: 29155588 DOI: 10.1021/acs.jpcb.7b09229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorescence correlation spectroscopy (FCS) encodes the information on the equilibrium constant (K), the relative fluorescence brightness of fluorophore (Q), and the forward and backward reaction rate constants (k+ and k-) on a physical or chemical relaxation. However, it has been a long-standing problem to completely resolve the FCS data to get the thermodynamic and kinetic information. Recently, we have solved the problem for fluorescence autocorrelation spectroscopy (FACS). Here, we extend the method to fluorescence cross-correlation spectroscopy (FCCS), which appears when FCS is coupled with fluorescence resonance energy transfer (FRET). Among 12 total second-order and third-order pre-exponential factors in a relaxation process probed by the FRET-FCS technique, 3 are independent. We presented and discussed 3 sets of explicit solutions to use these pre-exponential factors to calculate K and Q. Together with the relaxation time, the acquired K will allow people to obtain k+ and k-, so that the goal of deciphering the FRET-FCS data will be fully reached. The theory is verified by extensive computer simulations and tested experimentally on a system of oligonucleotide hybridization.
Collapse
Affiliation(s)
- Lingyi Meng
- Biodynamic Optical Imaging Center (BIOPIC), Peking University , Beijing 100871, China.,School of Life Sciences, Peking University , Beijing 100871, China
| | - Shanshan He
- Biodynamic Optical Imaging Center (BIOPIC), Peking University , Beijing 100871, China.,Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Xin Sheng Zhao
- Biodynamic Optical Imaging Center (BIOPIC), Peking University , Beijing 100871, China.,Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| |
Collapse
|
9
|
Hur KH, Chen Y, Mueller JD. Characterization of Ternary Protein Systems In Vivo with Tricolor Heterospecies Partition Analysis. Biophys J 2016; 110:1158-67. [PMID: 26958892 DOI: 10.1016/j.bpj.2016.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/24/2015] [Accepted: 01/04/2016] [Indexed: 11/16/2022] Open
Abstract
Tools and assays that characterize protein-protein interactions are of fundamental importance to biology, because protein assemblies play a critical role in the control and regulation of nearly every cellular process. The availability of fluorescent proteins has facilitated the direct and real-time observation of protein-protein interactions inside living cells, but existing methods are mostly limited to binary interactions between two proteins. Because of the scarcity of techniques capable of identifying ternary interactions, we developed tricolor heterospecies partition analysis. The technique is based on brightness analysis of fluorescence fluctuations from three fluorescent proteins that serve as protein labels. We identified three fluorescent proteins suitable for tricolor brightness experiments. In addition, we developed the theory of identifying interactions in a ternary protein system using tricolor heterospecies partition analysis. The theory was verified by experiments on well-characterized protein systems. A graphical representation of the heterospecies partition data was introduced to visualize interactions in ternary protein systems. Lastly, we performed fluorescence fluctuation experiments on cells expressing a coactivator and two nuclear receptors and applied heterospecies partition analysis to explore the interactions of this ternary protein system.
Collapse
Affiliation(s)
- Kwang-Ho Hur
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota
| | - Yan Chen
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota; Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota
| | - Joachim D Mueller
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota; Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota; Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
10
|
Wu Z, Bi H, Pan S, Meng L, Zhao XS. Determination of Equilibrium Constant and Relative Brightness in Fluorescence Correlation Spectroscopy by Considering Third-Order Correlations. J Phys Chem B 2016; 120:11674-11682. [DOI: 10.1021/acs.jpcb.6b07953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhenqin Wu
- Department of Chemical Biology, Beijing National Laboratory for Molecular
Sciences, State Key Laboratory for Structural Chemistry of Unstable
and Stable Species, College of Chemistry and Molecular Engineering, ‡Biodynamic Optical
Imaging Center (BIOPIC), and §School of Life Sciences, Peking University, Beijing 100871, China
| | - Huimin Bi
- Department of Chemical Biology, Beijing National Laboratory for Molecular
Sciences, State Key Laboratory for Structural Chemistry of Unstable
and Stable Species, College of Chemistry and Molecular Engineering, ‡Biodynamic Optical
Imaging Center (BIOPIC), and §School of Life Sciences, Peking University, Beijing 100871, China
| | - Sichen Pan
- Department of Chemical Biology, Beijing National Laboratory for Molecular
Sciences, State Key Laboratory for Structural Chemistry of Unstable
and Stable Species, College of Chemistry and Molecular Engineering, ‡Biodynamic Optical
Imaging Center (BIOPIC), and §School of Life Sciences, Peking University, Beijing 100871, China
| | - Lingyi Meng
- Department of Chemical Biology, Beijing National Laboratory for Molecular
Sciences, State Key Laboratory for Structural Chemistry of Unstable
and Stable Species, College of Chemistry and Molecular Engineering, ‡Biodynamic Optical
Imaging Center (BIOPIC), and §School of Life Sciences, Peking University, Beijing 100871, China
| | - Xin Sheng Zhao
- Department of Chemical Biology, Beijing National Laboratory for Molecular
Sciences, State Key Laboratory for Structural Chemistry of Unstable
and Stable Species, College of Chemistry and Molecular Engineering, ‡Biodynamic Optical
Imaging Center (BIOPIC), and §School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Rolfsson Ó, Middleton S, Manfield IW, White SJ, Fan B, Vaughan R, Ranson NA, Dykeman E, Twarock R, Ford J, Kao CC, Stockley PG. Direct Evidence for Packaging Signal-Mediated Assembly of Bacteriophage MS2. J Mol Biol 2016; 428:431-48. [PMID: 26608810 PMCID: PMC4751978 DOI: 10.1016/j.jmb.2015.11.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/06/2015] [Accepted: 11/08/2015] [Indexed: 01/20/2023]
Abstract
Using cross-linking coupled to matrix-assisted laser desorption/ionization mass spectrometry and CLIP-Seq sequencing, we determined the peptide and oligonucleotide sequences at the interfaces between the capsid proteins and the genomic RNA of bacteriophage MS2. The results suggest that the same coat protein (CP)-RNA and maturation protein (MP)-RNA interfaces are used in every viral particle. The portions of the viral RNA in contact with CP subunits span the genome, consistent with a large number of discrete and similar contacts within each particle. Many of these sites match previous predictions of the locations of multiple, dispersed and degenerate RNA sites with cognate CP affinity termed packaging signals (PSs). Chemical RNA footprinting was used to compare the secondary structures of protein-free genomic fragments and the RNA in the virion. Some PSs are partially present in protein-free RNA but others would need to refold from their dominant solution conformations to form the contacts identified in the virion. The RNA-binding peptides within the MP map to two sections of the N-terminal half of the protein. Comparison of MP sequences from related phages suggests a similar arrangement of RNA-binding sites, although these N-terminal regions have only limited sequence conservation. In contrast, the sequences of the C-termini are highly conserved, consistent with them encompassing pilin-binding domains required for initial contact with host cells. These results provide independent and unambiguous support for the assembly of MS2 virions via a PS-mediated mechanism involving a series of induced-fit viral protein interactions with RNA.
Collapse
Affiliation(s)
- Óttar Rolfsson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stefani Middleton
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA; The Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - Iain W Manfield
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Simon J White
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Baochang Fan
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Robert Vaughan
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Eric Dykeman
- Department of Biology and Mathematics and York Centre for Complex Systems Analysis, University of York, York YO10 5DD, United Kingdom
| | - Reidun Twarock
- Department of Biology and Mathematics and York Centre for Complex Systems Analysis, University of York, York YO10 5DD, United Kingdom
| | - James Ford
- The Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - C Cheng Kao
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
12
|
Liu Y, Fritz BR, Anderson MJ, Schoborg JA, Jewett MC. Characterizing and alleviating substrate limitations for improved in vitro ribosome construction. ACS Synth Biol 2015; 4:454-62. [PMID: 25079899 DOI: 10.1021/sb5002467] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Complete cell-free synthesis of ribosomes could make possible minimal cell projects and the construction of variant ribosomes with new functions. Recently, we reported the development of an integrated synthesis, assembly, and translation (iSAT) method for in vitro construction of Escherichia coli ribosomes. iSAT allows simultaneous rRNA synthesis, ribosome assembly, and reporter protein expression as a measure of ribosome activity. Here, we explore causes of iSAT reaction termination to improve efficiency and yields. We discovered that phosphoenolpyruvate (PEP), the secondary energy substrate, and nucleoside triphosphates (NTPs) were rapidly degraded during iSAT reactions. In turn, we observed a significant drop in the adenylate energy charge and termination of protein synthesis. Furthermore, we identified that the accumulation of inorganic phosphate is inhibitory to iSAT. Fed-batch replenishment of PEP and magnesium glutamate (to offset the inhibitory effects of accumulating phosphate by repeated additions of PEP) prior to energy depletion prolonged the reaction duration 2-fold and increased superfolder green fluorescent protein (sfGFP) yield by ~75%. By adopting a semi-continuous method, where passive diffusion enables substrate replenishment and byproduct removal, we prolonged iSAT reaction duration 5-fold and increased sfGFP yield 7-fold to 7.5 ± 0.7 μmol L(-1). This protein yield is the highest ever reported for iSAT reactions. Our results underscore the critical role energy substrates play in iSAT and highlight the importance of understanding metabolic processes that influence substrate depletion for cell-free synthetic biology.
Collapse
Affiliation(s)
- Yi Liu
- Interdepartmental Biological Sciences Graduate
Program, ‡Chemistry of Life
Processes Institute, §Department of Chemical and Biological Engineering, ∥Member, Robert H. Lurie Comprehensive
Cancer Center, ⊥Affiliate Member, Institute for Bionanotechnology in Medicine, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Brian R. Fritz
- Interdepartmental Biological Sciences Graduate
Program, ‡Chemistry of Life
Processes Institute, §Department of Chemical and Biological Engineering, ∥Member, Robert H. Lurie Comprehensive
Cancer Center, ⊥Affiliate Member, Institute for Bionanotechnology in Medicine, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mark J. Anderson
- Interdepartmental Biological Sciences Graduate
Program, ‡Chemistry of Life
Processes Institute, §Department of Chemical and Biological Engineering, ∥Member, Robert H. Lurie Comprehensive
Cancer Center, ⊥Affiliate Member, Institute for Bionanotechnology in Medicine, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jennifer A. Schoborg
- Interdepartmental Biological Sciences Graduate
Program, ‡Chemistry of Life
Processes Institute, §Department of Chemical and Biological Engineering, ∥Member, Robert H. Lurie Comprehensive
Cancer Center, ⊥Affiliate Member, Institute for Bionanotechnology in Medicine, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Interdepartmental Biological Sciences Graduate
Program, ‡Chemistry of Life
Processes Institute, §Department of Chemical and Biological Engineering, ∥Member, Robert H. Lurie Comprehensive
Cancer Center, ⊥Affiliate Member, Institute for Bionanotechnology in Medicine, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Sashital DG, Greeman CA, Lyumkis D, Potter CS, Carragher B, Williamson JR. A combined quantitative mass spectrometry and electron microscopy analysis of ribosomal 30S subunit assembly in E. coli. eLife 2014; 3. [PMID: 25313868 PMCID: PMC4371863 DOI: 10.7554/elife.04491] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 10/13/2014] [Indexed: 12/13/2022] Open
Abstract
Ribosome assembly is a complex process involving the folding and processing of ribosomal RNAs (rRNAs), concomitant binding of ribosomal proteins (r-proteins), and participation of numerous accessory cofactors. Here, we use a quantitative mass spectrometry/electron microscopy hybrid approach to determine the r-protein composition and conformation of 30S ribosome assembly intermediates in Escherichia coli. The relative timing of assembly of the 3' domain and the formation of the central pseudoknot (PK) structure depends on the presence of the assembly factor RimP. The central PK is unstable in the absence of RimP, resulting in the accumulation of intermediates in which the 3'-domain is unanchored and the 5'-domain is depleted for r-proteins S5 and S12 that contact the central PK. Our results reveal the importance of the cofactor RimP in central PK formation, and introduce a broadly applicable method for characterizing macromolecular assembly in cells.
Collapse
Affiliation(s)
- Dipali G Sashital
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, United States
| | - Candacia A Greeman
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, United States
| | - Dmitry Lyumkis
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, United States
| | - Clinton S Potter
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, United States
| | - Bridget Carragher
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, United States
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, United States
| |
Collapse
|
14
|
Hoffmann JE, Fermin Y, Stricker RL, Ickstadt K, Zamir E. Symmetric exchange of multi-protein building blocks between stationary focal adhesions and the cytosol. eLife 2014; 3:e02257. [PMID: 24894463 PMCID: PMC4040925 DOI: 10.7554/elife.02257] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
How can the integrin adhesome get self-assembled locally, rapidly, and correctly as diverse cell-matrix adhesion sites? Here, we investigate this question by exploring the cytosolic state of integrin-adhesome components and their dynamic exchange between adhesion sites and cytosol. Using fluorescence cross-correlation spectroscopy (FCCS) and fluorescence recovery after photobleaching (FRAP) we found that the integrin adhesome is extensively pre-assembled already in the cytosol as multi-protein building blocks for adhesion sites. Stationary focal adhesions release symmetrically the same types of protein complexes that they recruit, thereby keeping the cytosolic pool of building blocks spatiotemporally uniform. We conclude a model in which multi-protein building blocks enable rapid and modular self-assembly of adhesion sites and symmetric exchange of these building blocks preserves their specifications and thus the assembly logic of the system.DOI: http://dx.doi.org/10.7554/eLife.02257.001.
Collapse
Affiliation(s)
- Jan-Erik Hoffmann
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany Bioanalytics Department, Leibniz Institute for Analytical Sciences, Dortmund, Germany
| | - Yessica Fermin
- Faculty of Statistics, TU Dortmund University, Dortmund, Germany
| | - Ruth Lo Stricker
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Katja Ickstadt
- Faculty of Statistics, TU Dortmund University, Dortmund, Germany
| | - Eli Zamir
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
15
|
Fritz BR, Jewett MC. The impact of transcriptional tuning on in vitro integrated rRNA transcription and ribosome construction. Nucleic Acids Res 2014; 42:6774-85. [PMID: 24792158 PMCID: PMC4041470 DOI: 10.1093/nar/gku307] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In vitro ribosome construction could enable studies of ribosome assembly and function, provide a route toward constructing minimal cells for synthetic biology, and permit the construction of ribosome variants with new functions. Toward these long-term goals, we recently reported on an integrated, one-pot ribosomal RNA synthesis (rRNA), ribosome assembly, and translation technology (termed iSAT) for the construction of Escherichia coli ribosomes in crude ribosome-free S150 extracts. Here, we aimed to improve the activity of iSAT through transcriptional tuning. Specifically, we increased transcriptional efficiency through 3′ modifications to the rRNA gene sequences, optimized plasmid and polymerase concentrations, and demonstrated the use of a T7-promoted rRNA operon for stoichiometrically balanced rRNA synthesis and native rRNA processing. Our modifications produced a 45-fold improvement in iSAT protein synthesis activity, enabling synthesis of 429 ± 15 nmol/l green fluorescent protein in 6 h batch reactions. Further, we show that the translational activity of ribosomes purified from iSAT reactions is about 20% the activity of native ribosomes purified directly from E. coli cells. Looking forward, we believe iSAT will enable unique studies to unravel the systems biology of ribosome biogenesis and open the way to new methods for making and studying ribosomal variants.
Collapse
Affiliation(s)
- Brian R Fritz
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA Interdepartmental Program in Biological Sciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA Northwestern Institute on Complex Systems, Northwestern University, 600 Foster Street, Evanston, IL 60208, USA Institute for Bionanotechnology in Medicine, Northwestern University, 303 E. Superior, Chicago, IL 60611, USA Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA
| |
Collapse
|
16
|
Suderman R, Deeds EJ. Machines vs. ensembles: effective MAPK signaling through heterogeneous sets of protein complexes. PLoS Comput Biol 2013; 9:e1003278. [PMID: 24130475 PMCID: PMC3794900 DOI: 10.1371/journal.pcbi.1003278] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 08/30/2013] [Indexed: 01/08/2023] Open
Abstract
Despite the importance of intracellular signaling networks, there is currently no consensus regarding the fundamental nature of the protein complexes such networks employ. One prominent view involves stable signaling machines with well-defined quaternary structures. The combinatorial complexity of signaling networks has led to an opposing perspective, namely that signaling proceeds via heterogeneous pleiomorphic ensembles of transient complexes. Since many hypotheses regarding network function rely on how we conceptualize signaling complexes, resolving this issue is a central problem in systems biology. Unfortunately, direct experimental characterization of these complexes has proven technologically difficult, while combinatorial complexity has prevented traditional modeling methods from approaching this question. Here we employ rule-based modeling, a technique that overcomes these limitations, to construct a model of the yeast pheromone signaling network. We found that this model exhibits significant ensemble character while generating reliable responses that match experimental observations. To contrast the ensemble behavior, we constructed a model that employs hierarchical assembly pathways to produce scaffold-based signaling machines. We found that this machine model could not replicate the experimentally observed combinatorial inhibition that arises when the scaffold is overexpressed. This finding provides evidence against the hierarchical assembly of machines in the pheromone signaling network and suggests that machines and ensembles may serve distinct purposes in vivo. In some cases, e.g. core enzymatic activities like protein synthesis and degradation, machines assembled via hierarchical energy landscapes may provide functional stability for the cell. In other cases, such as signaling, ensembles may represent a form of weak linkage, facilitating variation and plasticity in network evolution. The capacity of ensembles to signal effectively will ultimately shape how we conceptualize the function, evolution and engineering of signaling networks. Intracellular signaling networks are central to a cell's ability to adapt to its environment. Developing the capacity to effectively manipulate such networks would have a wide range of applications, from cancer therapy to synthetic biology. This requires a thorough understanding of the mechanisms of signal transduction, particularly the kinds of protein complexes that are formed during transmission of extracellular information to the nucleus. Traditionally, signaling complexes have been largely perceived (albeit often implicitly) as machine-like structures. However, the number of molecular complexes that could theoretically be formed by complex signaling networks is astronomically large. This has led to the pleiomorphic ensemble hypothesis, which posits that diverse and rapidly changing sets of transient protein complexes can transmit and process information. Our goal was to use computational approaches, specifically rule-based modeling, to test these hypotheses. We constructed a model of the prototypical yeast mating pathway and found significant ensemble-like behavior. Our results thus demonstrated that ensembles can in fact transmit extracellular signals with minimal noise. Additionally, a comparison of this model with one tailored to generate machine-like complexes displayed notable phenotypic differences, revealing potential advantages for ensemble-like signaling. Our demonstration that ensembles can function effectively will have a significant impact on how we conceptualize signaling and other processes inside cells.
Collapse
Affiliation(s)
- Ryan Suderman
- Center for Bioinformatics, University of Kansas, Lawrence, Kansas, United States of America
| | - Eric J. Deeds
- Center for Bioinformatics, University of Kansas, Lawrence, Kansas, United States of America
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
- * E-mail:
| |
Collapse
|
17
|
Daube SS, Bar-Ziv RH. Protein nanomachines assembly modes: cell-free expression and biochip perspectives. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:613-28. [DOI: 10.1002/wnan.1234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/24/2013] [Accepted: 06/26/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Shirley S. Daube
- Materials and Interfaces; Weizmann Institute of Science; Rehovot Israel
| | - Roy H. Bar-Ziv
- Materials and Interfaces; Weizmann Institute of Science; Rehovot Israel
| |
Collapse
|
18
|
Ohmayer U, Gamalinda M, Sauert M, Ossowski J, Pöll G, Linnemann J, Hierlmeier T, Perez-Fernandez J, Kumcuoglu B, Leger-Silvestre I, Faubladier M, Griesenbeck J, Woolford J, Tschochner H, Milkereit P. Studies on the assembly characteristics of large subunit ribosomal proteins in S. cerevisae. PLoS One 2013; 8:e68412. [PMID: 23874617 PMCID: PMC3707915 DOI: 10.1371/journal.pone.0068412] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/29/2013] [Indexed: 11/18/2022] Open
Abstract
During the assembly process of ribosomal subunits, their structural components, the ribosomal RNAs (rRNAs) and the ribosomal proteins (r-proteins) have to join together in a highly dynamic and defined manner to enable the efficient formation of functional ribosomes. In this work, the assembly of large ribosomal subunit (LSU) r-proteins from the eukaryote S. cerevisiae was systematically investigated. Groups of LSU r-proteins with specific assembly characteristics were detected by comparing the protein composition of affinity purified early, middle, late or mature LSU (precursor) particles by semi-quantitative mass spectrometry. The impact of yeast LSU r-proteins rpL25, rpL2, rpL43, and rpL21 on the composition of intermediate to late nuclear LSU precursors was analyzed in more detail. Effects of these proteins on the assembly states of other r-proteins and on the transient LSU precursor association of several ribosome biogenesis factors, including Nog2, Rsa4 and Nop53, are discussed.
Collapse
Affiliation(s)
- Uli Ohmayer
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Michael Gamalinda
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Martina Sauert
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Julius Ossowski
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Gisela Pöll
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Jan Linnemann
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Thomas Hierlmeier
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| | | | - Beril Kumcuoglu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Isabelle Leger-Silvestre
- Laboratoire de Biologie Moléculaire Eucaryote, UMR 5099, Universite Paul Sabatier, Toulouse, France
| | - Marlène Faubladier
- Laboratoire de Biologie Moléculaire Eucaryote, UMR 5099, Universite Paul Sabatier, Toulouse, France
| | | | - John Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Herbert Tschochner
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Philipp Milkereit
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
19
|
Benninger RK, Piston DW. Two-photon excitation microscopy for the study of living cells and tissues. CURRENT PROTOCOLS IN CELL BIOLOGY 2013; Chapter 4:4.11.1-4.11.24. [PMID: 23728746 PMCID: PMC4004770 DOI: 10.1002/0471143030.cb0411s59] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two-photon excitation microscopy is an alternative to confocal microscopy that provides advantages for three-dimensional and deep tissue imaging. This unit will describe the basic physical principles behind two-photon excitation and discuss the advantages and limitations of its use in laser-scanning microscopy. The principal advantages of two-photon microscopy are reduced phototoxicity, increased imaging depth, and the ability to initiate highly localized photochemistry in thick samples. Practical considerations for the application of two-photon microscopy will then be discussed, including recent technological advances. This unit will conclude with some recent applications of two-photon microscopy that highlight the key advantages over confocal microscopy and the types of experiments which would benefit most from its application.
Collapse
|
20
|
Brautigam CA, Padrick SB, Schuck P. Multi-signal sedimentation velocity analysis with mass conservation for determining the stoichiometry of protein complexes. PLoS One 2013; 8:e62694. [PMID: 23696787 PMCID: PMC3656001 DOI: 10.1371/journal.pone.0062694] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/25/2013] [Indexed: 01/12/2023] Open
Abstract
Multi-signal sedimentation velocity analytical ultracentrifugation (MSSV) is a powerful tool for the determination of the number, stoichiometry, and hydrodynamic shape of reversible protein complexes in two- and three-component systems. In this method, the evolution of sedimentation profiles of macromolecular mixtures is recorded simultaneously using multiple absorbance and refractive index signals and globally transformed into both spectrally and diffusion-deconvoluted component sedimentation coefficient distributions. For reactions with complex lifetimes comparable to the time-scale of sedimentation, MSSV reveals the number and stoichiometry of co-existing complexes. For systems with short complex lifetimes, MSSV reveals the composition of the reaction boundary of the coupled reaction/migration process, which we show here may be used to directly determine an association constant. A prerequisite for MSSV is that the interacting components are spectrally distinguishable, which may be a result, for example, of extrinsic chromophores or of different abundances of aromatic amino acids contributing to the UV absorbance. For interacting components that are spectrally poorly resolved, here we introduce a method for additional regularization of the spectral deconvolution by exploiting approximate knowledge of the total loading concentrations. While this novel mass conservation principle does not discriminate contributions to different species, it can be effectively combined with constraints in the sedimentation coefficient range of uncomplexed species. We show in theory, computer simulations, and experiment, how mass conservation MSSV as implemented in SEDPHAT can enhance or even substitute for the spectral discrimination of components. This should broaden the applicability of MSSV to the analysis of the composition of reversible macromolecular complexes.
Collapse
Affiliation(s)
- Chad A. Brautigam
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Shae B. Padrick
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Peter Schuck
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
21
|
Guo Q, Goto S, Chen Y, Feng B, Xu Y, Muto A, Himeno H, Deng H, Lei J, Gao N. Dissecting the in vivo assembly of the 30S ribosomal subunit reveals the role of RimM and general features of the assembly process. Nucleic Acids Res 2013; 41:2609-20. [PMID: 23293003 PMCID: PMC3575805 DOI: 10.1093/nar/gks1256] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ribosome biogenesis is a tightly regulated, multi-stepped process. The assembly of ribosomal subunits is a central step of the complex biogenesis process, involving nearly 30 protein factors in vivo in bacteria. Although the assembly process has been extensively studied in vitro for over 40 years, very limited information is known for the in vivo process and specific roles of assembly factors. Such an example is ribosome maturation factor M (RimM), a factor involved in the late-stage assembly of the 30S subunit. Here, we combined quantitative mass spectrometry and cryo-electron microscopy to characterize the in vivo 30S assembly intermediates isolated from mutant Escherichia coli strains with genes for assembly factors deleted. Our compositional and structural data show that the assembly of the 3′-domain of the 30S subunit is severely delayed in these intermediates, featured with highly underrepresented 3′-domain proteins and large conformational difference compared with the mature 30S subunit. Further analysis indicates that RimM functions not only to promote the assembly of a few 3′-domain proteins but also to stabilize the rRNA tertiary structure. More importantly, this study reveals intriguing similarities and dissimilarities between the in vitro and the in vivo assembly pathways, suggesting that they are in general similar but with subtle differences.
Collapse
Affiliation(s)
- Qiang Guo
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|