1
|
Li J, Nie M, Ma H, Tao X, Sun Y, Tu X, Zhang P, Zhang LQ, Jia R, He YX, Zhang N, Ge H. Quorum Sensing Coordinates Carbon and Nitrogen Metabolism to Optimize Public Goods Production in Pseudomonas fluorescens 2P24. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2412224. [PMID: 39888293 DOI: 10.1002/advs.202412224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/24/2024] [Indexed: 02/01/2025]
Abstract
The coordination of public and private goods production is essential for bacterial adaptation to environmental changes. Quorum sensing (QS) regulates this balance by mediating the trade-off between the communal benefits of "public goods," such as siderophores and antibiotics, and the individual metabolic needs fulfilled by "private goods," such as intracellular metabolites utilized for growth and survival. Pseudomonas fluorescens 2P24 harbors a LasI/LasR-type QS system, MupI/MupR, which regulates mupirocin production through signaling molecules. This study explores how QS coordinates carbon and nitrogen metabolism to optimize the production of key secondary metabolites, including 2,4-diacetylphloroglucinol (2,4-DAPG), mupirocin, and siderophores, which serve as public goods. Loss of QS disrupts this balance by enhancing the Krebs cycle, denitrification, pyruvate anaplerosis, and ammonium assimilation, lead to halted 2,4-DAPG and mupirocin synthesis and increased siderophore production. In the absence of QS, elevated siderophore production compensates for iron acquisition, ensuring rapid cellular growth. Under nutrient-limited or high cell density conditions, MupR regulates carbon and nitrogen fluxes to sustain public goods production. These findings highlight QS as a key environmental sensor that fine-tunes resource allocation, bacterial fitness, and adaptation to ecological and nutritional conditions, suggesting the potential for QS-targeted approaches to enhance antibiotic production and agricultural sustainability.
Collapse
Affiliation(s)
- Jie Li
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Mengxue Nie
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Hongguang Ma
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xuanying Tao
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Yanxia Sun
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Xinyue Tu
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Pingping Zhang
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Li-Qun Zhang
- College of Plant Protection, China Agricultural University, Beijing, 100083, China
| | - Rong Jia
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Yong-Xing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- School of Veterinary Medicine and Biosecurity, Lanzhou University, Lanzhou, 730000, China
| | - Nannan Zhang
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Honghua Ge
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| |
Collapse
|
2
|
Xu T, Dai Y, Ge A, Chen X, Gong Y, Lam TH, Lee K, Han X, Ji Y, Shen W, Liu J, Sun L, Xu J, Ma B. Ultrafast Evolution of Bacterial Antimicrobial Resistance by Picoliter-Scale Centrifugal Microfluidics. Anal Chem 2024; 96:18842-18851. [PMID: 39531253 DOI: 10.1021/acs.analchem.4c04482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Experimental evolution is a powerful approach for scrutinizing and dissecting the development of antimicrobial resistance; nevertheless, it typically demands an extended duration to detect evolutionary changes. Here, a centrifugal microfluidics system is designed to accelerate the process. Through a simple step of on-chip centrifugation, a highly condensed bacterial matrix of ∼1012 cells/mL at the enrichment tip of the chip channel is derived, enabling bacteria encapsulated to survive in antimicrobial concentrations several times higher than the minimum inhibitory concentration (MIC) and rapidly develop resistance in the first 10 h. After 48 h of on-chip evolution, the E. coli strain demonstrated a 64 to 128-fold reduction in sensitivity to disinfectants (triclosan) as well as antibiotics (ciprofloxacin and amikacin), a rate substantially swifter compared to conventional continuous inoculation-based experimental evolution. The speed and simplicity of this microfluidic system suggest its broad application for uncovering resistance mechanisms and identifying targets of biocides and antibiotics.
Collapse
Affiliation(s)
- Teng Xu
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101,China
| | - Yajie Dai
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101,China
| | - Anle Ge
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101,China
| | - Xueqian Chen
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101,China
| | - Yanhai Gong
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101,China
| | - Tze Hau Lam
- Procter & Gamble Singapore Innovation Center, Singapore 138668, Singapore
| | - Kelvin Lee
- Procter & Gamble Singapore Innovation Center, Singapore 138668, Singapore
| | - Xiao Han
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101,China
| | - Yuetong Ji
- Qingdao Single-Cell Biotech. Ltd., Qingdao, Shandong 266100, China
| | - Wei Shen
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101,China
| | - Jiquan Liu
- Procter & Gamble Singapore Innovation Center, Singapore 138668, Singapore
| | - Luyang Sun
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101,China
- Laboratory of Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266101, China
| | - Jian Xu
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101,China
- Laboratory of Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266101, China
| | - Bo Ma
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101,China
- Laboratory of Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266101, China
| |
Collapse
|
3
|
Zhao S, Shi T, Li L, Chen Z, Li C, Yu Z, Sun P, Xu Q. The metabolic engineering of Escherichia coli for the high-yield production of hypoxanthine. Microb Cell Fact 2024; 23:309. [PMID: 39543621 PMCID: PMC11566304 DOI: 10.1186/s12934-024-02576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/02/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Hypoxanthine, prevalent in animals and plants, is used in the production of food additives, nucleoside antiviral drugs, and disease diagnosis. Current biological fermentation methods synthesize quantities insufficient to meet industrial demands. Therefore, this study aimed to develop a strain capable of industrial-scale production of hypoxanthine. RESULTS De novo synthesis of hypoxanthine was achieved by blocking the hypoxanthine decomposition pathway, thus alleviating transcriptional repression and multiple feedback inhibition, and introducing a purine operon from Bacillus subtilis to construct a chassis strain. The effects of knocking out the IMP(Inosine 5'-monophosphate) branch on the growth status and titer of the strain were then investigated, and the effectiveness of adenosine deaminase and adenine deaminase was verified. Overexpressing these enzymes created a dual pathway for hypoxanthine synthesis, enhancing the metabolic flow of hypoxanthine synthesis and preventing auxotrophic strain formation. Introducing IMP-specific 5' -nucleotidase addressed the issue of adenylate accumulation. In addition, the metabolic flow of the guanine branch was dynamically regulated by the guaB gene. The supply of glutamine and aspartic acid precursors was enhanced by introducing an exogenous glnA mutant gene, overexpressing aspC, and replacing the weaker promoter to regulate the aspartic acid branching pathway. Ultimately, fermentation in a 5 L bioreactor for 48 h produced 30.6 g/L hypoxanthine, with a maximum real-time productivity of 1.4 g/L/h, the highest value of hypoxanthine production by microbial fermentation reported so far. CONCLUSIONS The intracellular purine biosynthesis pathway is extensive and regulated at multiple levels in cells. The IMP branch in the hypoxanthine synthesis pathway has a higher metabolic flux. The current challenge lies in systematically allocating the metabolic flux within the branch pathway to achieve substantial product accumulation. In this study, E. coli was used as the chassis strain to construct a dual pathway for IMP and AMP(Adenosine 5'-monophosphate) synergistic hypoxanthine synthesis and dynamically regulate the guanine branch pathway. Overall, our experimental efforts culminated in a high-yield, plasmid- and defect-free engineered hypoxanthine strain.
Collapse
Affiliation(s)
- Siyu Zhao
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Tangen Shi
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Liangwen Li
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Zhichao Chen
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Changgeng Li
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Zichen Yu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Pengjie Sun
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Qingyang Xu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
| |
Collapse
|
4
|
Ma HR, Xu HZ, Kim K, Anderson DJ, You L. Private benefit of β-lactamase dictates selection dynamics of combination antibiotic treatment. Nat Commun 2024; 15:8337. [PMID: 39333122 PMCID: PMC11436977 DOI: 10.1038/s41467-024-52711-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
β-lactam antibiotics have been prescribed for most bacterial infections since their discovery. However, resistance to β-lactams, mediated by β-lactamase (Bla) enzymes such as extended spectrum β-lactamases (ESBLs), has become widespread. Bla inhibitors can restore the efficacy of β-lactams against resistant bacteria, an approach which preserves existing antibiotics despite declining industry investment. However, the effects of combination treatment on selection for β-lactam resistance are not well understood. Bla production confers both private benefits for resistant cells and public benefits which faster-growing sensitive cells can also exploit. These benefits may be differentially impacted by Bla inhibitors, leading to non-intuitive selection dynamics. In this study, we demonstrate strain-to-strain variation in effective combination doses, with complex growth dynamics in mixed populations. Using modeling, we derive a criterion for the selection outcome of combination treatment, dependent on the burden and effective private benefit of Bla production. We then use engineered strains and natural isolates to show that strong private benefits of Bla are associated with increased selection for resistance. Finally, we demonstrate that this parameter can be coarsely estimated using high-throughput phenotyping of clonal populations. Our analysis shows that quantifying the phenotypic responses of bacteria to combination treatment can facilitate resistance-minimizing optimization of treatment.
Collapse
Affiliation(s)
- Helena R Ma
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Quantitative Biodesign, Duke University, Durham, NC, USA
| | - Helen Z Xu
- Department of Biology, Duke University, Durham, NC, USA
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Kyeri Kim
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Quantitative Biodesign, Duke University, Durham, NC, USA
| | - Deverick J Anderson
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Center for Antimicrobial Stewardship and Infection Prevention, Duke University School of Medicine, Durham, NC, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Center for Quantitative Biodesign, Duke University, Durham, NC, USA.
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
5
|
Ostovar G, Boedicker JQ. Phenotypic memory in quorum sensing. PLoS Comput Biol 2024; 20:e1011696. [PMID: 38976753 PMCID: PMC11257393 DOI: 10.1371/journal.pcbi.1011696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/18/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024] Open
Abstract
Quorum sensing (QS) is a regulatory mechanism used by bacteria to coordinate group behavior in response to high cell densities. During QS, cells monitor the concentration of external signals, known as autoinducers, as a proxy for cell density. QS often involves positive feedback loops, leading to the upregulation of genes associated with QS signal production and detection. This results in distinct steady-state concentrations of QS-related molecules in QS-ON and QS-OFF states. Due to the slow decay rates of biomolecules such as proteins, even after removal of the initial stimuli, cells can retain elevated levels of QS-associated biomolecules for extended periods of time. This persistence of biomolecules after the removal of the initial stimuli has the potential to impact the response to future stimuli, indicating a memory of past exposure. This phenomenon, which is a consequence of the carry-over of biomolecules rather than genetic inheritance, is known as "phenotypic" memory. This theoretical study aims to investigate the presence of phenotypic memory in QS and the conditions that influence this memory. Numerical simulations based on ordinary differential equations and analytical modeling were used to study gene expression in response to sudden changes in cell density and extracellular signal concentrations. The model examined the effect of various cellular parameters on the strength of QS memory and the impact on gene regulatory dynamics. The findings revealed that QS memory has a transient effect on the expression of QS-responsive genes. These consequences of QS memory depend strongly on how cell density was perturbed, as well as various cellular parameters, including the Fold Change in the expression of QS-regulated genes, the autoinducer synthesis rate, the autoinducer threshold required for activation, and the cell growth rate.
Collapse
Affiliation(s)
- Ghazaleh Ostovar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, United States of America
| | - James Q. Boedicker
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, United States of America
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
6
|
Miklau M, Burn SJ, Eckerstorfer M, Dolezel M, Greiter A, Heissenberger A, Hörtenhuber S, Zollitsch W, Hagen K. Horizon scanning of potential environmental applications of terrestrial animals, fish, algae and microorganisms produced by genetic modification, including the use of new genomic techniques. Front Genome Ed 2024; 6:1376927. [PMID: 38938511 PMCID: PMC11208717 DOI: 10.3389/fgeed.2024.1376927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/01/2024] [Indexed: 06/29/2024] Open
Abstract
With scientific progress and the development of new genomic techniques (NGTs), the spectrum of organisms modified for various purposes is rapidly expanding and includes a wide range of taxonomic groups. An improved understanding of which newly developed products may be introduced into the market and released into the environment in the near and more distant future is of particular interest for policymakers, regulatory authorities, and risk assessors. To address this information need, we conducted a horizon scanning (HS) of potential environmental applications in four groups of organisms: terrestrial animals (excluding insects and applications with gene drives), fish, algae and microorganisms. We applied a formal scoping review methodology comprising a structured search of the scientific literature followed by eligibility screening, complemented by a survey of grey literature, and regulatory websites and databases. In all four groups of organisms we identified a broad range of potential applications in stages of basic as well as advanced research, and a limited number of applications which are on, or ready to be placed on, the market. Research on GM animals including fish is focused on farmed animals and primarily targets traits which increase performance, influence reproduction, or convey resistance against diseases. GM algae identified in the HS were all unicellular, with more than half of the articles concerning biofuel production. GM algae applications for use in the environment include biocontrol and bioremediation, which are also the main applications identified for GM microorganisms. From a risk assessor's perspective these potential applications entail a multitude of possible pathways to harm. The current limited level of experience and limited amount of available scientific information could constitute a significant challenge in the near future, for which risk assessors and competent authorities urgently need to prepare.
Collapse
Affiliation(s)
- Marianne Miklau
- Department of Landuse and Biosafety, Environment Agency Austria, Vienna, Austria
| | - Sarah-Joe Burn
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Michael Eckerstorfer
- Department of Landuse and Biosafety, Environment Agency Austria, Vienna, Austria
| | - Marion Dolezel
- Department of Landuse and Biosafety, Environment Agency Austria, Vienna, Austria
| | - Anita Greiter
- Department of Landuse and Biosafety, Environment Agency Austria, Vienna, Austria
| | | | - Stefan Hörtenhuber
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Werner Zollitsch
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Kristin Hagen
- Federal Agency for Nature Conservation, Division Assessment Synthetic Biology/Enforcement Genetic Engineering Act, Bonn, Germany
| |
Collapse
|
7
|
Song J, Zhuang M, Fang Y, Hu X, Wang X. Self-regulated efficient production of L-threonine via an artificial quorum sensing system in engineered Escherichia coli. Microbiol Res 2024; 284:127720. [PMID: 38640767 DOI: 10.1016/j.micres.2024.127720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Imbalance in carbon flux distribution is one of the most important factors affecting the further increase in the yield of high value-added natural products in microbial metabolic engineering. Meanwhile, the most common inducible expression systems are difficult to achieve industrial-scale production due to the addition of high-cost or toxic inducers during the fermentation process. Quorum sensing system, as a typical model for density-dependent induction of gene expression, has been widely applied in synthetic biology. However, there are currently few reports for efficient production of microbial natural products by using quorum sensing system to self-regulate carbon flux distribution. Here, we designed an artificial quorum sensing system to achieve efficient production of L-threonine in engineered Escherichia coli by altering the carbon flux distribution of the central metabolic pathways at specific periods. Under the combination of switch module and production module, the system was applied to divide the microbial fermentation process into two stages including growth and production, and improve the production of L-threonine by self-inducing the expression of pyruvate carboxylase and threonine extracellular transporter protease after a sufficient amount of cell growth. The final strain TWF106/pST1011, pST1042pr could produce 118.2 g/L L-threonine with a yield of 0.57 g/g glucose and a productivity of 2.46 g/(L· h). The establishment of this system has important guidance and application value for the production of other high value-added chemicals in microorganisms by self-regulation.
Collapse
Affiliation(s)
- Jie Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Miaomiao Zhuang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yu Fang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoqing Hu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Allen B, Khwaja AR, Donahue JL, Kelly TJ, Hyacinthe SR, Proulx J, Lattanzio C, Dementieva YA, Sample C. Nonlinear social evolution and the emergence of collective action. PNAS NEXUS 2024; 3:pgae131. [PMID: 38595801 PMCID: PMC11002786 DOI: 10.1093/pnasnexus/pgae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024]
Abstract
Organisms from microbes to humans engage in a variety of social behaviors, which affect fitness in complex, often nonlinear ways. The question of how these behaviors evolve has consequences ranging from antibiotic resistance to human origins. However, evolution with nonlinear social interactions is challenging to model mathematically, especially in combination with spatial, group, and/or kin assortment. We derive a mathematical condition for natural selection with synergistic interactions among any number of individuals. This result applies to populations with arbitrary (but fixed) spatial or network structure, group subdivision, and/or mating patterns. In this condition, nonlinear fitness effects are ascribed to collectives, and weighted by a new measure of collective relatedness. For weak selection, this condition can be systematically evaluated by computing branch lengths of ancestral trees. We apply this condition to pairwise games between diploid relatives, and to dilemmas of collective help or harm among siblings and on spatial networks. Our work provides a rigorous basis for extending the notion of "actor", in the study of social evolution, from individuals to collectives.
Collapse
Affiliation(s)
- Benjamin Allen
- Department of Mathematics, Emmanuel College, Boston, MA 02115, USA
| | | | - James L Donahue
- Department of Mathematics, Emmanuel College, Boston, MA 02115, USA
| | - Theodore J Kelly
- Department of Mathematics, Emmanuel College, Boston, MA 02115, USA
| | | | - Jacob Proulx
- Department of Mathematics, Emmanuel College, Boston, MA 02115, USA
| | | | | | - Christine Sample
- Department of Mathematics, Emmanuel College, Boston, MA 02115, USA
| |
Collapse
|
9
|
Zhu R, Zhang J, Wang L, Zhang Y, Zhao Y, Han Y, Sun J, Zhang X, Dou Y, Yao H, Yan W, Luo X, Dai J, Dai Z. Engineering functional materials through bacteria-assisted living grafting. Cell Syst 2024; 15:264-274.e9. [PMID: 38460522 DOI: 10.1016/j.cels.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 09/15/2023] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
Functionalizing materials with biomacromolecules such as enzymes has broad applications in biotechnology and biomedicine. Here, we introduce a grafting method mediated by living cells to functionalize materials. We use polymeric scaffolds to trap engineered bacteria and micron-sized particles with chemical groups serving as active sites for grafting. The bacteria synthesize the desired protein for grafting and autonomously lyse to release it. The released functional moieties are locally grafted onto the active sites, generating the materials engineered by living grafting (MELGs). MELGs are resilient to perturbations because of both the bonding and the regeneration of functional domains synthesized by living cells. The programmability of the bacteria enables us to fabricate MELGs that can respond to external input, decompose a pollutant, reconstitute synthetic pathways for natural product synthesis, and purify mismatched DNA. Our work establishes a bacteria-assisted grafting strategy to functionalize materials with a broad range of biological activities in an integrated, flexible, and modular manner. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Runtao Zhu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiao Zhang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lin Wang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yunfeng Zhang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yang Zhao
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ying Han
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Sun
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xi Zhang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ying Dou
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huaxiong Yao
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei Yan
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaozhou Luo
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Junbiao Dai
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhuojun Dai
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
10
|
Goo E, Hwang I. Control of bacterial quorum threshold for metabolic homeostasis and cooperativity. Microbiol Spectr 2024; 12:e0335323. [PMID: 38084969 PMCID: PMC10783058 DOI: 10.1128/spectrum.03353-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/02/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE The mechanisms used by various bacteria to determine whether their density is sufficient to meet the QS threshold, how stringently bacterial cells block QS initiation until the QS threshold is reached, and the impacts of low-density bacterial cells encountering conditions that exceed the QS threshold are longstanding gaps in QS research. We demonstrated that translational control of the QS signaling biosynthetic gene creates a stringent QS threshold to maintain metabolic balance at low cell densities. The emergence of non-cooperative cells underlines the critical role of stringent QS modulation in maintaining the integrity of the bacterial QS system, demonstrating that a lack of such control can serve as a selection pressure. The fate of quorum-calling cells exposed to exceeding the QS threshold clarifies QS bacteria evolution in complex ecosystems.
Collapse
Affiliation(s)
- Eunhye Goo
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Ingyu Hwang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
11
|
Hernández-Navarro L, Asker M, Rucklidge AM, Mobilia M. Coupled environmental and demographic fluctuations shape the evolution of cooperative antimicrobial resistance. J R Soc Interface 2023; 20:20230393. [PMID: 37907094 PMCID: PMC10618063 DOI: 10.1098/rsif.2023.0393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/06/2023] [Indexed: 11/02/2023] Open
Abstract
There is a pressing need to better understand how microbial populations respond to antimicrobial drugs, and to find mechanisms to possibly eradicate antimicrobial-resistant cells. The inactivation of antimicrobials by resistant microbes can often be viewed as a cooperative behaviour leading to the coexistence of resistant and sensitive cells in large populations and static environments. This picture is, however, greatly altered by the fluctuations arising in volatile environments, in which microbial communities commonly evolve. Here, we study the eco-evolutionary dynamics of a population consisting of an antimicrobial-resistant strain and microbes sensitive to antimicrobial drugs in a time-fluctuating environment, modelled by a carrying capacity randomly switching between states of abundance and scarcity. We assume that antimicrobial resistance (AMR) is a shared public good when the number of resistant cells exceeds a certain threshold. Eco-evolutionary dynamics is thus characterised by demographic noise (birth and death events) coupled to environmental fluctuations which can cause population bottlenecks. By combining analytical and computational means, we determine the environmental conditions for the long-lived coexistence and fixation of both strains, and characterise a fluctuation-driven AMR eradication mechanism, where resistant microbes experience bottlenecks leading to extinction. We also discuss the possible applications of our findings to laboratory-controlled experiments.
Collapse
Affiliation(s)
- Lluís Hernández-Navarro
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Matthew Asker
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Alastair M. Rucklidge
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Mauro Mobilia
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
12
|
Daneshpour H, van den Bersselaar P, Chao CH, Fazzio TG, Youk H. Macroscopic quorum sensing sustains differentiating embryonic stem cells. Nat Chem Biol 2023; 19:596-606. [PMID: 36635563 PMCID: PMC10154202 DOI: 10.1038/s41589-022-01225-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/14/2022] [Indexed: 01/14/2023]
Abstract
Cells can secrete molecules that help each other's replication. In cell cultures, chemical signals might diffuse only within a cell colony or between colonies. A chemical signal's interaction length-how far apart interacting cells are-is often assumed to be some value without rigorous justifications because molecules' invisible paths and complex multicellular geometries pose challenges. Here we present an approach, combining mathematical models and experiments, for determining a chemical signal's interaction length. With murine embryonic stem (ES) cells as a testbed, we found that differentiating ES cells secrete FGF4, among others, to communicate over many millimeters in cell culture dishes and, thereby, form a spatially extended, macroscopic entity that grows only if its centimeter-scale population density is above a threshold value. With this 'macroscopic quorum sensing', an isolated macroscopic, but not isolated microscopic, colony can survive differentiation. Our integrated approach can determine chemical signals' interaction lengths in generic multicellular communities.
Collapse
Affiliation(s)
- Hirad Daneshpour
- Kavli Institute of Nanoscience, Delft, The Netherlands
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Pim van den Bersselaar
- Kavli Institute of Nanoscience, Delft, The Netherlands
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Chun-Hao Chao
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Thomas G Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hyun Youk
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, ON, Canada.
| |
Collapse
|
13
|
Schuster M, Li C, Smith P, Kuttler C. Parameters, architecture and emergent properties of the Pseudomonas aeruginosa LasI/LasR quorum-sensing circuit. J R Soc Interface 2023; 20:20220825. [PMID: 36919437 PMCID: PMC10015328 DOI: 10.1098/rsif.2022.0825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
Quorum sensing is a widespread process in bacteria that controls collective behaviours in response to cell density. Populations of cells coordinate gene expression through the perception of self-produced chemical signals. Although this process is well-characterized genetically and biochemically, quantitative information about network properties, including induction dynamics and steady-state behaviour, is scarce. Here we integrate experiments with mathematical modelling to quantitatively analyse the LasI/LasR quorum sensing pathway in the opportunistic pathogen Pseudomonas aeruginosa. We determine key kinetic parameters of the pathway and, using the parametrized model, show that quorum sensing behaves as a bistable hysteretic switch, with stable on and off states. We investigate the significance of feedback architecture and find that positive feedback on signal production is critical for induction dynamics and bistability, whereas positive feedback on receptor expression and negative feedback on signal production play a minor role. Taken together, our data-based modelling approach reveals fundamental and emergent properties of a bacterial quorum sensing circuit, and provides evidence that native quorum sensing can indeed function as the gene expression switch it is commonly perceived to be.
Collapse
Affiliation(s)
- Martin Schuster
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Christina Li
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Parker Smith
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Christina Kuttler
- Department of Mathematics, Technische Universität München, 85748 Garching, Germany
| |
Collapse
|
14
|
Weaver BP, Haselwandter CA, Boedicker JQ. Stochastic effects in bacterial communication mediated by extracellular vesicles. Phys Rev E 2023; 107:024409. [PMID: 36932546 DOI: 10.1103/physreve.107.024409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Quorum sensing (QS) allows bacterial cells to sense changes in local cell density and, hence, to regulate multicellular processes, including biofilm formation, regulation of virulence, and horizontal gene transfer. While, traditionally, QS was thought to involve the exchange of extracellular signal molecules free in solution, recent experiments have shown that for some bacterial systems a substantial fraction of signal molecules are packaged and delivered in extracellular vesicles. How the packaging of signal molecules in extracellular vesicles influences the ability of cells to communicate and coordinate multicellular behaviors remains largely unknown. We present here a stochastic reaction-diffusion model of QS that accounts for the exchange of both freely diffusing and vesicle-associated signal molecules. We find that the delivery of signal molecules via extracellular vesicles amplifies local fluctuations in the signal concentration, which can strongly affect the dynamics and spatial range of bacterial communication. For systems with multiple bacterial colonies, extracellular vesicles provide an alternate pathway for signal transport between colonies, and may be crucial for long-distance signal exchange in environments with strong degradation of free signal molecules.
Collapse
Affiliation(s)
- Brian P Weaver
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - Christoph A Haselwandter
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | - James Q Boedicker
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
15
|
Gu P, Ma Q, Zhao S, Gao J, Li C, Zhou H, Jiang S, Li Q. Application of quorum sensing system in microbial synthesis of valuable chemicals: a mini-review. World J Microbiol Biotechnol 2022; 38:192. [PMID: 35978255 DOI: 10.1007/s11274-022-03382-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
With advantages of low substrates cost, high optical purity of end products and environmentally friendly fermentation process, microbial production of valuable chemicals grow rapidly. Compared with static microbial strain engineering strategies, such as gene deletion, overexpression and mutation, dynamic pathway regulation is a new approach that balances cellular growth and chemical production. Quorum sensing is a natural microbial communication system responsible for cell-density-related cell behaviors. Accordingly, quorum sensing systems can be employed to achieve dynamic regulation in microorganisms without the need for manual intervention or the use of chemical inducers. In this review, natural quorum sensing systems are firstly summarized. Then, recent progress in using quorum sensing circuits in the field of metabolic engineering is highlighted. The current application challenges of quorum sensing systems and future perspectives in microbial synthesis of chemicals are also discussed.
Collapse
Affiliation(s)
- Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Qianqian Ma
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Shuo Zhao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Juan Gao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Changtao Li
- RZBC GROUP CO., LTD., Rizhao, 276800, Shandong, China
| | - Hao Zhou
- RZBC GROUP CO., LTD., Rizhao, 276800, Shandong, China
| | | | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| |
Collapse
|
16
|
Yan C, Li X, Zhang G, Bi J, Hao H, Hou H. Quorum Sensing (QS)-regulated target predictions of Hafnia alvei H4 based on the joint application of genome and STRING database. Food Res Int 2022; 157:111356. [DOI: 10.1016/j.foodres.2022.111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022]
|
17
|
Lissens M, Joos M, Lories B, Steenackers HP. Evolution-proof inhibitors of public good cooperation: a screening strategy inspired by social evolution theory. FEMS Microbiol Rev 2022; 46:6604382. [PMID: 35675280 PMCID: PMC9616471 DOI: 10.1093/femsre/fuac019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/22/2022] [Indexed: 01/07/2023] Open
Abstract
Interference with public good cooperation provides a promising novel antimicrobial strategy since social evolution theory predicts that resistant mutants will be counter-selected if they share the public benefits of their resistance with sensitive cells in the population. Although this hypothesis is supported by a limited number of pioneering studies, an extensive body of more fundamental work on social evolution describes a multitude of mechanisms and conditions that can stabilize public behaviour, thus potentially allowing resistant mutants to thrive. In this paper we theorize on how these different mechanisms can influence the evolution of resistance against public good inhibitors. Based hereon, we propose an innovative 5-step screening strategy to identify novel evolution-proof public good inhibitors, which involves a systematic evaluation of the exploitability of public goods under the most relevant experimental conditions, as well as a careful assessment of the most optimal way to interfere with their action. Overall, this opinion paper is aimed to contribute to long-term solutions to fight bacterial infections.
Collapse
Affiliation(s)
- Maries Lissens
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Leuven, B-3001, Belgium
| | - Mathieu Joos
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Leuven, B-3001, Belgium
| | - Bram Lories
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Leuven, B-3001, Belgium
| | - Hans P Steenackers
- Corresponding author: Centre of Microbial and Plant Genetics (CMPG), Kasteelpark Arenberg 20 – Box 2460, B-3001 Leuven, Belgium. E-mail:
| |
Collapse
|
18
|
Alviz-Gazitua P, González A, Lee MR, Aranda CP. Molecular Relationships in Biofilm Formation and the Biosynthesis of Exoproducts in Pseudoalteromonas spp. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:431-447. [PMID: 35486299 DOI: 10.1007/s10126-022-10097-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Most members of the Pseudoalteromonas genus have been isolated from living surfaces as members of epiphytic and epizooic microbiomes on marine macroorganisms. Commonly Pseudoalteromonas isolates are reported as a source of bioactive exoproducts, i.e., secondary metabolites, such as exopolymeric substances and extracellular enzymes. The experimental conditions for the production of these agents are commonly associated with sessile metabolic states such as biofilms or liquid cultures in the stationary growth phase. Despite this, the molecular mechanisms that connect biofilm formation and the biosynthesis of exoproducts in Pseudoalteromonas isolates have rarely been mentioned in the literature. This review compiles empirical evidence about exoproduct biosynthesis conditions and molecular mechanisms that regulate sessile metabolic states in Pseudoalteromonas species, to provide a comprehensive perspective on the regulatory convergences that generate the recurrent coexistence of both phenomena in this bacterial genus. This synthesis aims to provide perspectives on the extent of this phenomenon for the optimization of bioprospection studies and biotechnology processes based on these bacteria.
Collapse
Affiliation(s)
- P Alviz-Gazitua
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Avda. Fuchslocher 1305, P. Box 5290000, Osorno, Chile
| | - A González
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Avda. Fuchslocher 1305, P. Box 5290000, Osorno, Chile
| | - M R Lee
- Centro i~mar, Universidad de Los Lagos, Camino a Chinquihue km 6, P. Box 5480000, Puerto Montt, Chile
| | - C P Aranda
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Avda. Fuchslocher 1305, P. Box 5290000, Osorno, Chile.
| |
Collapse
|
19
|
Gangan MS, Vasconcelos MM, Mitra U, Câmara O, Boedicker JQ. Intertemporal trade-off between population growth rate and carrying capacity during public good production. iScience 2022; 25:104117. [PMID: 35391831 PMCID: PMC8980746 DOI: 10.1016/j.isci.2022.104117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/14/2022] [Accepted: 03/16/2022] [Indexed: 11/19/2022] Open
Abstract
Public goods are biomolecules that benefit cellular populations, such as by providing access to previously unutilized resources. Public good production is energetically costly. To reduce this cost, populations control public good biosynthesis, for example using density-dependent regulation accomplished by quorum sensing. Fitness costs and benefits of public good production must be balanced, similar to optimal investment decisions used in economics. We explore the regulation of a public good that increases the carrying capacity, through experimental measurements of growth in Escherichia coli and analysis using a modified logistic growth model. The timing of public good production showed a sharply peaked optimum in population fitness. The cell density associated with maximum public good benefits was determined by the trade-off between the cost of public good production, in terms of reduced growth rate, and benefits received from public goods, in the form of increased carrying capacity. Public good production creates trade-off between growth rate and carrying capacity Cell density-dependent regulation times the production to optimize this trade-off At this time, benefits of public good are maximum and received instantaneously
Collapse
Affiliation(s)
- Manasi S. Gangan
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA
| | - Marcos M. Vasconcelos
- Commonweath Cyber-Initiative and Bradley Department of Electrical Engineering, Virginia Polytechnic Institute and State University, Arlington, VA, USA
| | - Urbashi Mitra
- Ming Hsieh Department of Electrical & Computer Engineering, Department of Computer Science, University of Southern California, Los Angeles, CA, USA
| | - Odilon Câmara
- USC Marshall School of Business, University of Southern California, Los Angeles, CA, USA
| | - James Q. Boedicker
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Corresponding author
| |
Collapse
|
20
|
Hashem I, Van Impe JFM. Dishonest Signaling in Microbial Conflicts. Front Microbiol 2022; 13:812763. [PMID: 35283822 PMCID: PMC8914469 DOI: 10.3389/fmicb.2022.812763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/01/2022] [Indexed: 01/21/2023] Open
Abstract
Quorum sensing is a cell-cell communication system that bacteria use to express social phenotypes, such as the production of extracellular enzymes or toxins, at high cell densities when these phenotypes are most beneficial. However, many bacterial strains are known to lack a sensing mechanism for quorum signals, despite having the gene responsible for releasing the signals to the environment. The aim of this article is 2-fold. First, we utilize mathematical modeling and signaling theory to elucidate the advantage that a bacterial species can gain by releasing quorum signals, while not being able to sense them, in the context of ecological competition with a focal quorum sensing species, by reducing the focal species' ability to optimize the timing of expression of the quorum sensing regulated phenotype. Additionally, the consequences of such “dishonest signaling,” signaling that has evolved to harm the signal's receiver, on the focal quorum sensing species are investigated. It is found that quorum sensing bacteria would have to incur an additional, strategic, signaling cost in order to not suffer a reduction in fitness against dishonest signaling strains. Also, the concept of the Least Expensive Reliable Signal is introduced and applied to study how the properties of the regulated phenotype affect the metabolic investment in signaling needed by the quorum sensing bacteria to withstand dishonest signaling.
Collapse
|
21
|
Yan C, Li X, Zhang G, Zhu Y, Bi J, Hao H, Hou H. Quorum Sensing-Mediated and Growth Phase-Dependent Regulation of Metabolic Pathways in Hafnia alvei H4. Front Microbiol 2021; 12:567942. [PMID: 33737914 PMCID: PMC7960787 DOI: 10.3389/fmicb.2021.567942] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
Quorum sensing (QS) is a widespread regulatory mechanism in bacteria used to coordinate target gene expression with cell density. Thus far, little is known about the regulatory relationship between QS and cell density in terms of metabolic pathways in Hafnia alvei H4. In this study, transcriptomics analysis was performed under two conditions to address this question. The comparative transcriptome of H. alvei H4 wild-type at high cell density (OD600 = 1.7) relative to low cell density (OD600 = 0.3) was considered as growth phase-dependent manner (GPDM), and the transcriptome profile of luxI/R deletion mutant (ΔluxIR) compared to the wild-type was considered as QS-mediated regulation. In all, we identified 206 differentially expressed genes (DEGs) mainly presented in chemotaxis, TCA cycle, two-component system, ABC transporters and pyruvate metabolism, co-regulated by the both density-dependent regulation, and the results were validated by qPCR and swimming phenotypic assays. Aside from the co-regulated DEGs, we also found that 59 DEGs, mediated by density-independent QS, function in pentose phosphate and histidine metabolism and that 2084 cell-density-dependent DEGs involved in glycolysis/gluconeogenesis and phenylalanine metabolism were influenced only by GPDM from significantly enriched analysis of transcriptome data. The findings provided new information about the interplay between two density-dependent metabolic regulation, which could assist with the formulation of control strategies for this opportunistic pathogen, especially at high cell density.
Collapse
Affiliation(s)
- Congyang Yan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.,Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Xue Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.,Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Gongliang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.,Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Yaolei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.,Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.,Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Hongshun Hao
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Hongman Hou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.,Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| |
Collapse
|
22
|
Guo Y, Zhao Y, Tang X, Na T, Pan J, Zhao H, Liu S. Deciphering bacterial social traits via diffusible signal factor (DSF) -mediated public goods in an anammox community. WATER RESEARCH 2021; 191:116802. [PMID: 33433336 DOI: 10.1016/j.watres.2020.116802] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/04/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Both the benefits of bacterial quorum sensing (QS) and cross-feeding for bio-reactor performance in wastewater treatment have been recently reported. As the social traits of microbial communities, how bacterial QS regulating bacterial trade-off by cross-feeding remains unclear. Here, we find diffusion signal factor (DSF), a kind of QS molecules, can bridge bacterial interactions through regulating public goods (extracellular polymeric substances (EPS), amino acids) for metabolic cross-feedings. It showed that exogenous DSF-addition leads to change of public goods level and community structure dynamics in the anammox consortia. Approaches involving meta-omics clarified that anammox and a Lautropia-affiliated species in the phylum Proteobacteria can supply costly public goods for DSF-Secretor species via secondary messenger c-di-GMP regulator (Clp) after sensing DSF. Meanwhile, DSF-Secretor species help anammox bacteria scavenge extracellular detritus, which creates a more suitable environment for the anammox species, enhances the anammox activity, and improves the nitrogen removal rate of anammox reactor. The trade-off induces discrepant metabolic loads of different microbial clusters, which were responsible for the community succession. It illustrated the potential to artificially alleviate metabolic loads for certain bacteria. Deciphering microbial interactions via QS not only provides insights for understanding the social behavior of microbial community, but also creates new thought for enhancing treatment performance through regulating bacterial social traits via quorum sensing-mediated public goods.
Collapse
Affiliation(s)
- Yongzhao Guo
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| | - Yunpeng Zhao
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| | - Xi Tang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| | - Tianxing Na
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Juejun Pan
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| | - Huazhang Zhao
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| | - Sitong Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education of China, Beijing 100871, China.
| |
Collapse
|
23
|
Yang X, Liu J, Zhang J, Shen Y, Qi Q, Bao X, Hou J. Quorum sensing-mediated protein degradation for dynamic metabolic pathway control in Saccharomyces cerevisiae. Metab Eng 2021; 64:85-94. [PMID: 33545357 DOI: 10.1016/j.ymben.2021.01.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
Dynamic regulation has been widely applied to optimize metabolic flux distribution. However, compared with prokaryotes, quorum sensing-mediated pathway control is still very limited in Saccharomyces cerevisiae. In this study, we designed quorum sensing-regulated protein degradation circuits for dynamic metabolic pathway control in S. cerevisiae. The synthetic quorum sensing circuits were developed by integration of a plant hormone cytokinin system with the endogenous yeast Ypd1-Skn7 signal transduction pathway and the positive feedback circuits were optimized by promoter engineering. We then constructed an auxin-inducible protein degradation system and used quorum sensing circuits to regulate auxin synthesis to achieve dynamic control of protein degradation. As a demonstration, the circuits were applied to control Erg9 degradation to produce α-farnesene and the titer of α-farnesene increased by 80%. The population-regulated protein degradation system developed here extends dynamic regulation to the protein level in S. cerevisiae and is a promising approach for metabolic pathway control.
Collapse
Affiliation(s)
- Xiaoyu Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Jianhui Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Jin Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Xiaoming Bao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China; State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qi Lu University of Technology, Jinan, 250353, PR China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
24
|
Britton SJ, Neven H, Maskell DL. Microbial Small-Talk: Does Quorum Sensing Play a Role in Beer Fermentation? JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2020. [DOI: 10.1080/03610470.2020.1843928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Scott J. Britton
- Research & Development, Duvel Moortgat, Puurs-Sint-Amands, Belgium
- International Centre for Brewing and Distilling, Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Hedwig Neven
- Research & Development, Duvel Moortgat, Puurs-Sint-Amands, Belgium
- Centre for Food and Microbial Technology (CLMT), Department M2S, KU Leuven, Leuven, Belgium
| | - Dawn L. Maskell
- International Centre for Brewing and Distilling, Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
25
|
Targeted and untargeted quantification of quorum sensing signalling molecules in bacterial cultures and biological samples via HPLC-TQ MS techniques. Anal Bioanal Chem 2020; 413:853-864. [PMID: 33206214 PMCID: PMC7809007 DOI: 10.1007/s00216-020-03040-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/09/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023]
Abstract
Quorum sensing (QS) is the ability of some bacteria to detect and to respond to population density through signalling molecules. QS molecules are involved in motility and cell aggregation mechanisms in diseases such as sepsis. Few biomarkers are currently available to diagnose sepsis, especially in high-risk conditions. The aim of this study was the development of new analytical methods based on liquid chromatography-mass spectrometry for the detection and quantification of QS signalling molecules, including N-acyl homoserine lactones (AHL) and hydroxyquinolones (HQ), in biofluids. Biological samples used in the study were Pseudomonas aeruginosa bacterial cultures and plasma from patients with sepsis. We developed two MS analytical methods, based on neutral loss (NL) and product ion (PI) experiments, to identify and characterize unknown AHL and HQ molecules. We then established a multiple-reaction-monitoring (MRM) method to quantify specific QS compounds. We validated the HPLC-MS-based approaches (MRM-NL-PI), and data were in accord with the validation guidelines. With the NL and PI MS-based methods, we identified and characterized 3 and 13 unknown AHL and HQ compounds, respectively, in biological samples. One of the newly found AHL molecules was C12-AHL, first quantified in Pseudomonas aeruginosa bacterial cultures. The MRM quantitation of analytes in plasma from patients with sepsis confirmed the analytical ability of MRM for the quantification of virulence factors during sepsis. Graphical abstract ![]()
Collapse
|
26
|
Ostovar G, Naughton KL, Boedicker JQ. Computation in bacterial communities. Phys Biol 2020; 17:061002. [PMID: 33035198 DOI: 10.1088/1478-3975/abb257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Bacteria across many scales are involved in a dynamic process of information exchange to coordinate activity and community structure within large and diverse populations. The molecular components bacteria use to communicate have been discovered and characterized, and recent efforts have begun to understand the potential for bacterial signal exchange to gather information from the environment and coordinate collective behaviors. Such computations made by bacteria to coordinate the action of a population of cells in response to information gathered by a multitude of inputs is a form of collective intelligence. These computations must be robust to fluctuations in both biological, chemical, and physical parameters as well as to operate with energetic efficiency. Given these constraints, what are the limits of computation by bacterial populations and what strategies have evolved to ensure bacterial communities efficiently work together? Here the current understanding of information exchange and collective decision making that occur in microbial populations will be reviewed. Looking toward the future, we consider how a deeper understanding of bacterial computation will inform future direction in microbiology, biotechnology, and biophysics.
Collapse
Affiliation(s)
- Ghazaleh Ostovar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, United States of America
| | | | | |
Collapse
|
27
|
The impact of cell structure, metabolism and group behavior for the survival of bacteria under stress conditions. Arch Microbiol 2020; 203:431-441. [PMID: 32975620 DOI: 10.1007/s00203-020-02050-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/28/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Abstract
Microbes from diverse types of habitats are continuously exposed to external challenges, which may include acidic, alkaline, and toxic metabolites stress as well as nutrient deficiencies. To promote their own survival, bacteria have to rapidly adapt to external perturbations by inducing particular stress responses that typically involve genetic and/or cellular changes. In addition, pathogenic bacteria need to sense and withstand these environmental stresses within a host to establish and maintain infection. These responses can be, in principle, induced by changes in bacterial cell structure, metabolism and group behavior. Bacterial nucleic acids may serve as the core part of the stress response, and the cell envelope and ribosomes protect genetic structures from damage. Cellular metabolism and group behavior, such as quorum sensing system, can play a more important role in resisting stress than we have now found. Since bacteria survival can be only appreciated if we better understand the mechanisms behind bacterial stress response, here we review how morphological and physiological features may lead to bacterial resistance upon exposure to particular stress-inducing factors.
Collapse
|
28
|
Jung H, Meile CD. Numerical investigation of microbial quorum sensing under various flow conditions. PeerJ 2020; 8:e9942. [PMID: 32983649 PMCID: PMC7500354 DOI: 10.7717/peerj.9942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/24/2020] [Indexed: 11/22/2022] Open
Abstract
Microorganisms efficiently coordinate phenotype expressions through a decision-making process known as quorum sensing (QS). We investigated QS amongst distinct, spatially distributed microbial aggregates under various flow conditions using a process-driven numerical model. Model simulations assess the conditions suitable for QS induction and quantify the importance of advective transport of signaling molecules. In addition, advection dilutes signaling molecules so that faster flow conditions require higher microbial densities, faster signal production rates, or higher sensitivities to signaling molecules to induce QS. However, autoinduction of signal production can substantially increase the transport distance of signaling molecules in both upstream and downstream directions. We present empirical approximations to the solutions of the advection–diffusion–reaction equation that describe the concentration profiles of signaling molecules for a wide range of flow and reaction rates. These empirical relationships, which predict the distribution of dissolved solutes along pore channels, allow to quantitatively estimate the effective communication distances amongst multiple microbial aggregates without further numerical simulations.
Collapse
|
29
|
Ge C, Sheng H, Chen X, Shen X, Sun X, Yan Y, Wang J, Yuan Q. Quorum Sensing System Used as a Tool in Metabolic Engineering. Biotechnol J 2020; 15:e1900360. [DOI: 10.1002/biot.201900360] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/07/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Chang Ge
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology Beijing Chaoyang 100029 China
| | - Huakang Sheng
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology Beijing Chaoyang 100029 China
| | - Xin Chen
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology Beijing Chaoyang 100029 China
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology Beijing Chaoyang 100029 China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology Beijing Chaoyang 100029 China
| | - Yajun Yan
- College of EngineeringThe University of Georgia Athens GA 30605 USA
| | - Jia Wang
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology Beijing Chaoyang 100029 China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology Beijing Chaoyang 100029 China
| |
Collapse
|
30
|
Sysoeva TA, Kim Y, Rodriguez J, Lopatkin AJ, You L. Growth‐stage‐dependent regulation of conjugation. AIChE J 2019. [DOI: 10.1002/aic.16848] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tatyana A. Sysoeva
- Department of Biomedical EngineeringDuke University Durham North Carolina
- Department of Biological SciencesThe University of Alabama in Huntsville Huntsville Alabama
| | - Youlim Kim
- Department of Biomedical EngineeringDuke University Durham North Carolina
| | - Jonathan Rodriguez
- Department of Biomedical EngineeringDuke University Durham North Carolina
| | | | - Lingchong You
- Department of Biomedical EngineeringDuke University Durham North Carolina
- Center for Genomic and Computational BiologyDuke University Durham North Carolina
- Department of Molecular Genetics and MicrobiologyDuke University School of Medicine North Carolina
| |
Collapse
|
31
|
Wang J, Liu Q, Hu H, Wu B, Zhang XX, Ren H. Insight into mature biofilm quorum sensing in full-scale wastewater treatment plants. CHEMOSPHERE 2019; 234:310-317. [PMID: 31228833 DOI: 10.1016/j.chemosphere.2019.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/20/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
Quorum sensing (QS) has been thoroughly investigated during initial biofilm formation stages, while the role of QS in mature biofilms has received little research attention. This study assessed QS in 22 biofilm samples from full-scale wastewater treatment plants in China. Results showed that the concentration of acyl-homoserine lactones (AHLs) in various biofilm bound forms, ranged from 15.63 to 609.76 ng/g. The highest concentration of AHLs was found in the tightly bound biofilm fraction, while the lowest concentrations were observed in the surface biofilm fraction. Environmental variables, C/N ratio and temperature, were found to be significant factors influencing biofilm AHL distribution (p < 0.01). Higher C/N ratios (ranging from 3 to 12) and low temperatures contributed to the higher concentration of AHLs in biofilms. Dominant AHLs (C10-HSL and C12-HSL) were significantly associated with biofilm activity (R2 = 0.98/0.97, p < 0.05), with the tightly bound biofilm fraction (TB-biofilm) presenting the highest activity (ATP concentration). Biofilm aging and re-formation processes were more active in the surface biofilm layer (S-biofilm), while the stable structure of the TB-biofilm layer which is attached to the surface of bio-carriers ensures high biofilm activity. This study furthers our understanding of the roles of AHLs in the regulation of mature biofilm activities.
Collapse
Affiliation(s)
- Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Qiuju Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
32
|
Samal B, Chatterjee S. New insight into bacterial social communication in natural host: Evidence for interplay of heterogeneous and unison quorum response. PLoS Genet 2019; 15:e1008395. [PMID: 31527910 PMCID: PMC6764700 DOI: 10.1371/journal.pgen.1008395] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/27/2019] [Accepted: 08/30/2019] [Indexed: 01/31/2023] Open
Abstract
Many microbes exhibit quorum sensing (QS) to cooperate, share and perform a social task in unison. Recent studies have shown the emergence of reversible phenotypic heterogeneity in the QS-responding pathogenic microbial population under laboratory conditions as a possible bet-hedging survival strategy. However, very little is known about the dynamics of QS-response and the nature of phenotypic heterogeneity in an actual host-pathogen interaction environment. Here, we investigated the dynamics of QS-response of a Gram-negative phytopathogen Xanthomonas pv. campestris (Xcc) inside its natural host cabbage, that communicate through a fatty acid signal molecule called DSF (diffusible signal factor) for coordination of several social traits including virulence functions. In this study, we engineered a novel DSF responsive whole-cell QS dual-bioreporter to measure the DSF mediated QS-response in Xcc at the single cell level inside its natural host plant in vivo. Employing the dual-bioreporter strain of Xcc, we show that QS non-responsive cells coexist with responsive cells in microcolonies at the early stage of the disease; whereas in the late stages, the QS-response is more homogeneous as the QS non-responders exhibit reduced fitness and are out competed by the wild-type. Furthermore, using the wild-type Xcc and its QS mutants in single and mixed infection studies, we show that QS mutants get benefit to some extend at the early stage of disease and contribute to localized colonization. However, the QS-responding cells contribute to spread along xylem vessel. These results contrast with the earlier studies describing that expected cross-induction and cooperative sharing at high cell density in vivo may lead to synchronize QS-response. Our findings suggest that the transition from heterogeneity to homogeneity in QS-response within a bacterial population contributes to its overall virulence efficiency to cause disease in the host plant under natural environment. Pathogenic bacteria synchronize and coordinate the production of virulence associated function-components in a density dependent fashion via quorum sensing. In general, QS-response and regulation has been studied under laboratory conditions in vitro, where the QS-responding bacterial population exhibits heterogeneous QS-response with the emergence of both QS responders and non-responders irrespective of their parental kind, as a possible bet hedging strategy. However, very little is known about the dynamics of QS-response inside the host. Using Xanthomonas campestris pv. campestris (Xcc) and cabbage as a model plant pathogen-host, we show that there is stage specific interplay of heterogeneous and homogeneous QS-response in the wild-type Xcc population inside the host plant. We show that at the initial stage of the disease, Xcc maintains a stochastically heterogeneous population wherein, the QS non-responders are localized locally and QS-responders contribute to the migration and spread. However at the later stage of disease, the non-responders are outcompeted by the responders, thus minimizing QS signal benefit and in turn maximizing the utilization and optimizing limited recourses in the host. Our findings suggest that the interplay of heterogeneity and homogeneity in QS-response gives a stage specific adaptive advantage in a host-pathogen natural environment.
Collapse
Affiliation(s)
- Biswajit Samal
- Lab of Plant-Microbe Interactions, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telengana, India
- Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subhadeep Chatterjee
- Lab of Plant-Microbe Interactions, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telengana, India
- * E-mail:
| |
Collapse
|
33
|
Li Y, Sun LL, Sun YY, Cha QQ, Li CY, Zhao DL, Song XY, Wang M, McMinn A, Chen XL, Zhang YZ, Qin QL. Extracellular Enzyme Activity and Its Implications for Organic Matter Cycling in Northern Chinese Marginal Seas. Front Microbiol 2019; 10:2137. [PMID: 31608022 PMCID: PMC6755343 DOI: 10.3389/fmicb.2019.02137] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/30/2019] [Indexed: 01/23/2023] Open
Abstract
Extracellular enzymes, initiating the degradation of organic macromolecules, are important functional components of marine ecosystems. Measuring in situ seawater extracellular enzyme activity (EEA) can provide fundamental information for understanding the biogeochemical cycling of organic matter in the ocean. Here we investigate the patterns of EEA and the major factors affecting the seawater EEA of Chinese marginal seas. The geographic distribution of EEA along a latitudinal transect was examined and found to be associated with dissolved organic carbon. Compared with offshore waters, inshore waters had higher enzyme activity. All the tested substrates were hydrolyzed at different rates and phosphatase, β-glucosidase and protease contributed greatly to summed hydrolysis rates. For any particular enzyme activity, the contribution of dissolved to total EEA was strongly heterogenous between stations. Comparisons of hydrolysis rates of the polymers and their corresponding oligomers suggest that molecule size does not necessarily limit the turnover of marine organic matter. In addition, several typical enzyme-producing clades, such as Bacteroidetes, Planctomycetes, Chloroflexi, Roseobacter, Alteromonas, and Pseudoalteromonas, were detected in the in situ environments. These enzyme-producing clades may be responsible for the production of different enzymes. Overall, each enzyme was found to flexibly respond to environmental conditions and were linked to microbial community composition. It is likely that this activity will profoundly affect organic matter cycling in the Chinese marginal seas.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Lin-Lin Sun
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yuan-Yuan Sun
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Qian-Qian Cha
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Chun-Yang Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Dian-Li Zhao
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Andrew McMinn
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.,College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| |
Collapse
|
34
|
|
35
|
Ueda H, Stephens K, Trivisa K, Bentley WE. Bacteria Floc, but Do They Flock? Insights from Population Interaction Models of Quorum Sensing. mBio 2019; 10:e00972-19. [PMID: 31138754 PMCID: PMC6538791 DOI: 10.1128/mbio.00972-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 12/23/2022] Open
Abstract
Quorum sensing (QS) enables coordinated, population-wide behavior. QS-active bacteria "communicate" their number density using autoinducers which they synthesize, collect, and interpret. Tangentially, chemotactic bacteria migrate, seeking out nutrients and other molecules. It has long been hypothesized that bacterial behaviors, such as chemotaxis, were the primordial progenitors of complex behaviors of higher-order organisms. Recently, QS was linked to chemotaxis, yet the notion that these behaviors can together contribute to higher-order behaviors has not been shown. Here, we mathematically link flocking behavior, commonly observed in fish and birds, to bacterial chemotaxis and QS by constructing a phenomenological model of population-scale QS-mediated phenomena. Specifically, we recast a previously developed mathematical model of flocking and found that simulated bacterial behaviors aligned well with well-known QS behaviors. This relatively simple system of ordinary differential equations affords analytical analysis of asymptotic behavior and describes cell position and velocity, QS-mediated protein expression, and the surrounding concentrations of an autoinducer. Further, heuristic explorations of the model revealed that the emergence of "migratory" subpopulations occurs only when chemotaxis is directly linked to QS. That is, behaviors were simulated when chemotaxis was coupled to QS and when not. When coupled, the bacterial flocking model predicts the formation of two distinct groups of cells migrating at different speeds in their journey toward an attractant. This is qualitatively similar to phenomena spotted in our Escherichiacoli chemotaxis experiments as well as in analogous work observed over 50 years ago.IMPORTANCE Our modeling efforts show how cell density can affect chemotaxis; they help to explain the roots of subgroup formation in bacterial populations. Our work also reinforces the notion that bacterial mechanisms are at times exhibited in higher-order organisms.
Collapse
Affiliation(s)
- Hana Ueda
- Department of Mathematics, University of Maryland College Park, College Park, Maryland, USA
- Graduate Program in Applied Mathematics & Statistics, and Scientific Computation, University of Maryland College Park, College Park, Maryland, USA
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA
| | - Kristina Stephens
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA
| | - Konstantina Trivisa
- Department of Mathematics, University of Maryland College Park, College Park, Maryland, USA
- Graduate Program in Applied Mathematics & Statistics, and Scientific Computation, University of Maryland College Park, College Park, Maryland, USA
| | - William E Bentley
- Graduate Program in Applied Mathematics & Statistics, and Scientific Computation, University of Maryland College Park, College Park, Maryland, USA
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
36
|
Banerjee J, Layek RK, Sasmal SK, Ghosh D. Delayed evolutionary model for public goods competition with policing in phenotypically variant bacterial biofilms. ACTA ACUST UNITED AC 2019. [DOI: 10.1209/0295-5075/126/18002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Bettenworth V, Steinfeld B, Duin H, Petersen K, Streit WR, Bischofs I, Becker A. Phenotypic Heterogeneity in Bacterial Quorum Sensing Systems. J Mol Biol 2019; 431:4530-4546. [PMID: 31051177 DOI: 10.1016/j.jmb.2019.04.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/11/2022]
Abstract
Quorum sensing is usually thought of as a collective behavior in which all members of a population partake. However, over the last decade, several reports of phenotypic heterogeneity in quorum sensing-related gene expression have been put forward, thus challenging this view. In the respective systems, cells of isogenic populations did not contribute equally to autoinducer production or target gene activation, and in some cases, the fraction of contributing cells was modulated by environmental factors. Here, we look into potential origins of these incidences and into how initial cell-to-cell variations might be amplified to establish distinct phenotypic heterogeneity. We furthermore discuss potential functions heterogeneity in bacterial quorum sensing systems could serve: as a preparation for environmental fluctuations (bet hedging), as a more cost-effective way of producing public goods (division of labor), as a loophole for genotypic cooperators when faced with non-contributing mutants (cheat protection), or simply as a means to fine-tune the output of the population as a whole (output modulation). We illustrate certain aspects of these recent developments with the model organisms Sinorhizobium meliloti, Sinorhizobium fredii and Bacillus subtilis, which possess quorum sensing systems of different complexity, but all show phenotypic heterogeneity therein.
Collapse
Affiliation(s)
- Vera Bettenworth
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, 35043 Marburg, Germany; Faculty of Biology, Philipps-Universität Marburg, 35043 Marburg, Germany.
| | - Benedikt Steinfeld
- BioQuant Center of the University of Heidelberg, 69120 Heidelberg, Germany; Center for Molecular Biology (ZMBH), University of Heidelberg, 69120 Heidelberg, Germany; Max-Planck-Institute for Terrestrial Microbiology, 35043 Marburg, Germany.
| | - Hilke Duin
- Department of Microbiology and Biotechnology, University of Hamburg, 22609 Hamburg, Germany.
| | - Katrin Petersen
- Department of Microbiology and Biotechnology, University of Hamburg, 22609 Hamburg, Germany.
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, 22609 Hamburg, Germany.
| | - Ilka Bischofs
- BioQuant Center of the University of Heidelberg, 69120 Heidelberg, Germany; Center for Molecular Biology (ZMBH), University of Heidelberg, 69120 Heidelberg, Germany; Max-Planck-Institute for Terrestrial Microbiology, 35043 Marburg, Germany.
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, 35043 Marburg, Germany; Faculty of Biology, Philipps-Universität Marburg, 35043 Marburg, Germany.
| |
Collapse
|
38
|
Shen YP, Fong LS, Yan ZB, Liu JZ. Combining directed evolution of pathway enzymes and dynamic pathway regulation using a quorum-sensing circuit to improve the production of 4-hydroxyphenylacetic acid in Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:94. [PMID: 31044007 PMCID: PMC6477704 DOI: 10.1186/s13068-019-1438-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/13/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND 4-Hydroxyphenylacetic acid (4HPAA) is an important building block for synthesizing drugs, agrochemicals, biochemicals, etc. 4HPAA is currently produced exclusively via petrochemical processes and the process is environmentally unfriendly and unsustainable. Microbial cell factory would be an attractive approach for 4HPAA production. RESULTS In the present study, we established a microbial biosynthetic system for the de novo production of 4HPAA from glucose in Escherichia coli. First, we compared different biosynthetic pathways for the production of 4HPAA. The yeast Ehrlich pathway produced the highest level of 4HPAA among these pathways that were evaluated. To increase the pathway efficiency, the yeast Ehrlich pathway enzymes were directedly evolved via error-prone PCR. Two phenylpyruvate decarboxylase ARO10 and phenylacetaldehyde dehydrogenase FeaB variants that outperformed the wild-type enzymes were obtained. These mutations increased the in vitro and in vivo catalytic efficiency for converting 4-hydroxyphenylpyruvate to 4HPAA. A tunable intergenic region (TIGR) sequence was inserted into the two evolved genes to balance their expression. Regulation of TIGR for the evolved pathway enzymes further improved the production of 4HPAA, resulting in a 1.13-fold increase in titer compared with the fusion wild-type pathway. To prevent the toxicity of a heterologous pathway to the cell, an Esa quorum-sensing (QS) circuit with both activating and repressing functions was developed for inducer-free productions of metabolites. The Esa-PesaR activation QS system was used to dynamically control the biosynthetic pathway of 4HPAA in E. coli, which achieved 17.39 ± 0.26 g/L with a molar yield of 23.2% without addition of external inducers, resulting in a 46.4% improvement of the titer compared to the statically controlled pathway. CONCLUSION We have constructed an E. coli for 4HPAA production with the highest titer to date. This study also demonstrates that the combination of directed evolution of pathway enzymes and dynamic pathway regulation using a QS circuit is a powerful strategy of metabolic engineering for the productions of metabolites.
Collapse
Affiliation(s)
- Yu-Ping Shen
- Institute of Synthetic Biology, Biomedical Center, Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Lai San Fong
- Institute of Synthetic Biology, Biomedical Center, Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Zhi-Bo Yan
- Institute of Synthetic Biology, Biomedical Center, Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Jian-Zhong Liu
- Institute of Synthetic Biology, Biomedical Center, Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| |
Collapse
|
39
|
Silva KPT, Yusufaly TI, Chellamuthu P, Boedicker JQ. Disruption of microbial communication yields a two-dimensional percolation transition. Phys Rev E 2019; 99:042409. [PMID: 31108688 DOI: 10.1103/physreve.99.042409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Indexed: 06/09/2023]
Abstract
Bacteria communicate with each other to coordinate macroscale behaviors including pathogenesis, biofilm formation, and antibiotic production. Empirical evidence suggests that bacteria are capable of communicating at length scales far exceeding the size of individual cells. Several mechanisms of signal interference have been observed in nature, and how interference influences macroscale activity within microbial populations is unclear. Here we examined the exchange of quorum sensing signals to coordinate microbial activity over long distances in the presence of a variable amount of interference through a neighboring signal-degrading strain. As the level of interference increased, communication over large distances was disrupted and at a critical amount of interference, large-scale communication was suppressed. We explored this transition in experiments and reaction-diffusion models, and confirmed that this transition is a two-dimensional percolation transition. These results demonstrate the utility of applying physical models to emergence in complex biological networks to probe robustness and universal quantitative features.
Collapse
Affiliation(s)
- Kalinga Pavan T Silva
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| | - Tahir I Yusufaly
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| | - Prithiviraj Chellamuthu
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| | - James Q Boedicker
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
40
|
Wu F, Lopatkin AJ, Needs DA, Lee CT, Mukherjee S, You L. A unifying framework for interpreting and predicting mutualistic systems. Nat Commun 2019; 10:242. [PMID: 30651549 PMCID: PMC6335432 DOI: 10.1038/s41467-018-08188-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/18/2018] [Indexed: 11/09/2022] Open
Abstract
Coarse-grained rules are widely used in chemistry, physics and engineering. In biology, however, such rules are less common and under-appreciated. This gap can be attributed to the difficulty in establishing general rules to encompass the immense diversity and complexity of biological systems. Furthermore, even when a rule is established, it is often challenging to map it to mechanistic details and to quantify these details. Here we report a framework that addresses these challenges for mutualistic systems. We first deduce a general rule that predicts the various outcomes of mutualistic systems, including coexistence and productivity. We further develop a standardized machine-learning-based calibration procedure to use the rule without the need to fully elucidate or characterize their mechanistic underpinnings. Our approach consistently provides explanatory and predictive power with various simulated and experimental mutualistic systems. Our strategy can pave the way for establishing and implementing other simple rules for biological systems.
Collapse
Affiliation(s)
- Feilun Wu
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Allison J Lopatkin
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Daniel A Needs
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Charlotte T Lee
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Sayan Mukherjee
- Departments of Statistical Science, Mathematics, Computer Science, and Bioinformatics & Biostatistics, Duke University, Durham, NC, 27708, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA.
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
41
|
Meredith HR, Andreani V, Ma HR, Lopatkin AJ, Lee AJ, Anderson DJ, Batt G, You L. Applying ecological resistance and resilience to dissect bacterial antibiotic responses. SCIENCE ADVANCES 2018; 4:eaau1873. [PMID: 30525104 PMCID: PMC6281428 DOI: 10.1126/sciadv.aau1873] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/07/2018] [Indexed: 05/14/2023]
Abstract
An essential property of microbial communities is the ability to survive a disturbance. Survival can be achieved through resistance, the ability to absorb effects of a disturbance without a notable change, or resilience, the ability to recover after being perturbed by a disturbance. These concepts have long been applied to the analysis of ecological systems, although their interpretations are often subject to debate. Here, we show that this framework readily lends itself to the dissection of the bacterial response to antibiotic treatment, where both terms can be unambiguously defined. The ability to tolerate the antibiotic treatment in the short term corresponds to resistance, which primarily depends on traits associated with individual cells. In contrast, the ability to recover after being perturbed by an antibiotic corresponds to resilience, which primarily depends on traits associated with the population. This framework effectively reveals the phenotypic signatures of bacterial pathogens expressing extended-spectrum β-lactamases (ESBLs) when treated by a β-lactam antibiotic. Our analysis has implications for optimizing treatment of these pathogens using a combination of a β-lactam and a β-lactamase (Bla) inhibitor. In particular, our results underscore the need to dynamically optimize combination treatments based on the quantitative features of the bacterial response to the antibiotic or the Bla inhibitor.
Collapse
Affiliation(s)
| | - Virgile Andreani
- Inria Saclay–Île-de-France, Palaiseau, France
- Institut Pasteur, Paris, France
| | - Helena R. Ma
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Anna J. Lee
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Deverick J. Anderson
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Center for Antimicrobial Stewardship and Infection Prevention, Duke University School of Medicine, Durham, NC, USA
| | - Gregory Batt
- Inria Saclay–Île-de-France, Palaiseau, France
- Institut Pasteur, Paris, France
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
42
|
Oshri RD, Zrihen KS, Shner I, Omer Bendori S, Eldar A. Selection for increased quorum-sensing cooperation in Pseudomonas aeruginosa through the shut-down of a drug resistance pump. ISME JOURNAL 2018; 12:2458-2469. [PMID: 29925881 PMCID: PMC6154968 DOI: 10.1038/s41396-018-0205-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 01/24/2023]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa employs a hierarchical quorum-sensing network to regulate virulence factor production that cooperatively benefit the population at a cost to the individual. It has been argued that the evolution of a cooperative mutant in a quorum sensing-suppressed population would be hampered through its exploitation by neighboring non-mutant cells. It remains unclear whether mechanisms which overcome this exploitation exist. Here we investigate the regain of quorum-sensing cooperation by evolving a mutant of the lasR master quorum-sensing regulator. The mutant regained partial cooperative growth through null mutations in mexT, which codes for an activator of the MexEF-OprN multidrug-resistant pump. We find that these mutations enhance cooperative growth in both the lasR mutant and wild-type backgrounds through the activation of the RhlIR system. We show that the regain of cooperation in mexT mutants is mediated by the reduction in MexEF-OprN activity, whereas an additional source of private benefit is mostly mexEF-oprN-independent. Finally, we show that addition of antibiotics for which resistance is mediated by MexEF-OprN prevents the selection of increased cooperation at sub-MIC concentrations. MexT, therefore, not only links private and public goods, but also exposes conflicts between selection for antibiotic resistance and enhanced cooperation.
Collapse
Affiliation(s)
- Ron D Oshri
- School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Keren S Zrihen
- School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Itzhak Shner
- School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Shira Omer Bendori
- School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Avigdor Eldar
- School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
43
|
Olimpio EP, Dang Y, Youk H. Statistical Dynamics of Spatial-Order Formation by Communicating Cells. iScience 2018; 2:27-40. [PMID: 30428376 PMCID: PMC6135931 DOI: 10.1016/j.isci.2018.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/18/2018] [Accepted: 02/22/2018] [Indexed: 12/19/2022] Open
Abstract
Communicating cells can coordinate their gene expressions to form spatial patterns, generating order from disorder. Ubiquitous "secrete-and-sense cells" secrete and sense the same molecule to do so. Here we present a modeling framework-based on cellular automata and mimicking approaches of statistical mechanics-for understanding how secrete-and-sense cells with bistable gene expression, from disordered beginnings, can become spatially ordered by communicating through rapidly diffusing molecules. Classifying lattices of cells by two "macrostate" variables-"spatial index," measuring degree of order, and average gene-expression level-reveals a conceptual picture: a group of cells behaves as a single particle, in an abstract space, that rolls down on an adhesive "pseudo-energy landscape" whose shape is determined by cell-cell communication and an intracellular gene-regulatory circuit. Particles rolling down the landscape represent cells becoming more spatially ordered. We show how to extend this framework to more complex forms of cellular communication.
Collapse
Affiliation(s)
- Eduardo P Olimpio
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands; Department of Bionanoscience, Delft University of Technology, Delft 2629HZ, the Netherlands
| | - Yiteng Dang
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands; Department of Bionanoscience, Delft University of Technology, Delft 2629HZ, the Netherlands
| | - Hyun Youk
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands; Department of Bionanoscience, Delft University of Technology, Delft 2629HZ, the Netherlands.
| |
Collapse
|
44
|
Lee AJ, Wang S, Meredith HR, Zhuang B, Dai Z, You L. Robust, linear correlations between growth rates and β-lactam-mediated lysis rates. Proc Natl Acad Sci U S A 2018; 115:4069-4074. [PMID: 29610312 PMCID: PMC5910845 DOI: 10.1073/pnas.1719504115] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is widely acknowledged that faster-growing bacteria are killed faster by β-lactam antibiotics. This notion serves as the foundation for the concept of bacterial persistence: dormant bacterial cells that do not grow are phenotypically tolerant against β-lactam treatment. Such correlation has often been invoked in the mathematical modeling of bacterial responses to antibiotics. Due to the lack of thorough quantification, however, it is unclear whether and to what extent the bacterial growth rate can predict the lysis rate upon β-lactam treatment under diverse conditions. Enabled by experimental automation, here we measured >1,000 growth/killing curves for eight combinations of antibiotics and bacterial species and strains, including clinical isolates of bacterial pathogens. We found that the lysis rate of a bacterial population linearly depends on the instantaneous growth rate of the population, regardless of how the latter is modulated. We further demonstrate that this predictive power at the population level can be explained by accounting for bacterial responses to the antibiotic treatment by single cells. This linear dependence of the lysis rate on the growth rate represents a dynamic signature associated with each bacterium-antibiotic pair and serves as the quantitative foundation for designing combination antibiotic therapy and predicting the population-structure change in a population with mixed phenotypes.
Collapse
Affiliation(s)
- Anna J Lee
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - Shangying Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - Hannah R Meredith
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - Bihan Zhuang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - Zhuojun Dai
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC 27708;
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| |
Collapse
|
45
|
Asfahl KL, Schuster M. Additive Effects of Quorum Sensing Anti-Activators on Pseudomonas aeruginosa Virulence Traits and Transcriptome. Front Microbiol 2018; 8:2654. [PMID: 29375519 PMCID: PMC5767178 DOI: 10.3389/fmicb.2017.02654] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/20/2017] [Indexed: 11/13/2022] Open
Abstract
In the opportunistic pathogen Pseudomonas aeruginosa, quorum sensing (QS) via acyl-homoserine lactone (AHL) signals coordinates virulence gene expression. AHL signals must reach a critical threshold before enough is bound by cognate regulators LasR and RhlR to drive transcription of target genes. In addition, three anti-activator proteins, QteE, QscR, and QslA, sequester QS regulators to increase the threshold for induction and delay expression of QS target genes. It remains unclear how multiple anti-activators work together to achieve the quorum threshold. Here, we employed a combination of mutational, kinetic, phenotypic, and transcriptomic analysis to examine regulatory effects and interactions of the three distinct anti-activators. We observed combinatorial, additive effects on QS gene expression. As measured by reporter gene fusion, individual deletion of each anti-activator gene increased lasB expression and QS-controlled virulence factor production. Deletion of qslA in combination with the deletion of any other anti-activator gene resulted in the greatest increase and earliest activation of lasB gene expression. Western analysis revealed that relative increases in soluble LasR in anti-activator mutants correlate with increased lasB expression and QS-controlled virulence factor production. RNA-seq of the previously uncharacterized QslA and QteE regulons revealed overlapping, yet distinct groups of differentially expressed genes. Simultaneous inactivation of qteE and qslA had the largest effect on gene expression with 999 genes induced and 798 genes repressed in the double mutant vs. wild-type. We found that LasR and RhlR-activated QS genes formed a subset of the genes induced in the qteE, qslA, and double mutant. The activation of almost all of these QS genes was advanced from stationary phase to log phase in the qteE qslA double mutant. Taken together, our results identify additive effects of anti-activation on QS gene expression, likely via LasR and RhlR, but do not rule out QS-independent effects.
Collapse
Affiliation(s)
- Kyle L Asfahl
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Martin Schuster
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
46
|
Kim EM, Woo HM, Tian T, Yilmaz S, Javidpour P, Keasling JD, Lee TS. Autonomous control of metabolic state by a quorum sensing (QS)-mediated regulator for bisabolene production in engineered E. coli. Metab Eng 2017; 44:325-336. [PMID: 29129823 DOI: 10.1016/j.ymben.2017.11.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/31/2017] [Accepted: 11/04/2017] [Indexed: 12/19/2022]
Abstract
Inducible gene expression systems are widely used in microbial host strains for protein and commodity chemical production because of their extensive characterization and ease of use. However, some of these systems have disadvantages such as leaky expression, lack of dynamic control, and the prohibitively high costs of inducers associated with large-scale production. Quorum sensing (QS) systems in bacteria control gene expression in response to population density, and the LuxI/R system from Vibrio fischeri is a well-studied example. A QS system could be ideal for biofuel production strains as it is self-regulated and does not require the addition of inducer compounds, which reduce operational costs for inducer. In this study, a QS system was developed for inducer-free production of the biofuel compound bisabolene from engineered E. coli. Seven variants of the Sensor plasmid, which carry the luxI-luxR genes, and four variants of the Response plasmid, which carry bisabolene producing pathway genes under the control of the PluxI promoter, were designed for optimization of bisabolene production. Furthermore, a chromosome-integrated QS strain was engineered with the best combination of Sensor and Response plasmid and produced bisabolene at a titer of 1.1g/L without addition of external inducers. This is a 44% improvement from our previous inducible system. The QS strain also displayed higher homogeneity in gene expression and isoprenoid production compared to an inducible-system strain.
Collapse
Affiliation(s)
- Eun-Mi Kim
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Han Min Woo
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Tian Tian
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Suzan Yilmaz
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA 94608, USA; Department of Bioengineering and Biotechnology, Sandia National Laboratory, Livermore, CA, USA
| | - Pouya Javidpour
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Department of Bioengineering, University of California, Berkeley, CA, USA; Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle, DK2970 Hørsholm, Denmark
| | - Taek Soon Lee
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
47
|
Quorum sensing integrates environmental cues, cell density and cell history to control bacterial competence. Nat Commun 2017; 8:854. [PMID: 29021534 PMCID: PMC5636887 DOI: 10.1038/s41467-017-00903-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 08/03/2017] [Indexed: 01/08/2023] Open
Abstract
Streptococcus pneumoniae becomes competent for genetic transformation when exposed to an autoinducer peptide known as competence-stimulating peptide (CSP). This peptide was originally described as a quorum-sensing signal, enabling individual cells to regulate competence in response to population density. However, recent studies suggest that CSP may instead serve as a probe for sensing environmental cues, such as antibiotic stress or environmental diffusion. Here, we show that competence induction can be simultaneously influenced by cell density, external pH, antibiotic-induced stress, and cell history. Our experimental data is explained by a mathematical model where the environment and cell history modify the rate at which cells produce or sense CSP. Taken together, model and experiments indicate that autoinducer concentration can function as an indicator of cell density across environmental conditions, while also incorporating information on environmental factors or cell history, allowing cells to integrate cues such as antibiotic stress into their quorum-sensing response. This unifying perspective may apply to other debated quorum-sensing systems. Peptide CSP regulates natural competence in pneumococci and has been proposed as a quorum-sensing signal or a probe for sensing environmental cues. Here, the authors show that CSP levels can indeed act as an indicator of cell density and also incorporate information on environmental factors or cell history.
Collapse
|
48
|
Silva KPT, Chellamuthu P, Boedicker JQ. Quantifying the strength of quorum sensing crosstalk within microbial communities. PLoS Comput Biol 2017; 13:e1005809. [PMID: 29049387 PMCID: PMC5663516 DOI: 10.1371/journal.pcbi.1005809] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/31/2017] [Accepted: 10/05/2017] [Indexed: 01/12/2023] Open
Abstract
In multispecies microbial communities, the exchange of signals such as acyl-homoserine lactones (AHL) enables communication within and between species of Gram-negative bacteria. This process, commonly known as quorum sensing, aids in the regulation of genes crucial for the survival of species within heterogeneous populations of microbes. Although signal exchange was studied extensively in well-mixed environments, less is known about the consequences of crosstalk in spatially distributed mixtures of species. Here, signaling dynamics were measured in a spatially distributed system containing multiple strains utilizing homologous signaling systems. Crosstalk between strains containing the lux, las and rhl AHL-receptor circuits was quantified. In a distributed population of microbes, the impact of community composition on spatio-temporal dynamics was characterized and compared to simulation results using a modified reaction-diffusion model. After introducing a single term to account for crosstalk between each pair of signals, the model was able to reproduce the activation patterns observed in experiments. We quantified the robustness of signal propagation in the presence of interacting signals, finding that signaling dynamics are largely robust to interference. The ability of several wild isolates to participate in AHL-mediated signaling was investigated, revealing distinct signatures of crosstalk for each species. Our results present a route to characterize crosstalk between species and predict systems-level signaling dynamics in multispecies communities.
Collapse
Affiliation(s)
- Kalinga Pavan T. Silva
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, United States of America
| | - Prithiviraj Chellamuthu
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, United States of America
| | - James Q. Boedicker
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, United States of America
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
49
|
Schmitz AC, Hartline CJ, Zhang F. Engineering Microbial Metabolite Dynamics and Heterogeneity. Biotechnol J 2017; 12. [PMID: 28901715 DOI: 10.1002/biot.201700422] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/06/2017] [Indexed: 11/09/2022]
Abstract
As yields for biological chemical production in microorganisms approach their theoretical maximum, metabolic engineering requires new tools, and approaches for improvements beyond what traditional strategies can achieve. Engineering metabolite dynamics and metabolite heterogeneity is necessary to achieve further improvements in product titers, productivities, and yields. Metabolite dynamics, the ensemble change in metabolite concentration over time, arise from the need for microbes to adapt their metabolism in response to the extracellular environment and are important for controlling growth and productivity in industrial fermentations. Metabolite heterogeneity, the cell-to-cell variation in a metabolite concentration in an isoclonal population, has a significant impact on ensemble productivity. Recent advances in single cell analysis enable a more complete understanding of the processes driving metabolite heterogeneity and reveal metabolic engineering targets. The authors present an overview of the mechanistic origins of metabolite dynamics and heterogeneity, why they are important, their potential effects in chemical production processes, and tools and strategies for engineering metabolite dynamics and heterogeneity. The authors emphasize that the ability to control metabolite dynamics and heterogeneity will bring new avenues of engineering to increase productivity of microbial strains.
Collapse
Affiliation(s)
- Alexander C Schmitz
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, USA
| | - Christopher J Hartline
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, USA
| | - Fuzhong Zhang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, USA.,Division of Biological and Biomedical Sciences, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, USA
| |
Collapse
|
50
|
Engstrom MD, Pfleger BF. Transcription control engineering and applications in synthetic biology. Synth Syst Biotechnol 2017; 2:176-191. [PMID: 29318198 PMCID: PMC5655343 DOI: 10.1016/j.synbio.2017.09.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/18/2022] Open
Abstract
In synthetic biology, researchers assemble biological components in new ways to produce systems with practical applications. One of these practical applications is control of the flow of genetic information (from nucleic acid to protein), a.k.a. gene regulation. Regulation is critical for optimizing protein (and therefore activity) levels and the subsequent levels of metabolites and other cellular properties. The central dogma of molecular biology posits that information flow commences with transcription, and accordingly, regulatory tools targeting transcription have received the most attention in synthetic biology. In this mini-review, we highlight many past successes and summarize the lessons learned in developing tools for controlling transcription. In particular, we focus on engineering studies where promoters and transcription terminators (cis-factors) were directly engineered and/or isolated from DNA libraries. We also review several well-characterized transcription regulators (trans-factors), giving examples of how cis- and trans-acting factors have been combined to create digital and analogue switches for regulating transcription in response to various signals. Last, we provide examples of how engineered transcription control systems have been used in metabolic engineering and more complicated genetic circuits. While most of our mini-review focuses on the well-characterized bacterium Escherichia coli, we also provide several examples of the use of transcription control engineering in non-model organisms. Similar approaches have been applied outside the bacterial kingdom indicating that the lessons learned from bacterial studies may be generalized for other organisms.
Collapse
Affiliation(s)
- Michael D. Engstrom
- Genetics-Biotechnology Center, University of Wisconsin-Madison School of Medicine and Public Health, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison College of Engineering, USA
| | - Brian F. Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison College of Engineering, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, USA
| |
Collapse
|