1
|
Rodríguez-Zhurbenko N, Hernández AM. The role of B-1 cells in cancer progression and anti-tumor immunity. Front Immunol 2024; 15:1363176. [PMID: 38629061 PMCID: PMC11019000 DOI: 10.3389/fimmu.2024.1363176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
In recent years, in addition to the well-established role of T cells in controlling or promoting tumor growth, a new wave of research has demonstrated the active involvement of B cells in tumor immunity. B-cell subsets with distinct phenotypes and functions play various roles in tumor progression. Plasma cells and activated B cells have been linked to improved clinical outcomes in several types of cancer, whereas regulatory B cells have been associated with disease progression. However, we are only beginning to understand the role of a particular innate subset of B cells, referred to as B-1 cells, in cancer. Here, we summarize the characteristics of B-1 cells and review their ability to infiltrate tumors. We also describe the potential mechanisms through which B-1 cells suppress anti-tumor immune responses and promote tumor progression. Additionally, we highlight recent studies on the protective anti-tumor function of B-1 cells in both mouse models and humans. Understanding the functions of B-1 cells in tumor immunity could pave the way for designing more effective cancer immunotherapies.
Collapse
Affiliation(s)
- Nely Rodríguez-Zhurbenko
- Immunobiology Department, Immunology and Immunotherapy Division, Center of Molecular Immunology, Habana, Cuba
| | - Ana M. Hernández
- Applied Genetics Group, Department of Biochemistry, Faculty of Biology, University of Habana, Habana, Cuba
| |
Collapse
|
2
|
Yu Y, Lu C, Yu W, Lei Y, Sun S, Liu P, Bai F, Chen Y, Chen J. B Cells Dynamic in Aging and the Implications of Nutritional Regulation. Nutrients 2024; 16:487. [PMID: 38398810 PMCID: PMC10893126 DOI: 10.3390/nu16040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Aging negatively affects B cell production, resulting in a decrease in B-1 and B-2 cells and impaired antibody responses. Age-related B cell subsets contribute to inflammation. Investigating age-related alterations in the B-cell pool and developing targeted therapies are crucial for combating autoimmune diseases in the elderly. Additionally, optimal nutrition, including carbohydrates, amino acids, vitamins, and especially lipids, play a vital role in supporting immune function and mitigating the age-related decline in B cell activity. Research on the influence of lipids on B cells shows promise for improving autoimmune diseases. Understanding the aging B-cell pool and considering nutritional interventions can inform strategies for promoting healthy aging and reducing the age-related disease burden.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100091, China; (Y.Y.)
| |
Collapse
|
3
|
Smith FL, Savage HP, Luo Z, Tipton CM, Lee FEH, Apostol AC, Beaudin AE, Lopez DA, Jensen I, Keller S, Baumgarth N. B-1 plasma cells require non-cognate CD4 T cell help to generate a unique repertoire of natural IgM. J Exp Med 2023; 220:e20220195. [PMID: 36811605 PMCID: PMC9960156 DOI: 10.1084/jem.20220195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/01/2022] [Accepted: 01/27/2023] [Indexed: 02/24/2023] Open
Abstract
Evolutionarily conserved, "natural" (n)IgM is broadly reactive to both self and foreign antigens. Its selective deficiency leads to increases in autoimmune diseases and infections. In mice, nIgM is secreted independent of microbial exposure to bone marrow (BM) and spleen B-1 cell-derived plasma cells (B-1PC), generating the majority of nIgM, or by B-1 cells that remain non-terminally differentiated (B-1sec). Thus, it has been assumed that the nIgM repertoire is broadly reflective of the repertoire of body cavity B-1 cells. Studies here reveal, however, that B-1PC generate a distinct, oligoclonal nIgM repertoire, characterized by short CDR3 variable immunoglobulin heavy chain regions, 7-8 amino acids in length, some public, many arising from convergent rearrangements, while specificities previously associated with nIgM were generated by a population of IgM-secreting B-1 (B-1sec). BM, but not spleen B-1PC, or B-1sec also required the presence of TCRαβ CD4 T cells for their development from fetal precursors. Together, the studies identify important previously unknown characteristics of the nIgM pool.
Collapse
Affiliation(s)
- Fauna L. Smith
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA, USA
- Integrated Pathobiology Graduate Group, University of California, Davis, Davis, CA, USA
| | - Hannah P. Savage
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA, USA
- Graduate Group in Immunology, University of California, Davis, Davis, CA, USA
| | - Zheng Luo
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA, USA
| | - Christopher M. Tipton
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, GA, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - F. Eun-Hyung Lee
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - April C. Apostol
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA
| | - Anna E. Beaudin
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA
| | - Diego A. Lopez
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA
| | - Ingvill Jensen
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA, USA
| | - Stefan Keller
- Department Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Nicole Baumgarth
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA, USA
- Integrated Pathobiology Graduate Group, University of California, Davis, Davis, CA, USA
- Graduate Group in Immunology, University of California, Davis, Davis, CA, USA
- Department Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| |
Collapse
|
4
|
Immune Memory in Aging: a Wide Perspective Covering Microbiota, Brain, Metabolism, and Epigenetics. Clin Rev Allergy Immunol 2021; 63:499-529. [PMID: 34910283 PMCID: PMC8671603 DOI: 10.1007/s12016-021-08905-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 11/06/2022]
Abstract
Non-specific innate and antigen-specific adaptive immunological memories are vital evolutionary adaptations that confer long-lasting protection against a wide range of pathogens. Adaptive memory is established by memory T and B lymphocytes following the recognition of an antigen. On the other hand, innate immune memory, also called trained immunity, is imprinted in innate cells such as macrophages and natural killer cells through epigenetic and metabolic reprogramming. However, these mechanisms of memory generation and maintenance are compromised as organisms age. Almost all immune cell types, both mature cells and their progenitors, go through age-related changes concerning numbers and functions. The aging immune system renders the elderly highly susceptible to infections and incapable of mounting a proper immune response upon vaccinations. Besides the increased infectious burden, older individuals also have heightened risks of metabolic and neurodegenerative diseases, which have an immunological component. This review discusses how immune function, particularly the establishment and maintenance of innate and adaptive immunological memory, regulates and is regulated by epigenetics, metabolic processes, gut microbiota, and the central nervous system throughout life, with a focus on old age. We explain in-depth how epigenetics and cellular metabolism impact immune cell function and contribute or resist the aging process. Microbiota is intimately linked with the immune system of the human host, and therefore, plays an important role in immunological memory during both homeostasis and aging. The brain, which is not an immune-isolated organ despite former opinion, interacts with the peripheral immune cells, and the aging of both systems influences the health of each other. With all these in mind, we aimed to present a comprehensive view of the aging immune system and its consequences, especially in terms of immunological memory. The review also details the mechanisms of promising anti-aging interventions and highlights a few, namely, caloric restriction, physical exercise, metformin, and resveratrol, that impact multiple facets of the aging process, including the regulation of innate and adaptive immune memory. We propose that understanding aging as a complex phenomenon, with the immune system at the center role interacting with all the other tissues and systems, would allow for more effective anti-aging strategies.
Collapse
|
5
|
Abstract
Coronavirus disease 2019 (COVID-19) is a life-threatening respiratory illness caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Its clinical presentation can vary from the asymptomatic state to acute respiratory distress syndrome (ARDS) and multi-organ dysfunction. Due to our insufficient understanding of its pathophysiology and lack of effective treatment, the morbidity and mortality of severe COVID-19 patients are high. Patients with COVID-19 develop ARDS fueled by exaggerated neutrophil influx into the lungs and cytokine storm. B-1a cells represent a unique subpopulation of B lymphocytes critical for circulating natural antibodies, innate immunity, and immunoregulation. These cells spontaneously produce natural IgM, interleukin (IL)-10, and granulocyte-monocyte colony stimulating factor (GM-CSF). Natural IgM neutralizes viruses and opsonizes bacteria, IL-10 attenuates the cytokine storm, and GM-CSF induces IgM production by B-1a cells in an autocrine manner. Indeed, B-1a cells have been shown to ameliorate influenza virus infection, sepsis, and pneumonia, all of which are similar to COVID-19. The recent discovery of B-1a cells in humans further reinforces their potentially critical role in the immune response against SARS-CoV-2 and their anticipated translational applications against viral and microbial infections. Given that B-1a cells protect against ARDS via immunoglobulin production and the anti-COVID-19 effects of convalescent plasma treatment, we recommend that studies be conducted to further examine the role of B-1a cells in the pathogenesis of COVID-19 and explore their therapeutic potential to treat COVID-19 patients.
Collapse
|
6
|
Wang L, Jiang P, Zhao S, Liu H, Liu L, Mor G, Liu C, Liao A. The dynamic profile and potential function of B-cell subsets during pregnancy. Cell Mol Immunol 2020; 18:1082-1084. [PMID: 32879470 DOI: 10.1038/s41423-020-00535-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 11/09/2022] Open
Affiliation(s)
- Liling Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Panpan Jiang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Sijia Zhao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Hong Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Liping Liu
- Wuhan Children Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.,C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
7
|
Dubois F, Limou S, Chesneau M, Degauque N, Brouard S, Danger R. Transcriptional meta-analysis of regulatory B cells. Eur J Immunol 2020; 50:1757-1769. [PMID: 32529638 DOI: 10.1002/eji.201948489] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/01/2020] [Accepted: 06/09/2020] [Indexed: 12/26/2022]
Abstract
Regulatory B cells (Bregs) have the ability to regulate inflammation in various pathological situations, making them key players in immune regulation. Several mechanisms have been described and we recently identified a GZMB expressing Breg population in kidney transplanted patients who tolerate a kidney graft. To further investigate their biology and mechanisms, we conducted a transcriptomic analysis by RNAseq of these cells and we performed the first weighted meta-analysis of publicly available transcriptomic data from published Breg studies both in humans and mice. We identified two distinct and unique transcriptional signatures of 126 and 93 genes, respectively, associated with these Bregs. While we highlighted genes coding for proteins with potent involvement in regulatory functions, proliferation, and coding for transcription factors, the comparison between humans and mice did not allow identifying a common pattern. Thus, our results suggest distinct species-restricted Breg transcriptional signatures in humans and mice.
Collapse
Affiliation(s)
- Florian Dubois
- Inserm, CHU Nantes, Université de Nantes, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France.,Labex IGO, Nantes, France
| | - Sophie Limou
- Inserm, CHU Nantes, Université de Nantes, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France.,Ecole Centrale de Nantes, Computer Sciences and Mathematics department, Nantes, France
| | - Mélanie Chesneau
- Inserm, CHU Nantes, Université de Nantes, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France.,Labex IGO, Nantes, France
| | - Nicolas Degauque
- Inserm, CHU Nantes, Université de Nantes, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France.,Labex IGO, Nantes, France
| | - Sophie Brouard
- Inserm, CHU Nantes, Université de Nantes, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France.,Labex IGO, Nantes, France.,Centre d'Investigation Clinique en Biothérapie, Centre de ressources biologiques (CRB), Nantes, France
| | - Richard Danger
- Inserm, CHU Nantes, Université de Nantes, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France.,Labex IGO, Nantes, France
| |
Collapse
|
8
|
Upadhye A, Marshall M, Garmey JC, Bender TP, McNamara C. Retroviral Overexpression of CXCR4 on Murine B-1a Cells and Adoptive Transfer for Targeted B-1a Cell Migration to the Bone Marrow and IgM Production. J Vis Exp 2020. [PMID: 32538902 DOI: 10.3791/61003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
As cell function is influenced by niche-specific factors in the cellular microenvironment, methods to dissect cell localization and migration can provide further insight on cell function. B-1a cells are a unique B cell subset in mice that produce protective natural IgM antibodies against oxidation-specific epitopes that arise during health and disease. B-1a cell IgM production differs depending on B-1a cell location, and therefore it becomes useful from a therapeutic standpoint to target B-1a localization to niches supportive of high antibody production. Here we describe a method to target B-1a cell migration to the bone marrow by retroviral-mediated overexpression of the C-X-C motif chemokine receptor 4 (CXCR4). Gene induction in primary murine B cells can be challenging and typically yields low transfection efficiencies of 10-20% depending on technique. Here we demonstrate that retroviral transduction of primary murine B-1a cells results in 30-40% transduction efficiency. This method utilizes adoptive cell transfer of transduced B-1a cells into B cell-deficient recipient mice so that donor B-1a cell migration and localization can be visualized. This protocol can be modified for other retroviral constructs and can be used in diverse functional assays post-adoptive transfer, including analysis of donor cell or host cell phenotype and function, or analysis of soluble factors secreted post B-1a cell transfer. The use of distinct donor and recipient mice differentiated by CD45.1 and CD45.2 allotype and the presence of a GFP reporter within the retroviral plasmid could also enable detection of donor cells in other, immune-sufficient mouse models containing endogenous B cell populations.
Collapse
Affiliation(s)
- Aditi Upadhye
- Department of Microbiology, Immunology, Cancer Biology, University of Virginia
| | | | | | - Timothy P Bender
- Beirne B. Carter Center for Immunology Research, University of Virginia
| | | |
Collapse
|
9
|
Upadhye A, Sturek JM, McNamara CA. 2019 Russell Ross Memorial Lecture in Vascular Biology: B Lymphocyte-Mediated Protective Immunity in Atherosclerosis. Arterioscler Thromb Vasc Biol 2020; 40:309-322. [PMID: 31852222 PMCID: PMC7398219 DOI: 10.1161/atvbaha.119.313064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/30/2019] [Indexed: 12/11/2022]
Abstract
Atherosclerosis-the major underlying pathology of cardiovascular disease-is characterized by accumulation and subsequent oxidative modification of lipoproteins within the artery wall, leading to inflammatory cell infiltration and lesion formation that can over time result in arterial stenosis, ischemia, and downstream adverse events. The contribution of innate and adaptive immunity to atherosclerosis development is well established, and B cells have emerged as important modulators of both pro- and anti-inflammatory effects in atherosclerosis. Murine B cells can broadly be divided into 2 subsets: (1) B-2 cells, which are bone marrow derived and include conventional follicular and marginal zone B cells, and (2) B-1 cells, which are largely fetal liver derived and persist in adults through self-renewal. B-cell subsets are developmentally, functionally, and phenotypically distinct with unique subset-specific contributions to atherosclerosis development. Mechanisms whereby B cells regulate vascular inflammation and atherosclerosis will be discussed with a particular emphasis on B-1 cells. B-1 cells have a protective role in atherosclerosis that is mediated in large part by IgM antibody production. Accumulating evidence over the last several years has pointed to a previously underappreciated heterogeneity in B-1 cell populations, which may have important implications for understanding atherosclerosis development and potential targeted therapeutic approaches. This heterogeneity within atheroprotective innate B-cell subsets will be highlighted.
Collapse
Affiliation(s)
- Aditi Upadhye
- From the Robert M. Berne Cardiovascular Research Center (A.U., C.A.M.), University of Virginia School of Medicine, Charlottesville
| | - Jeffrey M Sturek
- Division of Pulmonary and Critical Care Medicine, Department of Medicine (J.M.S.), University of Virginia School of Medicine, Charlottesville
| | - Coleen A McNamara
- From the Robert M. Berne Cardiovascular Research Center (A.U., C.A.M.), University of Virginia School of Medicine, Charlottesville
- Division of Cardiovascular Medicine (C.A.M.), University of Virginia School of Medicine, Charlottesville
| |
Collapse
|
10
|
Wong JB, Hewitt SL, Heltemes-Harris LM, Mandal M, Johnson K, Rajewsky K, Koralov SB, Clark MR, Farrar MA, Skok JA. B-1a cells acquire their unique characteristics by bypassing the pre-BCR selection stage. Nat Commun 2019; 10:4768. [PMID: 31628339 PMCID: PMC6802180 DOI: 10.1038/s41467-019-12824-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/24/2019] [Indexed: 12/23/2022] Open
Abstract
B-1a cells are long-lived, self-renewing innate-like B cells that predominantly inhabit the peritoneal and pleural cavities. In contrast to conventional B-2 cells, B-1a cells have a receptor repertoire that is biased towards bacterial and self-antigens, promoting a rapid response to infection and clearing of apoptotic cells. Although B-1a cells are known to primarily originate from fetal tissues, the mechanisms by which they arise has been a topic of debate for many years. Here we show that in the fetal liver versus bone marrow environment, reduced IL-7R/STAT5 levels promote immunoglobulin kappa gene recombination at the early pro-B cell stage. As a result, differentiating B cells can directly generate a mature B cell receptor (BCR) and bypass the requirement for a pre-BCR and pairing with surrogate light chain. This 'alternate pathway' of development enables the production of B cells with self-reactive, skewed specificity receptors that are peculiar to the B-1a compartment. Together our findings connect seemingly opposing lineage and selection models of B-1a cell development and explain how these cells acquire their unique properties.
Collapse
MESH Headings
- Animals
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Bone Marrow/immunology
- Bone Marrow/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Immunoglobulin Light Chains, Surrogate/genetics
- Immunoglobulin Light Chains, Surrogate/immunology
- Immunoglobulin Light Chains, Surrogate/metabolism
- Liver/embryology
- Liver/immunology
- Liver/metabolism
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Mice, Inbred C57BL
- Mice, Knockout
- Pre-B Cell Receptors/genetics
- Pre-B Cell Receptors/immunology
- Pre-B Cell Receptors/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Interleukin-7/genetics
- Receptors, Interleukin-7/immunology
- Receptors, Interleukin-7/metabolism
- STAT5 Transcription Factor/genetics
- STAT5 Transcription Factor/immunology
- STAT5 Transcription Factor/metabolism
Collapse
Affiliation(s)
- Jason B Wong
- Department of Pathology, New York University School of Medicine, New York University, New York, NY, USA
| | - Susannah L Hewitt
- Department of Pathology, New York University School of Medicine, New York University, New York, NY, USA
| | - Lynn M Heltemes-Harris
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Malay Mandal
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Kristen Johnson
- Department of Pathology, New York University School of Medicine, New York University, New York, NY, USA
| | - Klaus Rajewsky
- Max Delbrück Center for Molecular Medicine, 13092, Berlin, Germany
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York University, New York, NY, USA
| | - Marcus R Clark
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Michael A Farrar
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Jane A Skok
- Department of Pathology, New York University School of Medicine, New York University, New York, NY, USA.
| |
Collapse
|
11
|
Emerging role of innate B1 cells in the pathophysiology of autoimmune and neuroimmune diseases: Association with inflammation, oxidative and nitrosative stress and autoimmune responses. Pharmacol Res 2019; 148:104408. [PMID: 31454534 DOI: 10.1016/j.phrs.2019.104408] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/16/2022]
|
12
|
Upadhye A, Srikakulapu P, Gonen A, Hendrikx S, Perry HM, Nguyen A, McSkimming C, Marshall MA, Garmey JC, Taylor AM, Bender TP, Tsimikas S, Holodick NE, Rothstein TL, Witztum JL, McNamara CA. Diversification and CXCR4-Dependent Establishment of the Bone Marrow B-1a Cell Pool Governs Atheroprotective IgM Production Linked to Human Coronary Atherosclerosis. Circ Res 2019; 125:e55-e70. [PMID: 31549940 DOI: 10.1161/circresaha.119.315786] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RATIONALE B-1 cell-derived natural IgM antibodies against oxidation-specific epitopes on low-density lipoprotein are anti-inflammatory and atheroprotective. Bone marrow (BM) B-1a cells contribute abundantly to IgM production, yet the unique repertoire of IgM antibodies generated by BM B-1a and the factors maintaining the BM B-1a population remain unexplored. CXCR4 (C-X-C motif chemokine receptor 4) has been implicated in human cardiovascular disease and B-cell homeostasis, yet the role of B-1 cell CXCR4 in regulating atheroprotective IgM levels and human cardiovascular disease is unknown. OBJECTIVE To characterize the BM B-1a IgM repertoire and to determine whether CXCR4 regulates B-1 production of atheroprotective IgM in mice and humans. METHODS AND RESULTS Single-cell sequencing demonstrated that BM B-1a cells from aged ApoE-/- mice with established atherosclerosis express a unique repertoire of IgM antibodies containing increased nontemplate-encoded nucleotide additions and a greater frequency of unique heavy chain complementarity determining region 3 sequences compared with peritoneal cavity B-1a cells. Some complementarity determining region 3 sequences were common to both compartments suggesting B-1a migration between compartments. Indeed, mature peritoneal cavity B-1a cells migrated to BM in a CXCR4-dependent manner. Furthermore, BM IgM production and plasma IgM levels were reduced in ApoE-/- mice with B-cell-specific knockout of CXCR4, and overexpression of CXCR4 on B-1a cells increased BM localization and plasma IgM against oxidation specific epitopes, including IgM specific for malondialdehyde-modified LDL (low-density lipoprotein). Finally, in a 50-subject human cohort, we find that CXCR4 expression on circulating human B-1 cells positively associates with plasma levels of IgM antibodies specific for malondialdehyde-modified LDL and inversely associates with human coronary artery plaque burden and necrosis. CONCLUSIONS These data provide the first report of a unique BM B-1a cell IgM repertoire and identifies CXCR4 expression as a critical factor selectively governing BM B-1a localization and production of IgM against oxidation specific epitopes. That CXCR4 expression on human B-1 cells was greater in humans with low coronary artery plaque burden suggests a potential targeted approach for immune modulation to limit atherosclerosis.
Collapse
Affiliation(s)
- Aditi Upadhye
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville.,Department of Microbiology, Immunology, Cancer Biology (A.U., T.P.B.), University of Virginia, Charlottesville
| | - Prasad Srikakulapu
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville
| | - Ayelet Gonen
- Department of Medicine, University of California San Diego, La Jolla (A.G., S.H., S.T., J.L.W.)
| | - Sabrina Hendrikx
- Department of Medicine, University of California San Diego, La Jolla (A.G., S.H., S.T., J.L.W.)
| | - Heather M Perry
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville
| | - Anh Nguyen
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville
| | - Chantel McSkimming
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville
| | - Melissa A Marshall
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville
| | - James C Garmey
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville
| | - Angela M Taylor
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville.,Department of Medicine (A.M.T., C.A.M.), University of Virginia, Charlottesville
| | - Timothy P Bender
- Department of Microbiology, Immunology, Cancer Biology (A.U., T.P.B.), University of Virginia, Charlottesville.,Beirne B. Carter Center for Immunology Research (T.P.B., C.A.M.), University of Virginia, Charlottesville
| | - Sotirios Tsimikas
- Department of Medicine, University of California San Diego, La Jolla (A.G., S.H., S.T., J.L.W.)
| | - Nichol E Holodick
- Center for Immunobiology and Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo MI (N.E.H., T.L.R.)
| | - Thomas L Rothstein
- Center for Immunobiology and Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo MI (N.E.H., T.L.R.)
| | - Joseph L Witztum
- Department of Medicine, University of California San Diego, La Jolla (A.G., S.H., S.T., J.L.W.)
| | - Coleen A McNamara
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville.,Beirne B. Carter Center for Immunology Research (T.P.B., C.A.M.), University of Virginia, Charlottesville.,Department of Medicine (A.M.T., C.A.M.), University of Virginia, Charlottesville
| |
Collapse
|
13
|
Rodriguez-Zhurbenko N, Quach TD, Hopkins TJ, Rothstein TL, Hernandez AM. Human B-1 Cells and B-1 Cell Antibodies Change With Advancing Age. Front Immunol 2019; 10:483. [PMID: 30941130 PMCID: PMC6433875 DOI: 10.3389/fimmu.2019.00483] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/22/2019] [Indexed: 12/28/2022] Open
Abstract
Age-related deficits in the immune system have been associated with an increased incidence of infections, autoimmune diseases, and cancer. Human B cell populations change quantitatively and qualitatively in the elderly. However, the function of human B-1 cells, which play critical anti-microbial and housekeeping roles, have not been studied in the older age population. In the present work, we analyzed how the frequency, function and repertoire of human peripheral blood B-1 cells (CD19+CD20+CD27+CD38low/intCD43+) change with age. Our results show that not only the percentage of B-1 cells but also their ability to spontaneously secrete IgM decreased with age. Further, expression levels of the transcription factors XBP-1 and Blimp-1 were significantly lower, while PAX-5, characteristic of non-secreting B cells, was significantly higher, in healthy donors over 65 years (old) as compared to healthy donors between 20 and 45 years (young). To further characterize the B-1 cell population in older individuals, we performed single cell sequencing analysis of IgM heavy chains from healthy young and old donors. We found reduced repertoire diversity of IgM antibodies in B-1 cells from older donors as well as differences in usage of certain VH and DH specific genes, as compared to younger. Overall, our results show impairment of the human B-1 cell population with advancing age, which might impact the quality of life and onset of disease within the elderly population.
Collapse
Affiliation(s)
| | - Tam D Quach
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Thomas J Hopkins
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Thomas L Rothstein
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY, United States.,Center for Immunobiology and Department of Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, United States
| | | |
Collapse
|
14
|
Smulski CR, Eibel H. BAFF and BAFF-Receptor in B Cell Selection and Survival. Front Immunol 2018; 9:2285. [PMID: 30349534 PMCID: PMC6186824 DOI: 10.3389/fimmu.2018.02285] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022] Open
Abstract
The BAFF-receptor (BAFFR) is encoded by the TNFRSF13C gene and is one of the main pro-survival receptors in B cells. Its function is impressively documented in humans by a homozygous deletion within exon 2, which leads to an almost complete block of B cell development at the stage of immature/transitional B cells. The resulting immunodeficiency is characterized by B-lymphopenia, agammaglobulinemia, and impaired humoral immune responses. However, different from mutations affecting pathway components coupled to B cell antigen receptor (BCR) signaling, BAFFR-deficient B cells can still develop into IgA-secreting plasma cells. Therefore, BAFFR deficiency in humans is characterized by very few circulating B cells, very low IgM and IgG serum concentrations but normal or high IgA levels.
Collapse
Affiliation(s)
- Cristian R Smulski
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| | - Hermann Eibel
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Metlas R, Srdic-Rajic T, Kohler H. Cooperation of intrathymic T15 idiotype-bearing B and complementary T cells in ontogeny of natural Treg cells involved in establishment of T15 clonal dominance. Immunol Lett 2018; 200:52-54. [DOI: 10.1016/j.imlet.2018.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/22/2018] [Accepted: 07/06/2018] [Indexed: 01/27/2023]
|
16
|
Ursini F, Russo E, Pellino G, D'Angelo S, Chiaravalloti A, De Sarro G, Manfredini R, De Giorgio R. Metformin and Autoimmunity: A "New Deal" of an Old Drug. Front Immunol 2018; 9:1236. [PMID: 29915588 PMCID: PMC5994909 DOI: 10.3389/fimmu.2018.01236] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022] Open
Abstract
Metformin (dimethyl biguanide) is a synthetic derivative of guanidine, isolated from the extracts of Galega officinalis, a plant with a prominent antidiabetic effect. Since its discovery more than 50 years ago, metformin represents a worldwide milestone in treatment of patients with type 2 diabetes (T2D). Recent evidence in humans indicates novel pleiotropic actions of metformin which span from its consolidated role in T2D management up to various regulatory properties, including cardio- and nephro-protection, as well as antiproliferative, antifibrotic, and antioxidant effects. These findings, together with ground-breaking studies demonstrating its ability to prolong healthspan and lifespan in mice, provided the basis for defining metformin as a potential antiaging molecule. Moreover, emerging in vivo and in vitro evidence support the novel hypothesis that metformin can exhibit immune-modulatory features. Studies suggest that metformin interferes with key immunopathological mechanisms involved in systemic autoimmune diseases, such as the T helper 17/regulatory T cell balance, germinal centers formation, autoantibodies production, macrophage polarization, cytokine synthesis, neutrophil extracellular traps release, and bone or extracellular matrix remodeling. These effects may represent a powerful contributor to antiaging and anticancer properties exerted by metformin and, from another standpoint, may open the way to assess whether metformin can be a candidate molecule for clinical trials involving patients with immune-mediated diseases. In this article, we will review the available preclinical and clinical evidence regarding the effect of metformin on individual cells of the immune system, with emphasis on immunological mechanisms related to the development and maintenance of autoimmunity and its potential relevance in treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Francesco Ursini
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Emilio Russo
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Gianluca Pellino
- Colorectal Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain.,Department of Medical, Surgical, Neurological, Metabolic and Ageing Sciences, Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Salvatore D'Angelo
- Rheumatology Institute of Lucania (IReL) - Rheumatology Department of Lucania, "San Carlo" Hospital of Potenza and "Madonna delle Grazie" Hospital of Matera, Potenza, Italy.,Basilicata Ricerca Biomedica (BRB) Foundation, Potenza, Italy
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy.,Department of Nuclear Medicine, IRCCS Neuromed, Pozzilli, Italy
| | | | - Roberto Manfredini
- Department of Medical Sciences, Clinica Medica Unit, University of Ferrara, Ferrara, Italy
| | - Roberto De Giorgio
- Department of Medical Sciences, Clinica Medica Unit, University of Ferrara, Ferrara, Italy
| |
Collapse
|
17
|
Schumacher A, Ehrentraut S, Scharm M, Wang H, Hartig R, Morse HC, Zenclussen AC. Plasma Cell Alloantigen 1 and IL-10 Secretion Define Two Distinct Peritoneal B1a B Cell Subsets With Opposite Functions, PC1 high Cells Being Protective and PC1 low Cells Harmful for the Growing Fetus. Front Immunol 2018; 9:1045. [PMID: 29868008 PMCID: PMC5962664 DOI: 10.3389/fimmu.2018.01045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/26/2018] [Indexed: 12/18/2022] Open
Abstract
B cells possess various immuno regulatory functions. However, research about their participation in tolerance induction toward the fetus is just emerging. Accumulating evidence supports the idea that B cells can play seemingly conflicting roles during pregnancy, either protecting or harming the fetus. Previous findings indicated the presence of two different peritoneal B cell subsets, defined by the expression of the plasma cell alloantigen 1 (PC1) and with distinct immune modulatory functions. Here, we aimed to study the participation of these two B cell subsets, on pregnancy outcome in a murine model of disturbed fetal tolerance. The frequencies and cell numbers of peritoneal and splenic CD19+IL-10+ and CD19+CD5+IL-10+PC1+ cells were assessed in virgin as well as normal pregnant (NP) and abortion-prone (AP) females during the course of gestation. Peritoneal PC1low or PC1high B1a B cells were sorted, analyzed for their ability to secrete IL-10 and adoptively transferred into NP or AP females. On gestation day (gd) 12, the abortion rate as well as the frequencies and cell numbers of regulatory T cells, TH1 and TH17 cells were determined in spleens and decidua. In addition, mRNA expression of IL-10, TGF-β, IFN-γ, and TNF-α was analyzed in decidual tissue. Peritoneal CD19+IL-10+ and CD19+CD5+IL-10+PC1+ frequencies fluctuated during the progression of normal pregnancies while no significant changes were observed in spleen. AP females showed significantly reduced frequencies of both B cell populations and exhibited an altered peritoneal PC1high/PC1low ratio at gd10. Adoptive transfers of PC1low B1a B cells into NP females increased the abortion rate in association with a reduced splenic regulatory T/TH17 ratio. By contrast, the transfer of PC1high B1a B cells into AP females significantly diminished the fetal rejection rate and significantly reduced the numbers of splenic TH17 cells. Our results suggest that the peritoneum harbors two distinct B1a B cell subsets that can be distinguished by their PC1 expression. Whereas PC1high B1a B cells seem to support fetal survival, PC1low cells B1a B cells may compromise fetal well-being.
Collapse
Affiliation(s)
- Anne Schumacher
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Stefanie Ehrentraut
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Markus Scharm
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Hongsheng Wang
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Roland Hartig
- Core Facility Multidimensional Microscopy and Cellular Diagnostics, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Herbert C Morse
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Ana Claudia Zenclussen
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
18
|
Prohaska TA, Que X, Diehl CJ, Hendrikx S, Chang MW, Jepsen K, Glass CK, Benner C, Witztum JL. Massively Parallel Sequencing of Peritoneal and Splenic B Cell Repertoires Highlights Unique Properties of B-1 Cell Antibodies. THE JOURNAL OF IMMUNOLOGY 2018; 200:1702-1717. [PMID: 29378911 PMCID: PMC5821571 DOI: 10.4049/jimmunol.1700568] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 01/03/2018] [Indexed: 12/26/2022]
Abstract
B-1 cells are a unique subset of B cells that are positively selected for expressing autoreactive BCRs. We isolated RNA from peritoneal (B-1a, B-1b, B-2) and splenic (B-1a, marginal zone, follicular) B cells from C57BL/6 mice and used 5'-RACE to amplify the IgH V region using massively parallel sequencing. By analyzing 379,000 functional transcripts, we demonstrate that B-1a cells use a distinct and restricted repertoire. All B-1 cell subsets, especially peritoneal B-1a cells, had a high proportion of sequences without N additions, suggesting predominantly prenatal development. Their transcripts differed markedly and uniquely contained VH11 and VH12 genes, which were rearranged only with a restricted selection of D and J genes, unlike other V genes. Compared to peritoneal B-1a, the peritoneal B-1b repertoire was larger, had little overlap with B-1a, and most sequences contained N additions. Similarly, the splenic B-1a repertoire differed from peritoneal B-1a sequences, having more unique sequences and more frequent N additions, suggesting influx of B-1a cells into the spleen from nonperitoneal sites. Two CDR3s, previously described as Abs to bromelain-treated RBCs, comprised 43% of peritoneal B-1a sequences. We show that a single-chain variable fragment designed after the most prevalent B-1a sequence bound oxidation-specific epitopes such as the phosphocholine of oxidized phospholipids. In summary, we provide the IgH V region library of six murine B cell subsets, including, to our knowledge for the first time, a comparison between B-1a and B-1b cells, and we highlight qualities of B-1 cell Abs that indicate unique selection processes.
Collapse
Affiliation(s)
- Thomas A Prohaska
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Xuchu Que
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Cody J Diehl
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Sabrina Hendrikx
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Max W Chang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Kristen Jepsen
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093; and
| | - Christopher K Glass
- Department of Medicine, University of California San Diego, La Jolla, CA 92093.,Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093
| | - Christopher Benner
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Joseph L Witztum
- Department of Medicine, University of California San Diego, La Jolla, CA 92093;
| |
Collapse
|
19
|
Dysregulation of peritoneal cavity B1a cells and murine primary biliary cholangitis. Oncotarget 2017; 7:26992-7006. [PMID: 27105495 PMCID: PMC5053627 DOI: 10.18632/oncotarget.8853] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/13/2016] [Indexed: 12/27/2022] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease with progressive cholestasis and liver fibrosis. Similar to human patients with PBC, p40−/−IL-2Rα−/− mice spontaneously develop severe autoimmune cholangitis. Although there has been considerable work on immune regulation and autoimmunity, there is a relative paucity of work directed at the functional implications of the key peritoneal cavity (PC) B cell subset, coined B1a cells in PBC. We used flow cytometry and high-resolution microarrays to study the qualitative and quantitative characteristics of B cells, particularly B1a cells, in the PC of p40−/−IL-2Rα−/− mice compared to controls. Importantly, B1a cell proliferation was markedly lower as the expression of Ki67 decreased. Meanwhile, the apoptosis level was much higher. These lead to a reduction of B1a cells in the PC of p40−/−IL-2Rα−/− mice compared to controls. In contrast, there was a dramatic increase of CD4+ and CD8+ T cells accompanied by elevated production of IFN-γ. In addition, we found a negative correlation between the frequency of B1a cells and the presence of autoreactive CD8+ T cells in both liver and PC of p40−/−IL-2Rα−/− mice. From a functional perspective, B cells from p40−/−IL-2Rα−/− mice downregulated IL-10 production and CTLA-4 expression, leading to loss of B cell regulatory function. We suggest that the dysfunction of B1a cells in the PC in this murine model of autoimmune cholangitis results in defective regulatory function. This highlights a new potential therapeutic target in PBC.
Collapse
|
20
|
Progenitor B-1 B-cell acute lymphoblastic leukemia is associated with collaborative mutations in 3 critical pathways. Blood Adv 2017; 1:1749-1759. [PMID: 29296821 DOI: 10.1182/bloodadvances.2017009837] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/02/2017] [Indexed: 11/20/2022] Open
Abstract
B-1 and B-2 lymphocytes are derived from distinct developmental pathways and represent layered arms of the innate and adaptive immune systems, respectively. In contrast to a majority of murine B-cell malignancies, which stain positive with the B220 antibody, we discovered a novel form of B-cell leukemia in NUP98-PHF23 (NP23) transgenic mice. The immunophenotype (Lin- B220- CD19+ AA4.1+) was identical to that of progenitor (pro) B-1 cells, and VH gene usage was skewed toward 3' V regions, similar to murine fetal liver B cells. Moreover, the gene expression profile of these leukemias was most similar to that of fetal liver pro-B fraction BC, a known source of B-1 B cells, further supporting a pro-B-1 origin of these leukemias. The NP23 pro-B-1 acute lymphoblastic leukemias (ALLs) acquired spontaneous mutations in both Bcor and Janus kinase (Jak) pathway (Jak1/2/3 and Stat5a) genes, supporting a hypothesis that mutations in 3 critical pathways (stem-cell self-renewal, B-cell differentiation, and cytokine signaling) collaborate to induce B-cell precursor (BCP) ALL. Finally, the thymic stromal lymphopoietin (Tslp) cytokine is required for murine B-1 development, and chromosomal rearrangements resulting in overexpression of the TSLP receptor (CRLF2) are present in some patients with high-risk BCP-ALL (referred to as CRLF2r ALL). Gene expression profiles of NP23 pro-B-1 ALL were more similar to that of CRLF2r ALL than non-CRLF2r ALL, and analysis of VH gene usage from patients with CRLF2r ALL demonstrated preferential usage of VH regions used by human B-1 B cells, leading to the suggestion that this subset of patients with BCP-ALL has a malignancy of B-1, rather than B-2, B-cell origin.
Collapse
|
21
|
Holodick NE, Rodríguez-Zhurbenko N, Hernández AM. Defining Natural Antibodies. Front Immunol 2017; 8:872. [PMID: 28798747 PMCID: PMC5526850 DOI: 10.3389/fimmu.2017.00872] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/10/2017] [Indexed: 01/05/2023] Open
Abstract
The traditional definition of natural antibodies (NAbs) states that these antibodies are present prior to the body encountering cognate antigen, providing a first line of defense against infection thereby, allowing time for a specific antibody response to be mounted. The literature has a seemingly common definition of NAbs; however, as our knowledge of antibodies and B cells is refined, re-evaluation of the common definition of Nabs may be required. Defining Nabs becomes important as the function of NAb production is used to define B cell subsets (1) and as these important molecules are shown to play numerous roles in the immune system (Figure 1). Herein, we aim to briefly summarize our current knowledge of NAbs in the context of initiating a discussion within the field of how such an important and multifaceted group of molecules should be defined.
Collapse
Affiliation(s)
- Nichol E Holodick
- Department of Biomedical Sciences, Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Nely Rodríguez-Zhurbenko
- Natural Antibodies Group, Tumor Immunology Division, Center of Molecular Immunology, Havana, Cuba
| | - Ana María Hernández
- Natural Antibodies Group, Tumor Immunology Division, Center of Molecular Immunology, Havana, Cuba
| |
Collapse
|
22
|
Kaku H, Holodick NE, Tumang JR, Rothstein TL. CD25 + B-1a Cells Express Aicda. Front Immunol 2017; 8:672. [PMID: 28676801 PMCID: PMC5477345 DOI: 10.3389/fimmu.2017.00672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 05/23/2017] [Indexed: 11/25/2022] Open
Abstract
B-1a cells are innate-like B-lymphocytes producing natural antibodies. Activation-induced cytidine deaminase (AID), a product of the Aicda gene, plays a central role in class-switch recombination and somatic hypermutation in B cells. Although a role for Aicda in B-1a cells has been suggested on the basis of experiments with knock out (KO) mice, whether B-1a cells express Aicda, and if so, which B-1a cell subpopulation expresses Aicda, remains unknown. Here, we demonstrate that B-1 cells express Aicda, but at a level below that expressed by germinal center (GC) B cells. We previously reported that B-1a cells can be subdivided based on CD25 expression. We show here that B-1a cell Aicda expression is concentrated in the CD25+ B-1a cell subpopulation. These results suggest the possibility that previous studies of memory B cells identified on the basis of Aicda expression may have inadvertently included an unknown number of CD25+ B-1a cells. Although B-1a cells develop normally in the absence of Aicda, a competitive reconstitution assay reveals enhanced vigor for AID KO B-1a cell bone marrow (BM) progenitors, as compared with wild-type BM B-1 cell progenitors. These results suggest that AID inhibits the development of B-1a cells from BM B-1 cell progenitors in a competitive environment.
Collapse
Affiliation(s)
- Hiroaki Kaku
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Nichol E Holodick
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | | | - Thomas L Rothstein
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY, United States.,Department of Medicine, The Hofstra Northwell School of Medicine, Manhasset, NY, United States.,Department of Molecular Medicine, The Hofstra Northwell School of Medicine, Manhasset, NY, United States
| |
Collapse
|
23
|
Ganshina IV. Serous cavities of coelomic origin as possible organs of the immune system. Part 1. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s2079086416060025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Abstract
B-1 lymphocytes exhibit unique phenotypic, ontogenic, and functional characteristics that differ from the conventional B-2 cells. B-1 cells spontaneously secrete germline-like, repertoire-skewed polyreactive natural antibody, which acts as a first line of defense by neutralizing a wide range of pathogens before launching of the adaptive immune response. Immunomodulatory molecules such as interleukin-10, adenosine, granulocyte-macrophage colony-stimulating factor, interleukin-3, and interleukin-35 are also produced by B-1 cells in the presence or absence of stimulation, which regulate acute and chronic inflammatory diseases. Considerable progress has been made during the past three decades since the discovery of B-1 cells, which has improved not only our understanding of their phenotypic and ontogenic uniqueness but also their role in various inflammatory diseases including influenza, pneumonia, sepsis, atherosclerosis, inflammatory bowel disease, autoimmunity, obesity and diabetes mellitus. Recent identification of human B-1 cells widens the scope of this field, leading to novel innovations that can be implemented from bench to bedside. Among the vast number of studies on B-1 cells, we have carried out a literature review highlighting current trends in the study of B-1 cell involvement during inflammation, which may result in a paradigm shift toward sustainable therapeutics in various inflammatory diseases.
Collapse
Affiliation(s)
- Monowar Aziz
- Center for Translational Research, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA
| | - Nichol E Holodick
- Center for Oncology and Cell Biology, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA
| | - Thomas L Rothstein
- Center for Oncology and Cell Biology, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA
| | - Ping Wang
- Center for Translational Research, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA. .,Department of Surgery, Hofstra North Shore-LIJ School of Medicine, 350 Community Dr., Manhasset, NY, 11030, USA.
| |
Collapse
|
25
|
Plasma cell alloantigen ENPP1 is expressed by a subset of human B cells with potential regulatory functions. Immunol Cell Biol 2016; 94:719-28. [PMID: 27029896 DOI: 10.1038/icb.2016.31] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/27/2022]
Abstract
Plasma cell alloantigen 1 (PC1), also known as ENPP1 (ectonucleotide pyrophosphatase/phosphodiesterase 1), is an enzyme involved primarily in hydrolysis of adenosine triphosphate at the cell surface. Although the expression pattern of PC1 is relatively broad, its expression in B cells is found at significant levels only in terminally differentiated germinal center B cells, plasma cells and a subset of B-1a cells in mice. Here we describe studies designed to determine whether expression of PC1 might define novel populations of human B cells with similarities to mouse B cells. We found that PC1 is expressed in small populations of human B lineage cells in peripheral blood, cord blood, tonsils, bone marrow and pediatric peritoneal fluid, with the highest levels in plasma cells. The characteristics of human PC1(+) B cells differ from mouse peritoneal B-1a subsets and from features of the human CD20(+)CD27(+)CD43(+)CD70(-) B-cell subset proposed to be human B-1 cells. Expression of PC1 was greatly increased in B cells stimulated with the combination of CD40 ligand, interleukin (IL)-4 and IL-21. In addition, PC1(+) B cells activated CD4(+) T regulatory cells. ENPP1 thus defines a subset of human B cells that differs significantly from mouse peritoneal B-1a and proposed human B-1 cells.
Collapse
|
26
|
Holodick NE, Zeumer L, Rothstein TL, Morel L. Expansion of B-1a Cells with Germline Heavy Chain Sequence in Lupus Mice. Front Immunol 2016; 7:108. [PMID: 27047495 PMCID: PMC4805591 DOI: 10.3389/fimmu.2016.00108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/10/2016] [Indexed: 11/13/2022] Open
Abstract
B6.Sle1.Sle2.Sle3 (B6.TC) lupus-prone mice carrying the NZB allele of Cdkn2c, encoding for the cyclin-dependent kinase inhibitor P18(INK4), accumulate B-1a cells due to a higher rate of proliferative self-renewal. However, it is unclear whether this affects primarily early-appearing B-1a cells of fetal origin or later-appearing B-1a cells that emerge from bone marrow. B-1a cells are the major source of natural autoantibodies, and it has been shown that their protective nature is associated with a germline-like sequence, which is characterized by few N-nucleotide insertions and a repertoire skewed toward rearrangements predominated during fetal life, VH11 and VH12. To determine the nature of B-1a cells expanded in B6.TC mice, we amplified immunoglobulin genes by PCR from single cells in mice. Sequencing showed a significantly higher proportion of B-1a cell antibodies that display fewer N-additions in B6.TC mice than in B6 control mice. Following this lower number of N-insertions within the CDR-H3 region, the B6.TC B-1a cells display shorter CDR-H3 length than B6 B-1a cells. The absence of N-additions is a surrogate for fetal origin, as TdT expression starts after birth in mice. Therefore, our results suggest that the B-1a cell population is not only expanded in autoimmune B6.TC mice but also qualitatively different with the majority of cells from fetal origin. Accordingly, our sequencing results also demonstrated the overuse of VH11 and VH12 in autoimmune B6.TC mice as compared to B6 controls. These results suggest that the development of lupus autoantibodies in these mice is coupled with skewing of the B-1a cell repertoire and possible retention of protective natural antibodies.
Collapse
Affiliation(s)
- Nichol E Holodick
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research , Manhasset, NY , USA
| | - Leilani Zeumer
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida , Gainesville, FL , USA
| | - Thomas L Rothstein
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY, USA; Department of Medicine, The Hofstra Northwell School of Medicine, Manhasset, NY, USA; Department of Molecular Medicine, The Hofstra Northwell School of Medicine, Manhasset, NY, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida , Gainesville, FL , USA
| |
Collapse
|
27
|
Wang H, Coligan JE, Morse HC. Emerging Functions of Natural IgM and Its Fc Receptor FCMR in Immune Homeostasis. Front Immunol 2016; 7:99. [PMID: 27014278 PMCID: PMC4791374 DOI: 10.3389/fimmu.2016.00099] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/29/2016] [Indexed: 01/02/2023] Open
Abstract
Most natural IgM antibodies are encoded by germline Ig sequences and are produced in large quantities by both mice and humans in the absence of intentional immunization. Natural IgM are reactive with many conserved epitopes, including those shared by microorganisms and autoantigens. As a result, these antibodies play important roles in clearing intruding pathogens, as well as apoptotic/necrotic cells and otherwise damaged tissues. While natural IgM binds to target structures with low affinity due to a lack of significant selection by somatic hypermutation, its pentameric structure with 10 antigen-binding sites enables these antibodies to bind multivalent target antigens with high avidity. Opsonization of antigen complexed with IgM is mediated by cell surface Fc receptors. While the existence of Fc alpha/mu receptor has been known for some time, only recently has the Fc receptor specific for IgM (FCMR) been identified. In this review, we focus on our current understandings of how natural IgM and FCMR regulate the immune system and maintain homeostasis under physiological and pathological conditions.
Collapse
Affiliation(s)
- Hongsheng Wang
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Rockville, MD , USA
| | - John E Coligan
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Rockville, MD , USA
| | - Herbert C Morse
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Rockville, MD , USA
| |
Collapse
|
28
|
Wang H, Lin JX, Li P, Skinner J, Leonard WJ, Morse HC. New insights into heterogeneity of peritoneal B-1a cells. Ann N Y Acad Sci 2015; 1362:68-76. [PMID: 25988856 PMCID: PMC4651667 DOI: 10.1111/nyas.12791] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peritoneal B-1a cells are characterized by their expression of CD5 and enrichment for germline-encoded IgM B cell receptors. Early studies showing expression of a diverse array of VDJ sequences among purified B-1a cells provided a molecular basis for understanding the heterogeneity of the B-1a cell repertoire. Antigen-driven positive selection and the identification of B-1a specific progenitors suggest multiple origins of B-1a cells. The introduction of new markers such as PD-L2, CD25, CD73, and PC1 (plasma cell alloantigen 1, also known as ectonucleotide phosphodiesterase/pyrophosphatase 1) further helped to identify phenotypically and functionally distinct B-1a subsets. Among many B-1a subsets defined by these new markers, PC1 is unique in that it subdivides B-1a cells into PC1(hi) and PC1(lo) subpopulations with distinct functions, such as production of natural IgM and gut IgA, response to the pneumococcal antigen PPS-3, secretion of interleukin-10, and support for T helper 1 (TH 1) cell differentiation. RNA sequencing of these subsets revealed differential expression of genes involved in cellular movement and immune cell trafficking. We will discuss these new insights underlying the heterogeneous nature of the B-1a cell repertoire.
Collapse
Affiliation(s)
- Hongsheng Wang
- The Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Jian-xin Lin
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Peng Li
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Jeff Skinner
- Malaria Infection Biology and Immunity Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Warren J. Leonard
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Herbert C. Morse
- The Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
29
|
Mousa HS, Lleo A, Invernizzi P, Bowlus CL, Gershwin ME. Advances in pharmacotherapy for primary biliary cirrhosis. Expert Opin Pharmacother 2014; 16:633-43. [PMID: 25543678 DOI: 10.1517/14656566.2015.998650] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Primary biliary cirrhosis (PBC) is a chronic autoimmune liver disease mostly seen in middle-aged women characterized by progressive nonsuppurative destruction of small bile ducts resulting in intrahepatic cholestasis, parenchymal injury and ultimately end-stage liver disease. Despite major breakthroughs in our understanding of PBC, there remains only one FDA-approved agent for treatment: ursodeoxycholic acid (UDCA) to which one-third of patients are unresponsive. AREAS COVERED Biochemical response to treatment with UDCA is associated with excellent survival rates in PBC patients. However, there is a need for alternative treatments for nonresponders. Results from human epidemiological and genetic studies as well as preclinical studies in PBC animal models have provided a strong impetus for the development of new therapeutic agents. In this review, we discuss the recent advances in translational research in PBC focusing on promising therapeutic approaches, namely immune-based targeted therapies and agents targeting the synthesis and circulation of bile acids. EXPERT OPINION We are in a new era for the development of novel therapies for PBC. Data on fibrates, budesonide and obeticholic acid offer encouragement for nonresponders to UDCA.
Collapse
Affiliation(s)
- Hani S Mousa
- Humanitas Clinical and Research Center, Liver Unit and Center for Autoimmune Liver Diseases , Rozzano (MI) , Italy
| | | | | | | | | |
Collapse
|
30
|
Kaku H, Cheng KF, Al-Abed Y, Rothstein TL. A novel mechanism of B cell-mediated immune suppression through CD73 expression and adenosine production. THE JOURNAL OF IMMUNOLOGY 2014; 193:5904-13. [PMID: 25392527 DOI: 10.4049/jimmunol.1400336] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Immune suppression by regulatory T cells and regulatory B cells is a critical mechanism to limit excess inflammation and autoimmunity. IL-10 is considered the major mediator of B cell-induced immune suppression. We report a novel mechanism for immune suppression through adenosine generation by B cells. We identified a novel population of B cells that expresses CD73 as well as CD39, two ectoenzymes that together catalyze the extracellular dephosphorylation of adenine nucleotides to adenosine. Whereas CD39 expression is common among B cells, CD73 expression is not. Approximately 30-50% of B-1 cells (B220(+)CD23(-)) and IL-10-producing B (B10) cells (B220(+)CD5(+)CD1d(hi)) are CD73(hi), depending on mouse strain, whereas few conventional B-2 cells (B220(+)CD23(+)AA4.1(-)) express CD73. In keeping with expression of both CD73 and CD39, we found that CD73(+) B cells produce adenosine in the presence of substrate, whereas B-2 cells do not. CD73(-/-) mice were more susceptible to dextran sulfate sodium salt (DSS)-induced colitis than wild type (WT) mice were, and transfer of CD73(+) B cells ameliorated the severity of colitis, suggesting that B cell CD73/CD39/adenosine can modulate DSS-induced colitis. IL-10 production by B cells is not affected by CD73 deficiency. Interestingly, adenosine generation by IL-10(-/-) B cells is impaired because of reduced expression of CD73, indicating an unexpected connection between IL-10 and adenosine and suggesting caution in interpreting the results of studies with IL-10(-/-) cells. Our findings demonstrate a novel regulatory role of B cells on colitis through adenosine generation in an IL-10-independent manner.
Collapse
Affiliation(s)
- Hiroaki Kaku
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY 11030; and
| | - Kai Fan Cheng
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Yousef Al-Abed
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Thomas L Rothstein
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY 11030; and
| |
Collapse
|
31
|
Sahay B, Owen JL, Zadeh M, Yang T, Lightfoot YL, Abed F, Mohamadzadeh M. Impaired colonic B-cell responses by gastrointestinal Bacillus anthracis infection. J Infect Dis 2014; 210:1499-507. [PMID: 24829464 DOI: 10.1093/infdis/jiu280] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Ingestion of Bacillus anthracis spores causes gastrointestinal (GI) anthrax. Humoral immune responses, particularly immunoglobulin A (IgA)-secreting B-1 cells, play a critical role in the clearance of GI pathogens. Here, we investigated whether B. anthracis impacts the function of colonic B-1 cells to establish active infection. GI anthrax led to significant inhibition of immunoglobulins (eg, IgA) and increased expression of program death 1 on B-1 cells. Furthermore, infection also diminished type 2 innate lymphoid cells (ILC2) and their ability to enhance differentiation and immunoglobulin production by secreting interleukin 5 (IL-5). Such B-1-cell and ILC2 dysfunction is potentially due to cleavage of p38 and Erk1/2 mitogen-activated protein kinases in these cells. Conversely, mice that survived infection generated neutralizing antibodies via the formation of robust germinal center B cells in Peyer's patches and had restored B-1-cell and ILC2 function. These data may provide additional insight for designing efficacious vaccines and therapeutics against this deadly pathogen.
Collapse
Affiliation(s)
- Bikash Sahay
- Department of Infectious Diseases and Pathology Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine
| | - Jennifer L Owen
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville
| | - Mojgan Zadeh
- Department of Infectious Diseases and Pathology Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine
| | - Tao Yang
- Department of Infectious Diseases and Pathology Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine
| | - Yaíma L Lightfoot
- Department of Infectious Diseases and Pathology Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine
| | - Firas Abed
- Department of Infectious Diseases and Pathology Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine
| | - Mansour Mohamadzadeh
- Department of Infectious Diseases and Pathology Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine
| |
Collapse
|
32
|
Rothstein TL, Griffin DO, Holodick NE, Quach TD, Kaku H. Human B-1 cells take the stage. Ann N Y Acad Sci 2013; 1285:97-114. [PMID: 23692567 DOI: 10.1111/nyas.12137] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
B-1 cells play critical roles in defending against microbial invasion and in housekeeping removal of cellular debris. B-1 cells secrete natural antibody and manifest functions that influence T cell expansion and differentiation and in these and other ways differ from conventional B-2 cells. B-1 cells were originally studied in mice where they are easily distinguished from B-2 cells, but their identity in the human system remained poorly defined for many years. Recently, functional criteria for human B-1 cells were established on the basis of murine findings, and reverse engineering resulted in identification of the phenotypic profile, CD20(+)CD27(+)CD43(+)CD70(-), for B-1 cells found in both umbilical cord blood and adult peripheral blood. Human B-1 cells may contribute to multiple disease states through production of autoantibody and stimulation/modulation of T cell activity. Human B-1 cells could be a rich source of antibodies useful in treating diseases present in elderly populations where natural antibody protection may have eroded. Manipulation of human B-1 cell numbers and/or activity may be a new avenue for altering T cell function and treating immune dyscrasias.
Collapse
Affiliation(s)
- Thomas L Rothstein
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY, USA.
| | | | | | | | | |
Collapse
|