1
|
Matsuda A, Mansour A, Mofrad MRK. Deciphering the intrinsically disordered characteristics of the FG-Nups through the lens of polymer physics. Nucleus 2024; 15:2399247. [PMID: 39282864 PMCID: PMC11407397 DOI: 10.1080/19491034.2024.2399247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
The nuclear pore complex (NPC) is a critical gateway regulating molecular transport between the nucleus and cytoplasm. It allows small molecules to pass freely, while larger molecules require nuclear transport receptors to traverse the barrier. This selective permeability is maintained by phenylalanine-glycine-rich nucleoporins (FG-Nups), intrinsically disordered proteins that fill the NPC's central channel. The disordered and flexible nature of FG-Nups complicates their spatial characterization with conventional structural biology techniques. To address this challenge, polymer physics offers a valuable framework for describing FG-Nup behavior, reducing their complex structures to a few key parameters. In this review, we explore how polymer physics models FG-Nups using these parameters and discuss experimental efforts to quantify them in various contexts, providing insights into the conformational properties of FG-Nups.
Collapse
Affiliation(s)
- Atsushi Matsuda
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Abdullah Mansour
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
2
|
Palmieri MA, Monti Hughes A, Trivillin VA, Garabalino MA, Ramos PS, Thorp SI, Curotto P, Pozzi ECC, Nuez Martínez M, Teixidor F, Viñas C, Schwint AE. Cobaltabis(Dicarbollide) [ o-COSAN] - for Boron Neutron Capture Therapy of Head and Neck Cancer: Biodistribution and Irradiation Studies in an Experimental Oral Cancer Model. Pharmaceuticals (Basel) 2024; 17:1367. [PMID: 39459007 PMCID: PMC11510372 DOI: 10.3390/ph17101367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Boron neutron capture therapy (BNCT) is a tumor-selective particle radiotherapy that combines preferential boron accumulation in tumors and neutron irradiation. Based on previous studies in tumor-bearing mice, this study evaluated the biodistribution of the sodium salt of cobaltabis(dicarbollide) (Na[3,3'-Co(C2B9H11)2], abbreviated as Na[o-COSAN]) in the hamster cheek pouch oral cancer model and the Na[o-COSAN]/BNCT therapeutic effect on tumors and induced radiotoxicity. The synthesis and comprehensive characterization of 10B-enriched trimethylammonium salt of nido-[7,8-C210B9H12]-o-carborane, along with the cesium and sodium salts of [o-10COSAN] cobaltabis(dicarbollide) are reported here for the first time. METHODS Hamsters bearing tumors were injected with Na[o-COSAN] (7.5 mg B/kg) and euthanized at different time-points after injection (30 min, 2, 3, 5, and 18 h post-administration) to evaluate boron uptake in different tissues/organs. Based on these results, tumor-bearing animals were treated with Na[10B-o-COSAN]/BNCT (7.5 mg B/kg b.w., 3 h), prescribing 5 Gy total in absorbed dose to the precancerous tissue surrounding tumors, i.e., the dose-limiting tissue. RESULTS Na[o-10COSAN] exhibited no toxicity. Although biodistribution studies employing Na[o-COSAN] have shown low absolute boron concentration in the tumor (approx. 11 ppm), Na[o-10COSAN]/BNCT induced a high and significant therapeutic effect on tumors versus the control group (cancerized, untreated animals). Moreover, only half of the animals exhibited severe mucositis in the precancerous dose-limiting tissue after BNCT, which resolved completely at 21 days after irradiation. CONCLUSIONS Na[o-10COSAN] would be potentially useful to treat head and neck cancer with BNCT.
Collapse
Affiliation(s)
- Mónica A. Palmieri
- Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales (FCEN)-Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina
| | - Andrea Monti Hughes
- División Patología de la Radiación, Departamento de Radiobiología, Gerencia Química Nuclear y Ciencias de la Salud, Gerencia de Área Aplicaciones Nucleares a la Salud (GAANS), Comisión Nacional de Energía Atómica (CNEA), Buenos Aires B1650KNA, Argentina; (V.A.T.); (M.A.G.); (P.S.R.); (A.E.S.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires B1425FQB, Argentina
| | - Verónica A. Trivillin
- División Patología de la Radiación, Departamento de Radiobiología, Gerencia Química Nuclear y Ciencias de la Salud, Gerencia de Área Aplicaciones Nucleares a la Salud (GAANS), Comisión Nacional de Energía Atómica (CNEA), Buenos Aires B1650KNA, Argentina; (V.A.T.); (M.A.G.); (P.S.R.); (A.E.S.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires B1425FQB, Argentina
| | - Marcela A. Garabalino
- División Patología de la Radiación, Departamento de Radiobiología, Gerencia Química Nuclear y Ciencias de la Salud, Gerencia de Área Aplicaciones Nucleares a la Salud (GAANS), Comisión Nacional de Energía Atómica (CNEA), Buenos Aires B1650KNA, Argentina; (V.A.T.); (M.A.G.); (P.S.R.); (A.E.S.)
| | - Paula S. Ramos
- División Patología de la Radiación, Departamento de Radiobiología, Gerencia Química Nuclear y Ciencias de la Salud, Gerencia de Área Aplicaciones Nucleares a la Salud (GAANS), Comisión Nacional de Energía Atómica (CNEA), Buenos Aires B1650KNA, Argentina; (V.A.T.); (M.A.G.); (P.S.R.); (A.E.S.)
| | - Silvia I. Thorp
- Sub-Gerencia Instrumentación y Control, Gerencia de Área Producción de Radioisótopos y Aplicaciones de la Radiación (GAPRyAR), Centro Atómico Ezeiza (CAE), Comisión Nacional de Energía Atómica (CNEA), Buenos Aires B1802AYA, Argentina;
| | - Paula Curotto
- Departamento de Reactores de Investigación y Producción, Gerencia de Área Producción de Radioisótopos y Aplicaciones de la Radiación (GAPRyAR), Centro Atómico Ezeiza (CAE), Comisión Nacional de Energía Atómica (CNEA), Buenos Aires B1802AYA, Argentina; (P.C.); (E.C.C.P.)
| | - Emiliano C. C. Pozzi
- Departamento de Reactores de Investigación y Producción, Gerencia de Área Producción de Radioisótopos y Aplicaciones de la Radiación (GAPRyAR), Centro Atómico Ezeiza (CAE), Comisión Nacional de Energía Atómica (CNEA), Buenos Aires B1802AYA, Argentina; (P.C.); (E.C.C.P.)
| | - Miquel Nuez Martínez
- Institut de Ciència de Materials de Barcelona (ICMAB)-Consejo Superior de Investigaciones Científicas (CSIC), 08193 Bellaterra, Spain; (M.N.M.); (F.T.); (C.V.)
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona (ICMAB)-Consejo Superior de Investigaciones Científicas (CSIC), 08193 Bellaterra, Spain; (M.N.M.); (F.T.); (C.V.)
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB)-Consejo Superior de Investigaciones Científicas (CSIC), 08193 Bellaterra, Spain; (M.N.M.); (F.T.); (C.V.)
| | - Amanda E. Schwint
- División Patología de la Radiación, Departamento de Radiobiología, Gerencia Química Nuclear y Ciencias de la Salud, Gerencia de Área Aplicaciones Nucleares a la Salud (GAANS), Comisión Nacional de Energía Atómica (CNEA), Buenos Aires B1650KNA, Argentina; (V.A.T.); (M.A.G.); (P.S.R.); (A.E.S.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires B1425FQB, Argentina
| |
Collapse
|
3
|
Zaitsava H, Gachowska M, Bartoszewska E, Kmiecik A, Kulbacka J. The Potential of Nuclear Pore Complexes in Cancer Therapy. Molecules 2024; 29:4832. [PMID: 39459201 PMCID: PMC11510365 DOI: 10.3390/molecules29204832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Nuclear pore complexes (NPCs) play a critical role in regulating transport-dependent gene expression, influencing various stages of cancer development and progression. Dysregulation of nucleocytoplasmic transport has profound implications, particularly in the context of cancer-associated protein mislocalization. This review provides specific information about the relationship between nuclear pore complexes, key regulatory proteins, and their impact on cancer biology. Highlighting the influence of tumor-suppressor proteins as well as the potential of gold nanoparticles and intelligent nanosystems in cancer treatment, their role in inhibiting cell invasion is examined. This article concludes with the clinical implications of nuclear export inhibitors, particularly XPO1, as a therapeutic target in various cancers, with selective inhibitors of nuclear export compounds demonstrating efficacy in both hematological and solid malignancies. The review aims to explore the role of NPCs in cancer biology, focusing on their influence on gene expression, cancer progression, protein mislocalization, and the potential of targeted therapies such as nuclear export inhibitors and intelligent nanosystems in cancer treatment. Despite their significance and the number of research studies, the direct role of NPCs in carcinogenesis remains incompletely understood.
Collapse
Affiliation(s)
- Hanna Zaitsava
- Students’ Group of Cancer Cell Biology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (H.Z.); (E.B.)
| | - Martyna Gachowska
- Students’ Group of Cancer Cell Biology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (H.Z.); (E.B.)
| | - Elżbieta Bartoszewska
- Students’ Group of Cancer Cell Biology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (H.Z.); (E.B.)
| | - Alicja Kmiecik
- Department of Histology and Embryology, Wroclaw Medical University, 6a Chałubińskiego St., 50-368 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariškių g. 5, LT-08406 Vilnius, Lithuania
| |
Collapse
|
4
|
Gutiérrez-Gálvez L, García-Mendiola T, Lorenzo E, Nuez-Martinez M, Ocal C, Yan S, Teixidor F, Pinheiro T, Marques F, Viñas C. Compelling DNA intercalation through 'anion-anion' anti-coulombic interactions: boron cluster self-vehicles as promising anticancer agents. J Mater Chem B 2024; 12:9550-9565. [PMID: 39141010 DOI: 10.1039/d4tb01177e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Anticancer drugs inhibit DNA replication by intercalating between DNA base pairs, forming covalent bonds with nucleotide bases, or binding to the DNA groove. To develop safer drugs, novel molecular structures with alternative binding mechanisms are essential. Stable boron hydrides offer a promising alternative for cancer therapy, opening up additional options like boron neutron capture therapy based on 10B and thermal neutron beams or proton boron fusion therapy using 11B and proton beams. These therapies are more efficient when the boron compound is ideally located inside cancer cells, particularly in the nucleus. Current cancer treatments often utilize small, polycyclic, aromatic, planar molecules that intercalate between ds-DNA base pairs, requiring only a spacing of approximately 0.34 nm. In this paper, we demonstrate another type of intercalation. Notably, [3,3'-Fe(1,2-C2B9H11)2]-, ([o-FESAN]-), a compact 3D molecule measuring 1.1 nm × 0.6 nm, can as well intercalate by strong non-bonding interactions preferentially with guanine. Unlike known intercalators, which are positive or neutral, [o-FESAN]- is a negative species and when an [o-FESAN]- molecule approaches the negatively charged DNA phosphate chain an anion-anion interaction consistently anti-electrostatic via Ccluster-H⋯O-P bonds occurs. Then, when more molecules approach, an elongated outstandingly self-assembled structure of [o-FESAN]--[o-FESAN]- forms moving anions towards the interthread region to interact with base pairs and form aggregates of four [o-FESAN]- anions per base pair. These aggregates, in this environment, are generated by Ccluster-H⋯O-C, N-H⋯H-B and Ccluster-H⋯H-B interactions. The ferrabis(dicarbollide) boron-rich small molecules not only effectively penetrate the nucleus but also intercalate with ds-DNA, making them promising for cancer treatment. This amphiphilic anionic molecule, used as a carrier-free drug, can enhance radiotherapy in a multimodal perspective, providing healthcare professionals with improved tools for cancer treatment. This work demonstrates these findings with a plethora of techniques.
Collapse
Affiliation(s)
- Laura Gutiérrez-Gálvez
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Tania García-Mendiola
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Encarnación Lorenzo
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Miquel Nuez-Martinez
- Institut de Ciència de Materials de Barcelona (C.S.I.C.) Campus U.A.B, 08193 Bellaterra, Barcelona, Spain.
| | - Carmen Ocal
- Institut de Ciència de Materials de Barcelona (C.S.I.C.) Campus U.A.B, 08193 Bellaterra, Barcelona, Spain.
| | - Shunya Yan
- Institut de Ciència de Materials de Barcelona (C.S.I.C.) Campus U.A.B, 08193 Bellaterra, Barcelona, Spain.
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona (C.S.I.C.) Campus U.A.B, 08193 Bellaterra, Barcelona, Spain.
| | - Teresa Pinheiro
- iBB - Instituto de Bioengenharia e Biociências, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Fernanda Marques
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
- C2TN - Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (C.S.I.C.) Campus U.A.B, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
5
|
Gorav G, Khedekar V, Varier GK, Nandakumar P. Role of charge in enhanced nuclear transport and retention of graphene quantum dots. Sci Rep 2024; 14:19044. [PMID: 39152185 PMCID: PMC11329721 DOI: 10.1038/s41598-024-69809-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
The nuclear pore complexes on the nuclear membrane serve as the exclusive gateway for communication between the nucleus and the cytoplasm, regulating the transport of various molecules, including nucleic acids and proteins. The present work investigates the kinetics of the transport of negatively charged graphene quantum dots through nuclear membranes, focusing on quantifying their transport characteristics. Experiments are carried out in permeabilized HeLa cells using time-lapse confocal fluorescence microscopy. Our findings indicate that negatively charged graphene quantum dots exhibit rapid transport to the nuclei, involving two distinct transport pathways in the translocation process. Complementary experiments on the nuclear import and export of graphene quantum dots validate the bi-directionality of transport, as evidenced by comparable transport rates. The study also shows that the negatively charged graphene quantum dots possess favorable retention properties, underscoring their potential as drug carriers.
Collapse
Affiliation(s)
- Gorav Gorav
- Department of Physics, Birla Institute of Technology and Science, Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa, 403726, India
| | - Vrushali Khedekar
- Department of Physics, Birla Institute of Technology and Science, Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa, 403726, India
| | - Geetha K Varier
- Department of Physics, Birla Institute of Technology and Science, Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa, 403726, India
| | - P Nandakumar
- Department of Physics, Birla Institute of Technology and Science, Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa, 403726, India.
| |
Collapse
|
6
|
Zheng T, Zilman A. Kinetic cooperativity resolves bidirectional clogging within the nuclear pore complex. Biophys J 2024; 123:1085-1097. [PMID: 38640928 PMCID: PMC11079998 DOI: 10.1016/j.bpj.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/06/2023] [Accepted: 03/22/2024] [Indexed: 04/21/2024] Open
Abstract
As the main gatekeeper of the nucleocytoplasmic transport in eukaryotic cells, the nuclear pore complex (NPC) faces the daunting task of facilitating the bidirectional transport of a high volume of macromolecular cargoes while ensuring the selectivity, speed, and efficiency of this process. The competition between opposing nuclear import and export fluxes passing through the same channel is expected to pose a major challenge to transport efficiency. It has been suggested that phase separation-like radial segregation of import and export fluxes within the assembly of intrinsically disordered proteins that line the NPC pore could be a mechanism for ensuring efficient bidirectional transport. We examine the impact of radial segregation on the efficiency of bidirectional transport through the NPC using a coarse-grained computational model of the NPC. We find little evidence that radial segregation improves transport efficiency. By contrast, surprisingly, we find that NTR crowding may enhance rather than impair the efficiency of bidirectional transport although it decreases the available space in the pore. We identify mechanisms of this novel crowding-induced transport cooperativity through the self-regulation of cargo density and flux in the pore. These findings explain how the functional architecture of the NPC resolves the problem of efficient bidirectional transport, and provide inspiration for the alleviation of clogging in artificial selective nanopores.
Collapse
Affiliation(s)
- Tiantian Zheng
- Department of Physics, University of Toronto, Toronto, ON, Canada
| | - Anton Zilman
- Department of Physics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Raveh B, Eliasian R, Rashkovits S, Russel D, Hayama R, Sparks SE, Singh D, Lim R, Villa E, Rout MP, Cowburn D, Sali A. Integrative spatiotemporal map of nucleocytoplasmic transport. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.31.573409. [PMID: 38260487 PMCID: PMC10802240 DOI: 10.1101/2023.12.31.573409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The Nuclear Pore Complex (NPC) facilitates rapid and selective nucleocytoplasmic transport of molecules as large as ribosomal subunits and viral capsids. It is not clear how key emergent properties of this transport arise from the system components and their interactions. To address this question, we constructed an integrative coarse-grained Brownian dynamics model of transport through a single NPC, followed by coupling it with a kinetic model of Ran-dependent transport in an entire cell. The microscopic model parameters were fitted to reflect experimental data and theoretical information regarding the transport, without making any assumptions about its emergent properties. The resulting reductionist model is validated by reproducing several features of transport not used for its construction, such as the morphology of the central transporter, rates of passive and facilitated diffusion as a function of size and valency, in situ radial distributions of pre-ribosomal subunits, and active transport rates for viral capsids. The model suggests that the NPC functions essentially as a virtual gate whose flexible phenylalanine-glycine (FG) repeat proteins raise an entropy barrier to diffusion through the pore. Importantly, this core functionality is greatly enhanced by several key design features, including 'fuzzy' and transient interactions, multivalency, redundancy in the copy number of FG nucleoporins, exponential coupling of transport kinetics and thermodynamics in accordance with the transition state theory, and coupling to the energy-reliant RanGTP concentration gradient. These design features result in the robust and resilient rate and selectivity of transport for a wide array of cargo ranging from a few kilodaltons to megadaltons in size. By dissecting these features, our model provides a quantitative starting point for rationally modulating the transport system and its artificial mimics.
Collapse
|
8
|
Zhang L, Liu N, Wang X. Probe the nanoparticle-nucleus interaction via coarse-grained molecular model. Phys Chem Chem Phys 2023; 25:30319-30329. [PMID: 37908190 DOI: 10.1039/d3cp02981f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The present study reports on a computational model that systematically evaluates the effect of physical factors, including size, surface modification, and rigidity, on the nuclear uptake of nanoparticles (NPs). The NP-nucleus interaction is a crucial factor in biomedical applications such as drug delivery and cellular imaging. While experimental studies have provided evidence for the influence of size, shape, and surface modification on nuclear uptake, theoretical investigations on how these physical factors affect the entrance of NPs through the nuclear pore are lacking. Our results demonstrate that larger NPs require a higher amount of energy to enter the nucleus compared to smaller NPs. This highlights the importance of size as a critical factor in NP design for nuclear uptake. Additionally, surface modification of NPs can impact the nuclear uptake pathway, indicating the potential for tailored NP design for specific applications. Notably, our findings also reveal that the rigidity of NPs has a significant effect on the transport process. The interplay between physicochemical properties and nuclear pore is found to determine nuclear uptake efficiency. Taken together, our study provides new insights into the design of NPs for precise and controllable NP-nucleus interaction, with potential implications for the development of efficient and targeted drug delivery systems and imaging agents.
Collapse
Affiliation(s)
- Liuyang Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Ning Liu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, P. R. China.
| | - Xianqiao Wang
- College of Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
9
|
Huang SH, Parandhaman M, Farnia S, Kim J, Amemiya S. Nanoelectrochemistry at liquid/liquid interfaces for analytical, biological, and material applications. Chem Commun (Camb) 2023; 59:9575-9590. [PMID: 37458703 PMCID: PMC10416082 DOI: 10.1039/d3cc01982a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Herein, we feature our recent efforts toward the development and application of nanoelectrochemistry at liquid/liquid interfaces, which are also known as interfaces between two immiscible electrolyte solutions (ITIES). Nanopipets, nanopores, and nanoemulsions are developed to create the nanoscale ITIES for the quantitative electrochemical measurement of ion transfer, electron transfer, and molecular transport across the interface. The nanoscale ITIES serves as an electrochemical nanosensor to enable the selective detection of various ions and molecules as well as high-resolution chemical imaging based on scanning electrochemical microscopy. The powerful nanoelectroanalytical methods will be useful for biological and material applications as illustrated by in situ studies of solid-state nanopores, nuclear pore complexes, living bacteria, and advanced nanoemulsions. These studies provide unprecedented insights into the chemical reactivity of important biological and material systems even at the single nanostructure level.
Collapse
Affiliation(s)
- Siao-Han Huang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | | | - Solaleh Farnia
- Department of Chemistry, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Jiyeon Kim
- Department of Chemistry, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
10
|
Liu Z, Liu G, Ha DP, Wang J, Xiong M, Lee AS. ER chaperone GRP78/BiP translocates to the nucleus under stress and acts as a transcriptional regulator. Proc Natl Acad Sci U S A 2023; 120:e2303448120. [PMID: 37487081 PMCID: PMC10400976 DOI: 10.1073/pnas.2303448120] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/08/2023] [Indexed: 07/26/2023] Open
Abstract
Cancer cells are commonly subjected to endoplasmic reticulum (ER) stress. To gain survival advantage, cancer cells exploit the adaptive aspects of the unfolded protein response such as upregulation of the ER luminal chaperone GRP78. The finding that when overexpressed, GRP78 can escape to other cellular compartments to gain new functions regulating homeostasis and tumorigenesis represents a paradigm shift. Here, toward deciphering the mechanisms whereby GRP78 knockdown suppresses EGFR transcription, we find that nuclear GRP78 is prominent in cancer and stressed cells and uncover a nuclear localization signal critical for its translocation and nuclear activity. Furthermore, nuclear GRP78 can regulate expression of genes and pathways, notably those important for cell migration and invasion, by interacting with and inhibiting the activity of the transcriptional repressor ID2. Our study reveals a mechanism for cancer cells to respond to ER stress via transcriptional regulation mediated by nuclear GRP78 to adopt an invasive phenotype.
Collapse
Affiliation(s)
- Ze Liu
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA90033
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Guanlin Liu
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA90033
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Dat P. Ha
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA90033
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Justin Wang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA92037
| | - Min Xiong
- Department of System Biology, Beckman Research Institute, City of Hope, Duarte, CA91010
| | - Amy S. Lee
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA90033
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| |
Collapse
|
11
|
Zheng T, Zilman A. Self-regulation of the nuclear pore complex enables clogging-free crowded transport. Proc Natl Acad Sci U S A 2023; 120:e2212874120. [PMID: 36757893 PMCID: PMC9963888 DOI: 10.1073/pnas.2212874120] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/05/2023] [Indexed: 02/10/2023] Open
Abstract
Nuclear pore complexes (NPCs) are the main conduits for macromolecular transport into and out of the nucleus of eukaryotic cells. The central component of the NPC transport mechanism is an assembly of intrinsically disordered proteins (IDPs) that fills the NPC channel. The channel interior is further crowded by large numbers of simultaneously translocating cargo-carrying and free transport proteins. How the NPC can efficiently, rapidly, and selectively transport varied cargoes in such crowded conditions remains ill understood. Past experimental results suggest that the NPC is surprisingly resistant to clogging and that transport may even become faster and more efficient as the concentration of transport protein increases. To understand the mechanisms behind these puzzling observations, we construct a computational model of the NPC comprising only a minimal set of commonly accepted consensus features. This model qualitatively reproduces the previous experimental results and identifies self-regulating mechanisms that relieve crowding. We show that some of the crowding-alleviating mechanisms-such as preventing saturation of the bulk flux-are "robust" and rely on very general properties of crowded dynamics in confined channels, pertaining to a broad class of selective transport nanopores. By contrast, the counterintuitive ability of the NPC to leverage crowding to achieve more efficient single-molecule translocation is "fine-tuned" and relies on the particular spatial architecture of the IDP assembly in the NPC channel.
Collapse
Affiliation(s)
- Tiantian Zheng
- Department of Physics, University of Toronto, Toronto, ONM5S 1A7, Canada
| | - Anton Zilman
- Department of Physics, University of Toronto, Toronto, ONM5S 1A7, Canada
- Institute for Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
| |
Collapse
|
12
|
Vovk A, Zilman A. Effects of Sequence Composition, Patterning and Hydrodynamics on the Conformation and Dynamics of Intrinsically Disordered Proteins. Int J Mol Sci 2023; 24:1444. [PMID: 36674958 PMCID: PMC9867189 DOI: 10.3390/ijms24021444] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 01/13/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) perform diverse functions in cellular organization, transport and signaling. Unlike the well-defined structures of the classical natively folded proteins, IDPs and IDRs dynamically span large conformational and structural ensembles. This dynamic disorder impedes the study of the relationship between the amino acid sequences of the IDPs and their spatial structures and dynamics, with different experimental techniques often offering seemingly contradictory results. Although experimental and theoretical evidence indicates that some IDP properties can be understood based on their average biophysical properties and amino acid composition, other aspects of IDP function are dictated by the specifics of the amino acid sequence. We investigate the effects of several key variables on the dimensions and the dynamics of IDPs using coarse-grained polymer models. We focus on the sequence "patchiness" informed by the sequence and biophysical properties of different classes of IDPs-and in particular FG nucleoporins of the nuclear pore complex (NPC). We show that the sequence composition and patterning are well reflected in the global conformational variables such as the radius of gyration and hydrodynamic radius, while the end-to-end distance and dynamics are highly sequence-specific. We find that in good solvent conditions highly heterogeneous sequences of IDPs can be well mapped onto averaged minimal polymer models for the purpose of prediction of the IDPs dimensions and dynamic relaxation times. The coarse-grained simulations are in a good agreement with the results of atomistic MD. We discuss the implications of these results for the interpretation of the recent experimental measurements, and for the further applications of mesoscopic models of FG nucleoporins and IDPs more broadly.
Collapse
Affiliation(s)
- Andrei Vovk
- Department of Physics, University of Toronto, 60 St George Street, Toronto, ON M1M 2P7, Canada
| | - Anton Zilman
- Department of Physics, University of Toronto, 60 St George Street, Toronto, ON M1M 2P7, Canada
- Institute for Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
13
|
Dubey AK, Kumar P, Mandal D, Ravichandiran V, Singh SK. An introduction to dynamic nucleoporins in Leishmania species: Novel targets for tropical-therapeutics. J Parasit Dis 2022; 46:1176-1191. [PMID: 36457769 PMCID: PMC9606170 DOI: 10.1007/s12639-022-01515-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
As an ailment, leishmaniasis is still an incessant challenge in neglected tropical diseases and neglected infections of poverty worldwide. At present, the diagnosis and treatment to combat Leishmania tropical infections are not substantial remedies and require advanced & specific research. Therefore, there is a need for a potential novel target to overcome established medicament modalities' limitations in pathogenicity. In this review, we proposed a few ab initio findings in nucleoporins of nuclear pore complex in Leishmania sp. concerning other infectious protists. So, through structural analysis and dynamics studies, we hypothesize the nuclear pore molecular machinery & functionality. The gatekeepers Nups, export of mRNA, mitotic spindle formation are salient features in cellular mechanics and this is regulated by dynamic nucleoporins. Here, diverse studies suggest that Nup93/NIC96, Nup155/Nup144, Mlp1/Mlp2/Tpr of Leishmania Species can be a picked out marker for diagnostic, immune-modulation, and novel drug targets. In silico prediction of nucleoporin-functional interactors such as NUP54/57, RNA helicase, Ubiquitin-protein ligase, Exportin 1, putative T-lymphocyte triggering factor, and 9 uncharacterized proteins suggest few more noble targets. The novel drug targeting to importins/exportins of Leishmania sp. and defining mechanism of Leptomycin-B, SINE compounds, Curcumins, Selinexor can be an arc-light in therapeutics. The essence of the review in Leishmania's nucleoporins is to refocus our research on noble molecular targets for tropical therapeutics. Supplementary Information The online version contains supplementary material available at 10.1007/s12639-022-01515-0.
Collapse
Affiliation(s)
- Amit Kumar Dubey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali, Bihar 844102 India
- Parasite Immunology Lab, Microbiology Department, Indian Council of Medical Research (ICMR)-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar 800007 India
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali, Bihar 844102 India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali, Bihar 844102 India
| | - V. Ravichandiran
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali, Bihar 844102 India
| | - Shubhankar Kumar Singh
- Parasite Immunology Lab, Microbiology Department, Indian Council of Medical Research (ICMR)-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar 800007 India
| |
Collapse
|
14
|
Andersson J, Svirelis J, Medin J, Järlebark J, Hailes R, Dahlin A. Pore performance: artificial nanoscale constructs that mimic the biomolecular transport of the nuclear pore complex. NANOSCALE ADVANCES 2022; 4:4925-4937. [PMID: 36504753 PMCID: PMC9680827 DOI: 10.1039/d2na00389a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/12/2022] [Indexed: 06/17/2023]
Abstract
The nuclear pore complex is a nanoscale assembly that achieves shuttle-cargo transport of biomolecules: a certain cargo molecule can only pass the barrier if it is attached to a shuttle molecule. In this review we summarize the most important efforts aiming to reproduce this feature in artificial settings. This can be achieved by solid state nanopores that have been functionalized with the most important proteins found in the biological system. Alternatively, the nanopores are chemically modified with synthetic polymers. However, only a few studies have demonstrated a shuttle-cargo transport mechanism and due to cargo leakage, the selectivity is not comparable to that of the biological system. Other recent approaches are based on DNA origami, though biomolecule transport has not yet been studied with these. The highest selectivity has been achieved with macroscopic gels, but they are yet to be scaled down to nano-dimensions. It is concluded that although several interesting studies exist, we are still far from achieving selective and efficient artificial shuttle-cargo transport of biomolecules. Besides being of fundamental interest, such a system could be potentially useful in bioanalytical devices.
Collapse
Affiliation(s)
- John Andersson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology 41296 Gothenburg Sweden
| | - Justas Svirelis
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology 41296 Gothenburg Sweden
| | - Jesper Medin
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology 41296 Gothenburg Sweden
| | - Julia Järlebark
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology 41296 Gothenburg Sweden
| | - Rebekah Hailes
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology 41296 Gothenburg Sweden
| | - Andreas Dahlin
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology 41296 Gothenburg Sweden
| |
Collapse
|
15
|
Qin S, Nap RJ, Huang K, Szleifer I. Influence of Membrane Permittivity on Charge Regulation of Weak Polyelectrolytes End-Tethered in Nanopores. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shiyi Qin
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Rikkert J. Nap
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Kai Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
16
|
Winogradoff D, Chou HY, Maffeo C, Aksimentiev A. Percolation transition prescribes protein size-specific barrier to passive transport through the nuclear pore complex. Nat Commun 2022; 13:5138. [PMID: 36050301 PMCID: PMC9437005 DOI: 10.1038/s41467-022-32857-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/18/2022] [Indexed: 11/19/2022] Open
Abstract
Nuclear pore complexes (NPCs) control biomolecular transport in and out of the nucleus. Disordered nucleoporins in the complex's pore form a permeation barrier, preventing unassisted transport of large biomolecules. Here, we combine coarse-grained simulations of experimentally derived NPC structures with a theoretical model to determine the microscopic mechanism of passive transport. Brute-force simulations of protein transport reveal telegraph-like behavior, where prolonged diffusion on one side of the NPC is interrupted by rapid crossings to the other. We rationalize this behavior using a theoretical model that reproduces the energetics and kinetics of permeation solely from statistics of transient voids within the disordered mesh. As the protein size increases, the mesh transforms from a soft to a hard barrier, enabling orders-of-magnitude reduction in permeation rate for proteins beyond the percolation size threshold. Our model enables exploration of alternative NPC architectures and sets the stage for uncovering molecular mechanisms of facilitated nuclear transport.
Collapse
Affiliation(s)
- David Winogradoff
- grid.35403.310000 0004 1936 9991Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA ,grid.35403.310000 0004 1936 9991Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Han-Yi Chou
- grid.35403.310000 0004 1936 9991Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Christopher Maffeo
- grid.35403.310000 0004 1936 9991Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA ,grid.35403.310000 0004 1936 9991Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
17
|
Zuo X, Zhu C, Xian W, Meng QW, Guo Q, Zhu X, Wang S, Wang Y, Ma S, Sun Q. Thermo-Osmotic Energy Conversion Enabled by Covalent-Organic-Framework Membranes with Record Output Power Density. Angew Chem Int Ed Engl 2022; 61:e202116910. [PMID: 35179288 DOI: 10.1002/anie.202116910] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Indexed: 01/15/2023]
Abstract
A vast amount of energy can be extracted from the untapped low-grade heat from sources below 100 °C and the Gibbs free energy from salinity gradients. Therefore, a process for simultaneous and direct conversion of these energies into electricity using permselective membranes was developed in this study. These membranes screen charges of ion flux driven by the combined salinity and temperature gradients to achieve thermo-osmotic energy conversion. Increasing the charge density in the pore channels enhanced the permselectivity and ion conductance, leading to a larger osmotic voltage and current. A 14-fold increase in power density was achieved by adjusting the ionic site population of covalent organic framework (COF) membranes. The optimal COF membrane was operated under simulated estuary conditions at a temperature difference of 60 K, which yielded a power density of ≈231 W m-2 , placing it among the best performing upscaled membranes. The developed system can pave the way to the utilization of the enormous supply of untapped osmotic power and low-grade heat energy, indicating the tremendous potential of using COF membranes for energy conversion applications.
Collapse
Affiliation(s)
- Xiuhui Zuo
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Changjia Zhu
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, USA
| | - Weipeng Xian
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qing-Wei Meng
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qing Guo
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xincheng Zhu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Sai Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yeqing Wang
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310028, China
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, USA
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
18
|
Chiarpotti MV, Longo GS, Del Pópolo MG. Voltage-Induced Adsorption of Cationic Nanoparticles on Lipid Membranes. J Phys Chem B 2022; 126:2230-2240. [PMID: 35293749 DOI: 10.1021/acs.jpcb.1c10499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We evaluate the effects of an applied electric potential on the adsorption/desorption mechanism of cationic nanoparticles on lipid membranes. By applying a molecular theory that allows calculating nanoparticle adsorption isotherms and free-energy profiles, we identify the conditions under which the external voltage promotes the adsorption of nanoparticles coated with cell penetrating peptides. We consider symmetric and asymmetric membranes made of neutral and acidic lipids and cover a wide range of environmental conditions (external voltage, pH, salt, and nanoparticles concentration) relevant to both electrochemical experiments and biological systems. For neutral membranes at low concentration of salt, a moderate external voltage (<100 mV) induces spontaneous adsorption of nanoparticles. For membranes containing a small fraction of anionic lipids, the external potential has little effect on the interfacial concentration of nanoparticles, and the membrane surface charge dominates the adsorption behavior. In all cases, the membrane-particle effective interactions, and its dependence on the external bias, are strongly modulated by the concentration of salt. At 100 mM NaCl, the external potential has almost no effect on the adsorption free energy profiles. In general, we provide a theoretical framework to evaluate the conditions under which nanoparticles are thermodynamically adsorbed or kinetically restrained to the vicinity of the membrane, and to assess the impact of the nanoparticles on the interfacial electrostatic properties.
Collapse
Affiliation(s)
- María V Chiarpotti
- Instituto Interdisciplinario de Ciencias Básicas (ICB), CONICET & Facultad de Ciencias Exactas y Naturales, UNCUYO, Padre Contreras 1300, Mendoza, Argentina, C.P. 5500
| | - Gabriel S Longo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) UNLP-CONICET, Diagonal 113 & 64 S/N, La Plata, Argentina, C.P. B1904DPI
| | - Mario G Del Pópolo
- Instituto Interdisciplinario de Ciencias Básicas (ICB), CONICET & Facultad de Ciencias Exactas y Naturales, UNCUYO, Padre Contreras 1300, Mendoza, Argentina, C.P. 5500
| |
Collapse
|
19
|
Matsuda A, Mofrad MRK. On the nuclear pore complex and its emerging role in cellular mechanotransduction. APL Bioeng 2022; 6:011504. [PMID: 35308827 PMCID: PMC8916845 DOI: 10.1063/5.0080480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
The nuclear pore complex (NPC) is a large protein assembly that perforates the nuclear envelope and provides a sole gateway for traffic between the cytoplasm and the nucleus. The NPC controls the nucleocytoplasmic transport by selectively allowing cargoes such as proteins and mRNA to pass through its central channel, thereby playing a vital role in protecting the nuclear component and regulating gene expression and protein synthesis. The selective transport through the NPC originates from its exquisite molecular structure featuring a large scaffold and the intrinsically disordered central channel domain, but the exact mechanism underlying the selective transport remains elusive and is the subject of various, often conflicting, hypotheses. Moreover, recent studies have suggested a new role for the NPC as a mechanosensor, where the NPC changes its channel diameter depending on the nuclear envelope tension, altering the molecular transportability through this nanopore. In this mini-review, we summarize the current understandings of the selective nature of the NPC and discuss its emerging role in cellular mechanotransduction.
Collapse
Affiliation(s)
- Atsushi Matsuda
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
20
|
Sun Q, Zuo X, Zhu C, Xian W, Meng QW, Guo Q, Zhu X, Wang S, Wang Y, Ma S. Thermo‐Osmotic Energy Conversion Enabled by Covalent‐Organic‐Framework Membranes with Record Output Power Density. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qi Sun
- Zhejiang University College of Chemical and Biological Engineering 310007 Hangzhou CHINA
| | - Xiuhui Zuo
- Zhejiang University College of Chemical and Biological Engineering CHINA
| | - Changjia Zhu
- University of North Texas Department of Chemistry 1508 W Mulberry St DentonDenton 76203-1277 Denton UNITED STATES
| | - Weipeng Xian
- Zhejiang University College of Chemical and Biological Engineering CHINA
| | - Qing-Wei Meng
- Zhejiang University College of Chemical and Biological Engineering CHINA
| | - Qing Guo
- Zhejiang University College of Chemical and Biological Engineering CHINA
| | - Xincheng Zhu
- Zhejiang University College of Chemical and Biological Engineering CHINA
| | - Sai Wang
- Zhejiang University College of Chemical and Biological Engineering CHINA
| | - Yeqing Wang
- Zhejiang University Department of Chemistry CHINA
| | - Shengqian Ma
- University of North Texas Department of Chemistry UNITED STATES
| |
Collapse
|
21
|
Buades AB, Pereira LCJ, Vieira BJC, Cerdeira AC, Waerenborgh JC, Pinheiro T, Alves de Matos AP, Pinto CG, Guerreiro J, Mendes F, Valic S, Teixidor F, Vinas C, Marques FM. Mössbauer effect using 57Fe-ferrabisdicarbollide ([o-57FESAN]-): a glance into the potential of a low-dose approach for glioblastoma radiotherapy. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01513c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although a variety of cancers is initially susceptible to chemotherapy, they eventually develop multi-drug resistance. To overcome this situation, more effective and selective treatments are necessary by using anti-tumour agents...
Collapse
|
22
|
Qin S, Huang K, Szleifer I. Design of Multifunctional Nanopore Using Polyampholyte Brush with Composition Gradient. ACS NANO 2021; 15:17678-17688. [PMID: 34708653 DOI: 10.1021/acsnano.1c05543] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular organizations and charge patterns inside biological nanopores are optimized by evolution to enhance ionic and molecular transport. Inspired by the nuclear pore complex that employs asymmetrically arranged disordered proteins for its gating, we here design an artificial nanopore coated by an asymmetric polyampholyte brush as a model system to study the asymmetric mass transport under nanoconfinement. A nonequilibrium steady-state molecular theory is developed to account for the intricate charge regulation effect of the weak polyampholyte and to address the coupling between the polymer conformation and the external electric field. On the basis of this state-of-the-art theoretical method, we present a comprehensive theoretical description of the stimuli-responsive structural behaviors and transport properties inside the nanopore with all molecular details considered. Our model demonstrates that by incorporating a gradient of pH sensitivity into the polymer coatings of the nanopore, a variety of asymmetric charge patterns and functional structures can be achieved, in a pH-responsive manner that allows for multiple functions to be implemented into the designed system. The asymmetric charge pattern inside the nanopore leads to an electrostatic trap for major current carriers, which turns the nanopore into an ionic rectifier with a rectification factor above 1000 at optimized pH and salt concentration. Our theory further predicts that the nanopore design behaves like a double-gated nanofluidic device with pH-triggered opening of the gates, which can serve as an ion pump and pH-responsive molecular filter. These results deepen our understanding of asymmetric transport in nanoconfined systems and provide guidelines for designing polymer-coated smart nanopores.
Collapse
Affiliation(s)
- Shiyi Qin
- Department of Biomedical Engineering, Department of Chemistry, and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Kai Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Igal Szleifer
- Department of Biomedical Engineering, Department of Chemistry, and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
23
|
Corti HR, Appignanesi GA, Barbosa MC, Bordin JR, Calero C, Camisasca G, Elola MD, Franzese G, Gallo P, Hassanali A, Huang K, Laria D, Menéndez CA, de Oca JMM, Longinotti MP, Rodriguez J, Rovere M, Scherlis D, Szleifer I. Structure and dynamics of nanoconfined water and aqueous solutions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:136. [PMID: 34779954 DOI: 10.1140/epje/s10189-021-00136-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
This review is devoted to discussing recent progress on the structure, thermodynamic, reactivity, and dynamics of water and aqueous systems confined within different types of nanopores, synthetic and biological. Currently, this is a branch of water science that has attracted enormous attention of researchers from different fields interested to extend the understanding of the anomalous properties of bulk water to the nanoscopic domain. From a fundamental perspective, the interactions of water and solutes with a confining surface dramatically modify the liquid's structure and, consequently, both its thermodynamical and dynamical behaviors, breaking the validity of the classical thermodynamic and phenomenological description of the transport properties of aqueous systems. Additionally, man-made nanopores and porous materials have emerged as promising solutions to challenging problems such as water purification, biosensing, nanofluidic logic and gating, and energy storage and conversion, while aquaporin, ion channels, and nuclear pore complex nanopores regulate many biological functions such as the conduction of water, the generation of action potentials, and the storage of genetic material. In this work, the more recent experimental and molecular simulations advances in this exciting and rapidly evolving field will be reported and critically discussed.
Collapse
Affiliation(s)
- Horacio R Corti
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina.
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - Marcia C Barbosa
- Institute of Physics, Federal University of Rio Grande do Sul, 91501-970, Porto Alegre, Brazil
| | - J Rafael Bordin
- Department of Physics, Institute of Physics and Mathematics, 96050-500, Pelotas, RS, Brazil
| | - Carles Calero
- Secció de Física Estadística i Interdisciplinària - Departament de Física de la Matèria Condensada, Universitat de Barcelona & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Gaia Camisasca
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - M Dolores Elola
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
| | - Giancarlo Franzese
- Secció de Física Estadística i Interdisciplinària - Departament de Física de la Matèria Condensada, Universitat de Barcelona & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Paola Gallo
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - Ali Hassanali
- Condensed Matter and Statistical Physics Section (CMSP), The International Center for Theoretical Physics (ICTP), Trieste, Italy
| | - Kai Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Daniel Laria
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cintia A Menéndez
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - Joan M Montes de Oca
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - M Paula Longinotti
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Javier Rodriguez
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
- Escuela de Ciencia y Tecnología, Universidad Nacional de General San Martín, San Martín, Buenos Aires, Argentina
| | - Mauro Rovere
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - Damián Scherlis
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Igal Szleifer
- Biomedical Engineering Department, Northwestern University, Evanston, USA
| |
Collapse
|
24
|
Peyro M, Dickson AM, Mofrad MRK. Nucleoporins' exclusive amino acid sequence features regulate their transient interaction with and selectivity of cargo complexes in the nuclear pore. Mol Biol Cell 2021; 32:ar31. [PMID: 34473567 PMCID: PMC8693974 DOI: 10.1091/mbc.e21-04-0161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Nucleocytoplasmic traffic of nucleic acids and proteins across the nuclear envelop via the nuclear pore complexes (NPCs) is vital for eukaryotic cells. NPCs screen transported macromolecules based on their morphology and surface chemistry. This selective nature of the NPC-mediated traffic is essential for regulating the fundamental functions of the nucleus, such as gene regulation, protein synthesis, and mechanotransduction. Despite the fundamental role of the NPC in cell and nuclear biology, the detailed mechanisms underlying how the NPC works have remained largely unknown. The critical components of NPCs enabling their selective barrier function are the natively unfolded phenylalanine- and glycine-rich proteins called “FG-nucleoporins” (FG Nups). These intrinsically disordered proteins are tethered to the inner wall of the NPC, and together form a highly dynamic polymeric meshwork whose physicochemical conformation has been the subject of intense debate. We observed that specific sequence features (called largest positive like-charge regions, or lpLCRs), characterized by extended subsequences that only possess positively charged amino acids, significantly affect the conformation of FG Nups inside the NPC. Here we investigate how the presence of lpLCRs affects the interactions between FG Nups and their interactions with the cargo complex. We combine coarse-grained molecular dynamics simulations with time-resolved force distribution analysis to disordered proteins to explore the behavior of the system. Our results suggest that the number of charged residues in the lpLCR domain directly governs the average distance between Phe residues and the intensity of interaction between them. As a result, the number of charged residues within lpLCR determines the balance between the hydrophobic interaction and the electrostatic repulsion and governs how dense and disordered the hydrophobic network formed by FG Nups is. Moreover, changing the number of charged residues in an lpLCR domain can interfere with ultrafast and transient interactions between FG Nups and the cargo complex.
Collapse
Affiliation(s)
- Mohaddeseh Peyro
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720
| | - Andrew M Dickson
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720.,Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
25
|
Lennon KM, Soheilypour M, Peyro M, Wakefield DL, Choo GE, Mofrad MRK, Jovanovic-Talisman T. Characterizing Binding Interactions That Are Essential for Selective Transport through the Nuclear Pore Complex. Int J Mol Sci 2021; 22:10898. [PMID: 34639238 PMCID: PMC8509584 DOI: 10.3390/ijms221910898] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Specific macromolecules are rapidly transported across the nuclear envelope via the nuclear pore complex (NPC). The selective transport process is facilitated when nuclear transport receptors (NTRs) weakly and transiently bind to intrinsically disordered constituents of the NPC, FG Nups. These two types of proteins help maintain the selective NPC barrier. To interrogate their binding interactions in vitro, we deployed an NPC barrier mimic. We created the stationary phase by covalently attaching fragments of a yeast FG Nup called Nsp1 to glass coverslips. We used a tunable mobile phase containing NTR, nuclear transport factor 2 (NTF2). In the stationary phase, three main factors affected binding: the number of FG repeats, the charge of fragments, and the fragment density. We also identified three main factors affecting binding in the mobile phase: the avidity of the NTF2 variant for Nsp1, the presence of nonspecific proteins, and the presence of additional NTRs. We used both experimentally determined binding parameters and molecular dynamics simulations of Nsp1FG fragments to create an agent-based model. The results suggest that NTF2 binding is negatively cooperative and dependent on the density of Nsp1FG molecules. Our results demonstrate the strengths of combining experimental and physical modeling approaches to study NPC-mediated transport.
Collapse
Affiliation(s)
- Kathleen M. Lennon
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (K.M.L.); (D.L.W.); (G.E.C.)
| | - Mohammad Soheilypour
- Department of Bioengineering and Mechanical Engineering, Molecular Cell Biomechanics Laboratory, University of California, Berkeley, CA 94720, USA; (M.S.); (M.P.)
| | - Mohaddeseh Peyro
- Department of Bioengineering and Mechanical Engineering, Molecular Cell Biomechanics Laboratory, University of California, Berkeley, CA 94720, USA; (M.S.); (M.P.)
| | - Devin L. Wakefield
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (K.M.L.); (D.L.W.); (G.E.C.)
| | - Grace E. Choo
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (K.M.L.); (D.L.W.); (G.E.C.)
| | - Mohammad R. K. Mofrad
- Department of Bioengineering and Mechanical Engineering, Molecular Cell Biomechanics Laboratory, University of California, Berkeley, CA 94720, USA; (M.S.); (M.P.)
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tijana Jovanovic-Talisman
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (K.M.L.); (D.L.W.); (G.E.C.)
| |
Collapse
|
26
|
Nuez-Martínez M, Pedrosa L, Martinez-Rovira I, Yousef I, Diao D, Teixidor F, Stanzani E, Martínez-Soler F, Tortosa A, Sierra À, Gonzalez JJ, Viñas C. Synchrotron-Based Fourier-Transform Infrared Micro-Spectroscopy (SR-FTIRM) Fingerprint of the Small Anionic Molecule Cobaltabis(dicarbollide) Uptake in Glioma Stem Cells. Int J Mol Sci 2021; 22:9937. [PMID: 34576098 PMCID: PMC8466526 DOI: 10.3390/ijms22189937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/16/2022] Open
Abstract
The anionic cobaltabis (dicarbollide) [3,3'-Co(1,2-C2B9H11)2]-, [o-COSAN]-, is the most studied icosahedral metallacarborane. The sodium salts of [o-COSAN]- could be an ideal candidate for the anti-cancer treatment Boron Neutron Capture Therapy (BNCT) as it possesses the ability to readily cross biological membranes thereby producing cell cycle arrest in cancer cells. BNCT is a cancer therapy based on the potential of 10B atoms to produce α particles that cross tissues in which the 10B is accumulated without damaging the surrounding healthy tissues, after being irradiated with low energy thermal neutrons. Since Na[o-COSAN] displays a strong and characteristic ν(B-H) frequency in the infrared range 2.600-2.500 cm-1, we studied the uptake of Na[o-COSAN] followed by its interaction with biomolecules and its cellular biodistribution in two different glioma initiating cells (GICs), mesenchymal and proneural respectively, by using Synchrotron Radiation-Fourier Transform Infrared (FTIR) micro-spectroscopy (SR-FTIRM) facilities at the MIRAS Beamline of ALBA synchrotron light source. The spectroscopic data analysis from the bands in the regions of DNA, proteins, and lipids permitted to suggest that after its cellular uptake, Na[o-COSAN] strongly interacts with DNA strings, modifies proteins secondary structure and also leads to lipid saturation. The mapping suggests the nuclear localization of [o-COSAN]-, which according to reported Monte Carlo simulations may result in a more efficient cell-killing effect compared to that in a uniform distribution within the entire cell. In conclusion, we show pieces of evidence that at low doses, [o-COSAN]- translocates GIC cells' membranes and it alters the physiology of the cells, suggesting that Na[o-COSAN] is a promising agent to BNCT for glioblastoma cells.
Collapse
Affiliation(s)
- Miquel Nuez-Martínez
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.N.-M.); (F.T.)
| | - Leire Pedrosa
- Laboratory of Experimental Oncological Neurosurgery, Neurosurgery Service, Hospital Clinic de Barcelona—FCRB, 08036 Barcelona, Spain; (L.P.); (D.D.); (J.J.G.)
| | - Immaculada Martinez-Rovira
- Ionizing Radiation Research Group (GRRI), Physics Department, Universitat Autònoma de Barcelona (UAB), Avinguda de l’Eix Central, Edifici C. Campus de la UAB, 08193 Cerdanyola del Vallès, Spain;
- ALBA-CELLS Synchrotron, MIRAS Beamline, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Spain;
| | - Ibraheem Yousef
- ALBA-CELLS Synchrotron, MIRAS Beamline, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Spain;
| | - Diouldé Diao
- Laboratory of Experimental Oncological Neurosurgery, Neurosurgery Service, Hospital Clinic de Barcelona—FCRB, 08036 Barcelona, Spain; (L.P.); (D.D.); (J.J.G.)
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.N.-M.); (F.T.)
| | - Elisabetta Stanzani
- Laboratory of Pharmacology and Brain Pathology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy;
| | - Fina Martínez-Soler
- Apoptosis and Cancer Unit, Department of Physiological Sciences, IDIBELL, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907 L’Hospitalet del Llobregat, Spain; (F.M.-S.); (A.T.)
| | - Avelina Tortosa
- Apoptosis and Cancer Unit, Department of Physiological Sciences, IDIBELL, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907 L’Hospitalet del Llobregat, Spain; (F.M.-S.); (A.T.)
| | - Àngels Sierra
- Laboratory of Experimental Oncological Neurosurgery, Neurosurgery Service, Hospital Clinic de Barcelona—FCRB, 08036 Barcelona, Spain; (L.P.); (D.D.); (J.J.G.)
| | - José Juan Gonzalez
- Laboratory of Experimental Oncological Neurosurgery, Neurosurgery Service, Hospital Clinic de Barcelona—FCRB, 08036 Barcelona, Spain; (L.P.); (D.D.); (J.J.G.)
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.N.-M.); (F.T.)
| |
Collapse
|
27
|
Matsuda A, Mofrad MRK. Free energy calculations shed light on the nuclear pore complex's selective barrier nature. Biophys J 2021; 120:3628-3640. [PMID: 34339633 PMCID: PMC8456294 DOI: 10.1016/j.bpj.2021.07.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/27/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022] Open
Abstract
The nuclear pore complex (NPC) is the exclusive gateway for traffic control across the nuclear envelope. Although smaller cargoes (less than 5-9 nm in size) can freely diffuse through the NPC, the passage of larger cargoes is restricted to those accompanied by nuclear transport receptors (NTRs). This selective barrier nature of the NPC is putatively associated with the intrinsically disordered, phenylalanine-glycine repeat-domains containing nucleoporins, termed FG-Nups. The precise mechanism underlying how FG-Nups carry out such an exquisite task at high throughputs has, however, remained elusive and the subject of various hypotheses. From the thermodynamics perspective, free energy analysis can be a way to determine cargo's transportability because the traffic through the NPC must be in the direction of reducing the free energy. In this study, we developed a computational model to evaluate the free energy composed of the conformational entropy of FG-Nups and the energetic gain associated with binding interactions between FG-Nups and NTRs and investigated whether these physical features can be the basis of NPC's selectivity. Our results showed that the reduction in conformational entropy by inserting a cargo into the NPC increased the free energy by an amount substantially greater than the thermal energy (≫kBT), whereas the free energy change was negligible (
Collapse
Affiliation(s)
- Atsushi Matsuda
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California.
| |
Collapse
|
28
|
Missoni L, Tagliazucchi M. Body centered tetragonal nanoparticle superlattices: why and when they form? NANOSCALE 2021; 13:14371-14381. [PMID: 34473819 DOI: 10.1039/d0nr08312g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Body centered tetragonal (BCT) phases are structural intermediates between body centered cubic (BCC) and face centered cubic (FCC) structures. However, BCC ↔ FCC transitions may or may not involve a stable BCT intermediate. Interestingly, nanoparticle superlattices usually crystallize in BCT structures, but this phase is much less frequent for colloidal crystals of micrometer-sized particles. Two origins have been proposed for the formation of BCT NPSLs: (i) the influence of the substrate on which the nanoparticle superlattice is deposited, and (ii) non-spherical nanoparticle shapes, combined with the fact that different crystal facets have different ligand organizations. Notably, none of these two mechanisms alone is able to explain the set of available experimental observations. In this work, these two hypotheses were independently tested using a recently developed molecular theory for nanoparticle superlattices that explicitly captures the degrees of freedom associated with the ligands on the nanoparticle surface and the crystallization solvent. We show that the presence of a substrate can stabilize the BCT structure for spherical nanoparticles, but only for very specific combinations of parameters. On the other hand, a truncated-octahedron nanoparticle shape strongly stabilizes BCT structures in a wide region of the phase diagram. In the latter case, we show that the stabilization of BCT results from the geometry of the system and it does not require different crystal facets to have different ligand properties, as previously proposed. These results shed light on the mechanisms of BCT stabilization in nanoparticle superlattices and provide guidelines to control its formation.
Collapse
Affiliation(s)
- Leandro Missoni
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina.
- CONICET - Universidad de Buenos Aires. Instituto de Química de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
| | - Mario Tagliazucchi
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina.
- CONICET - Universidad de Buenos Aires. Instituto de Química de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
| |
Collapse
|
29
|
Peyro M, Soheilypour M, Nibber VS, Dickson AM, Mofrad MRK. FG nucleoporins feature unique patterns that distinguish them from other IDPs. Biophys J 2021; 120:3382-3391. [PMID: 34237287 PMCID: PMC8391076 DOI: 10.1016/j.bpj.2021.06.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 05/14/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
FG nucleoporins (FG Nups) are intrinsically disordered proteins and are the putative regulators of nucleocytoplasmic transport. They allow fast, yet selective, transport of molecules through the nuclear pore complex, but the underlying mechanism of nucleocytoplasmic transport is not yet fully discovered. As a result, FG Nups have been the subject of extensive research in the past two decades. Although most studies have been focused on analyzing the conformation and function of FG Nups from a biophysical standpoint, some recent studies have investigated the sequence-function relationship of FG Nups, with a few investigating amino acid sequences of a large number of FG Nups to understand common characteristics that might enable their function. Previously, we identified an evolutionarily conserved feature in FG Nup sequences, which are extended subsequences with low charge density, containing only positive charges, and located toward the N-terminus of FG Nups. We named these patterns longest positive like charge regions (lpLCRs). These patterns are specific to positively charged residues, and negatively charged residues do not demonstrate such a pattern. In this study, we compare FG Nups with other disordered proteins obtained from the DisProt and UniProt database in terms of presence of lpLCRs. Our results show that the lpLCRs are virtually exclusive to FG Nups and are not observed in other disordered proteins. Also, lpLCRs are what differentiate FG Nups from DisProt proteins in terms of charge distribution, meaning that excluding lpLCRs from the sequences of FG Nups make them similar to DisProt proteins in terms of charge distribution. We also previously showed the biophysical effect of lpLCRs in conformation of FG Nups. The results of this study are in line with our previous findings and imply that lpLCRs are virtually exclusive and functionally significant characteristics of FG Nups and nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Mohaddeseh Peyro
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley
| | - Mohammad Soheilypour
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley
| | - Vikrum S Nibber
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley
| | - Andrew M Dickson
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California.
| |
Collapse
|
30
|
Hoogenboom BW, Hough LE, Lemke EA, Lim RYH, Onck PR, Zilman A. Physics of the Nuclear Pore Complex: Theory, Modeling and Experiment. PHYSICS REPORTS 2021; 921:1-53. [PMID: 35892075 PMCID: PMC9306291 DOI: 10.1016/j.physrep.2021.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The hallmark of eukaryotic cells is the nucleus that contains the genome, enclosed by a physical barrier known as the nuclear envelope (NE). On the one hand, this compartmentalization endows the eukaryotic cells with high regulatory complexity and flexibility. On the other hand, it poses a tremendous logistic and energetic problem of transporting millions of molecules per second across the nuclear envelope, to facilitate their biological function in all compartments of the cell. Therefore, eukaryotes have evolved a molecular "nanomachine" known as the Nuclear Pore Complex (NPC). Embedded in the nuclear envelope, NPCs control and regulate all the bi-directional transport between the cell nucleus and the cytoplasm. NPCs combine high molecular specificity of transport with high throughput and speed, and are highly robust with respect to molecular noise and structural perturbations. Remarkably, the functional mechanisms of NPC transport are highly conserved among eukaryotes, from yeast to humans, despite significant differences in the molecular components among various species. The NPC is the largest macromolecular complex in the cell. Yet, despite its significant complexity, it has become clear that its principles of operation can be largely understood based on fundamental physical concepts, as have emerged from a combination of experimental methods of molecular cell biology, biophysics, nanoscience and theoretical and computational modeling. Indeed, many aspects of NPC function can be recapitulated in artificial mimics with a drastically reduced complexity compared to biological pores. We review the current physical understanding of the NPC architecture and function, with the focus on the critical analysis of experimental studies in cells and artificial NPC mimics through the lens of theoretical and computational models. We also discuss the connections between the emerging concepts of NPC operation and other areas of biophysics and bionanotechnology.
Collapse
Affiliation(s)
- Bart W. Hoogenboom
- London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - Loren E. Hough
- Department of Physics and BioFrontiers Institute, University of Colorado, Boulder CO 80309, United States of America
| | - Edward A. Lemke
- Biocenter Mainz, Departments of Biology and Chemistry, Johannes Gutenberg University and Institute of Molecular Biology, 55128 Mainz, Germany
| | - Roderick Y. H. Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Patrick R. Onck
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Anton Zilman
- Department of Physics and Institute for Biomedical Engineering (IBME), University of Toronto, Toronto, ON M5S 1A7, Canada
| |
Collapse
|
31
|
Amemiya S. Nanoelectrochemical Study of Molecular Transport through the Nuclear Pore Complex. CHEM REC 2021; 21:1430-1441. [PMID: 33502100 PMCID: PMC8217113 DOI: 10.1002/tcr.202000175] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/10/2022]
Abstract
The nuclear pore complex (NPC) is the proteinaceous nanopore that solely mediates the transport of both small molecules and macromolecules between the nucleus and cytoplasm of a eukaryotic cell to regulate gene expression. In this personal account, we introduce recent progress in our nanoelectrochemical study of molecular transport through the NPC. Our work represents the importance of chemistry in understanding and controlling of NPC-mediated molecular transport to enable the efficient and safe delivery of genetic therapeutics into the nucleus, thereby fundamentally contributing to human health. Specifically, we employ nanoscale scanning electrochemical microscopy to test our hypothesis that the nanopore of the NPC is divided by transport barriers concentrically into peripheral and central routes to efficiently mediate the bimodal traffic of protein transport and RNA export, respectively, through cooperative hydrophobic and electrostatic interactions.
Collapse
Affiliation(s)
- Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, 15260, PA
| |
Collapse
|
32
|
Chen S, Zhu C, Xian W, Liu X, Liu X, Zhang Q, Ma S, Sun Q. Imparting Ion Selectivity to Covalent Organic Framework Membranes Using de Novo Assembly for Blue Energy Harvesting. J Am Chem Soc 2021; 143:9415-9422. [DOI: 10.1021/jacs.1c02090] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sifan Chen
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Changjia Zhu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, Texas 76201, United States
| | - Weipeng Xian
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinyu Liu
- School of Materials, Sun Yat-Sen University, Guangzhou 510006, China
| | - XiaoLong Liu
- School of Materials, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qinghua Zhang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, Texas 76201, United States
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
33
|
A designer FG-Nup that reconstitutes the selective transport barrier of the nuclear pore complex. Nat Commun 2021; 12:2010. [PMID: 33790297 PMCID: PMC8012357 DOI: 10.1038/s41467-021-22293-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/01/2021] [Indexed: 02/01/2023] Open
Abstract
Nuclear Pore Complexes (NPCs) regulate bidirectional transport between the nucleus and the cytoplasm. Intrinsically disordered FG-Nups line the NPC lumen and form a selective barrier, where transport of most proteins is inhibited whereas specific transporter proteins freely pass. The mechanism underlying selective transport through the NPC is still debated. Here, we reconstitute the selective behaviour of the NPC bottom-up by introducing a rationally designed artificial FG-Nup that mimics natural Nups. Using QCM-D, we measure selective binding of the artificial FG-Nup brushes to the transport receptor Kap95 over cytosolic proteins such as BSA. Solid-state nanopores with the artificial FG-Nups lining their inner walls support fast translocation of Kap95 while blocking BSA, thus demonstrating selectivity. Coarse-grained molecular dynamics simulations highlight the formation of a selective meshwork with densities comparable to native NPCs. Our findings show that simple design rules can recapitulate the selective behaviour of native FG-Nups and demonstrate that no specific spacer sequence nor a spatial segregation of different FG-motif types are needed to create selective NPCs.
Collapse
|
34
|
Perez Sirkin YA, Tagliazucchi M, Szleifer I. Nanopore gates via reversible crosslinking of polymer brushes: a theoretical study. SOFT MATTER 2021; 17:2791-2802. [PMID: 33544104 DOI: 10.1039/d0sm01760d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polymer-brush-modified nanopores are synthetic structures inspired by the gated transport exhibited by their biological counterparts. This work theoretically analyzes how the reversible crosslinking of a polymer network by soluble species can be used to control transport through nanochannels and pores. The study was performed with a molecular theory that allows inhomogeneities in the three spatial dimensions and explicitly takes into account the size, shape and conformations of all molecular species, considers the intermolecular interactions between the polymers and the soluble crosslinkers and includes the presence of a translocating particle inside the pore. It is shown than increasing the concentration of the soluble crosslinkers in bulk solution leads to a gradual increase of its number within the pore until a critical bulk concentration is reached. At the critical concentration, the number of crosslinkers inside the pore increases abruptly. For long chains, this sudden transition triggers the collapse of the polymer brush to the center of the nanopore. The resulting structure increases the free-energy barrier that a translocating particle has to surmount to go across the pore and modifies the route of translocation from the axis of the pore to its walls. On the other hand, for short polymer chains the crosslinkers trigger the collapse of the brush to the pore walls, which reduces the translocation barrier.
Collapse
Affiliation(s)
- Yamila A Perez Sirkin
- INQUIMAE-CONICET and DQIAQF, University of Buenos Aires, School of Sciences, Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires C1428EHA, Argentina.
| | - Mario Tagliazucchi
- INQUIMAE-CONICET and DQIAQF, University of Buenos Aires, School of Sciences, Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires C1428EHA, Argentina.
| | - Igal Szleifer
- Department of Biomedical Engineering, Department of Chemistry and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
35
|
Theoretical Modeling of Chemical Equilibrium in Weak Polyelectrolyte Layers on Curved Nanosystems. Polymers (Basel) 2020; 12:polym12102282. [PMID: 33027995 PMCID: PMC7601300 DOI: 10.3390/polym12102282] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022] Open
Abstract
Surface functionalization with end-tethered weak polyelectrolytes (PE) is a versatile way to modify and control surface properties, given their ability to alter their degree of charge depending on external cues like pH and salt concentration. Weak PEs find usage in a wide range of applications, from colloidal stabilization, lubrication, adhesion, wetting to biomedical applications such as drug delivery and theranostics applications. They are also ubiquitous in many biological systems. Here, we present an overview of some of the main theoretical methods that we consider key in the field of weak PE at interfaces. Several applications involving engineered nanoparticles, synthetic and biological nanopores, as well as biological macromolecules are discussed to illustrate the salient features of systems involving weak PE near an interface or under (nano)confinement. The key feature is that by confining weak PEs near an interface the degree of charge is different from what would be expected in solution. This is the result of the strong coupling between structural organization of weak PE and its chemical state. The responsiveness of engineered and biological nanomaterials comprising weak PE combined with an adequate level of modeling can provide the keys to a rational design of smart nanosystems.
Collapse
|
36
|
Paci G, Zheng T, Caria J, Zilman A, Lemke EA. Molecular determinants of large cargo transport into the nucleus. eLife 2020; 9:e55963. [PMID: 32692309 PMCID: PMC7375812 DOI: 10.7554/elife.55963] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/18/2020] [Indexed: 01/03/2023] Open
Abstract
Nucleocytoplasmic transport is tightly regulated by the nuclear pore complex (NPC). Among the thousands of molecules that cross the NPC, even very large (>15 nm) cargoes such as pathogens, mRNAs and pre-ribosomes can pass the NPC intact. For these cargoes, there is little quantitative understanding of the requirements for their nuclear import, especially the role of multivalent binding to transport receptors via nuclear localisation sequences (NLSs) and the effect of size on import efficiency. Here, we assayed nuclear import kinetics of 30 large cargo models based on four capsid-like particles in the size range of 17-36 nm, with tuneable numbers of up to 240 NLSs. We show that the requirements for nuclear transport can be recapitulated by a simple two-parameter biophysical model that correlates the import flux with the energetics of large cargo transport through the NPC. Together, our results reveal key molecular determinants of large cargo import in cells.
Collapse
Affiliation(s)
- Giulia Paci
- Biocentre, Johannes Gutenberg-University MainzMainzGermany
- Institute of Molecular BiologyMainzGermany
- European Molecular Biology LaboratoryHeidelbergGermany
| | - Tiantian Zheng
- Department of Physics, University of TorontoTorontoCanada
| | - Joana Caria
- Biocentre, Johannes Gutenberg-University MainzMainzGermany
- Institute of Molecular BiologyMainzGermany
- European Molecular Biology LaboratoryHeidelbergGermany
| | - Anton Zilman
- Department of Physics, University of TorontoTorontoCanada
- Institute for Biomaterials and Biomedical Engineering (IBBME), University of TorontoTorontoCanada
| | - Edward A Lemke
- Biocentre, Johannes Gutenberg-University MainzMainzGermany
- Institute of Molecular BiologyMainzGermany
- European Molecular Biology LaboratoryHeidelbergGermany
| |
Collapse
|
37
|
Junod SL, Kelich JM, Ma J, Yang W. Nucleocytoplasmic transport of intrinsically disordered proteins studied by high-speed super-resolution microscopy. Protein Sci 2020; 29:1459-1472. [PMID: 32096308 DOI: 10.1002/pro.3845] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 11/10/2022]
Abstract
Both natively folded and intrinsically disordered proteins (IDPs) destined for the nucleus need to transport through the nuclear pore complexes (NPCs) in eukaryotic cells. NPCs allow for passive diffusion of small folded proteins while barricading large ones, unless they are facilitated by nuclear transport receptors. However, whether nucleocytoplasmic transport of IDPs would follow these rules remains unknown. By using a high-speed super-resolution fluorescence microscopy, we have measured transport kinetics and 3D spatial locations of transport routes through native NPCs for various IDPs. Our data revealed that the rules executed for folded proteins are not well followed by the IDPs. Instead, both large and small IDPs can passively diffuse through the NPCs. Furthermore, their diffusion efficiencies and routes are differentiated by their content ratio of charged (Ch) and hydrophobic (Hy) amino acids. A Ch/Hy-ratio mechanism was finally suggested for nucleocytoplasmic transport of IDPs.
Collapse
Affiliation(s)
- Samuel L Junod
- Department of Biology, Temple University, Philadelphia, Pennsylvania
| | | | | | | |
Collapse
|
38
|
Davis LK, Ford IJ, Šarić A, Hoogenboom BW. Intrinsically disordered nuclear pore proteins show ideal-polymer morphologies and dynamics. Phys Rev E 2020; 101:022420. [PMID: 32168597 DOI: 10.1103/physreve.101.022420] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
In the nuclear pore complex, intrinsically disordered nuclear pore proteins (FG Nups) form a selective barrier for transport into and out of the cell nucleus, in a way that remains poorly understood. The collective FG Nup behavior has long been conceptualized either as a polymer brush, dominated by entropic and excluded-volume (repulsive) interactions, or as a hydrogel, dominated by cohesive (attractive) interactions between FG Nups. Here we compare mesoscale computational simulations with a wide range of experimental data to demonstrate that FG Nups are at the crossover point between these two regimes. Specifically, we find that repulsive and attractive interactions are balanced, resulting in morphologies and dynamics that are close to those of ideal polymer chains. We demonstrate that this property of FG Nups yields sufficient cohesion to seal the transport barrier, and yet maintains fast dynamics at the molecular scale, permitting the rapid polymer rearrangements needed for transport events.
Collapse
Affiliation(s)
- Luke K Davis
- London Centre for Nanotechnology, University College London, London WC1H OAH, United Kingdom
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
| | - Ian J Ford
- London Centre for Nanotechnology, University College London, London WC1H OAH, United Kingdom
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - Anđela Šarić
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London WC1H OAH, United Kingdom
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
39
|
Al-Darkazly IAA, Hasan SMR. Extra-Low-Frequency Pulse Stimulated Conformational Change in Blood-Cell Proteins and Consequent Immune Activity Transformation. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2020; 8:4100113. [PMID: 31998567 PMCID: PMC6984198 DOI: 10.1109/jtehm.2020.2963894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/12/2019] [Accepted: 12/30/2019] [Indexed: 11/16/2022]
Abstract
Objective: investigation of the extra-low-frequency (ELF) stimulation effect on blood-cell proteins, that causes variation in its electrostatic-state. A hypothesis that this results in the conformational change in the blood-cell proteins which could enhance immune activity is explored. Since HIV-1 and host-cell engage through charge-charge interactions, an electrical-pulse may cause charge redistribution, hypothetically resulting in host-cell proteins to be isolated from viral access. Methods: Buffy coat samples were exposed to ELF square waveform pulses of 5Hz, 10Hz and 1MHz, for 2-hours, and were then examined using immunofluorescence technique. The expression of glycoprotein CD4, and co-receptor protein CCR5, were investigated. Also, the binding activity of the N-terminal domain of CCR5 and the distribution of the nuclear-pore-complex (NPC) transport factor, FGNup153 were investigated. Comparison with control samples were carried out. Results: Increased CD4 count, which could enhance the immune system. In addition, the inability of N-terminus-specific antibody 3A9 to bind to CCR5 N-terminal, could be due to the interactions with the ELF electric-field, which may also hypothetically inhibit HIV-1 attachment. Furthermore, the electrostatic interactions between the ELF pulse and the FGNup153 induces redistribution in its disorder sequence and possibly causes conformational change. This could possibly prevent large virus particle transport through the NPC. Conclusion: Novel concept of ELF stimulation of blood cellular proteins has been developed leading to transformation of immune activity. Clinical-Impact: The translational aspect is the use of ELF as an avenue of electro-medicine and the results are a possible foundation for the clinical application of ELF stimulation in immune response.
Collapse
Affiliation(s)
- Ibtisam A. Abbas Al-Darkazly
- Center for Research in Analog and VLSI Microsystems Design (CRAVE), School of Advanced TechnologyMassey UniversityAuckland0632New Zealand
| | - S. M. Rezaul Hasan
- Center for Research in Analog and VLSI Microsystems Design (CRAVE), School of Advanced TechnologyMassey UniversityAuckland0632New Zealand
| |
Collapse
|
40
|
Maguire L, Betterton MD, Hough LE. Bound-State Diffusion due to Binding to Flexible Polymers in a Selective Biofilter. Biophys J 2019; 118:376-385. [PMID: 31858976 DOI: 10.1016/j.bpj.2019.11.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/05/2019] [Accepted: 11/14/2019] [Indexed: 01/02/2023] Open
Abstract
Selective biofilters are used by cells to control the transport of proteins, nucleic acids, and other macromolecules. Biological filters demonstrate both high specificity and rapid motion or high flux of proteins. In contrast, high flux comes at the expense of selectivity in many synthetic filters. Binding can lead to selective transport in systems in which the bound particle can diffuse, but the mechanisms that lead to bound diffusion remain unclear. Previous theory has proposed a molecular mechanism of bound-state mobility based only on transient binding to flexible polymers. However, this mechanism has not been directly tested in experiments. We demonstrate that bound mobility via tethered diffusion can be engineered into a synthetic gel using protein fragments derived from the nuclear pore complex. The resulting bound-state diffusion is quantitatively consistent with theory. Our results suggest that synthetic biological filters can be designed to take advantage of tethered diffusion to give rapid, selective transport.
Collapse
Affiliation(s)
- Laura Maguire
- Department of Physics, University of Colorado Boulder, Boulder, Colorado; BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - Meredith D Betterton
- Department of Physics, University of Colorado Boulder, Boulder, Colorado; Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado
| | - Loren E Hough
- Department of Physics, University of Colorado Boulder, Boulder, Colorado; BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado.
| |
Collapse
|
41
|
Huang K, Tagliazucchi M, Park SH, Rabin Y, Szleifer I. Nanocompartmentalization of the Nuclear Pore Lumen. Biophys J 2019; 118:219-231. [PMID: 31839259 DOI: 10.1016/j.bpj.2019.11.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/23/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
The nuclear pore complex (NPC) employs the intrinsically disordered regions (IDRs) from a family of phenylalanine-glycine-rich nucleoporins (FG-Nups) to control nucleocytoplasmic transport. It has been a long-standing mystery how the IDR-mediated mass exchange can be rapid yet selective. Here, we use a computational microscope to show that nanocompartmentalization of IDR subdomains leads to a remarkably elaborate gating structure as programmed by the amino acid sequences. In particular, we reveal a heterogeneous permeability barrier that combines an inner ring barrier with two vestibular condensates. Throughout the NPC, we find a polarized electrostatic potential and a diffuse thermoreversible FG network featuring mosaic FG territories with low FG-FG pairing fraction. Our theoretical anatomy of the central transporter sheds light into the sequence-structure-function relationship of the FG-Nups and provides a picture of nucleocytoplasmic mass exchange that allows a reconciliation of transport efficiency and specificity.
Collapse
Affiliation(s)
- Kai Huang
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - Mario Tagliazucchi
- DQIAQF and INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Ciudad Autónoma de Buenos Aires, Argentina
| | - Sung Hyun Park
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - Yitzhak Rabin
- Department of Physics and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois; Department of Chemistry, and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois.
| |
Collapse
|
42
|
Maguire L, Stefferson M, Betterton MD, Hough LE. Design principles of selective transport through biopolymer barriers. Phys Rev E 2019; 100:042414. [PMID: 31770897 PMCID: PMC7502277 DOI: 10.1103/physreve.100.042414] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Indexed: 12/20/2022]
Abstract
In biological systems, polymeric materials block the movement of some macromolecules while allowing the selective passage of others. In some cases, binding enables selective transport, while in others the most inert particles appear to transit most rapidly. To study the general principles of filtering, we develop a model motivated by features of the nuclear pore complex (NPC) which are highly conserved and could potentially be applied to other biological systems. The NPC allows selective transport of proteins called transport factors, which transiently bind to disordered flexible proteins called phenylalanine-glycine-nucleoporins. While the NPC is tuned for transport factors and their cargo, we show that a single feature is sufficient for selective transport: the bound-state motion resulting from transient binding to flexible filaments. Interchain transfer without unbinding can further improve selectivity, especially for cross-linked chains. We generalize this observation to model nanoparticle transport through mucus and show that bound-state motion accelerates transport of transient nanoparticle application, even with clearance by mucus flow. Our model provides a framework to control binding-induced selective transport in biopolymeric materials.
Collapse
Affiliation(s)
- Laura Maguire
- Department of Physics, University of Colorado Boulder
- BioFrontiers Institute, University of Colorado Boulder
| | - Michael Stefferson
- Department of Physics, University of Colorado Boulder
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder
| | - Meredith D. Betterton
- Department of Physics, University of Colorado Boulder
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder
| | - Loren E. Hough
- Department of Physics, University of Colorado Boulder
- BioFrontiers Institute, University of Colorado Boulder
| |
Collapse
|
43
|
Zhang L, Becton MD, Liu N, Averett RD, Pidaparti RM, Wang X. Physiochemical Effects of Nanoparticles on Cell Nuclear Complex Pore Transport: A Coarse-Grained Computational Model. J Chem Theory Comput 2019; 15:6382-6392. [DOI: 10.1021/acs.jctc.9b00335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Liuyang Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Matthew D. Becton
- College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Ning Liu
- College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Rodney D. Averett
- College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Ramana M. Pidaparti
- College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Xianqiao Wang
- College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
44
|
Pathirathna P, Balla RJ, Meng G, Wei Z, Amemiya S. Nanoscale electrostatic gating of molecular transport through nuclear pore complexes as probed by scanning electrochemical microscopy. Chem Sci 2019; 10:7929-7936. [PMID: 31673318 PMCID: PMC6788534 DOI: 10.1039/c9sc02356a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/08/2019] [Indexed: 01/07/2023] Open
Abstract
The nuclear pore complex (NPC) is a large protein nanopore that solely mediates molecular transport between the nucleus and cytoplasm of a eukaryotic cell. There is a long-standing consensus that selective transport barriers of the NPC are exclusively based on hydrophobic repeats of phenylalanine and glycine (FG) of nucleoporins. Herein, we reveal experimentally that charged residues of amino acids intermingled between FG repeats can modulate molecular transport through the NPC electrostatically and in a pathway-dependent manner. Specifically, we investigate the NPC of the Xenopus oocyte nucleus to find that excess positive charges of FG-rich nucleoporins slow down passive transport of a polycationic peptide, protamine, without affecting that of a polyanionic pentasaccharide, Arixtra, and small monovalent ions. Protamine transport is slower with a lower concentration of electrolytes in the transport media, where the Debye length becomes comparable to the size of water-filled spaces among the gel-like network of FG repeats. Slow protamine transport is not affected by the binding of a lectin, wheat germ agglutinin, to the peripheral route of the NPC, which is already blocked electrostatically by adjacent nucleoporins that have more cationic residues than anionic residues and even FG dipeptides. The permeability of NPCs to the probe ions is measured by scanning electrochemical microscopy using ion-selective tips based on liquid/liquid microinterfaces and is analysed by effective medium theory to determine the sizes of peripheral and central routes with distinct protamine permeability. Significantly, nanoscale electrostatic gating at the NPC can be relevant not only chemically and biologically, but also biomedically for efficient nuclear import of genetically therapeutic substances.
Collapse
Affiliation(s)
- Pavithra Pathirathna
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , USA .
| | - Ryan J Balla
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , USA .
| | - Guanqun Meng
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , USA .
| | - Zemeng Wei
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , USA .
| | - Shigeru Amemiya
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , USA .
| |
Collapse
|
45
|
Shamsi M, Mohammadi A, Manshadi MK, Sanati-Nezhad A. Mathematical and computational modeling of nano-engineered drug delivery systems. J Control Release 2019; 307:150-165. [DOI: 10.1016/j.jconrel.2019.06.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 12/20/2022]
|
46
|
Liu Y, Li S, Liu X, Sun H, Yue T, Zhang X, Yan B, Cao D. Design of Small Nanoparticles Decorated with Amphiphilic Ligands: Self-Preservation Effect and Translocation into a Plasma Membrane. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23822-23831. [PMID: 31250627 DOI: 10.1021/acsami.9b03638] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Design of nanoparticles (NPs) for biomedical applications requires a thorough understanding of cascades of nano-bio interactions at different interfaces. Here, we take into account the cascading effect of NP functionalization on interactions with target cell membranes by determining coatings of biomolecules in biological media. Cell culture experiments show that NPs with more hydrophobic surfaces are heavily ingested by cells in both the A549 and HEK293 cell lines. However, before reaching the target cell, both the identity and amount of recruited biomolecules can be influenced by the pristine NPs' hydrophobicity. Dissipative particle dynamics (DPD) simulations show that hydrophobic NPs acquire coatings of more biomolecules, which may conceal the properties of the as-engineered NPs and impact the targeting specificity. Based on these results, we propose an amphiphilic ligand coating on NPs. DPD simulations reveal the design principle, following which the amphiphilic ligands first curl in solvent to reduce the surface hydrophobicity, thus suppressing the assemblage of biomolecules. Upon attaching to the membrane, the curled ligands extend and rearrange to gain contacts with lipid tails, thus dragging NPs into the membrane for translocation. Three NP-membrane interaction states are identified that are found to depend on the NP size and membrane surface tension. These results can provide useful guidelines to fabricate ligand-coated NPs for practical use in targeted drug delivery, and motivate further studies of nano-bio-interactions with more consideration of cascading effects.
Collapse
Affiliation(s)
- Yuchi Liu
- State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Shixin Li
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, College of Chemical Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Xuejuan Liu
- State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Hainan Sun
- School of Environmental Science and Engineering , Shandong University , Jinan 250100 , China
| | - Tongtao Yue
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, College of Chemical Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay , Guangzhou University , Guangzhou 510006 , China
- School of Environmental Science and Engineering , Shandong University , Jinan 250100 , China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
| |
Collapse
|
47
|
Pathirathna P, Balla RJ, Jantz DT, Kurapati N, Gramm ER, Leonard KC, Amemiya S. Probing High Permeability of Nuclear Pore Complexes by Scanning Electrochemical Microscopy: Ca 2+ Effects on Transport Barriers. Anal Chem 2019; 91:5446-5454. [PMID: 30907572 PMCID: PMC6535230 DOI: 10.1021/acs.analchem.9b00796] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The nuclear pore complex (NPC) solely mediates molecular transport between the nucleus and cytoplasm of a eukaryotic cell to play important biological and biomedical roles. However, it is not well-understood chemically how this biological nanopore selectively and efficiently transports various substances, including small molecules, proteins, and RNAs by using transport barriers that are rich in highly disordered repeats of hydrophobic phenylalanine and glycine intermingled with charged amino acids. Herein, we employ scanning electrochemical microscopy to image and measure the high permeability of NPCs to small redox molecules. The effective medium theory demonstrates that the measured permeability is controlled by diffusional translocation of probe molecules through water-filled nanopores without steric or electrostatic hindrance from hydrophobic or charged regions of transport barriers, respectively. However, the permeability of NPCs is reduced by a low millimolar concentration of Ca2+, which can interact with anionic regions of transport barriers to alter their spatial distributions within the nanopore. We employ atomic force microscopy to confirm that transport barriers of NPCs are dominantly recessed (∼80%) or entangled (∼20%) at the high Ca2+ level in contrast to authentic populations of entangled (∼50%), recessed (∼25%), and "plugged" (∼25%) conformations at a physiological Ca2+ level of submicromolar. We propose a model for synchronized Ca2+ effects on the conformation and permeability of NPCs, where transport barriers are viscosified to lower permeability. Significantly, this result supports a hypothesis that the functional structure of transport barriers is maintained not only by their hydrophobic regions, but also by charged regions.
Collapse
Affiliation(s)
- Pavithra Pathirathna
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, United States
| | - Ryan J. Balla
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, United States
| | - Dylan T. Jantz
- Center for Environmentally Beneficial Catalysis, Department of Chemical and Petroleum Engineering, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas 66047, United States
| | - Niraja Kurapati
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, United States
| | - Erin R. Gramm
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, United States
| | - Kevin C. Leonard
- Center for Environmentally Beneficial Catalysis, Department of Chemical and Petroleum Engineering, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas 66047, United States
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, United States
| |
Collapse
|
48
|
Polymer translocation through a hairy channel mimicking the inner plug of a nuclear pore complex. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:317-327. [PMID: 30927020 DOI: 10.1007/s00249-019-01356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/23/2019] [Accepted: 03/08/2019] [Indexed: 10/27/2022]
Abstract
A microscopic transport model of a polymer translocating through a nuclear pore complex (NPC) is presented based on self-consistent field theory (SCFT), with the NPC and its nucleoporins mimicked by a hairy channel. Multiple cell environment effects (electrolyte effect, excluded volume effect, NPC drag effect, and hydrophobic effect) are all considered in this hairy channel model. The influence of various parameters (polymer chain length, length of NPC, strength of hydrophobic effect, and excluded volume effect) on translocation time is studied through theoretical analysis and numerical calculation. Numerical simulation results show that an area of low nucleoporin number density exists in the NPC, which facilitates the translocation of the polymer. The results also show that the translocation time curves with increasing NPC length and polymer charge number are concave. In addition, there are critical values for NPC length and polymer charge number for which the translocation time has a minimal value. The translocation time decreases with the increasing strength of the hydrophobic effect and excluded volume effect.
Collapse
|
49
|
Frey S, Rees R, Schünemann J, Ng SC, Fünfgeld K, Huyton T, Görlich D. Surface Properties Determining Passage Rates of Proteins through Nuclear Pores. Cell 2019; 174:202-217.e9. [PMID: 29958108 DOI: 10.1016/j.cell.2018.05.045] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/18/2018] [Accepted: 05/21/2018] [Indexed: 10/28/2022]
Abstract
Nuclear pore complexes (NPCs) conduct nucleocytoplasmic transport through an FG domain-controlled barrier. We now explore how surface-features of a mobile species determine its NPC passage rate. Negative charges and lysines impede passage. Hydrophobic residues, certain polar residues (Cys, His), and, surprisingly, charged arginines have striking translocation-promoting effects. Favorable cation-π interactions between arginines and FG-phenylalanines may explain this apparent paradox. Application of these principles to redesign the surface of GFP resulted in variants that show a wide span of transit rates, ranging from 35-fold slower than wild-type to ∼500 times faster, with the latter outpacing even naturally occurring nuclear transport receptors (NTRs). The structure of a fast and particularly FG-specific GFPNTR variant illustrates how NTRs can expose multiple regions for binding hydrophobic FG motifs while evading non-specific aggregation. Finally, we document that even for NTR-mediated transport, the surface-properties of the "passively carried" cargo can strikingly affect the translocation rate.
Collapse
Affiliation(s)
- Steffen Frey
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Renate Rees
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jürgen Schünemann
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Sheung Chun Ng
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Kevser Fünfgeld
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Trevor Huyton
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
50
|
Mensink LI, Snoeijer JH, de Beer S. Wetting of Polymer Brushes by Polymeric Nanodroplets. Macromolecules 2019; 52:2015-2020. [PMID: 30894780 PMCID: PMC6416710 DOI: 10.1021/acs.macromol.8b02409] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/13/2019] [Indexed: 01/30/2023]
Abstract
End-anchoring polymers to a solid surface to form so-called polymer brushes is a versatile method to prepare robust functional coatings. We show, using molecular dynamics simulations, that these coatings display rich wetting behavior. Depending on the interaction between the brushes and the polymeric droplets as well as on the self-affinity of the brush, we can distinguish between three wetting states: mixing, complete wetting, and partial wetting. We find that transitions between these states are largely captured by enthalpic arguments, while deviations to these can be attributed to the negative excess interfacial entropy for the brush droplet system. Interestingly, we observe that the contact angle strongly increases when the softness of the brush is increased, which is opposite to the case of drops on soft elastomers. Hence, the Young to Neumann transition owing to softness is not universal but depends on the nature of the substrate.
Collapse
Affiliation(s)
- Liz I.
S. Mensink
- Physics
of Fluids, MESA+ Institute for Nanotechnology, and Materials Science
and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jacco H. Snoeijer
- Physics
of Fluids, MESA+ Institute for Nanotechnology, and Materials Science
and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Sissi de Beer
- Physics
of Fluids, MESA+ Institute for Nanotechnology, and Materials Science
and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|