1
|
Pilagov M, Heling LW, Walklate J, Geeves MA, Kad NM. Single-molecule imaging reveals how mavacamten and PKA modulate ATP turnover in skeletal muscle myofibrils. J Gen Physiol 2022; 155:213694. [PMID: 36394553 PMCID: PMC9674027 DOI: 10.1085/jgp.202213087] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Muscle contraction is controlled at two levels: the thin and the thick filaments. The latter level of control involves three states of myosin heads: active, disordered relaxed (DRX), and super-relaxed (SRX), the distribution of which controls the number of myosins available to interact with actin. How these are controlled is still uncertain. Using fluorescently labeled ATP, we were able to spatially assign the activity of individual myosins within the sarcomere. We observed that SRX comprises 53% of all heads in the C-zone compared with 35% and 44% in the P- and D-zones, respectively. The recently FDA-approved hypertrophic cardiomyopathy drug, mavacamten (mava), significantly decreased DRX, favoring SRX in both the C- and D-zones at 60% and 63%, respectively. Since thick filament regulation is in part regulated by the myosin-binding protein-C (MyBP-C), we also studied PKA phosphorylation. This had the opposite effect as mava, specifically in the C-zone where it decreased SRX to 34%, favoring DRX. These results directly show that excess concentrations of mava do increase SRX, but the effect is limited across the sarcomere, suggesting mava is less effective on skeletal muscle. In addition, we show that PKA directly affects the contractile machinery of skeletal muscle leading to the liberation of repressed heads. Since the effect is focused on the C-zone, this suggests it is likely through MyBP-C phosphorylation, although our data suggest that a further reserve of myosins remain that are not accessible to PKA treatment.
Collapse
Affiliation(s)
- Matvey Pilagov
- School of Biological Sciences, University of Kent, Canterbury, UK
| | | | | | | | - Neil M. Kad
- School of Biological Sciences, University of Kent, Canterbury, UK,Correspondence to Neil M. Kad:
| |
Collapse
|
2
|
Bunch TA, Guhathakurta P, Lepak VC, Thompson AR, Kanassatega RS, Wilson A, Thomas DD, Colson BA. Cardiac myosin-binding protein C interaction with actin is inhibited by compounds identified in a high-throughput fluorescence lifetime screen. J Biol Chem 2021; 297:100840. [PMID: 34052227 PMCID: PMC8233204 DOI: 10.1016/j.jbc.2021.100840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 11/26/2022] Open
Abstract
Cardiac myosin-binding protein C (cMyBP-C) interacts with actin and myosin to modulate cardiac muscle contractility. These interactions are disfavored by cMyBP-C phosphorylation. Heart failure patients often display decreased cMyBP-C phosphorylation, and phosphorylation in model systems has been shown to be cardioprotective against heart failure. Therefore, cMyBP-C is a potential target for heart failure drugs that mimic phosphorylation or perturb its interactions with actin/myosin. Here we have used a novel fluorescence lifetime-based assay to identify small-molecule inhibitors of actin-cMyBP-C binding. Actin was labeled with a fluorescent dye (Alexa Fluor 568, AF568) near its cMyBP-C binding sites; when combined with the cMyBP-C N-terminal fragment, C0-C2, the fluorescence lifetime of AF568-actin decreases. Using this reduction in lifetime as a readout of actin binding, a high-throughput screen of a 1280-compound library identified three reproducible hit compounds (suramin, NF023, and aurintricarboxylic acid) that reduced C0-C2 binding to actin in the micromolar range. Binding of phosphorylated C0-C2 was also blocked by these compounds. That they specifically block binding was confirmed by an actin-C0-C2 time-resolved FRET (TR-FRET) binding assay. Isothermal titration calorimetry (ITC) and transient phosphorescence anisotropy (TPA) confirmed that these compounds bind to cMyBP-C, but not to actin. TPA results were also consistent with these compounds inhibiting C0-C2 binding to actin. We conclude that the actin-cMyBP-C fluorescence lifetime assay permits detection of pharmacologically active compounds that affect cMyBP-C-actin binding. We now have, for the first time, a validated high-throughput screen focused on cMyBP-C, a regulator of cardiac muscle contractility and known key factor in heart failure.
Collapse
Affiliation(s)
- Thomas A Bunch
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson Arizona, USA
| | - Piyali Guhathakurta
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Victoria C Lepak
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson Arizona, USA
| | - Andrew R Thompson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Anna Wilson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brett A Colson
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson Arizona, USA.
| |
Collapse
|
3
|
Harris SP. Making waves: A proposed new role for myosin-binding protein C in regulating oscillatory contractions in vertebrate striated muscle. J Gen Physiol 2021; 153:e202012729. [PMID: 33275758 PMCID: PMC7721898 DOI: 10.1085/jgp.202012729] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Myosin-binding protein C (MyBP-C) is a critical regulator of muscle performance that was first identified through its strong binding interactions with myosin, the force-generating protein of muscle. Almost simultaneously with its discovery, MyBP-C was soon found to bind to actin, the physiological catalyst for myosin's activity. However, the two observations posed an apparent paradox, in part because interactions of MyBP-C with myosin were on the thick filament, whereas MyBP-C interactions with actin were on the thin filament. Despite the intervening decades since these initial discoveries, it is only recently that the dual binding modes of MyBP-C are becoming reconciled in models that place MyBP-C at a central position between actin and myosin, where MyBP-C alternately stabilizes a newly discovered super-relaxed state (SRX) of myosin on thick filaments in resting muscle and then prolongs the "on" state of actin on thin filaments in active muscle. Recognition of these dual, alternating functions of MyBP-C reveals how it is central to the regulation of both muscle contraction and relaxation. The purpose of this Viewpoint is to briefly summarize the roles of MyBP-C in binding to myosin and actin and then to highlight a possible new role for MyBP-C in inducing and damping oscillatory waves of contraction and relaxation. Because the contractile waves bear similarity to cycles of contraction and relaxation in insect flight muscles, which evolved for fast, energetically efficient contraction, the ability of MyBP-C to damp so-called spontaneous oscillatory contractions (SPOCs) has broad implications for previously unrecognized regulatory mechanisms in vertebrate striated muscle. While the molecular mechanisms by which MyBP-C can function as a wave maker or a wave breaker are just beginning to be explored, it is likely that MyBP-C dual interactions with both myosin and actin will continue to be important for understanding the new functions of this enigmatic protein.
Collapse
|
4
|
Arif M, Nabavizadeh P, Song T, Desai D, Singh R, Bazrafshan S, Kumar M, Wang Y, Gilbert RJ, Dhandapany PS, Becker RC, Kranias EG, Sadayappan S. Genetic, clinical, molecular, and pathogenic aspects of the South Asian-specific polymorphic MYBPC3 Δ25bp variant. Biophys Rev 2020; 12:1065-1084. [PMID: 32656747 PMCID: PMC7429610 DOI: 10.1007/s12551-020-00725-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease characterized by ventricular enlargement, diastolic dysfunction, and increased risk for sudden cardiac death. Sarcomeric genetic defects are the predominant known cause of HCM. In particular, mutations in the myosin-binding protein C gene (MYBPC3) are associated with ~ 40% of all HCM cases in which a genetic basis has been established. A decade ago, our group reported a 25-base pair deletion in intron 32 of MYBPC3 (MYBPC3Δ25bp) that is uniquely prevalent in South Asians and is associated with autosomal dominant cardiomyopathy. Although our studies suggest that this deletion results in left ventricular dysfunction, cardiomyopathies, and heart failure, the precise mechanism by which this variant predisposes to heart disease remains unclear. Increasingly appreciated, however, is the contribution of secondary risk factors, additional mutations, and lifestyle choices in augmenting or modifying the HCM phenotype in MYBPC3Δ25bp carriers. Therefore, the goal of this review article is to summarize the current research dedicated to understanding the molecular pathophysiology of HCM in South Asians with the MYBPC3Δ25bp variant. An emphasis is to review the latest techniques currently applied to explore the MYBPC3Δ25bp pathogenesis and to provide a foundation for developing new diagnostic strategies and advances in therapeutics.
Collapse
Affiliation(s)
- Mohammed Arif
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA.
| | - Pooneh Nabavizadeh
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Taejeong Song
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Darshini Desai
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Rohit Singh
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Sholeh Bazrafshan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Mohit Kumar
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA
| | - Richard J Gilbert
- Research Service, Providence VA Medical Center, Providence, RI, 02908, USA
| | - Perundurai S Dhandapany
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Medicine, Oregon Health and Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Richard C Becker
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Evangelia G Kranias
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| |
Collapse
|
5
|
Napierski NC, Granger K, Langlais PR, Moran HR, Strom J, Touma K, Harris SP. A Novel "Cut and Paste" Method for In Situ Replacement of cMyBP-C Reveals a New Role for cMyBP-C in the Regulation of Contractile Oscillations. Circ Res 2020; 126:737-749. [PMID: 32078438 DOI: 10.1161/circresaha.119.315760] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE cMyBP-C (cardiac myosin-binding protein-C) is a critical regulator of heart contraction, but the mechanisms by which cMyBP-C affects actin and myosin are only partly understood. A primary obstacle is that cMyBP-C localization on thick filaments may be a key factor defining its interactions, but most in vitro studies cannot duplicate the unique spatial arrangement of cMyBP-C within the sarcomere. OBJECTIVE The goal of this study was to validate a novel hybrid genetic/protein engineering approach for rapid manipulation of cMyBP-C in sarcomeres in situ. METHODS AND RESULTS We designed a novel cut and paste approach for removal and replacement of cMyBP-C N'-terminal domains (C0-C7) in detergent-permeabilized cardiomyocytes from gene-edited Spy-C mice. Spy-C mice express a TEVp (tobacco etch virus protease) cleavage site and a SpyTag (st) between cMyBP-C domains C7 and C8. A cut is achieved using TEVp which cleaves cMyBP-C to create a soluble N'-terminal γC0C7 (endogenous [genetically encoded] N'-terminal domains C0 to C7 of cardiac myosin binding protein-C) fragment and an insoluble C'-terminal SpyTag-C8-C10 fragment that remains associated with thick filaments. Paste of new recombinant (r)C0C7 domains is achieved by a covalent bond formed between SpyCatcher (-sc; encoded at the C'-termini of recombinant proteins) and SpyTag. Results show that loss of γC0C7 reduced myofilament Ca2+ sensitivity and increased cross-bridge cycling (ktr) at submaximal [Ca2+]. Acute loss of γC0C7 also induced auto-oscillatory contractions at submaximal [Ca2+]. Ligation of rC0C7 (exogenous [recombinant] N'-terminal domains C0 to C7 of cardiac myosin binding protein-C)-sc returned pCa50 and ktr to control values and abolished oscillations, but phosphorylated (p)-rC0C7-sc did not completely rescue these effects. CONCLUSIONS We describe a robust new approach for acute removal and replacement of cMyBP-C in situ. The method revealed a novel role for cMyBP-C N'-terminal domains to damp sarcomere-driven contractile waves (so-called spontaneous oscillatory contractions). Because phosphorylated (p)-rC0C7-sc was less effective at damping contractile oscillations, results suggest that spontaneous oscillatory contractions may contribute to enhanced contractility in response to inotropic stimuli.
Collapse
Affiliation(s)
- Nathaniel C Napierski
- From the Department of Cellular and Molecular Medicine (N.C.N., K.G., H.R.M, J.S., S.P.H.), University of Arizona College of Medicine, Tucson
| | - Kevin Granger
- From the Department of Cellular and Molecular Medicine (N.C.N., K.G., H.R.M, J.S., S.P.H.), University of Arizona College of Medicine, Tucson
| | - Paul R Langlais
- Division of Endocrinology, Department of Medicine (P.R.L.), University of Arizona College of Medicine, Tucson
| | - Hannah R Moran
- From the Department of Cellular and Molecular Medicine (N.C.N., K.G., H.R.M, J.S., S.P.H.), University of Arizona College of Medicine, Tucson
| | - Joshua Strom
- From the Department of Cellular and Molecular Medicine (N.C.N., K.G., H.R.M, J.S., S.P.H.), University of Arizona College of Medicine, Tucson
| | | | - Samantha P Harris
- From the Department of Cellular and Molecular Medicine (N.C.N., K.G., H.R.M, J.S., S.P.H.), University of Arizona College of Medicine, Tucson
| |
Collapse
|
6
|
Bunch TA, Kanassatega RS, Lepak VC, Colson BA. Human cardiac myosin-binding protein C restricts actin structural dynamics in a cooperative and phosphorylation-sensitive manner. J Biol Chem 2019; 294:16228-16240. [PMID: 31519753 PMCID: PMC6827302 DOI: 10.1074/jbc.ra119.009543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/11/2019] [Indexed: 11/20/2022] Open
Abstract
Cardiac myosin-binding protein C (cMyBP-C) is a thick filament-associated protein that influences actin-myosin interactions. cMyBP-C alters myofilament structure and contractile properties in a protein kinase A (PKA) phosphorylation-dependent manner. To determine the effects of cMyBP-C and its phosphorylation on the microsecond rotational dynamics of actin filaments, we attached a phosphorescent probe to F-actin at Cys-374 and performed transient phosphorescence anisotropy (TPA) experiments. Binding of cMyBP-C N-terminal domains (C0-C2) to labeled F-actin reduced rotational flexibility by 20-25°, indicated by increased final anisotropy of the TPA decay. The effects of C0-C2 on actin TPA were highly cooperative (n = ∼8), suggesting that the cMyBP-C N terminus impacts the rotational dynamics of actin spanning seven monomers (i.e. the length of tropomyosin). PKA-mediated phosphorylation of C0-C2 eliminated the cooperative effects on actin flexibility and modestly increased actin rotational rates. Effects of Ser to Asp phosphomimetic substitutions in the M-domain of C0-C2 on actin dynamics only partially recapitulated the phosphorylation effects. C0-C1 (lacking M-domain/C2) similarly exhibited reduced cooperativity, but not as reduced as by phosphorylated C0-C2. These results suggest an important regulatory role of the M-domain in cMyBP-C effects on actin structural dynamics. In contrast, phosphomimetic substitution of the glycogen synthase kinase (GSK3β) site in the Pro/Ala-rich linker of C0-C2 did not significantly affect the TPA results. We conclude that cMyBP-C binding and PKA-mediated phosphorylation can modulate actin dynamics. We propose that these N-terminal cMyBP-C-induced changes in actin dynamics help explain the functional effects of cMyBP-C phosphorylation on actin-myosin interactions.
Collapse
Affiliation(s)
- Thomas A Bunch
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona 85724
| | | | - Victoria C Lepak
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona 85724
| | - Brett A Colson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona 85724
| |
Collapse
|
7
|
Bunch TA, Lepak VC, Kanassatega RS, Colson BA. N-terminal extension in cardiac myosin-binding protein C regulates myofilament binding. J Mol Cell Cardiol 2018; 125:140-148. [PMID: 30359561 DOI: 10.1016/j.yjmcc.2018.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/22/2018] [Accepted: 10/10/2018] [Indexed: 10/28/2022]
Abstract
RATIONALE Mutations in the gene encoding the sarcomeric protein cardiac myosin-binding protein C (cMyBP-C) are a leading cause of hypertrophic cardiomyopathy (HCM). Mouse models targeting cMyBP-C and use of recombinant proteins have been effective in studying its roles in contractile function and disease. Surprisingly, while the N-terminus of cMyBP-C is important to regulate myofilament binding and contains many HCM mutations, an incorrect sequence, lacking the N-terminal 8 amino acids has been used in many studies. OBJECTIVES To determine the N-terminal cMyBP-C sequences in ventricles and investigate the roles of species-specific differences in cMyBP-C on myofilament binding. METHODS AND RESULTS We determined cMyBP-C sequences in mouse and human by inspecting available sequence databases. N-terminal differences were confirmed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Cosedimentation assays with actin or myosin were used to examine binding in mouse, human and chimeric fusion proteins of cMyBP-C. Time-resolved FRET (TR-FRET) with site-directed probes on cMyBP-C was employed to measure structural dynamics. LC-MS/MS supported the sequencing data that mouse cMyBP-C contains an eight-residue N-terminal extension (NTE) not found in human. Cosedimentation assays revealed that cardiac myosin binding was strongly influenced by the presence of the NTE, which reduced binding by 60%. 75% more human C0-C2 than mouse bound to myosin. Actin binding of mouse C0-C2 was not affected by the NTE. 50% more human C0-C2 than mouse bound to actin. TR-FRET indicates that the NTE did not significantly affect structural dynamics across domains C0 and C1. CONCLUSIONS Our functional results are consistent with the idea that cardiac myosin binding of N-terminal cMyBP-C is reduced in the mouse protein due to the presence of the NTE, which is proposed to interfere with myosin regulatory light chain (RLC) binding. The NTE is a critical component of mouse cMyBP-C, and should be considered in extrapolation of studies to cMyBP-C and HCM mechanisms in human.
Collapse
Affiliation(s)
- Thomas A Bunch
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States
| | - Victoria C Lepak
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States
| | - Rhye-Samuel Kanassatega
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States
| | - Brett A Colson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States.
| |
Collapse
|
8
|
Calcium-Dependent Interaction Occurs between Slow Skeletal Myosin Binding Protein C and Calmodulin. MAGNETOCHEMISTRY 2017. [DOI: 10.3390/magnetochemistry4010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Li M, Andersson-Lendahl M, Sejersen T, Arner A. Knockdown of fast skeletal myosin-binding protein C in zebrafish results in a severe skeletal myopathy. ACTA ACUST UNITED AC 2016; 147:309-22. [PMID: 27022191 PMCID: PMC4810067 DOI: 10.1085/jgp.201511452] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 02/26/2016] [Indexed: 12/30/2022]
Abstract
MyBPC: A muscle protein for all seasons. Myosin-binding protein C (MyBPC) in the muscle sarcomere interacts with several contractile and structural proteins. Mutations in the cardiac isoform (MyBPC-3) in humans, or animal knockout, are associated with cardiomyopathy. Function of the fast skeletal isoform (MyBPC-2) in living muscles is less understood. This question was addressed using zebrafish models, combining gene expression data with functional analysis of contractility and small-angle x-ray diffraction measurements of filament structure. Fast skeletal MyBPC-2B, the major isoform, was knocked down by >50% using morpholino antisense nucleotides. These morphants exhibited a skeletal myopathy with elevated apoptosis and up-regulation of factors associated with muscle protein degradation. Morphant muscles had shorter sarcomeres with a broader length distribution, shorter actin filaments, and a wider interfilament spacing compared with controls, suggesting that fast skeletal MyBPC has a role in sarcomere assembly. Active force was reduced more than expected from the decrease in muscle size, suggesting that MyBPC-2 is required for optimal force generation at the cross-bridge level. The maximal shortening velocity was significantly increased in the MyBPC-2 morphants, but when related to the sarcomere length, the difference was smaller, reflecting that the decrease in MyBPC-2B content and the resulting myopathy were accompanied by only a minor influence on filament shortening kinetics. In the controls, equatorial patterns from small-angle x-ray scattering revealed that comparatively few cross-bridges are attached (as evaluated by the intensity ratio of the 11 and 10 equatorial reflections) during active contraction. X-ray scattering data from relaxed and contracting morphants were not significantly different from those in controls. However, the increase in the 11:10 intensity ratio in rigor was lower compared with that in controls, possibly reflecting effects of MyBPC on the cross-bridge interactions. In conclusion, lack of MyBPC-2 results in a severe skeletal myopathy with structural changes and muscle weakness.
Collapse
Affiliation(s)
- Mei Li
- Department of Physiology and Pharmacology, Department of Cell and Molecular Biology, and Department of Women's and Children's Health, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Monika Andersson-Lendahl
- Department of Physiology and Pharmacology, Department of Cell and Molecular Biology, and Department of Women's and Children's Health, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Thomas Sejersen
- Department of Physiology and Pharmacology, Department of Cell and Molecular Biology, and Department of Women's and Children's Health, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Anders Arner
- Department of Physiology and Pharmacology, Department of Cell and Molecular Biology, and Department of Women's and Children's Health, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| |
Collapse
|
10
|
Site-directed spectroscopy of cardiac myosin-binding protein C reveals effects of phosphorylation on protein structural dynamics. Proc Natl Acad Sci U S A 2016; 113:3233-8. [PMID: 26908877 DOI: 10.1073/pnas.1521281113] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We have used the site-directed spectroscopies of time-resolved fluorescence resonance energy transfer (TR-FRET) and double electron-electron resonance (DEER), combined with complementary molecular dynamics (MD) simulations, to resolve the structure and dynamics of cardiac myosin-binding protein C (cMyBP-C), focusing on the N-terminal region. The results have implications for the role of this protein in myocardial contraction, with particular relevance to β-adrenergic signaling, heart failure, and hypertrophic cardiomyopathy. N-terminal cMyBP-C domains C0-C2 (C0C2) contain binding regions for potential interactions with both thick and thin filaments. Phosphorylation by PKA in the MyBP-C motif regulates these binding interactions. Our spectroscopic assays detect distances between pairs of site-directed probes on cMyBP-C. We engineered intramolecular pairs of labeling sites within cMyBP-C to measure, with high resolution, the distance and disorder in the protein's flexible regions using TR-FRET and DEER. Phosphorylation reduced the level of molecular disorder and the distribution of C0C2 intramolecular distances became more compact, with probes flanking either the motif between C1 and C2 or the Pro/Ala-rich linker (PAL) between C0 and C1. Further insight was obtained from microsecond MD simulations, which revealed a large structural change in the disordered motif region in which phosphorylation unmasks the surface of a series of residues on a stable α-helix within the motif with high potential as a protein-protein interaction site. These experimental and computational findings elucidate structural transitions in the flexible and dynamic portions of cMyBP-C, providing previously unidentified molecular insight into the modulatory role of this protein in cardiac muscle contractility.
Collapse
|
11
|
Phosphorylation and calcium antagonistically tune myosin-binding protein C's structure and function. Proc Natl Acad Sci U S A 2016; 113:3239-44. [PMID: 26908872 DOI: 10.1073/pnas.1522236113] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
During each heartbeat, cardiac contractility results from calcium-activated sliding of actin thin filaments toward the centers of myosin thick filaments to shorten cellular length. Cardiac myosin-binding protein C (cMyBP-C) is a component of the thick filament that appears to tune these mechanochemical interactions by its N-terminal domains transiently interacting with actin and/or the myosin S2 domain, sensitizing thin filaments to calcium and governing maximal sliding velocity. Both functional mechanisms are potentially further tunable by phosphorylation of an intrinsically disordered, extensible region of cMyBP-C's N terminus, the M-domain. Using atomic force spectroscopy, electron microscopy, and mutant protein expression, we demonstrate that phosphorylation reduced the M-domain's extensibility and shifted the conformation of the N-terminal domain from an extended structure to a compact configuration. In combination with motility assay data, these structural effects of M-domain phosphorylation suggest a mechanism for diminishing the functional potency of individual cMyBP-C molecules. Interestingly, we found that calcium levels necessary to maximally activate the thin filament mitigated the structural effects of phosphorylation by increasing M-domain extensibility and shifting the phosphorylated N-terminal fragments back to the extended state, as if unphosphorylated. Functionally, the addition of calcium to the motility assays ablated the impact of phosphorylation on maximal sliding velocities, fully restoring cMyBP-C's inhibitory capacity. We conclude that M-domain phosphorylation may have its greatest effect on tuning cMyBP-C's calcium-sensitization of thin filaments at the low calcium levels between contractions. Importantly, calcium levels at the peak of contraction would allow cMyBP-C to remain a potent contractile modulator, regardless of cMyBP-C's phosphorylation state.
Collapse
|
12
|
Nadvi NA, Michie KA, Kwan AH, Guss JM, Trewhella J. Clinically Linked Mutations in the Central Domains of Cardiac Myosin-Binding Protein C with Distinct Phenotypes Show Differential Structural Effects. Structure 2015; 24:105-115. [PMID: 26688216 DOI: 10.1016/j.str.2015.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 02/02/2023]
Abstract
The structural effects of three missense mutations clinically linked to hypertrophic cardiomyopathy (HCM) and located in the central domains of cardiac myosin-binding protein C (cMyBP-C) have been determined using small-angle scattering, infrared spectroscopy, and nuclear magnetic resonance spectroscopy. Bioinformatics and modeling were used to initially predict the expected structural impacts and assess the broader implications for function based on sequence conservation patterns. The experimental results generally affirm the predictions that two of the mutations (D745G, P873H) disrupt domain folding, while the third (R820Q) is likely to be entirely solvent exposed and thus more likely to have its impact through its interactions within the sarcomere. Each of the mutations is associated with distinct disease phenotypes, with respect to severity, stage of onset, and end phase. The results are discussed in terms of understanding key structural features of these domains essential for healthy function and the role they may play in disease development.
Collapse
Affiliation(s)
- Naveed Ahmed Nadvi
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Katharine A Michie
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Ann H Kwan
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - J Mitchell Guss
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Jill Trewhella
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
13
|
Abstract
Cardiac myosin-binding protein-C (cMyBP-C) is a thick filament-associated protein that seems to contribute to the regulation of cardiac contraction through interactions with either myosin or actin or both. Several studies over the past several years have suggested that the interactions of cardiac myosin-binding protein-C with its binding partners vary with its phosphorylation state, binding predominantly to myosin when dephosphorylated and to actin when it is phosphorylated by protein kinase A or other kinases. Here, we summarize evidence suggesting that phosphorylation of cardiac myosin binding protein-C is a key regulator of the kinetics and amplitude of cardiac contraction during β-adrenergic stimulation and increased stimulus frequency. We propose a model for these effects via a phosphorylation-dependent regulation of the kinetics and extent of cooperative recruitment of cross bridges to the thin filament: phosphorylation of cardiac myosin binding protein-C accelerates cross bridge binding to actin, thereby accelerating recruitment and increasing the amplitude of the cardiac twitch. In contrast, enhanced lusitropy as a result of phosphorylation seems to be caused by a direct effect of phosphorylation to accelerate cross-bridge detachment rate. Depression or elimination of one or both of these processes in a disease, such as end-stage heart failure, seems to contribute to the systolic and diastolic dysfunction that characterizes the disease.
Collapse
Affiliation(s)
- Richard L Moss
- From the Department of Cell and Regenerative Biology (R.L.M., D.P.F.) and Department of Pediatrics (J.C.R.), University of Wisconsin School of Medicine and Public Health, Madison.
| | - Daniel P Fitzsimons
- From the Department of Cell and Regenerative Biology (R.L.M., D.P.F.) and Department of Pediatrics (J.C.R.), University of Wisconsin School of Medicine and Public Health, Madison
| | - J Carter Ralphe
- From the Department of Cell and Regenerative Biology (R.L.M., D.P.F.) and Department of Pediatrics (J.C.R.), University of Wisconsin School of Medicine and Public Health, Madison
| |
Collapse
|
14
|
Rosas PC, Liu Y, Abdalla MI, Thomas CM, Kidwell DT, Dusio GF, Mukhopadhyay D, Kumar R, Baker KM, Mitchell BM, Powers PA, Fitzsimons DP, Patel BG, Warren CM, Solaro RJ, Moss RL, Tong CW. Phosphorylation of cardiac Myosin-binding protein-C is a critical mediator of diastolic function. Circ Heart Fail 2015; 8:582-94. [PMID: 25740839 DOI: 10.1161/circheartfailure.114.001550] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 02/24/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND Heart failure (HF) with preserved ejection fraction (HFpEF) accounts for ≈50% of all cases of HF and currently has no effective treatment. Diastolic dysfunction underlies HFpEF; therefore, elucidation of the mechanisms that mediate relaxation can provide new potential targets for treatment. Cardiac myosin-binding protein-C (cMyBP-C) is a thick filament protein that modulates cross-bridge cycling rates via alterations in its phosphorylation status. Thus, we hypothesize that phosphorylated cMyBP-C accelerates the rate of cross-bridge detachment, thereby enhancing relaxation to mediate diastolic function. METHODS AND RESULTS We compared mouse models expressing phosphorylation-deficient cMyBP-C(S273A/S282A/S302A)-cMyBP-C(t3SA), phosphomimetic cMyBP-C(S273D/S282D/S302D)-cMyBP-C(t3SD), and wild-type-control cMyBP-C(tWT) to elucidate the functional effects of cMyBP-C phosphorylation. Decreased voluntary running distances, increased lung/body weight ratios, and increased brain natriuretic peptide levels in cMyBP-C(t3SA) mice demonstrate that phosphorylation deficiency is associated with signs of HF. Echocardiography (ejection fraction and myocardial relaxation velocity) and pressure/volume measurements (-dP/dtmin, pressure decay time constant τ-Glantz, and passive filling stiffness) show that cMyBP-C phosphorylation enhances myocardial relaxation in cMyBP-C(t3SD) mice, whereas deficient cMyBP-C phosphorylation causes diastolic dysfunction with HFpEF in cMyBP-C(t3SA) mice. Simultaneous force and [Ca(2+)]i measurements on intact papillary muscles show that enhancement of relaxation in cMyBP-C(t3SD) mice and impairment of relaxation in cMyBP-C(t3SA) mice are not because of altered [Ca(2+)]i handling, implicating that altered cross-bridge detachment rates mediate these changes in relaxation rates. CONCLUSIONS cMyBP-C phosphorylation enhances relaxation, whereas deficient phosphorylation causes diastolic dysfunction and phenotypes resembling HFpEF. Thus, cMyBP-C is a potential target for treatment of HFpEF.
Collapse
Affiliation(s)
- Paola C Rosas
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.)
| | - Yang Liu
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.)
| | - Mohamed I Abdalla
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.)
| | - Candice M Thomas
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.)
| | - David T Kidwell
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.)
| | - Giuseppina F Dusio
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.)
| | - Dhriti Mukhopadhyay
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.)
| | - Rajesh Kumar
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.)
| | - Kenneth M Baker
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.)
| | - Brett M Mitchell
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.)
| | - Patricia A Powers
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.)
| | - Daniel P Fitzsimons
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.)
| | - Bindiya G Patel
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.)
| | - Chad M Warren
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.)
| | - R John Solaro
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.)
| | - Richard L Moss
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.)
| | - Carl W Tong
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.).
| |
Collapse
|
15
|
Tong CW, Wu X, Liu Y, Rosas PC, Sadayappan S, Hudmon A, Muthuchamy M, Powers PA, Valdivia HH, Moss RL. Phosphoregulation of Cardiac Inotropy via Myosin Binding Protein-C During Increased Pacing Frequency or β1-Adrenergic Stimulation. Circ Heart Fail 2015; 8:595-604. [PMID: 25740838 DOI: 10.1161/circheartfailure.114.001585] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 02/24/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mammalian hearts exhibit positive inotropic responses to β-adrenergic stimulation as a consequence of protein kinase A-mediated phosphorylation or as a result of increased beat frequency (the Bowditch effect). Several membrane and myofibrillar proteins are phosphorylated under these conditions, but the relative contributions of these to increased contractility are not known. Phosphorylation of cardiac myosin-binding protein-C (cMyBP-C) by protein kinase A accelerates the kinetics of force development in permeabilized heart muscle, but its role in vivo is unknown. Such understanding is important because adrenergic responsiveness of the heart and the Bowditch effect are both depressed in heart failure. METHODS AND RESULTS The roles of cMyBP-C phosphorylation were studied using mice in which either WT or nonphosphorylatable forms of cMyBP-C [ser273ala, ser282ala, ser302ala: cMyBP-C(t3SA)] were expressed at similar levels on a cMyBP-C null background. Force and [Ca(2+)]in measurements in isolated papillary muscles showed that the increased force and twitch kinetics because increased pacing or β1-adrenergic stimulation were nearly absent in cMyBP-C(t3SA) myocardium, even though [Ca(2+)]in transients under each condition were similar to WT. Biochemical measurements confirmed that protein kinase A phosphorylated ser273, ser282, and ser302 in WT cMyBP-C. In contrast, CaMKIIδ, which is activated by increased pacing, phosphorylated ser302 principally, ser282 to a lesser degree, and ser273 not at all. CONCLUSIONS Phosphorylation of cMyBP-C increases the force and kinetics of twitches in living cardiac muscle. Further, cMyBP-C is a principal mediator of increased contractility observed with β-adrenergic stimulation or increased pacing because of protein kinase A and CaMKIIδ phosphorylations of cMyB-C.
Collapse
Affiliation(s)
- Carl W Tong
- From the Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison (C.W.T., P.A.P., R.L.M.); Department of Medical Physiology (C.W.T., Y.L., P.C.R., M.M.) and Neuroscience and Experimental Therapeutics (X.W.), Texas A&M University Health Science Center College of Medicine, Temple; Baylor Scott & White Health, Temple, TX (C.W.T.); Department of Physiology, Loyola University Chicago Stritch School of Medicine, IL (S.S.); Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis (A.H.); and Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor (H.H.V.)
| | - Xin Wu
- From the Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison (C.W.T., P.A.P., R.L.M.); Department of Medical Physiology (C.W.T., Y.L., P.C.R., M.M.) and Neuroscience and Experimental Therapeutics (X.W.), Texas A&M University Health Science Center College of Medicine, Temple; Baylor Scott & White Health, Temple, TX (C.W.T.); Department of Physiology, Loyola University Chicago Stritch School of Medicine, IL (S.S.); Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis (A.H.); and Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor (H.H.V.)
| | - Yang Liu
- From the Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison (C.W.T., P.A.P., R.L.M.); Department of Medical Physiology (C.W.T., Y.L., P.C.R., M.M.) and Neuroscience and Experimental Therapeutics (X.W.), Texas A&M University Health Science Center College of Medicine, Temple; Baylor Scott & White Health, Temple, TX (C.W.T.); Department of Physiology, Loyola University Chicago Stritch School of Medicine, IL (S.S.); Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis (A.H.); and Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor (H.H.V.)
| | - Paola C Rosas
- From the Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison (C.W.T., P.A.P., R.L.M.); Department of Medical Physiology (C.W.T., Y.L., P.C.R., M.M.) and Neuroscience and Experimental Therapeutics (X.W.), Texas A&M University Health Science Center College of Medicine, Temple; Baylor Scott & White Health, Temple, TX (C.W.T.); Department of Physiology, Loyola University Chicago Stritch School of Medicine, IL (S.S.); Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis (A.H.); and Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor (H.H.V.)
| | - Sakthivel Sadayappan
- From the Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison (C.W.T., P.A.P., R.L.M.); Department of Medical Physiology (C.W.T., Y.L., P.C.R., M.M.) and Neuroscience and Experimental Therapeutics (X.W.), Texas A&M University Health Science Center College of Medicine, Temple; Baylor Scott & White Health, Temple, TX (C.W.T.); Department of Physiology, Loyola University Chicago Stritch School of Medicine, IL (S.S.); Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis (A.H.); and Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor (H.H.V.)
| | - Andy Hudmon
- From the Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison (C.W.T., P.A.P., R.L.M.); Department of Medical Physiology (C.W.T., Y.L., P.C.R., M.M.) and Neuroscience and Experimental Therapeutics (X.W.), Texas A&M University Health Science Center College of Medicine, Temple; Baylor Scott & White Health, Temple, TX (C.W.T.); Department of Physiology, Loyola University Chicago Stritch School of Medicine, IL (S.S.); Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis (A.H.); and Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor (H.H.V.)
| | - Mariappan Muthuchamy
- From the Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison (C.W.T., P.A.P., R.L.M.); Department of Medical Physiology (C.W.T., Y.L., P.C.R., M.M.) and Neuroscience and Experimental Therapeutics (X.W.), Texas A&M University Health Science Center College of Medicine, Temple; Baylor Scott & White Health, Temple, TX (C.W.T.); Department of Physiology, Loyola University Chicago Stritch School of Medicine, IL (S.S.); Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis (A.H.); and Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor (H.H.V.)
| | - Patricia A Powers
- From the Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison (C.W.T., P.A.P., R.L.M.); Department of Medical Physiology (C.W.T., Y.L., P.C.R., M.M.) and Neuroscience and Experimental Therapeutics (X.W.), Texas A&M University Health Science Center College of Medicine, Temple; Baylor Scott & White Health, Temple, TX (C.W.T.); Department of Physiology, Loyola University Chicago Stritch School of Medicine, IL (S.S.); Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis (A.H.); and Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor (H.H.V.)
| | - Héctor H Valdivia
- From the Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison (C.W.T., P.A.P., R.L.M.); Department of Medical Physiology (C.W.T., Y.L., P.C.R., M.M.) and Neuroscience and Experimental Therapeutics (X.W.), Texas A&M University Health Science Center College of Medicine, Temple; Baylor Scott & White Health, Temple, TX (C.W.T.); Department of Physiology, Loyola University Chicago Stritch School of Medicine, IL (S.S.); Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis (A.H.); and Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor (H.H.V.)
| | - Richard L Moss
- From the Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison (C.W.T., P.A.P., R.L.M.); Department of Medical Physiology (C.W.T., Y.L., P.C.R., M.M.) and Neuroscience and Experimental Therapeutics (X.W.), Texas A&M University Health Science Center College of Medicine, Temple; Baylor Scott & White Health, Temple, TX (C.W.T.); Department of Physiology, Loyola University Chicago Stritch School of Medicine, IL (S.S.); Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis (A.H.); and Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor (H.H.V.).
| |
Collapse
|
16
|
Chang AN, Battiprolu PK, Cowley PM, Chen G, Gerard RD, Pinto JR, Hill JA, Baker AJ, Kamm KE, Stull JT. Constitutive phosphorylation of cardiac myosin regulatory light chain in vivo. J Biol Chem 2015; 290:10703-16. [PMID: 25733667 DOI: 10.1074/jbc.m115.642165] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Indexed: 01/03/2023] Open
Abstract
In beating hearts, phosphorylation of myosin regulatory light chain (RLC) at a single site to 0.45 mol of phosphate/mol by cardiac myosin light chain kinase (cMLCK) increases Ca(2+) sensitivity of myofilament contraction necessary for normal cardiac performance. Reduction of RLC phosphorylation in conditional cMLCK knock-out mice caused cardiac dilation and loss of cardiac performance by 1 week, as shown by increased left ventricular internal diameter at end-diastole and decreased fractional shortening. Decreased RLC phosphorylation by conventional or conditional cMLCK gene ablation did not affect troponin-I or myosin-binding protein-C phosphorylation in vivo. The extent of RLC phosphorylation was not changed by prolonged infusion of dobutamine or treatment with a β-adrenergic antagonist, suggesting that RLC is constitutively phosphorylated to maintain cardiac performance. Biochemical studies with myofilaments showed that RLC phosphorylation up to 90% was a random process. RLC is slowly dephosphorylated in both noncontracting hearts and isolated cardiac myocytes from adult mice. Electrically paced ventricular trabeculae restored RLC phosphorylation, which was increased to 0.91 mol of phosphate/mol of RLC with inhibition of myosin light chain phosphatase (MLCP). The two RLCs in each myosin appear to be readily available for phosphorylation by a soluble cMLCK, but MLCP activity limits the amount of constitutive RLC phosphorylation. MLCP with its regulatory subunit MYPT2 bound tightly to myofilaments was constitutively phosphorylated in beating hearts at a site that inhibits MLCP activity. Thus, the constitutive RLC phosphorylation is limited physiologically by low cMLCK activity in balance with low MLCP activity.
Collapse
Affiliation(s)
| | | | - Patrick M Cowley
- the Veterans Affairs Medical Center, San Francisco, California 94143, the University of California, San Francisco, California 94143, and
| | | | - Robert D Gerard
- Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Jose R Pinto
- the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306
| | - Joseph A Hill
- Internal Medicine (Cardiology), and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Anthony J Baker
- the Veterans Affairs Medical Center, San Francisco, California 94143, the University of California, San Francisco, California 94143, and
| | | | | |
Collapse
|
17
|
Colson BA, Petersen KJ, Collins BC, Lowe DA, Thomas DD. The myosin super-relaxed state is disrupted by estradiol deficiency. Biochem Biophys Res Commun 2015; 456:151-5. [PMID: 25446114 PMCID: PMC4276479 DOI: 10.1016/j.bbrc.2014.11.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/14/2014] [Indexed: 12/23/2022]
Abstract
We have used quantitative epifluorescence microscopy of fluorescent ATP to measure single-nucleotide turnover in skinned skeletal muscle fibers from mouse models of female aging and hormone treatment. Aging causes declines in muscle strength, often leading to frailty, disability, and loss of independence for the elderly. Female muscle is additionally affected by age due to reduction of ovarian hormone production with menopause. Estradiol (E2) is the key hormonal signal to skeletal muscle in females, and strength loss is attenuated by E2 treatment. To investigate E2 mechanisms on skeletal muscle, single fibers were isolated from sham-operated or ovariectomized (OVX) mice, with or without E2 treatment, and were incubated with 2'-(or-3')-O-(N-methylanthraniloyl) adenosine 5'-triphosphate (mantATP). We measured decay of mantATP fluorescence in an ATP-chase experiment, as pioneered by Cooke and coworkers, who unveiled a novel regulated state of muscle myosin characterized by slow nucleotide turnover on the order of minutes, termed the super-relaxed state (SRX). We detected a slow phase of nucleotide turnover in a portion of the myosin heads from sham fibers, consistent with SRX. Turnover was substantially faster in OVX fibers, with a turnover time constant for the slow phase of 65 ± 8s as compared to 102 ± 7s for sham fibers. 60-days E2 treatment in OVX mice substantially reversed this effect on SRX, while acute exposure of isolated muscles from OVX mice to E2 had no effect. We conclude that E2-mediated signaling reversibly regulates slow ATP turnover by myosin. Age- and hormone-related muscle functional losses may be targetable at the level of myosin structure/function for strategies to offset weakness and metabolic changes that occur with age.
Collapse
Affiliation(s)
- Brett A Colson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Karl J Petersen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Brittany C Collins
- Programs in Rehabilitation Science and Physical Therapy, University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | - Dawn A Lowe
- Programs in Rehabilitation Science and Physical Therapy, University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
18
|
Cardiac myosin binding protein C phosphorylation affects cross-bridge cycle's elementary steps in a site-specific manner. PLoS One 2014; 9:e113417. [PMID: 25420047 PMCID: PMC4242647 DOI: 10.1371/journal.pone.0113417] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 10/23/2014] [Indexed: 01/04/2023] Open
Abstract
Based on our recent finding that cardiac myosin binding protein C (cMyBP-C) phosphorylation affects muscle contractility in a site-specific manner, we further studied the force per cross-bridge and the kinetic constants of the elementary steps in the six-state cross-bridge model in cMyBP-C mutated transgenic mice for better understanding of the influence of cMyBP-C phosphorylation on contractile functions. Papillary muscle fibres were dissected from cMyBP-C mutated mice of ADA (Ala273-Asp282-Ala302), DAD (Asp273-Ala282-Asp302), SAS (Ser273-Ala282-Ser302), and t/t (cMyBP-C null) genotypes, and the results were compared to transgenic mice expressing wide-type (WT) cMyBP-C. Sinusoidal analyses were performed with serial concentrations of ATP, phosphate (Pi), and ADP. Both t/t and DAD mutants significantly reduced active tension, force per cross-bridge, apparent rate constant (2πc), and the rate constant of cross-bridge detachment. In contrast to the weakened ATP binding and enhanced Pi and ADP release steps in t/t mice, DAD mice showed a decreased ADP release without affecting the ATP binding and the Pi release. ADA showed decreased ADP release, and slightly increased ATP binding and cross-bridge detachment steps, whereas SAS diminished the ATP binding step and accelerated the ADP release step. t/t has the broadest effects with changes in most elementary steps of the cross-bridge cycle, DAD mimics t/t to a large extent, and ADA and SAS predominantly affect the nucleotide binding steps. We conclude that the reduced tension production in DAD and t/t is the result of reduced force per cross-bridge, instead of the less number of strongly attached cross-bridges. We further conclude that cMyBP-C is an allosteric activator of myosin to increase cross-bridge force, and its phosphorylation status modulates the force, which is regulated by variety of protein kinases.
Collapse
|
19
|
Belknap B, Harris SP, White HD. Modulation of thin filament activation of myosin ATP hydrolysis by N-terminal domains of cardiac myosin binding protein-C. Biochemistry 2014; 53:6717-24. [PMID: 25265574 PMCID: PMC4211651 DOI: 10.1021/bi500787f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
We
have used enzyme kinetics to investigate the molecular mechanism
by which the N-terminal domains of human and mouse cardiac MyBP-C
(C0C1, C1C2, and C0C2) affect the activation of myosin ATP hydrolysis
by F-actin and by native porcine thin filaments. N-Terminal domains
of cMyBP-C inhibit the activation of myosin-S1 ATPase by F-actin.
However, mouse and human C1C2 and C0C2 produce biphasic activating
and inhibitory effects on the activation of myosin ATP hydrolysis
by native cardiac thin filaments. Low ratios of MyBP-C N-terminal
domains to thin filaments activate myosin-S1 ATP hydrolysis, but higher
ratios inhibit ATP hydrolysis, as is observed with F-actin alone.
These data suggest that low concentrations of C1C2 and C0C2 activate
thin filaments by a mechanism similar to that of rigor myosin-S1,
whereas higher concentrations inhibit the ATPase rate by competing
with myosin-S1-ADP-Pi for binding to actin and thin filaments.
In contrast to C0C2 and C1C2, the activating effects of the C0C1 domain
are species-dependent: human C0C1 activates actomyosin-S1 ATPase rates,
but mouse C0C1 does not produce significant activation or inhibition.
Phosphorylation of serine residues in the m-linker between the C1
and C2 domains by protein kinase-A decreases the activation of thin
filaments by huC0C2 at pCa > 8 but
has
little effect on the activation mechanism at pCa = 4. In sarcomeres, the low ratio of cMyBP-C to actin is
expected to favor the activating effects of cMyBP-C while minimizing
inhibition produced by competition with myosin heads.
Collapse
Affiliation(s)
- Betty Belknap
- Department of Physiological Sciences, Eastern Virginia Medical School , Norfolk, Virginia 23507, United States
| | | | | |
Collapse
|
20
|
Previs MJ, Michalek AJ, Warshaw DM. Molecular modulation of actomyosin function by cardiac myosin-binding protein C. Pflugers Arch 2014; 466:439-44. [PMID: 24407948 PMCID: PMC3932558 DOI: 10.1007/s00424-013-1433-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/23/2013] [Indexed: 11/29/2022]
Abstract
Cardiac myosin-binding protein C is a key regulator of cardiac contractility and is capable of both activating the thin filament to initiate actomyosin motion generation and governing maximal sliding velocities. While MyBP-C's C terminus localizes the molecule within the sarcomere, the N terminus appears to confer regulatory function by binding to the myosin motor domain and/or actin. Literature pertaining to how MyBP-C binding to the myosin motor domain and or actin leads to MyBP-C's dual modulatory roles that can impact actomyosin interactions are discussed.
Collapse
Affiliation(s)
- Michael J Previs
- Department of Molecular Physiology & Biophysics, University of Vermont, 149 Beaumont Ave., HSRF Building Rm.-116, Burlington, VT, 05405, USA
| | | | | |
Collapse
|
21
|
Finley NL, Cuperman TI. Cardiac myosin binding protein-C: a structurally dynamic regulator of myocardial contractility. Pflugers Arch 2014; 466:433-8. [PMID: 24469349 DOI: 10.1007/s00424-014-1451-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 11/28/2022]
Abstract
Cardiac myosin binding protein-C (cMyBP-C) is a modular protein anchored to the thick filament through interactions mediated by its C-terminal region. The N-terminal region of cMyBPC-C regulates myocardial contractility by modifying actin-myosin association. Phosphorylation of the N-terminal region diminishes cMyBP-C's capacity to regulate actin-myosin function. Despite a substantial body of literature, many issues remain unclear regarding the structural and functional roles of cMyBP-C. While no high-resolution structures of the intact protein exist, crystallographic and nuclear magnetic resonance (NMR) structures of isolated N-terminal domains provide important molecular details regarding cMyBP-C's role in controlling contractility. In this review, we summarize the emerging structural understanding of cMyBP-C with a particular emphasis placed on describing how its dynamic molecular interactions with both thin and thick filament proteins likely contribute to contractile regulation. Furthermore, we discuss the future directions and strategies by which we may improve the mechanistic understanding of its role in modulating cardiac muscle contraction.
Collapse
Affiliation(s)
- Natosha L Finley
- The Cell, Molecular, and Structural Biology Program, Department of Microbiology, Miami University, 700 East High Street, 32 Pearson Hall, Oxford, OH, 45056, USA,
| | | |
Collapse
|
22
|
Ha K, Buchan JG, Alvarado DM, McCall K, Vydyanath A, Luther PK, Goldsmith MI, Dobbs MB, Gurnett CA. MYBPC1 mutations impair skeletal muscle function in zebrafish models of arthrogryposis. Hum Mol Genet 2013; 22:4967-77. [PMID: 23873045 DOI: 10.1093/hmg/ddt344] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Myosin-binding protein C1 (MYBPC1) is an abundant skeletal muscle protein that is expressed predominantly in slow-twitch muscle fibers. Human MYBPC1 mutations are associated with distal arthrogryposis type 1 and lethal congenital contracture syndrome type 4. As MYBPC1 function is incompletely understood, the mechanism by which human mutations result in contractures is unknown. Here, we demonstrate using antisense morpholino knockdown, that mybpc1 is required for embryonic motor activity and survival in a zebrafish model of arthrogryposis. Mybpc1 morphant embryos have severe body curvature, cardiac edema, impaired motor excitation and are delayed in hatching. Myofibril organization is selectively impaired in slow skeletal muscle and sarcomere numbers are greatly reduced in mybpc1 knockdown embryos, although electron microscopy reveals normal sarcomere structure. To evaluate the effects of human distal arthrogryposis mutations, mybpc1 mRNAs containing the corresponding human W236R and Y856H MYBPC1 mutations were injected into embryos. Dominant-negative effects of these mutations were suggested by the resultant mild bent body curvature, decreased motor activity, as well as impaired overall survival compared with overexpression of wild-type RNA. These results demonstrate a critical role for mybpc1 in slow skeletal muscle development and establish zebrafish as a tractable model of human distal arthrogryposis.
Collapse
|