1
|
Zhao S, Brown CA, Holt LL, Dick F. Robust and Efficient Online Auditory Psychophysics. Trends Hear 2022; 26:23312165221118792. [PMID: 36131515 PMCID: PMC9500270 DOI: 10.1177/23312165221118792] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
Abstract
Most human auditory psychophysics research has historically been conducted in carefully controlled environments with calibrated audio equipment, and over potentially hours of repetitive testing with expert listeners. Here, we operationally define such conditions as having high 'auditory hygiene'. From this perspective, conducting auditory psychophysical paradigms online presents a serious challenge, in that results may hinge on absolute sound presentation level, reliably estimated perceptual thresholds, low and controlled background noise levels, and sustained motivation and attention. We introduce a set of procedures that address these challenges and facilitate auditory hygiene for online auditory psychophysics. First, we establish a simple means of setting sound presentation levels. Across a set of four level-setting conditions conducted in person, we demonstrate the stability and robustness of this level setting procedure in open air and controlled settings. Second, we test participants' tone-in-noise thresholds using widely adopted online experiment platforms and demonstrate that reliable threshold estimates can be derived online in approximately one minute of testing. Third, using these level and threshold setting procedures to establish participant-specific stimulus conditions, we show that an online implementation of the classic probe-signal paradigm can be used to demonstrate frequency-selective attention on an individual-participant basis, using a third of the trials used in recent in-lab experiments. Finally, we show how threshold and attentional measures relate to well-validated assays of online participants' in-task motivation, fatigue, and confidence. This demonstrates the promise of online auditory psychophysics for addressing new auditory perception and neuroscience questions quickly, efficiently, and with more diverse samples. Code for the tests is publicly available through Pavlovia and Gorilla.
Collapse
Affiliation(s)
- Sijia Zhao
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Christopher A. Brown
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lori L. Holt
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Frederic Dick
- Department of Psychological Sciences, Birkbeck College, University of London, London, UK
- Department of Experimental Psychology, PALS, University College London, London, UK
| |
Collapse
|
2
|
Demany L, Monteiro G, Semal C, Shamma S, Carlyon RP. The perception of octave pitch affinity and harmonic fusion have a common origin. Hear Res 2021; 404:108213. [PMID: 33662686 PMCID: PMC7614450 DOI: 10.1016/j.heares.2021.108213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
Musicians say that the pitches of tones with a frequency ratio of 2:1 (one octave) have a distinctive affinity, even if the tones do not have common spectral components. It has been suggested, however, that this affinity judgment has no biological basis and originates instead from an acculturation process ‒ the learning of musical rules unrelated to auditory physiology. We measured, in young amateur musicians, the perceptual detectability of octave mistunings for tones presented alternately (melodic condition) or simultaneously (harmonic condition). In the melodic condition, mistuning was detectable only by means of explicit pitch comparisons. In the harmonic condition, listeners could use a different and more efficient perceptual cue: in the absence of mistuning, the tones fused into a single sound percept; mistunings decreased fusion. Performance was globally better in the harmonic condition, in line with the hypothesis that listeners used a fusion cue in this condition; this hypothesis was also supported by results showing that an illusory simultaneity of the tones was much less advantageous than a real simultaneity. In the two conditions, mistuning detection was generally better for octave compressions than for octave stretchings. This asymmetry varied across listeners, but crucially the listener-specific asymmetries observed in the two conditions were highly correlated. Thus, the perception of the melodic octave appeared to be closely linked to the phenomenon of harmonic fusion. As harmonic fusion is thought to be determined by biological factors rather than factors related to musical culture or training, we argue that octave pitch affinity also has, at least in part, a biological basis.
Collapse
Affiliation(s)
- Laurent Demany
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, EPHE, and Université de Bordeaux, Bordeaux, France.
| | - Guilherme Monteiro
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, EPHE, and Université de Bordeaux, Bordeaux, France
| | - Catherine Semal
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, EPHE, and Université de Bordeaux, Bordeaux, France; Bordeaux INP, Bordeaux, France.
| | - Shihab Shamma
- Institute for Systems Research, University of Maryland, College Park, MD, United States; Département d'Etudes Cognitives, Ecole Normale Supérieure, Paris, France.
| | - Robert P Carlyon
- Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, Cambridge, United Kingdom.
| |
Collapse
|
3
|
A mechanoelectrical mechanism for detection of sound envelopes in the hearing organ. Nat Commun 2018; 9:4175. [PMID: 30302006 PMCID: PMC6177430 DOI: 10.1038/s41467-018-06725-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 09/21/2018] [Indexed: 11/22/2022] Open
Abstract
To understand speech, the slowly varying outline, or envelope, of the acoustic stimulus is used to distinguish words. A small amount of information about the envelope is sufficient for speech recognition, but the mechanism used by the auditory system to extract the envelope is not known. Several different theories have been proposed, including envelope detection by auditory nerve dendrites as well as various mechanisms involving the sensory hair cells. We used recordings from human and animal inner ears to show that the dominant mechanism for envelope detection is distortion introduced by mechanoelectrical transduction channels. This electrical distortion, which is not apparent in the sound-evoked vibrations of the basilar membrane, tracks the envelope, excites the auditory nerve, and transmits information about the shape of the envelope to the brain. The sound envelope is important for speech perception. Here, the authors look at mechanisms by which the sound envelope is encoded, finding that it arises from distortion produced by mechanoelectrical transduction channels. Surprisingly, the envelope is not present in basilar membrane vibrations.
Collapse
|
4
|
Riecke L, Peters JC, Valente G, Poser BA, Kemper VG, Formisano E, Sorger B. Frequency-specific attentional modulation in human primary auditory cortex and midbrain. Neuroimage 2018; 174:274-287. [DOI: 10.1016/j.neuroimage.2018.03.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 03/15/2018] [Accepted: 03/17/2018] [Indexed: 12/24/2022] Open
|
5
|
Bolders AC, Band GPH, Stallen PJM. Inconsistent Effect of Arousal on Early Auditory Perception. Front Psychol 2017; 8:447. [PMID: 28424639 PMCID: PMC5372791 DOI: 10.3389/fpsyg.2017.00447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/09/2017] [Indexed: 11/23/2022] Open
Abstract
Mood has been shown to influence cognitive performance. However, little is known about the influence of mood on sensory processing, specifically in the auditory domain. With the current study, we sought to investigate how auditory processing of neutral sounds is affected by the mood state of the listener. This was tested in two experiments by measuring masked-auditory detection thresholds before and after a standard mood-induction procedure. In the first experiment (N = 76), mood was induced by imagining a mood-appropriate event combined with listening to mood inducing music. In the second experiment (N = 80), imagining was combined with affective picture viewing to exclude any possibility of confounding the results by acoustic properties of the music. In both experiments, the thresholds were determined by means of an adaptive staircase tracking method in a two-interval forced-choice task. Masked detection thresholds were compared between participants in four different moods (calm, happy, sad, and anxious), which enabled differentiation of mood effects along the dimensions arousal and pleasure. Results of the two experiments were analyzed both in separate analyses and in a combined analysis. The first experiment showed that, while there was no impact of pleasure level on the masked threshold, lower arousal was associated with lower threshold (higher masked sensitivity). However, as indicated by an interaction effect between experiment and arousal, arousal did have a different effect on the threshold in Experiment 2. Experiment 2 showed a trend of arousal in opposite direction. These results show that the effect of arousal on auditory-masked sensitivity may depend on the modality of the mood-inducing stimuli. As clear conclusions regarding the genuineness of the arousal effect on the masked threshold cannot be drawn, suggestions for further research that could clarify this issue are provided.
Collapse
Affiliation(s)
- Anna C Bolders
- Cognitive Psychology Unit, Institute of Psychology, Leiden UniversityLeiden, Netherlands
| | - Guido P H Band
- Cognitive Psychology Unit, Institute of Psychology, Leiden UniversityLeiden, Netherlands.,Leiden Institute for Brain and Cognition, Leiden UniversityLeiden, Netherlands
| | - Pieter Jan M Stallen
- Cognitive Psychology Unit, Institute of Psychology, Leiden UniversityLeiden, Netherlands
| |
Collapse
|
6
|
Harmonic template neurons in primate auditory cortex underlying complex sound processing. Proc Natl Acad Sci U S A 2017; 114:E840-E848. [PMID: 28096341 DOI: 10.1073/pnas.1607519114] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Harmonicity is a fundamental element of music, speech, and animal vocalizations. How the auditory system extracts harmonic structures embedded in complex sounds and uses them to form a coherent unitary entity is not fully understood. Despite the prevalence of sounds rich in harmonic structures in our everyday hearing environment, it has remained largely unknown what neural mechanisms are used by the primate auditory cortex to extract these biologically important acoustic structures. In this study, we discovered a unique class of harmonic template neurons in the core region of auditory cortex of a highly vocal New World primate, the common marmoset (Callithrix jacchus), across the entire hearing frequency range. Marmosets have a rich vocal repertoire and a similar hearing range to that of humans. Responses of these neurons show nonlinear facilitation to harmonic complex sounds over inharmonic sounds, selectivity for particular harmonic structures beyond two-tone combinations, and sensitivity to harmonic number and spectral regularity. Our findings suggest that the harmonic template neurons in auditory cortex may play an important role in processing sounds with harmonic structures, such as animal vocalizations, human speech, and music.
Collapse
|
7
|
|
8
|
Peters JP, Bennink E, Grolman W, van Zanten GA. Electro-acoustic pitch matching experiments in patients with single-sided deafness and a cochlear implant. Hear Res 2016; 342:124-133. [DOI: 10.1016/j.heares.2016.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/07/2016] [Accepted: 10/15/2016] [Indexed: 11/25/2022]
|
9
|
Abstract
Theories of embodied cognition positing that sensorimotor areas are indispensable during language comprehension are supported by neuroimaging and behavioural studies. Among others, the auditory system has been suggested to be important for understanding sound-related words (visually presented) and the motor system for action-related words. In this behavioural study, using a sound detection task embedded in a lexical decision task, we show that in participants with high lexical decision performance sound verbs improve auditory perception. The amount of modulation was correlated with lexical decision performance. Our study provides convergent behavioural evidence of auditory cortex involvement in word processing, supporting the view of embodied language comprehension concerning the auditory domain.
Collapse
|
10
|
Bonnard D, Dauman R, Semal C, Demany L. Harmonic fusion and pitch affinity: Is there a direct link? Hear Res 2016; 333:247-254. [DOI: 10.1016/j.heares.2015.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 08/19/2015] [Accepted: 08/27/2015] [Indexed: 10/23/2022]
|
11
|
Attention Wins over Sensory Attenuation in a Sound Detection Task. PLoS One 2015; 10:e0136585. [PMID: 26302246 PMCID: PMC4547802 DOI: 10.1371/journal.pone.0136585] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/05/2015] [Indexed: 11/19/2022] Open
Abstract
‘Sensory attenuation’, i.e., reduced neural responses to self-induced compared to externally generated stimuli, is a well-established phenomenon. However, very few studies directly compared sensory attenuation with attention effect, which leads to increased neural responses. In this study, we brought sensory attenuation and attention together in a behavioural auditory detection task, where both effects were quantitatively measured and compared. The classic auditory attention effect of facilitating detection performance was replicated. When attention and sensory attenuation were both present, attentional facilitation decreased but remained significant. The results are discussed in the light of current theories of sensory attenuation.
Collapse
|