1
|
Zarazúa-Osorio B, Srivastava P, Marathe A, Zahid SH, Fujita M. Autoregulation of the Master Regulator Spo0A Controls Cell-Fate Decisions in Bacillus subtilis. Mol Microbiol 2025. [PMID: 39812382 DOI: 10.1111/mmi.15341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
Spo0A in Bacillus subtilis is activated by phosphorylation (Spo0A~P) upon starvation and differentially controls a set of genes involved in biofilm formation and sporulation. The spo0A gene is transcribed by two distinct promoters, a σA-recognized upstream promoter Pv during growth, and a σH-recognized downstream promoter Ps during starvation, and appears to be autoregulated by four Spo0A~P binding sites (0A1-4 boxes) localized between two promoters. However, the autoregulatory mechanisms and their impact on differentiation remain elusive. Here, we determined the relative affinity of Spo0A~P for each 0A box and dissected each promoter in combination with the systematic 0A box mutations. The data revealed that (1) the Pv and Ps promoters are on and off, respectively, under nutrient-rich conditions without Spo0A~P, (2) the Ps promoter is activated by first 0A3 and then 0A1 during early starvation with low Spo0A~P, (3) during later starvation with high Spo0A~P, the Pv promoter is repressed by first 0A1 and then 0A2 and 0A4, and (4) during prolonged starvation, both promoters are silenced by all 0A boxes with very high Spo0A~P. Our results indicate that the autoregulation of spo0A is one of the key determinants to achieve a developmental increase in Spo0A~P, leading to a temporal window for entry into biofilm formation or sporulation.
Collapse
Affiliation(s)
| | - Priyanka Srivastava
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Anuradha Marathe
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Syeda Hira Zahid
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Masaya Fujita
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
2
|
Pountain AW, Jiang P, Yao T, Homaee E, Guan Y, McDonald KJC, Podkowik M, Shopsin B, Torres VJ, Golding I, Yanai I. Transcription-replication interactions reveal bacterial genome regulation. Nature 2024; 626:661-669. [PMID: 38267581 PMCID: PMC10923101 DOI: 10.1038/s41586-023-06974-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024]
Abstract
Organisms determine the transcription rates of thousands of genes through a few modes of regulation that recur across the genome1. In bacteria, the relationship between the regulatory architecture of a gene and its expression is well understood for individual model gene circuits2,3. However, a broader perspective of these dynamics at the genome scale is lacking, in part because bacterial transcriptomics has hitherto captured only a static snapshot of expression averaged across millions of cells4. As a result, the full diversity of gene expression dynamics and their relation to regulatory architecture remains unknown. Here we present a novel genome-wide classification of regulatory modes based on the transcriptional response of each gene to its own replication, which we term the transcription-replication interaction profile (TRIP). Analysing single-bacterium RNA-sequencing data, we found that the response to the universal perturbation of chromosomal replication integrates biological regulatory factors with biophysical molecular events on the chromosome to reveal the local regulatory context of a gene. Whereas the TRIPs of many genes conform to a gene dosage-dependent pattern, others diverge in distinct ways, and this is shaped by factors such as intra-operon position and repression state. By revealing the underlying mechanistic drivers of gene expression heterogeneity, this work provides a quantitative, biophysical framework for modelling replication-dependent expression dynamics.
Collapse
Affiliation(s)
- Andrew W Pountain
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Peien Jiang
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Tianyou Yao
- Department of Physics, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Ehsan Homaee
- Department of Physics, University of Illinois at Urbana Champaign, Urbana, IL, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yichao Guan
- Department of Physics, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Kevin J C McDonald
- Department of Physics, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Magdalena Podkowik
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
| | - Bo Shopsin
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Victor J Torres
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ido Golding
- Department of Physics, University of Illinois at Urbana Champaign, Urbana, IL, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Itai Yanai
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Pountain AW, Jiang P, Yao T, Homaee E, Guan Y, Podkowik M, Shopsin B, Torres VJ, Golding I, Yanai I. Transcription-replication interactions reveal principles of bacterial genome regulation. RESEARCH SQUARE 2023:rs.3.rs-2724389. [PMID: 37034646 PMCID: PMC10081379 DOI: 10.21203/rs.3.rs-2724389/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Organisms determine the transcription rates of thousands of genes through a few modes of regulation that recur across the genome1. These modes interact with a changing cellular environment to yield highly dynamic expression patterns2. In bacteria, the relationship between a gene's regulatory architecture and its expression is well understood for individual model gene circuits3,4. However, a broader perspective of these dynamics at the genome-scale is lacking, in part because bacterial transcriptomics have hitherto captured only a static snapshot of expression averaged across millions of cells5. As a result, the full diversity of gene expression dynamics and their relation to regulatory architecture remains unknown. Here we present a novel genome-wide classification of regulatory modes based on each gene's transcriptional response to its own replication, which we term the Transcription-Replication Interaction Profile (TRIP). We found that the response to the universal perturbation of chromosomal replication integrates biological regulatory factors with biophysical molecular events on the chromosome to reveal a gene's local regulatory context. While the TRIPs of many genes conform to a gene dosage-dependent pattern, others diverge in distinct ways, including altered timing or amplitude of expression, and this is shaped by factors such as intra-operon position, repression state, or presence on mobile genetic elements. Our transcriptome analysis also simultaneously captures global properties, such as the rates of replication and transcription, as well as the nestedness of replication patterns. This work challenges previous notions of the drivers of expression heterogeneity within a population of cells, and unearths a previously unseen world of gene transcription dynamics.
Collapse
Affiliation(s)
- Andrew W. Pountain
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY USA
| | - Peien Jiang
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY USA
- Department of Biology, New York University, New York, NY, USA
| | - Tianyou Yao
- Department of Physics, University of Illinois at Urbana Champaign, Urbana, IL USA
| | - Ehsan Homaee
- Department of Physics, University of Illinois at Urbana Champaign, Urbana, IL USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Yichao Guan
- Department of Physics, University of Illinois at Urbana Champaign, Urbana, IL USA
| | - Magdalena Podkowik
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
| | - Bo Shopsin
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY USA
| | - Victor J. Torres
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY USA
| | - Ido Golding
- Department of Physics, University of Illinois at Urbana Champaign, Urbana, IL USA
- Department of Microbiology, University of Illinois at Urbana Champaign, Urbana,IL USA
| | - Itai Yanai
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
4
|
Abstract
The universally conserved protein elongation factor P (EF-P) facilitates translation at amino acids that form peptide bonds with low efficiency, particularly polyproline tracts. Despite its wide conservation, it is not essential in most bacteria and its physiological role remains unclear. Here, we show that EF-P affects the process of sporulation initiation in the bacterium Bacillus subtilis. We observe that the lack of EF-P delays expression of sporulation-specific genes. Using ribosome profiling, we observe that expression of spo0A, encoding a transcription factor that functions as the master regulator of sporulation, is lower in a Δefp strain than the wild type. Ectopic expression of Spo0A rescues the sporulation initiation phenotype, indicating that reduced spo0A expression explains the sporulation defect in Δefp cells. Since Spo0A is the earliest sporulation transcription factor, these data suggest that sporulation initiation can be delayed when protein synthesis is impaired. IMPORTANCE Elongation factor P (EF-P) is a universally conserved translation factor that prevents ribosome stalling at amino acids that form peptide bonds with low efficiency, particularly polyproline tracts. Phenotypes associated with EF-P deletion are pleiotropic, and the mechanistic basis underlying many of these phenotypes is unclear. Here, we show that the absence of EF-P affects the ability of B. subtilis to initiate sporulation by preventing normal expression of Spo0A, the key transcriptional regulator of this process. These data illustrate a mechanism that accounts for the sporulation delay and further suggest that cells are capable of sensing translation stress before committing to sporulation.
Collapse
|
5
|
The Slowdown of Growth Rate Controls the Single-Cell Distribution of Biofilm Matrix Production via an SinI-SinR-SlrR Network. mSystems 2023; 8:e0062222. [PMID: 36786593 PMCID: PMC10134886 DOI: 10.1128/msystems.00622-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
In Bacillus subtilis, master regulator Spo0A controls several cell-differentiation pathways. Under moderate starvation, phosphorylated Spo0A (Spo0A~P) induces biofilm formation by indirectly activating genes controlling matrix production in a subpopulation of cells via an SinI-SinR-SlrR network. Under severe starvation, Spo0A~P induces sporulation by directly and indirectly regulating sporulation gene expression. However, what determines the heterogeneity of individual cell fates is not fully understood. In particular, it is still unclear why, despite being controlled by a single master regulator, biofilm matrix production and sporulation seem mutually exclusive on a single-cell level. In this work, with mathematical modeling, we showed that the fluctuations in the growth rate and the intrinsic noise amplified by the bistability in the SinI-SinR-SlrR network could explain the single-cell distribution of matrix production. Moreover, we predicted an incoherent feed-forward loop; the decrease in the cellular growth rate first activates matrix production by increasing in Spo0A phosphorylation level but then represses it via changing the relative concentrations of SinR and SlrR. Experimental data provide evidence to support model predictions. In particular, we demonstrate how the degree to which matrix production and sporulation appear mutually exclusive is affected by genetic perturbations. IMPORTANCE The mechanisms of cell-fate decisions are fundamental to our understanding of multicellular organisms and bacterial communities. However, even for the best-studied model systems we still lack a complete picture of how phenotypic heterogeneity of genetically identical cells is controlled. Here, using B. subtilis as a model system, we employ a combination of mathematical modeling and experiments to explain the population-level dynamics and single-cell level heterogeneity of matrix gene expression. The results demonstrate how the two cell fates, biofilm matrix production and sporulation, can appear mutually exclusive without explicitly inhibiting one another. Such a mechanism could be used in a wide range of other biological systems.
Collapse
|
6
|
Biswas A. Pathway-resolved decomposition demonstrates correlation and noise dependencies of redundant information processing in recurrent feed-forward topologies. Phys Rev E 2022; 105:034406. [PMID: 35428055 DOI: 10.1103/physreve.105.034406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
In a biochemical assay that converts fan-in networks into feed-forward loops (FFLs), we show that the inter-regulator redundant information about the output gene product can be decomposed into finer components, mediated by the constituent pathways. Variance-based information within the linear noise regime facilitates quantifying these submodular redundancies. Contrary to the conventional wisdom on information decomposition, we report that information redundancy depends nontrivially on inter-regulator correlation. For the type-1 coherent (C1) and incoherent (I1) FFLs, the direct regulatory path-mediated redundancy is certainly correlation independent. However, components induced by the indirect regulatory path and interpathway interference are correlation dependent in (non)linear fashion. The trade-off between information redundancy and similarly decomposable extrinsic noise from input to output node has been demonstrated for the pathways and full motifs. Our analyses suggest that the interpathway cross redundancy positively and negatively influences the superposition of elementary redundancies in the C1- and I1-FFLs, respectively. Their corresponding total extrinsic noise is produced by the weighted sum and difference of the pathway-specific components. We find that the I1-FFL is able to manufacture more varied redundancy and extrinsic noise responses compared to the C1-FFL. Underlying the differing characteristics of the composite metrics across FFL variants, there exist uniformly behaving pathway-dependent elements. The decomposition framework has been meticulously explored in biologically rational parametric realizations through analytical estimates and stochastic simulations.
Collapse
Affiliation(s)
- Ayan Biswas
- Department of Chemistry, Bose Institute, 93/1 A P C Road, Kolkata 700009, India
| |
Collapse
|
7
|
Bacillus subtilis Histidine Kinase KinC Activates Biofilm Formation by Controlling Heterogeneity of Single-Cell Responses. mBio 2022; 13:e0169421. [PMID: 35012345 PMCID: PMC8749435 DOI: 10.1128/mbio.01694-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Bacillus subtilis, biofilm and sporulation pathways are both controlled by a master regulator, Spo0A, which is activated by phosphorylation via a phosphorelay-a cascade of phosphotransfer reactions commencing with autophosphorylation of histidine kinases KinA, KinB, KinC, KinD, and KinE. However, it is unclear how the kinases, despite acting via the same regulator, Spo0A, differentially regulate downstream pathways, i.e., how KinA mainly activates sporulation genes and KinC mainly activates biofilm genes. In this work, we found that KinC also downregulates sporulation genes, suggesting that KinC has a negative effect on Spo0A activity. To explain this effect, with a mathematical model of the phosphorelay, we revealed that unlike KinA, which always activates Spo0A, KinC has distinct effects on Spo0A at different growth stages: during fast growth, KinC acts as a phosphate source and activates Spo0A, whereas during slow growth, KinC becomes a phosphate sink and contributes to decreasing Spo0A activity. However, under these conditions, KinC can still increase the population-mean biofilm matrix production activity. In a population, individual cells grow at different rates, and KinC would increase the Spo0A activity in the fast-growing cells but reduce the Spo0A activity in the slow-growing cells. This mechanism reduces single-cell heterogeneity of Spo0A activity, thereby increasing the fraction of cells that activate biofilm matrix production. Thus, KinC activates biofilm formation by controlling the fraction of cells activating biofilm gene expression. IMPORTANCE In many bacterial and eukaryotic systems, multiple cell fate decisions are activated by a single master regulator. Typically, the activities of the regulators are controlled posttranslationally in response to different environmental stimuli. The mechanisms underlying the ability of these regulators to control multiple outcomes are not understood in many systems. By investigating the regulation of Bacillus subtilis master regulator Spo0A, we show that sensor kinases can use a novel mechanism to control cell fate decisions. By acting as a phosphate source or sink, kinases can interact with one another and provide accurate regulation of the phosphorylation level. Moreover, this mechanism affects the cell-to-cell heterogeneity of the transcription factor activity and eventually determines the fraction of different cell types in the population. These results demonstrate the importance of intercellular heterogeneity for understanding the effects of genetic perturbations on cell fate decisions. Such effects can be applicable to a wide range of cellular systems.
Collapse
|
8
|
Alves R, Salvadó B, Milo R, Vilaprinyo E, Sorribas A. Maximization of information transmission influences selection of native phosphorelay architectures. PeerJ 2021; 9:e11558. [PMID: 34178454 PMCID: PMC8199921 DOI: 10.7717/peerj.11558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/12/2021] [Indexed: 01/28/2023] Open
Abstract
Phosphorelays are signal transduction circuits that sense environmental changes and adjust cellular metabolism. Five different circuit architectures account for 99% of all phosphorelay operons annotated in over 9,000 fully sequenced genomes. Here we asked what biological design principles, if any, could explain selection among those architectures in nature. We began by studying kinetically well characterized phosphorelays (Spo0 of Bacillus subtilis and Sln1 of Saccharomyces cerevisiae). We find that natural circuit architecture maximizes information transmission in both cases. We use mathematical models to compare information transmission among the architectures for a realistic range of concentration and parameter values. Mapping experimentally determined phosphorelay protein concentrations onto that range reveals that the native architecture maximizes information transmission in sixteen out of seventeen analyzed phosphorelays. These results suggest that maximization of information transmission is important in the selection of native phosphorelay architectures, parameter values and protein concentrations.
Collapse
Affiliation(s)
- Rui Alves
- Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - Baldiri Salvadó
- Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - Ron Milo
- Plant and Environmental Science, Weizmann Institute of Science, Rehovot, Israel
| | - Ester Vilaprinyo
- Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - Albert Sorribas
- Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| |
Collapse
|
9
|
Diallo M, Kengen SWM, López-Contreras AM. Sporulation in solventogenic and acetogenic clostridia. Appl Microbiol Biotechnol 2021; 105:3533-3557. [PMID: 33900426 PMCID: PMC8102284 DOI: 10.1007/s00253-021-11289-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
The Clostridium genus harbors compelling organisms for biotechnological production processes; while acetogenic clostridia can fix C1-compounds to produce acetate and ethanol, solventogenic clostridia can utilize a wide range of carbon sources to produce commercially valuable carboxylic acids, alcohols, and ketones by fermentation. Despite their potential, the conversion by these bacteria of carbohydrates or C1 compounds to alcohols is not cost-effective enough to result in economically viable processes. Engineering solventogenic clostridia by impairing sporulation is one of the investigated approaches to improve solvent productivity. Sporulation is a cell differentiation process triggered in bacteria in response to exposure to environmental stressors. The generated spores are metabolically inactive but resistant to harsh conditions (UV, chemicals, heat, oxygen). In Firmicutes, sporulation has been mainly studied in bacilli and pathogenic clostridia, and our knowledge of sporulation in solvent-producing or acetogenic clostridia is limited. Still, sporulation is an integral part of the cellular physiology of clostridia; thus, understanding the regulation of sporulation and its connection to solvent production may give clues to improve the performance of solventogenic clostridia. This review aims to provide an overview of the triggers, characteristics, and regulatory mechanism of sporulation in solventogenic clostridia. Those are further compared to the current knowledge on sporulation in the industrially relevant acetogenic clostridia. Finally, the potential applications of spores for process improvement are discussed.Key Points• The regulatory network governing sporulation initiation varies in solventogenic clostridia.• Media composition and cell density are the main triggers of sporulation.• Spores can be used to improve the fermentation process.
Collapse
Affiliation(s)
- Mamou Diallo
- Wageningen Food and Biobased Research, Wageningen, The Netherlands.
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands.
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | | |
Collapse
|
10
|
Nagy-Staron A, Tomasek K, Caruso Carter C, Sonnleitner E, Kavčič B, Paixão T, Guet CC. Local genetic context shapes the function of a gene regulatory network. eLife 2021; 10:e65993. [PMID: 33683203 PMCID: PMC7968929 DOI: 10.7554/elife.65993] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Gene expression levels are influenced by multiple coexisting molecular mechanisms. Some of these interactions such as those of transcription factors and promoters have been studied extensively. However, predicting phenotypes of gene regulatory networks (GRNs) remains a major challenge. Here, we use a well-defined synthetic GRN to study in Escherichia coli how network phenotypes depend on local genetic context, i.e. the genetic neighborhood of a transcription factor and its relative position. We show that one GRN with fixed topology can display not only quantitatively but also qualitatively different phenotypes, depending solely on the local genetic context of its components. Transcriptional read-through is the main molecular mechanism that places one transcriptional unit (TU) within two separate regulons without the need for complex regulatory sequences. We propose that relative order of individual TUs, with its potential for combinatorial complexity, plays an important role in shaping phenotypes of GRNs.
Collapse
Affiliation(s)
- Anna Nagy-Staron
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Kathrin Tomasek
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | | | - Elisabeth Sonnleitner
- Department of MicrobiologyImmunobiology and Genetics, Max F. Perutz Laboratories, Center Of Molecular Biology, University of ViennaViennaAustria
| | - Bor Kavčič
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Tiago Paixão
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Calin C Guet
- Institute of Science and Technology AustriaKlosterneuburgAustria
| |
Collapse
|
11
|
Lee Y, Kim YS, Balaraju K, Seo YS, Park J, Ryu CM, Park SH, Kim JF, Kang S, Jeon Y. Molecular changes associated with spontaneous phenotypic variation of Paenibacillus polymyxa, a commonly used biocontrol agent, and temperature-dependent control of variation. Sci Rep 2020; 10:16586. [PMID: 33024195 PMCID: PMC7538429 DOI: 10.1038/s41598-020-73716-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/21/2020] [Indexed: 11/19/2022] Open
Abstract
There has been a growing interest in deploying plant growth-promoting rhizobacteria (PGPR) as a biological control agent (BCA) to reduce the use of agrochemicals. Spontaneous phenotypic variation of PGPR, which causes the loss of traits crucial for biocontrol, presents a large obstacle in producing commercial biocontrol products. Here, we report molecular changes associated with phenotypic variation in Paenibacillus polymyxa, a PGPR widely used for biocontrol worldwide, and a simple cultural change that can prevent the variation. Compared to B-type (non-variant) cells of P. polymyxa strain E681, its phenotypic variant, termed as F-type, fails to form spores, does not confer plant growth-promoting effect, and displays altered colony and cell morphology, motility, antagonism against other microbes, and biofilm formation. This variation was observed in all tested strains of P. polymyxa, but the frequency varied among them. RNA-seq analysis revealed differential regulation of many genes involved in sporulation, flagella synthesis, carbohydrate metabolism, and antimicrobial production in F-type cells, consistent with their pleiotropic phenotypic changes. F-type cells's sporulation was arrested at stage 0, and the key sporulation gene spo0A was upregulated only in B-type cells. The phenotypic variation could be prevented by altering the temperature for growth. When E681 was cultured at 20 °C or lower, it exhibited no variation for 7 days and still reached ~ 108 cfu/mL, the level sufficient for commercial-scale production of biocontrol products.
Collapse
Affiliation(s)
- Younmi Lee
- Department of Plant Medicals, Andong National University, Andong, 36729, Republic of Korea.,Agricultural Science and Technology Research Institute, Andong National University, Andong, 36729, Republic of Korea
| | - Young Soo Kim
- Department of Plant Medicals, Andong National University, Andong, 36729, Republic of Korea
| | - Kotnala Balaraju
- Agricultural Science and Technology Research Institute, Andong National University, Andong, 36729, Republic of Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Pusan, 46241, Republic of Korea
| | - Jungwook Park
- Department of Microbiology, Pusan National University, Pusan, 46241, Republic of Korea
| | - Choong-Min Ryu
- Infectious Disease Research Centre, KRIBB, Daejeon, 34141, Republic of Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Seung-Hwan Park
- Infectious Disease Research Centre, KRIBB, Daejeon, 34141, Republic of Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jihyun F Kim
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.,Strategic Initiative for Microbiomes in Agriculture and Food (iMAF), Yonsei University, Seoul, 03722, Republic of Korea
| | - Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yongho Jeon
- Department of Plant Medicals, Andong National University, Andong, 36729, Republic of Korea.
| |
Collapse
|
12
|
Tu Z, R. Abhyankar W, N. Swarge B, van der Wel N, Kramer G, Brul S, J. de Koning L. Artificial Sporulation Induction (ASI) by kinA Overexpression Affects the Proteomes and Properties of Bacillus subtilis Spores. Int J Mol Sci 2020; 21:ijms21124315. [PMID: 32560401 PMCID: PMC7352945 DOI: 10.3390/ijms21124315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/07/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022] Open
Abstract
To facilitate more accurate spore proteomic analysis, the current study focuses on inducing homogeneous sporulation by overexpressing kinA and assesses the effect of synchronized sporulation initiation on spore resistance, structures, the germination behavior at single-spore level and the proteome. The results indicate that, in our set up, the sporulation by overexpressing kinA can generate a spore yield of 70% within 8 h. The procedure increases spore wet heat resistance and thickness of the spore coat and cortex layers, whilst delaying the time to spore phase-darkening and burst after addition of germinant. The proteome analysis reveals that the upregulated proteins in the kinA induced spores, compared to spores without kinA induction, as well as the 'wildtype' spores, are mostly involved in spore formation. The downregulated proteins mostly belong to the categories of coping with stress, carbon and nitrogen metabolism, as well as the regulation of sporulation. Thus, while kinA overexpression enhances synchronicity in sporulation initiation, it also has profound effects on the central equilibrium of spore formation and spore germination, through modulation of the spore molecular composition and stress resistance physiology.
Collapse
Affiliation(s)
- Zhiwei Tu
- Laboratory for Molecular Biology and Microbial Food Safety, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (Z.T.); (W.R.A.); (B.N.S.)
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (G.K.); (L.J.d.K.)
| | - Wishwas R. Abhyankar
- Laboratory for Molecular Biology and Microbial Food Safety, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (Z.T.); (W.R.A.); (B.N.S.)
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (G.K.); (L.J.d.K.)
| | - Bhagyashree N. Swarge
- Laboratory for Molecular Biology and Microbial Food Safety, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (Z.T.); (W.R.A.); (B.N.S.)
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (G.K.); (L.J.d.K.)
| | - Nicole van der Wel
- Department of Medical Biology, Electron Microscopy Centre Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, 1100 DD Amsterdam, The Netherlands;
| | - Gertjan Kramer
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (G.K.); (L.J.d.K.)
| | - Stanley Brul
- Laboratory for Molecular Biology and Microbial Food Safety, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (Z.T.); (W.R.A.); (B.N.S.)
- Correspondence: ; Tel.: +31-20-525-7079 (ext. 6970)
| | - Leo J. de Koning
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (G.K.); (L.J.d.K.)
| |
Collapse
|
13
|
Lopatkin AJ, Collins JJ. Predictive biology: modelling, understanding and harnessing microbial complexity. Nat Rev Microbiol 2020; 18:507-520. [DOI: 10.1038/s41579-020-0372-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
|
14
|
Tottori T, Fujii M, Kuroda S. Robustness against additional noise in cellular information transmission. Phys Rev E 2019; 100:042403. [PMID: 31770940 DOI: 10.1103/physreve.100.042403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Indexed: 06/10/2023]
Abstract
Fluctuations in intracellular reactions (intrinsic noise) reduce the information transmitted from an extracellular input to a cellular response. However, recent studies have demonstrated that the decrease in the transmitted information with respect to extracellular input fluctuations (extrinsic noise) is smaller when the intrinsic noise is larger. Therefore, it has been suggested that robustness against extrinsic noise increases with the level of the intrinsic noise. We call this phenomenon intrinsic noise-induced robustness (INIR). As previous studies on this phenomenon have focused on complex biochemical reactions, the relation between INIR and the input-output of a system is unclear. Moreover, the mechanism of INIR remains elusive. In this paper, we address these questions by analyzing simple models. We first analyze a model in which the input-output relation is linear. We show that the robustness against extrinsic noise increases with the intrinsic noise, confirming the INIR phenomenon. Moreover, the robustness against the extrinsic noise is more strongly dependent on the intrinsic noise when the variance of the intrinsic noise is larger than that of the input distribution. Next, we analyze a threshold model in which the output depends on whether the input exceeds the threshold. When the threshold is equal to the mean of the input, INIR is realized, but when the threshold is much larger than the mean, the threshold model exhibits stochastic resonance, and INIR is not always apparent. The robustness against extrinsic noise and the transmitted information can be traded off against one another in the linear model and the threshold model without stochastic resonance, whereas they can be simultaneously increased in the threshold model with stochastic resonance.
Collapse
Affiliation(s)
- Takehiro Tottori
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan
| | - Masashi Fujii
- Department of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima City, Hiroshima, 739-8526, Japan
| | - Shinya Kuroda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan
| |
Collapse
|
15
|
Devaraj V, Bose B. Morphological State Transition Dynamics in EGF-Induced Epithelial to Mesenchymal Transition. J Clin Med 2019; 8:jcm8070911. [PMID: 31247884 PMCID: PMC6678216 DOI: 10.3390/jcm8070911] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/23/2022] Open
Abstract
Epithelial to Mesenchymal Transition (EMT) is a multi-state process. Here, we investigated phenotypic state transition dynamics of Epidermal Growth Factor (EGF)-induced EMT in a breast cancer cell line MDA-MB-468. We have defined phenotypic states of these cells in terms of their morphologies and have shown that these cells have three distinct morphological states-cobble, spindle, and circular. The spindle and circular states are the migratory phenotypes. Using quantitative image analysis and mathematical modeling, we have deciphered state transition trajectories in different experimental conditions. This analysis shows that the phenotypic state transition during EGF-induced EMT in these cells is reversible, and depends upon the dose of EGF and level of phosphorylation of the EGF receptor (EGFR). The dominant reversible state transition trajectory in this system was cobble to circular to spindle to cobble. We have observed that there exists an ultrasensitive on/off switch involving phospho-EGFR that decides the transition of cells in and out of the circular state. In general, our observations can be explained by the conventional quasi-potential landscape model for phenotypic state transition. As an alternative to this model, we have proposed a simpler discretized energy-level model to explain the observed state transition dynamics.
Collapse
Affiliation(s)
- Vimalathithan Devaraj
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Biplab Bose
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| |
Collapse
|
16
|
Differentiation of Vegetative Cells into Spores: a Kinetic Model Applied to Bacillus subtilis. Appl Environ Microbiol 2019; 85:AEM.00322-19. [PMID: 30902849 DOI: 10.1128/aem.00322-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/10/2019] [Indexed: 01/28/2023] Open
Abstract
Spore-forming bacteria are natural contaminants of food raw materials, and sporulation can occur in many environments from farm to fork. In order to characterize and to predict spore formation over time, we developed a model that describes both the kinetics of growth and the differentiation of vegetative cells into spores. The model is based on a classical growth model and enables description of the kinetics of sporulation with the addition of three parameters specific to sporulation. Two parameters are related to the probability of each vegetative cell to commit to sporulation and to form a spore, and the last one is related to the time needed to form a spore once the cell is committed to sporulation. The goodness of fit of this growth-sporulation model was assessed using growth-sporulation kinetics at various temperatures in laboratory medium or in whey for Bacillus subtilis, Bacillus cereus, and Bacillus licheniformis The model accurately describes the kinetics in these different conditions, with a mean error lower than 0.78 log10 CFU/ml for the growth and 1.08 log10 CFU/ml for the sporulation. The biological meaning of the parameters was validated with a derivative strain of Bacillus subtilis 168 which produces green fluorescent protein at the initiation of sporulation. This model provides physiological information on the spore formation and on the temporal abilities of vegetative cells to differentiate into spores and reveals the heterogeneity of spore formation during and after growth.IMPORTANCE The growth-sporulation model describes the progressive transition from vegetative cells to spores with sporulation parameters describing the sporulation potential of each vegetative cell. Consequently, the model constitutes an interesting tool to assess the sporulation potential of a bacterial population over time with accurate parameters such as the time needed to obtain one resistant spore and the probability of sporulation. Further, this model can be used to assess these data under various environmental conditions in order to better identify the conditions favorable for sporulation regarding the time to obtain the first spore and/or the concentrations of spores which could be reached during a food process.
Collapse
|
17
|
Popp PF, Mascher T. Coordinated Cell Death in Isogenic Bacterial Populations: Sacrificing Some for the Benefit of Many? J Mol Biol 2019; 431:4656-4669. [PMID: 31029705 DOI: 10.1016/j.jmb.2019.04.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/11/2019] [Accepted: 04/14/2019] [Indexed: 01/22/2023]
Abstract
Antibiotics are classically perceived as biological weapons that bacteria produce to hold their ground against competing species in their natural habitat. But in the context of multicellular differentiation processes, antimicrobial compounds sometimes also play a role in intraspecies competition, resulting in the death of a sub-population of genetically identical siblings for the benefit of the population. Such a strategy is based on the diversification and hence phenotypic heterogeneity of an isogenic bacterial population. This review article will address three such phenomena. In Bacillus subtilis, cannibalism is a differentiation strategy that enhances biofilm formation, prolongs or potentially even prevents full commitment to endospore formation under starvation conditions, and protects cells within the biofilm against competing species. The nutrients released by lysed cells can be used by the toxin producers, thereby delaying the full activation of the master regulator of sporulation. A related strategy is associated with the initiation of competence development under nutrient excess in Streptococcus pneumoniae. This process, termed fratricide, causes allolysis in a sub-population and is thought to enhance genetic diversity within the species. In Myxococcus xanthus, a large fraction of the population undergoes programmed cell death during the formation of fruiting bodies. This sacrifice ensures the survival of the sporulating sub-population by providing nutrients and hence energy to complete this differentiation process. The biological relevance and underlying regulatory mechanisms of these three processes will be discussed in order to extract common features of such strategies. Moreover, open questions and future challenges will be addressed.
Collapse
Affiliation(s)
- Philipp F Popp
- Institute of Microbiology, Technische Universität (TU) Dresden, 01062 Dresden, Germany
| | - Thorsten Mascher
- Institute of Microbiology, Technische Universität (TU) Dresden, 01062 Dresden, Germany.
| |
Collapse
|
18
|
Role of metabolic spatiotemporal dynamics in regulating biofilm colony expansion. Proc Natl Acad Sci U S A 2018; 115:4288-4293. [PMID: 29610314 DOI: 10.1073/pnas.1706920115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell fate determination is typically regulated by biological networks, yet increasing evidences suggest that cell-cell communication and environmental stresses play crucial roles in the behavior of a cell population. A recent microfluidic experiment showed that the metabolic codependence of two cell populations generates a collective oscillatory dynamic during the expansion of a Bacillus subtilis biofilm. We develop a modeling framework for the spatiotemporal dynamics of the associated metabolic circuit for cells in a colony. We elucidate the role of metabolite diffusion and the need of two distinct cell populations to observe oscillations. Uniquely, this description captures the onset and thereafter stable oscillatory dynamics during expansion and predicts the existence of damping oscillations under various environmental conditions. This modeling scheme provides insights to understand how cells integrate the information from external signaling and cell-cell communication to determine the optimal survival strategy and/or maximize cell fitness in a multicellular system.
Collapse
|
19
|
Ochab-Marcinek A, Jędrak J, Tabaka M. Hill kinetics as a noise filter: the role of transcription factor autoregulation in gene cascades. Phys Chem Chem Phys 2018; 19:22580-22591. [PMID: 28809965 DOI: 10.1039/c7cp00743d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An intuition based on deterministic models of chemical kinetics is that population heterogeneity of transcription factor levels in cells is transmitted unchanged downstream to the target genes. We use a stochastic model of a two-gene cascade with a self-regulating upstream gene to show that, counter to the intuition, there is no simple mapping (bimodal to bimodal, unimodal to unimodal) between the shapes of the distributions of transcription factor numbers and target protein numbers in cells. Due to the presence of the two regulations, the system contains two nonlinear transfer functions, defined by the Hill kinetics of transcription factor binding. The transfer function of the regulator can "interfere" with the transfer function of the target, converting the bimodal input into a unimodal output or vice versa. We show that this effect can be predicted by a geometric construction. As an example application of the method, we present a case study of a system of several downstream genes of different sensitivities, controlled by a common transcription factor which also regulates its own transcription. We show that a single regulator can induce qualitatively different patterns (binary or graded) of responses to a signal in different downstream genes, depending on whether the sensitivity regions of the transfer functions of the upstream and downstream genes overlap or not. Alternatively, the same model can be interpreted as describing a single downstream gene that has different sensitivities in different cell lines due to mutations. Our model shows, therefore, a possible kinetic mechanism by which different genes can interpret the same biological signal in a different manner.
Collapse
Affiliation(s)
- Anna Ochab-Marcinek
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Jakub Jędrak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Marcin Tabaka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
20
|
Omony J, de Jong A, Krawczyk AO, Eijlander RT, Kuipers OP. Dynamic sporulation gene co-expression networks for Bacillus subtilis 168 and the food-borne isolate Bacillus amyloliquefaciens: a transcriptomic model. Microb Genom 2018; 4. [PMID: 29424683 PMCID: PMC5857382 DOI: 10.1099/mgen.0.000157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sporulation is a survival strategy, adapted by bacterial cells in response to harsh environmental adversities. The adaptation potential differs between strains and the variations may arise from differences in gene regulation. Gene networks are a valuable way of studying such regulation processes and establishing associations between genes. We reconstructed and compared sporulation gene co-expression networks (GCNs) of the model laboratory strain Bacillus subtilis 168 and the food-borne industrial isolate Bacillus amyloliquefaciens. Transcriptome data obtained from samples of six stages during the sporulation process were used for network inference. Subsequently, a gene set enrichment analysis was performed to compare the reconstructed GCNs of B. subtilis 168 and B. amyloliquefaciens with respect to biological functions, which showed the enriched modules with coherent functional groups associated with sporulation. On basis of the GCNs and time-evolution of differentially expressed genes, we could identify novel candidate genes strongly associated with sporulation in B. subtilis 168 and B. amyloliquefaciens. The GCNs offer a framework for exploring transcription factors, their targets, and co-expressed genes during sporulation. Furthermore, the methodology described here can conveniently be applied to other species or biological processes.
Collapse
Affiliation(s)
- Jimmy Omony
- 1Laboratory of Molecular Genetics, University of Groningen, 9747 AG Groningen, The Netherlands.,2Top Institute Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands
| | - Anne de Jong
- 1Laboratory of Molecular Genetics, University of Groningen, 9747 AG Groningen, The Netherlands.,2Top Institute Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands
| | - Antonina O Krawczyk
- 1Laboratory of Molecular Genetics, University of Groningen, 9747 AG Groningen, The Netherlands.,2Top Institute Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands
| | - Robyn T Eijlander
- 1Laboratory of Molecular Genetics, University of Groningen, 9747 AG Groningen, The Netherlands.,2Top Institute Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands.,3NIZO Food Research, B.V., P.O. Box 20, Ede 6710 BA, Ede, The Netherlands
| | - Oscar P Kuipers
- 1Laboratory of Molecular Genetics, University of Groningen, 9747 AG Groningen, The Netherlands.,2Top Institute Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands
| |
Collapse
|
21
|
Decker AR, Ramamurthi KS. Cell Death Pathway That Monitors Spore Morphogenesis. Trends Microbiol 2017; 25:637-647. [PMID: 28408070 DOI: 10.1016/j.tim.2017.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 12/16/2022]
Abstract
The use of quality control mechanisms to stall developmental pathways or completely remove defective cells from a population is a widespread strategy to ensure the integrity of morphogenetic programs. Endospore formation (sporulation) is a well conserved microbial developmental strategy in the Firmicutes phylum wherein a progenitor cell that faces starvation differentiates to form a dormant spore. Despite the conservation of this strategy, it has been unclear what selective pressure maintains the fitness of this developmental program, composed of hundreds of unique genes, during multiple rounds of vegetative growth when sporulation is not required. Recently, a quality control pathway was discovered in Bacillus subtilis which monitors the assembly of the spore envelope and specifically eliminates, through cell lysis, sporulating cells that assemble the envelope incorrectly. Here, we review the use of checkpoints that govern the entry into sporulation in B. subtilis and discuss how the use of regulated cell death pathways during bacterial development may help maintain the fidelity of the sporulation program in the species.
Collapse
Affiliation(s)
- Amanda R Decker
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
22
|
Defeu Soufo HJ. A Novel Cell Type Enables B. subtilis to Escape from Unsuccessful Sporulation in Minimal Medium. Front Microbiol 2016; 7:1810. [PMID: 27891124 PMCID: PMC5104909 DOI: 10.3389/fmicb.2016.01810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/27/2016] [Indexed: 11/28/2022] Open
Abstract
Sporulation is the most enduring survival strategy developed by several bacterial species. However, spore development of the model organism Bacillus subtilis has mainly been studied by means of media or conditions optimized for the induction of sporogenesis. Here, I show that during prolonged growth during stationary phase in minimal medium, B. subtilis undergoes an asymmetric cell division that produces small and round-shaped, DNA containing cells. In contrast to wild-type cells, mutants harboring spo0A or spoIIIE/sftA double mutations neither sporulate nor produce this special cell type, providing evidence that the small round cells emerge from the abortion of endospore formation. In most cases observed, the small round cells arise in the presence of sigma H but absence of sigma F activity, different from cases of abortive sporulation described for rich media. These data suggest that in minimal media, many cells are able to initiate but fail to complete spore development, and therefore return to normal growth as rods. This work reveals that the continuation of asymmetric cell division, which results in the formation of the small round cells, is a way for cells to delay or escape from—unsuccessful—sporulation. Based on these findings, I suggest to name the here described cell type as “dwarf cells” to distinguish them from the well-known minicells observed in mutants defective in septum placement or proper chromosome partitioning.
Collapse
|
23
|
Lecca P, Mura I, Re A, Barker GC, Ihekwaba AEC. Time Series Analysis of the Bacillus subtilis Sporulation Network Reveals Low Dimensional Chaotic Dynamics. Front Microbiol 2016; 7:1760. [PMID: 27872618 PMCID: PMC5097912 DOI: 10.3389/fmicb.2016.01760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/19/2016] [Indexed: 01/12/2023] Open
Abstract
Chaotic behavior refers to a behavior which, albeit irregular, is generated by an underlying deterministic process. Therefore, a chaotic behavior is potentially controllable. This possibility becomes practically amenable especially when chaos is shown to be low-dimensional, i.e., to be attributable to a small fraction of the total systems components. In this case, indeed, including the major drivers of chaos in a system into the modeling approach allows us to improve predictability of the systems dynamics. Here, we analyzed the numerical simulations of an accurate ordinary differential equation model of the gene network regulating sporulation initiation in Bacillus subtilis to explore whether the non-linearity underlying time series data is due to low-dimensional chaos. Low-dimensional chaos is expectedly common in systems with few degrees of freedom, but rare in systems with many degrees of freedom such as the B. subtilis sporulation network. The estimation of a number of indices, which reflect the chaotic nature of a system, indicates that the dynamics of this network is affected by deterministic chaos. The neat separation between the indices obtained from the time series simulated from the model and those obtained from time series generated by Gaussian white and colored noise confirmed that the B. subtilis sporulation network dynamics is affected by low dimensional chaos rather than by noise. Furthermore, our analysis identifies the principal driver of the networks chaotic dynamics to be sporulation initiation phosphotransferase B (Spo0B). We then analyzed the parameters and the phase space of the system to characterize the instability points of the network dynamics, and, in turn, to identify the ranges of values of Spo0B and of the other drivers of the chaotic dynamics, for which the whole system is highly sensitive to minimal perturbation. In summary, we described an unappreciated source of complexity in the B. subtilis sporulation network by gathering evidence for the chaotic behavior of the system, and by suggesting candidate molecules driving chaos in the system. The results of our chaos analysis can increase our understanding of the intricacies of the regulatory network under analysis, and suggest experimental work to refine our behavior of the mechanisms underlying B. subtilis sporulation initiation control.
Collapse
Affiliation(s)
- Paola Lecca
- Department of Mathematics, University of Trento Trento, Italy
| | - Ivan Mura
- Department of Industrial Engineering, Universidad de los Andes Bogotá, Colombia
| | - Angela Re
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento Trento, Italy
| | - Gary C Barker
- Gut Health and Food Safety, Institute of Food Research Norwich, UK
| | | |
Collapse
|
24
|
Dusny C, Schmid A. TheMOXpromoter inHansenula polymorphais ultrasensitive to glucose-mediated carbon catabolite repression. FEMS Yeast Res 2016; 16:fow067. [DOI: 10.1093/femsyr/fow067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2016] [Indexed: 11/13/2022] Open
|
25
|
Narula J, Fujita M, Igoshin OA. Functional requirements of cellular differentiation: lessons from Bacillus subtilis. Curr Opin Microbiol 2016; 34:38-46. [PMID: 27501460 DOI: 10.1016/j.mib.2016.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/11/2016] [Indexed: 01/09/2023]
Abstract
Successful execution of differentiation programs requires cells to assess multitudes of internal and external cues and respond with appropriate gene expression programs. Here, we review how Bacillus subtilis sporulation network deals with these tasks focusing on the lessons generalizable to other systems. With feedforward loops controlling both production and activation of downstream transcriptional regulators, cells achieve ultrasensitive threshold-like responses. The arrangement of sporulation network genes on the chromosome and transcriptional feedback loops allow coordination of sporulation decision with DNA-replication. Furthermore, to assess the starvation conditions without sensing specific metabolites, cells respond to changes in their growth rates with increased activity of sporulation master regulator. These design features of the sporulation network enable cells to robustly decide between vegetative growth and sporulation.
Collapse
Affiliation(s)
- Jatin Narula
- Department of Bioengineering and Center for Theoretical Biological Physics, Rice University, United States
| | - Masaya Fujita
- Department of Biology and Biochemistry, University of Houston, United States
| | - Oleg A Igoshin
- Department of Bioengineering and Center for Theoretical Biological Physics, Rice University, United States.
| |
Collapse
|
26
|
Atay O, Doncic A, Skotheim JM. Switch-like Transitions Insulate Network Motifs to Modularize Biological Networks. Cell Syst 2016; 3:121-132. [PMID: 27453443 DOI: 10.1016/j.cels.2016.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/06/2016] [Accepted: 06/20/2016] [Indexed: 01/27/2023]
Abstract
Cellular decisions are made by complex networks that are difficult to analyze. Although it is common to analyze smaller sub-networks known as network motifs, it is unclear whether this is valid, because these motifs are embedded in complex larger networks. Here, we address the general question of modularity by examining the S. cerevisiae pheromone response. We demonstrate that the feedforward motif controlling the cell-cycle inhibitor Far1 is insulated from cell-cycle dynamics by the positive feedback switch that drives reentry to the cell cycle. Before cells switch on positive feedback, the feedforward motif model predicts the behavior of the larger network. Conversely, after the switch, the feedforward motif is dismantled and has no discernable effect on the cell cycle. When insulation is broken, the feedforward motif no longer predicts network behavior. This work illustrates how, despite the interconnectivity of networks, the activity of motifs can be insulated by switches that generate well-defined cellular states.
Collapse
Affiliation(s)
- Oguzhan Atay
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Andreas Doncic
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
27
|
Narula J, Kuchina A, Zhang F, Fujita M, Süel GM, Igoshin OA. Slowdown of growth controls cellular differentiation. Mol Syst Biol 2016; 12:871. [PMID: 27216630 PMCID: PMC5289222 DOI: 10.15252/msb.20156691] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
How can changes in growth rate affect the regulatory networks behavior and the outcomes of cellular differentiation? We address this question by focusing on starvation response in sporulating Bacillus subtilis We show that the activity of sporulation master regulator Spo0A increases with decreasing cellular growth rate. Using a mathematical model of the phosphorelay-the network controlling Spo0A-we predict that this increase in Spo0A activity can be explained by the phosphorelay protein accumulation and lengthening of the period between chromosomal replication events caused by growth slowdown. As a result, only cells growing slower than a certain rate reach threshold Spo0A activity necessary for sporulation. This growth threshold model accurately predicts cell fates and explains the distribution of sporulation deferral times. We confirm our predictions experimentally and show that the concentration rather than activity of phosphorelay proteins is affected by the growth slowdown. We conclude that sensing the growth rates enables cells to indirectly detect starvation without the need for evaluating specific stress signals.
Collapse
Affiliation(s)
- Jatin Narula
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Anna Kuchina
- Division of Biological Sciences, UCSD, San Diego, CA, USA
| | - Fang Zhang
- Division of Biological Sciences, UCSD, San Diego, CA, USA
| | - Masaya Fujita
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Gürol M Süel
- Division of Biological Sciences, UCSD, San Diego, CA, USA
| | - Oleg A Igoshin
- Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|
28
|
Feng S, Ollivier JF, Soyer OS. Enzyme Sequestration as a Tuning Point in Controlling Response Dynamics of Signalling Networks. PLoS Comput Biol 2016; 12:e1004918. [PMID: 27163612 PMCID: PMC4862689 DOI: 10.1371/journal.pcbi.1004918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 04/17/2016] [Indexed: 11/18/2022] Open
Abstract
Signalling networks result from combinatorial interactions among many enzymes and scaffolding proteins. These complex systems generate response dynamics that are often essential for correct decision-making in cells. Uncovering biochemical design principles that underpin such response dynamics is a prerequisite to understand evolved signalling networks and to design synthetic ones. Here, we use in silico evolution to explore the possible biochemical design space for signalling networks displaying ultrasensitive and adaptive response dynamics. By running evolutionary simulations mimicking different biochemical scenarios, we find that enzyme sequestration emerges as a key mechanism for enabling such dynamics. Inspired by these findings, and to test the role of sequestration, we design a generic, minimalist model of a signalling cycle, featuring two enzymes and a single scaffolding protein. We show that this simple system is capable of displaying both ultrasensitive and adaptive response dynamics. Furthermore, we find that tuning the concentration or kinetics of the sequestering protein can shift system dynamics between these two response types. These empirical results suggest that enzyme sequestration through scaffolding proteins is exploited by evolution to generate diverse response dynamics in signalling networks and could provide an engineering point in synthetic biology applications.
Collapse
Affiliation(s)
- Song Feng
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | | | - Orkun S. Soyer
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
Babel H, Bischofs IB. Molecular and cellular factors control signal transduction via switchable allosteric modulator proteins (SAMPs). BMC SYSTEMS BIOLOGY 2016; 10:35. [PMID: 27122155 PMCID: PMC4849100 DOI: 10.1186/s12918-016-0274-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/05/2016] [Indexed: 11/21/2022]
Abstract
Background Rap proteins from Bacilli directly target response regulators of bacterial two-component systems and modulate their activity. Their effects are controlled by binding of signaling peptides to an allosteric site. Hence Raps exemplify a class of monomeric signaling receptors, which we call switchable allosteric modulator proteins (SAMPs). These proteins have potential applications in diverse biomedical and biotechnical settings, but a quantitative understanding of the impact of molecular and cellular factors on signal transduction is lacking. Here we introduce mathematical models that elucidate how signals are propagated though the network upon receptor stimulation and control the level of active response regulator. Results Based on a systematic parameter analysis of the models, we show that key features of the dose-response behavior at steady state are controlled either by the molecular properties of the modulator or the signaling context. In particular, we find that the biochemical activity (i.e. non-enzymatic vs. enzymatic) and allosteric properties of the modulator control the response amplitude. The Hill coefficient and the EC50 are controlled in addition by the relative ligand affinities. By tuning receptor properties, either graded or more switch-like (memory-less) response functions can be fashioned. Furthermore, we show that other contextual factors (e.g. relative concentrations of network components and kinase activity) have a substantial impact on the response, and we predict that there exists a modulator concentration which is optimal for response amplitude. Conclusion We discuss data on Rap-Phr systems in B. subtilis to show how our models can contribute to an integrated view of SAMP signaling by combining biochemical, structural and physiological insights. Our results also suggest that SAMPs could be evolved or engineered to implement diverse response behaviors. However—without additional regulatory controls—they can generate rather variable cellular outputs. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0274-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heiko Babel
- Center for Molecular Biology (ZMBH), University of Heidelberg, Heidelberg, Germany.,Center for the Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg, Germany
| | - Ilka B Bischofs
- Center for Molecular Biology (ZMBH), University of Heidelberg, Heidelberg, Germany. .,Center for the Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
30
|
Kothamachu VB, Feliu E, Cardelli L, Soyer OS. Unlimited multistability and Boolean logic in microbial signalling. J R Soc Interface 2016; 12:20150234. [PMID: 26040599 PMCID: PMC4528588 DOI: 10.1098/rsif.2015.0234] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ability to map environmental signals onto distinct internal physiological states or programmes is critical for single-celled microbes. A crucial systems dynamics feature underpinning such ability is multistability. While unlimited multistability is known to arise from multi-site phosphorylation seen in the signalling networks of eukaryotic cells, a similarly universal mechanism has not been identified in microbial signalling systems. These systems are generally known as two-component systems comprising histidine kinase (HK) receptors and response regulator proteins engaging in phosphotransfer reactions. We develop a mathematical framework for analysing microbial systems with multi-domain HK receptors known as hybrid and unorthodox HKs. We show that these systems embed a simple core network that exhibits multistability, thereby unveiling a novel biochemical mechanism for multistability. We further prove that sharing of downstream components allows a system with n multi-domain hybrid HKs to attain 3n steady states. We find that such systems, when sensing distinct signals, can readily implement Boolean logic functions on these signals. Using two experimentally studied examples of two-component systems implementing hybrid HKs, we show that bistability and implementation of logic functions are possible under biologically feasible reaction rates. Furthermore, we show that all sequenced microbial genomes contain significant numbers of hybrid and unorthodox HKs, and some genomes have a larger fraction of these proteins compared with regular HKs. Microbial cells are thus theoretically unbounded in mapping distinct environmental signals onto distinct physiological states and perform complex computations on them. These findings facilitate the understanding of natural two-component systems and allow their engineering through synthetic biology.
Collapse
Affiliation(s)
- Varun B Kothamachu
- Systems Biology Program, College of Engineering, Computing and Mathematics, University of Exeter, Exeter, UK
| | - Elisenda Feliu
- Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Luca Cardelli
- Microsoft Research Cambridge, 7 JJ Thomson Avenue, Cambridge CB3 0FB, UK
| | - Orkun S Soyer
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
31
|
Schultz D. Coordination of cell decisions and promotion of phenotypic diversity in B. subtilis via pulsed behavior of the phosphorelay. Bioessays 2016; 38:440-5. [PMID: 26941227 DOI: 10.1002/bies.201500199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The phosphorelay of Bacillus subtilis, a kinase cascade that activates master regulator Spo0A ~ P in response to starvation signals, is the core of a large network controlling the cell's decision to differentiate into sporulation and other phenotypes. This article reviews recent advances in understanding the origins and purposes of the complex dynamical behavior of the phosphorelay, which pulses with peaks of activity coordinated with the cell cycle. The transient imbalance in the expression of two critical genes caused by their strategic placement at opposing ends of the chromosome proved to be the key for this pulsed behavior. Feedback control loops in the phosphorelay use these pulses to implement a timer mechanism, which creates several windows of opportunity for phenotypic transitions over multiple generations. This strategy allows the cell to coordinate multiple differentiation programs in a decision process that fosters phenotypic diversity and adapts to current conditions.
Collapse
Affiliation(s)
- Daniel Schultz
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Ascensao JA, Datta P, Hancioglu B, Sontag E, Gennaro ML, Igoshin OA. Non-monotonic Response to Monotonic Stimulus: Regulation of Glyoxylate Shunt Gene-Expression Dynamics in Mycobacterium tuberculosis. PLoS Comput Biol 2016; 12:e1004741. [PMID: 26900694 PMCID: PMC4762938 DOI: 10.1371/journal.pcbi.1004741] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/07/2016] [Indexed: 01/27/2023] Open
Abstract
Understanding how dynamical responses of biological networks are constrained by underlying network topology is one of the fundamental goals of systems biology. Here we employ monotone systems theory to formulate a theorem stating necessary conditions for non-monotonic time-response of a biochemical network to a monotonic stimulus. We apply this theorem to analyze the non-monotonic dynamics of the σB-regulated glyoxylate shunt gene expression in Mycobacterium tuberculosis cells exposed to hypoxia. We first demonstrate that the known network structure is inconsistent with observed dynamics. To resolve this inconsistency we employ the formulated theorem, modeling simulations and optimization along with follow-up dynamic experimental measurements. We show a requirement for post-translational modulation of σB activity in order to reconcile the network dynamics with its topology. The results of this analysis make testable experimental predictions and demonstrate wider applicability of the developed methodology to a wide class of biological systems.
Collapse
Affiliation(s)
- Joao A. Ascensao
- Department of Bioengineering and Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Pratik Datta
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Baris Hancioglu
- Department of Bioengineering and Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Eduardo Sontag
- Department of Mathematics and Center for Quantitative Biology, Rutgers University, Piscataway, New Jersey, United States of America
| | - Maria L. Gennaro
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Oleg A. Igoshin
- Department of Bioengineering and Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| |
Collapse
|
33
|
Ihekwaba AEC, Mura I, Malakar PK, Walshaw J, Peck MW, Barker GC. New Elements To Consider When Modeling the Hazards Associated with Botulinum Neurotoxin in Food. J Bacteriol 2016; 198:204-11. [PMID: 26350137 PMCID: PMC4751798 DOI: 10.1128/jb.00630-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) produced by the anaerobic bacterium Clostridium botulinum are the most potent biological substances known to mankind. BoNTs are the agents responsible for botulism, a rare condition affecting the neuromuscular junction and causing a spectrum of diseases ranging from mild cranial nerve palsies to acute respiratory failure and death. BoNTs are a potential biowarfare threat and a public health hazard, since outbreaks of foodborne botulism are caused by the ingestion of preformed BoNTs in food. Currently, mathematical models relating to the hazards associated with C. botulinum, which are largely empirical, make major contributions to botulinum risk assessment. Evaluated using statistical techniques, these models simulate the response of the bacterium to environmental conditions. Though empirical models have been successfully incorporated into risk assessments to support food safety decision making, this process includes significant uncertainties so that relevant decision making is frequently conservative and inflexible. Progression involves encoding into the models cellular processes at a molecular level, especially the details of the genetic and molecular machinery. This addition drives the connection between biological mechanisms and botulism risk assessment and hazard management strategies. This review brings together elements currently described in the literature that will be useful in building quantitative models of C. botulinum neurotoxin production. Subsequently, it outlines how the established form of modeling could be extended to include these new elements. Ultimately, this can offer further contributions to risk assessments to support food safety decision making.
Collapse
Affiliation(s)
- Adaoha E C Ihekwaba
- Gut Health and Food Safety, Institute of Food Research, Norwich Research Park, Colney, Norwich, United Kingdom
| | - Ivan Mura
- Faculty of Engineering, EAN University, Bogotá, Colombia
| | - Pradeep K Malakar
- Gut Health and Food Safety, Institute of Food Research, Norwich Research Park, Colney, Norwich, United Kingdom
| | - John Walshaw
- Gut Health and Food Safety, Institute of Food Research, Norwich Research Park, Colney, Norwich, United Kingdom
| | - Michael W Peck
- Gut Health and Food Safety, Institute of Food Research, Norwich Research Park, Colney, Norwich, United Kingdom
| | - G C Barker
- Gut Health and Food Safety, Institute of Food Research, Norwich Research Park, Colney, Norwich, United Kingdom
| |
Collapse
|
34
|
Postnikova OA, Shao J, Mock NM, Baker CJ, Nemchinov LG. Gene Expression Profiling in Viable but Nonculturable (VBNC) Cells of Pseudomonas syringae pv. syringae. Front Microbiol 2015; 6:1419. [PMID: 26733964 PMCID: PMC4683178 DOI: 10.3389/fmicb.2015.01419] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/30/2015] [Indexed: 11/30/2022] Open
Abstract
Pseudomonas syringae infects diverse crop plants and comprises at least 50 different pathovar strains with different host ranges. More information on the physiological and molecular effects of the host inhibitory environment on the pathogen is needed to develop resistant cultivars. Recently, we reported an in vitro model system that mimics the redox pulse associated with the oxidative burst in plant cells inoculated with Pseudomonas syringae pv. syringae. Using this system, we demonstrated that oxidation of acetosyringone, a major extracellular phenolic compound induced in some plants in response to bacteria, rendered Pseudomonas syringae pv. syringae to a "viable but nonculturable" (VBNC) state. Here we performed a large scale transcriptome profiling of P. s. pv. syringae in the VBNC state induced by acetosyringone treatment and identified bacterial genes and pathways presumably associated with this condition. The findings offer insight into what events occur when bacterial pathogens are first encountered and host defense responses are triggered. The acquired knowledge will improve our understanding of the molecular mechanisms of stress tolerance. We believe that this is the first work on global gene expression profiling of VBNC cells in plant pathogenic bacteria.
Collapse
Affiliation(s)
| | | | | | | | - Lev G. Nemchinov
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture, Agricultural Research ServiceBeltsville, MD, USA
| |
Collapse
|
35
|
Abstract
Bacillus subtilis is an important model bacterium for the study of developmental adaptations that enhance survival in the face of fluctuating environmental challenges. These adaptations include sporulation, biofilm formation, motility, cannibalism, and competence. Remarkably, not all the cells in a given population exhibit the same response. The choice of fate by individual cells is random but is also governed by complex signal transduction pathways and cross talk mechanisms that reinforce decisions once made. The interplay of stochastic and deterministic mechanisms governing the selection of developmental fate on the single-cell level is discussed in this article.
Collapse
|
36
|
Salvado B, Vilaprinyo E, Sorribas A, Alves R. A survey of HK, HPt, and RR domains and their organization in two-component systems and phosphorelay proteins of organisms with fully sequenced genomes. PeerJ 2015; 3:e1183. [PMID: 26339559 PMCID: PMC4558063 DOI: 10.7717/peerj.1183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/23/2015] [Indexed: 12/17/2022] Open
Abstract
Two Component Systems and Phosphorelays (TCS/PR) are environmental signal transduction cascades in prokaryotes and, less frequently, in eukaryotes. The internal domain organization of proteins and the topology of TCS/PR cascades play an important role in shaping the responses of the circuits. It is thus important to maintain updated censuses of TCS/PR proteins in order to identify the various topologies used by nature and enable a systematic study of the dynamics associated with those topologies. To create such a census, we analyzed the proteomes of 7,609 organisms from all domains of life with fully sequenced and annotated genomes. To begin, we survey each proteome searching for proteins containing domains that are associated with internal signal transmission within TCS/PR: Histidine Kinase (HK), Response Regulator (RR) and Histidine Phosphotranfer (HPt) domains, and analyze how these domains are arranged in the individual proteins. Then, we find all types of operon organization and calculate how much more likely are proteins that contain TCS/PR domains to be coded by neighboring genes than one would expect from the genome background of each organism. Finally, we analyze if the fusion of domains into single TCS/PR proteins is more frequently observed than one might expect from the background of each proteome. We find 50 alternative ways in which the HK, HPt, and RR domains are observed to organize into single proteins. In prokaryotes, TCS/PR coding genes tend to be clustered in operons. 90% of all proteins identified in this study contain just one of the three domains, while 8% of the remaining proteins combine one copy of an HK, a RR, and/or an HPt domain. In eukaryotes, 25% of all TCS/PR proteins have more than one domain. These results might have implications for how signals are internally transmitted within TCS/PR cascades. These implications could explain the selection of the various designs in alternative circumstances.
Collapse
Affiliation(s)
- Baldiri Salvado
- Departament de Cienciès Mèdiques Bàsiques, Universitat de Lleida , Lleida, Catalonya , Spain
| | - Ester Vilaprinyo
- Departament de Cienciès Mèdiques Bàsiques, Universitat de Lleida , Lleida, Catalonya , Spain ; IRBLleida , Lleida, Catalonya , Spain
| | - Albert Sorribas
- Departament de Cienciès Mèdiques Bàsiques, Universitat de Lleida , Lleida, Catalonya , Spain
| | - Rui Alves
- Departament de Cienciès Mèdiques Bàsiques, Universitat de Lleida , Lleida, Catalonya , Spain
| |
Collapse
|
37
|
Chromosomal Arrangement of Phosphorelay Genes Couples Sporulation and DNA Replication. Cell 2015; 162:328-337. [PMID: 26165942 DOI: 10.1016/j.cell.2015.06.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/27/2015] [Accepted: 05/21/2015] [Indexed: 12/21/2022]
Abstract
Genes encoding proteins in a common regulatory network are frequently located close to one another on the chromosome to facilitate co-regulation or couple gene expression to growth rate. Contrasting with these observations, here, we demonstrate a functional role for the arrangement of Bacillus subtilis sporulation network genes on opposite sides of the chromosome. We show that the arrangement of two sporulation network genes, one located close to the origin and the other close to the terminus, leads to a transient gene dosage imbalance during chromosome replication. This imbalance is detected by the sporulation network to produce cell-cycle coordinated pulses of the sporulation master regulator Spo0A∼P. This pulsed response allows cells to decide between sporulation and continued vegetative growth during each cell cycle spent in starvation. The simplicity of this coordination mechanism suggests that it may be widely applicable in a variety of gene regulatory and stress-response settings. VIDEO ABSTRACT.
Collapse
|
38
|
Castillo-Hair SM, Igoshin OA, Tabor JJ. How to train your microbe: methods for dynamically characterizing gene networks. Curr Opin Microbiol 2015; 24:113-23. [PMID: 25677419 DOI: 10.1016/j.mib.2015.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/06/2015] [Accepted: 01/10/2015] [Indexed: 12/31/2022]
Abstract
Gene networks regulate biological processes dynamically. However, researchers have largely relied upon static perturbations, such as growth media variations and gene knockouts, to elucidate gene network structure and function. Thus, much of the regulation on the path from DNA to phenotype remains poorly understood. Recent studies have utilized improved genetic tools, hardware, and computational control strategies to generate precise temporal perturbations outside and inside of live cells. These experiments have, in turn, provided new insights into the organizing principles of biology. Here, we introduce the major classes of dynamical perturbations that can be used to study gene networks, and discuss technologies available for creating them in a wide range of microbial pathways.
Collapse
Affiliation(s)
| | - Oleg A Igoshin
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, United States; Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005, United States; Center for Theoretical Biophysics, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Jeffrey J Tabor
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, United States; Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005, United States.
| |
Collapse
|
39
|
Dusny C, Schmid A. Microfluidic single-cell analysis links boundary environments and individual microbial phenotypes. Environ Microbiol 2014; 17:1839-56. [DOI: 10.1111/1462-2920.12667] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/02/2014] [Accepted: 10/11/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Christian Dusny
- Department of Solar Materials; Helmholtz Centre for Environmental Research GmbH - UFZ; Permoserstr. 15 Leipzig DE 04318 Germany
- Laboratory of Chemical Biotechnology; Department of Biochemical and Chemical Engineering; TU Dortmund University; Emil-Figge-Str. 66 D-44227 Dortmund Germany
| | - Andreas Schmid
- Department of Solar Materials; Helmholtz Centre for Environmental Research GmbH - UFZ; Permoserstr. 15 Leipzig DE 04318 Germany
- Laboratory of Chemical Biotechnology; Department of Biochemical and Chemical Engineering; TU Dortmund University; Emil-Figge-Str. 66 D-44227 Dortmund Germany
| |
Collapse
|
40
|
Ihekwaba AEC, Mura I, Barker GC. Computational modelling and analysis of the molecular network regulating sporulation initiation in Bacillus subtilis. BMC SYSTEMS BIOLOGY 2014; 8:119. [PMID: 25341802 PMCID: PMC4213463 DOI: 10.1186/s12918-014-0119-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/13/2014] [Indexed: 02/02/2023]
Abstract
BACKGROUND Bacterial spores are important contaminants in food, and the spore forming bacteria are often implicated in food safety and food quality considerations. Spore formation is a complex developmental process involving the expression of more than 500 genes over the course of 6 to 8 hrs. The process culminates in the formation of resting cells capable of resisting environmental extremes and remaining dormant for long periods of time, germinating when conditions promote further vegetative growth. Experimental observations of sporulation and germination are problematic and time consuming so that reliable models are an invaluable asset in terms of prediction and risk assessment. In this report we develop a model which assists in the interpretation of sporulation dynamics. RESULTS This paper defines and analyses a mathematical model for the network regulating Bacillus subtilis sporulation initiation, from sensing of sporulation signals down to the activation of the early genes under control of the master regulator Spo0A. Our model summarises and extends other published modelling studies, by allowing the user to execute sporulation initiation in a scenario where Isopropyl β-D-1-thiogalactopyranoside (IPTG) is used as an artificial sporulation initiator as well as in modelling the induction of sporulation in wild-type cells. The analysis of the model results and the comparison with experimental data indicate that the model is good at predicting inducible responses to sporulation signals. However, the model is unable to reproduce experimentally observed accumulation of phosphorelay sporulation proteins in wild type B. subtilis. This model also highlights that the phosphorelay sub-component, which relays the signals detected by the sensor kinases to the master regulator Spo0A, is crucial in determining the response dynamics of the system. CONCLUSION We show that there is a complex connectivity between the phosphorelay features and the master regulatory Spo0A. Additional we discovered that the experimentally observed regulation of the phosphotransferase Spo0B for wild-type B. subtilis may be playing an important role in the network which suggests that modelling of sporulation initiation may require additional experimental support.
Collapse
Affiliation(s)
- Adaoha E C Ihekwaba
- Gut Health and Food Safety, Institute of Food Research, Norwich Research Park, Colney, Norwich, UK.
| | - Ivan Mura
- Faculty of Engineering, EAN University, Carrera 11 No. 78 - 47, Bogotá, Colombia.
| | - Gary C Barker
- Gut Health and Food Safety, Institute of Food Research, Norwich Research Park, Colney, Norwich, UK.
| |
Collapse
|
41
|
Alano P. The sound of sexual commitment breaks the silencing of malaria parasites. Trends Parasitol 2014; 30:509-10. [PMID: 25261923 DOI: 10.1016/j.pt.2014.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 10/24/2022]
Abstract
A fundamental binary decision is made by malaria parasites at every asexual cycle in the blood between further proliferation and differentiation into gametocytes, the mosquito transmissible stages. Recent studies on Plasmodium epigenetic regulation, transcriptional control and genetic basis of gametocyte production are merging today to unveil players and propose molecular mechanisms of this key branch point in the malaria parasite life cycle.
Collapse
Affiliation(s)
- Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, viale Regina Elena n.299, 00161 Rome, Italy.
| |
Collapse
|
42
|
Ferrell JE, Ha SH. Ultrasensitivity part I: Michaelian responses and zero-order ultrasensitivity. Trends Biochem Sci 2014; 39:496-503. [PMID: 25240485 DOI: 10.1016/j.tibs.2014.08.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/11/2014] [Accepted: 08/14/2014] [Indexed: 12/20/2022]
Abstract
Quantitative studies of signal transduction systems have shown that ultrasensitive responses - switch-like, sigmoidal input/output relationships - are commonplace in cell signaling. Ultrasensitivity is important for various complex signaling systems, including signaling cascades, bistable switches, and oscillators. In this first installment of a series on ultrasensitivity we survey the occurrence of ultrasensitive responses in signaling systems. We review why the simplest mass action systems exhibit Michaelian responses, and then move on to zero-order ultrasensitivity, a phenomenon that occurs when signaling proteins are operating near saturation. We also discuss the physiological relevance of zero-order ultrasensitivity to cellular regulation.
Collapse
Affiliation(s)
- James E Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA.
| | - Sang Hoon Ha
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA
| |
Collapse
|
43
|
Alternative sigma factors SigF, SigE, and SigG are essential for sporulation in Clostridium botulinum ATCC 3502. Appl Environ Microbiol 2014; 80:5141-50. [PMID: 24928875 DOI: 10.1128/aem.01015-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium botulinum produces heat-resistant endospores that may germinate and outgrow into neurotoxic cultures in foods. Sporulation is regulated by the transcription factor Spo0A and the alternative sigma factors SigF, SigE, SigG, and SigK in most spore formers studied to date. We constructed mutants of sigF, sigE, and sigG in C. botulinum ATCC 3502 and used quantitative reverse transcriptase PCR and electron microscopy to assess their expression of the sporulation pathway on transcriptional and morphological levels. In all three mutants the expression of spo0A was disrupted. The sigF and sigE mutants failed to induce sigG and sigK beyond exponential-phase levels and halted sporulation during asymmetric cell division. In the sigG mutant, peak transcription of sigE was delayed and sigK levels remained lower than that in the parent strain. The sigG mutant forespore was engulfed by the mother cell and possessed a spore coat but no peptidoglycan cortex. The findings suggest that SigF and SigE of C. botulinum ATCC 3502 are essential for early sporulation and late-stage induction of sigK, whereas SigG is essential for spore cortex formation but not for coat formation, as opposed to previous observations in B. subtilis sigG mutants. Our findings add to a growing body of evidence that regulation of sporulation in C. botulinum ATCC 3502, and among the clostridia, differs from the B. subtilis model.
Collapse
|
44
|
Tan IS, Ramamurthi KS. Spore formation in Bacillus subtilis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:212-25. [PMID: 24983526 PMCID: PMC4078662 DOI: 10.1111/1758-2229.12130] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/05/2013] [Accepted: 11/19/2013] [Indexed: 05/04/2023]
Abstract
Although prokaryotes ordinarily undergo binary fission to produce two identical daughter cells, some are able to undergo alternative developmental pathways that produce daughter cells of distinct cell morphology and fate. One such example is a developmental programme called sporulation in the bacterium Bacillus subtilis, which occurs under conditions of environmental stress. Sporulation has long been used as a model system to help elucidate basic processes of developmental biology including transcription regulation, intercellular signalling, membrane remodelling, protein localization and cell fate determination. This review highlights some of the recent work that has been done to further understand prokaryotic cell differentiation during sporulation and its potential applications.
Collapse
Affiliation(s)
- Irene S Tan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA; NIH-Johns Hopkins University Graduate Partnerships Program, Baltimore, MD, 21218, USA
| | | |
Collapse
|
45
|
Sella SRBR, Vandenberghe LPS, Soccol CR. Life cycle and spore resistance of spore-forming Bacillus atrophaeus. Microbiol Res 2014; 169:931-9. [PMID: 24880805 DOI: 10.1016/j.micres.2014.05.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 04/29/2014] [Accepted: 05/04/2014] [Indexed: 12/28/2022]
Abstract
Bacillus endospores have a wide variety of important medical and industrial applications. This is an overview of the fundamental aspects of the life cycle, spore structure and factors that influence the spore resistance of spore-forming Bacillus. Bacillus atrophaeus was used as reference microorganism for this review because their spores are widely used to study spore resistance and morphology. Understanding the mechanisms involved in the cell cycle and spore survival is important for developing strategies for spore killing; producing highly resistant spores for biodefense, food and pharmaceutical applications; and developing new bioactive molecules and methods for spore surface display.
Collapse
Affiliation(s)
- Sandra R B R Sella
- Production and Research Centre of Immunobiological Products, Secretaria de Saúde do Estado do Paraná, Piraquara, PR, Brazil; Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Curitiba, PR, Brazil.
| | - Luciana P S Vandenberghe
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Curitiba, PR, Brazil
| | - Carlos Ricardo Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
46
|
Lee J, Tiwari A, Shum V, Mills GB, Mancini MA, Igoshin OA, Balázsi G. Unraveling the regulatory connections between two controllers of breast cancer cell fate. Nucleic Acids Res 2014; 42:6839-49. [PMID: 24792166 PMCID: PMC4066784 DOI: 10.1093/nar/gku360] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Estrogen receptor alpha (ERα) expression is critical for breast cancer classification, high ERα expression being associated with better prognosis. ERα levels strongly correlate with that of GATA binding protein 3 (GATA3), a major regulator of ERα expression. However, the mechanistic details of ERα-GATA3 regulation remain incompletely understood. Here we combine mathematical modeling with perturbation experiments to unravel the nature of regulatory connections in the ERα-GATA3 network. Through cell population-average, single-cell and single-nucleus measurements, we show that the cross-regulation between ERα and GATA3 amounts to overall negative feedback. Further, mathematical modeling reveals that GATA3 positively regulates its own expression and that ERα autoregulation is most likely absent. Lastly, we show that the two cross-regulatory connections in the ERα-GATA3 negative feedback network decrease the noise in ERα or GATA3 expression. This may ensure robust cell fate maintenance in the face of intracellular and environmental fluctuations, contributing to tissue homeostasis in normal conditions, but also to the maintenance of pathogenic states during cancer progression.
Collapse
Affiliation(s)
- Jinho Lee
- Department of Systems Biology - Unit 950, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Abhinav Tiwari
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Victor Shum
- Department of Systems Biology - Unit 950, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA Department of Physics, University of Houston, Houston, TX 77004, USA
| | - Gordon B Mills
- Department of Systems Biology - Unit 950, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Michael A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Oleg A Igoshin
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Gábor Balázsi
- Department of Systems Biology - Unit 950, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
47
|
Chandra G, Chater KF. Developmental biology of Streptomyces from the perspective of 100 actinobacterial genome sequences. FEMS Microbiol Rev 2014; 38:345-79. [PMID: 24164321 PMCID: PMC4255298 DOI: 10.1111/1574-6976.12047] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/06/2013] [Accepted: 08/20/2013] [Indexed: 12/22/2022] Open
Abstract
To illuminate the evolution and mechanisms of actinobacterial complexity, we evaluate the distribution and origins of known Streptomyces developmental genes and the developmental significance of actinobacteria-specific genes. As an aid, we developed the Actinoblast database of reciprocal blastp best hits between the Streptomyces coelicolor genome and more than 100 other actinobacterial genomes (http://streptomyces.org.uk/actinoblast/). We suggest that the emergence of morphological complexity was underpinned by special features of early actinobacteria, such as polar growth and the coupled participation of regulatory Wbl proteins and the redox-protecting thiol mycothiol in transducing a transient nitric oxide signal generated during physiologically stressful growth transitions. It seems that some cell growth and division proteins of early actinobacteria have acquired greater importance for sporulation of complex actinobacteria than for mycelial growth, in which septa are infrequent and not associated with complete cell separation. The acquisition of extracellular proteins with structural roles, a highly regulated extracellular protease cascade, and additional regulatory genes allowed early actinobacterial stationary phase processes to be redeployed in the emergence of aerial hyphae from mycelial mats and in the formation of spore chains. These extracellular proteins may have contributed to speciation. Simpler members of morphologically diverse clades have lost some developmental genes.
Collapse
|
48
|
Nikel PI, Silva-Rocha R, Benedetti I, de Lorenzo V. The private life of environmental bacteria: pollutant biodegradation at the single cell level. Environ Microbiol 2014; 16:628-42. [DOI: 10.1111/1462-2920.12360] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/23/2013] [Accepted: 12/10/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Pablo Iván Nikel
- Systems and Synthetic Biology Program; Centro Nacional de Biotecnología (CNB-CSIC); Madrid 28049 Spain
| | - Rafael Silva-Rocha
- Systems and Synthetic Biology Program; Centro Nacional de Biotecnología (CNB-CSIC); Madrid 28049 Spain
| | - Ilaria Benedetti
- Systems and Synthetic Biology Program; Centro Nacional de Biotecnología (CNB-CSIC); Madrid 28049 Spain
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program; Centro Nacional de Biotecnología (CNB-CSIC); Madrid 28049 Spain
| |
Collapse
|
49
|
Kirk DG, Palonen E, Korkeala H, Lindström M. Evaluation of normalization reference genes for RT-qPCR analysis of spo0A and four sporulation sigma factor genes in Clostridium botulinum Group I strain ATCC 3502. Anaerobe 2014; 26:14-9. [PMID: 24389585 DOI: 10.1016/j.anaerobe.2013.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/21/2013] [Accepted: 12/24/2013] [Indexed: 11/17/2022]
Abstract
Heat-resistant spores of Clostridium botulinum can withstand the pasteurization processes in modern food processing. This poses a risk to food safety as spores may germinate into botulinum neurotoxin-producing vegetative cells. Sporulation in Bacillus subtilis, the model organism for sporulation, is regulated by the transcription factor Spo0A and four alternative sigma factors, SigF, SigE, SigG, and SigK. While the corresponding regulators are found in available genomes of C. botulinum, little is known about their expression. To accurately measure the expression of these genes using quantitative reverse-transcriptase PCR (RT-qPCR) during the exponential and stationary growth phases, a suitable normalization reference gene is required. 16S rrn, adK, alaS, era, gluD, gyrA, rpoC, and rpsJ were selected as the candidate reference genes. The most stable candidate reference gene was 16S ribosomal RNA gene (rrn), based on its low coefficient of variation (1.81%) measured during the 18-h study time. Using 16S rrn as the normalization reference gene, the relative expression levels of spo0A, sigF, sigE, sigG, and sigK were measured over 18h. The pattern of expression showed spo0A expression during the logarithmic growth phase, followed by a drop in expression upon entry to the stationary phase. Expression levels of sigF, sigE, and sigG peaked simultaneously at the end of the exponential growth phase. Peak expression of sigK occurred at 18h, however low levels of expression were detected during the exponential phase. These findings suggest these sigma factors play a role in C. botulinum sporulation that is similar, but not equal, to their role in the B. subtilis model.
Collapse
Affiliation(s)
- David G Kirk
- Department of Food Hygiene and Environmental Health, Centre of Excellence in Microbial Food Safety Research, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014 Helsinki University, Finland
| | - Eveliina Palonen
- Department of Food Hygiene and Environmental Health, Centre of Excellence in Microbial Food Safety Research, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014 Helsinki University, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Centre of Excellence in Microbial Food Safety Research, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014 Helsinki University, Finland
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Centre of Excellence in Microbial Food Safety Research, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014 Helsinki University, Finland.
| |
Collapse
|
50
|
Phosphorelays provide tunable signal processing capabilities for the cell. PLoS Comput Biol 2013; 9:e1003322. [PMID: 24244132 PMCID: PMC3820541 DOI: 10.1371/journal.pcbi.1003322] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 09/23/2013] [Indexed: 01/19/2023] Open
Abstract
Achieving a complete understanding of cellular signal transduction requires deciphering the relation between structural and biochemical features of a signaling system and the shape of the signal-response relationship it embeds. Using explicit analytical expressions and numerical simulations, we present here this relation for four-layered phosphorelays, which are signaling systems that are ubiquitous in prokaryotes and also found in lower eukaryotes and plants. We derive an analytical expression that relates the shape of the signal-response relationship in a relay to the kinetic rates of forward, reverse phosphorylation and hydrolysis reactions. This reveals a set of mathematical conditions which, when satisfied, dictate the shape of the signal-response relationship. We find that a specific topology also observed in nature can satisfy these conditions in such a way to allow plasticity among hyperbolic and sigmoidal signal-response relationships. Particularly, the shape of the signal-response relationship of this relay topology can be tuned by altering kinetic rates and total protein levels at different parts of the relay. These findings provide an important step towards predicting response dynamics of phosphorelays, and the nature of subsequent physiological responses that they mediate, solely from topological features and few composite measurements; measuring the ratio of reverse and forward phosphorylation rate constants could be sufficient to determine the shape of the signal-response relationship the relay exhibits. Furthermore, they highlight the potential ways in which selective pressures on signal processing could have played a role in the evolution of the observed structural and biochemical characteristic in phosphorelays. Two-component phosphorelays constitute the key signaling pathways in all prokaryotes, lower eukaryotes, and plants, where they underline diverse physiological responses such as virulence, cell-cycle progression and sporulation. Despite such prevalence, our understanding of the dynamics and function of these systems remains incomplete. In particular, it is not clear why all phosphorelays studied to date embed a four-layer architecture and how their dynamics could relate to phenotypic variability in the resulting responses. Here, we use analytical approaches and numerical simulations to analyze all possible phosphorelay topologies of length four and embedding reverse phosphorylation. We find that only two topologies can embed both hyperbolic and sigmoidal signal-response relationships, and that one of these can underlie high noise (i.e. phenotypic variability) in population responses. All of the remaining topologies are either non-functional or can embed only a hyperbolic signal-response relationship. Using analytical solutions of relay dynamics, we find that reverse phosphorylation from the third layer, a topological featured commonly observed in nature, is a necessary condition for sigmoidal signal-response relationship.
Collapse
|