1
|
Mao L, Wei W, Chen J. Biased regulation of glucocorticoid receptors signaling. Biomed Pharmacother 2023; 165:115145. [PMID: 37454592 DOI: 10.1016/j.biopha.2023.115145] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Glucocorticoids (GCs), steroid hormones that depend on glucocorticoid receptor (GR) binding for their action, are essential for regulating numerous homeostatic functions in the body.GR signals are biased, that is, GR signals are various in different tissue cells, disease states and ligands. This biased regulation of GR signaling appears to depend on ligand-induced metameric regulation, protein post-translational modifications, assembly at response elements, context-specific assembly (recruitment of co-regulators) and intercellular differences. Based on the bias regulation of GR, selective GR agonists and modulators (SEGRAMs) were developed to bias therapeutic outcomes toward expected outcomes (e.g., anti-inflammation and immunoregulation) by influencing GR-mediated gene expression. This paper provides a review of the bias regulation and mechanism of GR and the research progress of drugs.
Collapse
Affiliation(s)
- Lijuan Mao
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Cooperative Innovation Center for Anti-inflammatory Immune Drugs, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Cooperative Innovation Center for Anti-inflammatory Immune Drugs, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China.
| | - Jingyu Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Cooperative Innovation Center for Anti-inflammatory Immune Drugs, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
2
|
Gans IM, Coffman JA. Glucocorticoid-Mediated Developmental Programming of Vertebrate Stress Responsivity. Front Physiol 2021; 12:812195. [PMID: 34992551 PMCID: PMC8724051 DOI: 10.3389/fphys.2021.812195] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/22/2021] [Indexed: 01/03/2023] Open
Abstract
Glucocorticoids, vertebrate steroid hormones produced by cells of the adrenal cortex or interrenal tissue, function dynamically to maintain homeostasis under constantly changing and occasionally stressful environmental conditions. They do so by binding and thereby activating nuclear receptor transcription factors, the Glucocorticoid and Mineralocorticoid Receptors (MR and GR, respectively). The GR, by virtue of its lower affinity for endogenous glucocorticoids (cortisol or corticosterone), is primarily responsible for transducing the dynamic signals conveyed by circadian and ultradian glucocorticoid oscillations as well as transient pulses produced in response to acute stress. These dynamics are important determinants of stress responsivity, and at the systemic level are produced by feedforward and feedback signaling along the hypothalamus-pituitary-adrenal/interrenal axis. Within receiving cells, GR signaling dynamics are controlled by the GR target gene and negative feedback regulator fkpb5. Chronic stress can alter signaling dynamics via imperfect physiological adaptation that changes systemic and/or cellular set points, resulting in chronically elevated cortisol levels and increased allostatic load, which undermines health and promotes development of disease. When this occurs during early development it can "program" the responsivity of the stress system, with persistent effects on allostatic load and disease susceptibility. An important question concerns the glucocorticoid-responsive gene regulatory network that contributes to such programming. Recent studies show that klf9, a ubiquitously expressed GR target gene that encodes a Krüppel-like transcription factor important for metabolic plasticity and neuronal differentiation, is a feedforward regulator of GR signaling impacting cellular glucocorticoid responsivity, suggesting that it may be a critical node in that regulatory network.
Collapse
Affiliation(s)
- Ian M. Gans
- MDI Biological Laboratory, Salisbury Cove, ME, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| | - James A. Coffman
- MDI Biological Laboratory, Salisbury Cove, ME, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| |
Collapse
|
3
|
Biswas D, Iglesias PA. Sensitivity minimization, biological homeostasis and information theory. BIOLOGICAL CYBERNETICS 2021; 115:103-113. [PMID: 33475834 PMCID: PMC7818071 DOI: 10.1007/s00422-021-00860-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/06/2021] [Indexed: 06/01/2023]
Abstract
All organisms must be able to adapt to changes in the environment. To this end, they have developed sophisticated regulatory mechanisms to ensure homeostasis. Control engineers, who must design similar regulatory systems, have developed a number of general principles that govern feedback regulation. These lead to constraints which impose trade-offs that arise when developing controllers to minimize the effect of external disturbances on systems. Here, we review some of these trade-offs, particularly Bode's integral formula. We also highlight its connection to information theory, by showing that the constraints in sensitivity minimization can be cast as limitations on the information transmission through a system, and these have their root in causality. Finally, we look at how these constraints arise in two biological systems: glycolytic oscillations and the energy cost of perfect adaptation in a bacterial chemotactic pathway.
Collapse
Affiliation(s)
- Debojyoti Biswas
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Pablo A. Iglesias
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| |
Collapse
|
4
|
Monczor F, Chatzopoulou A, Zappia CD, Houtman R, Meijer OC, Fitzsimons CP. A Model of Glucocorticoid Receptor Interaction With Coregulators Predicts Transcriptional Regulation of Target Genes. Front Pharmacol 2019; 10:214. [PMID: 30930776 PMCID: PMC6425864 DOI: 10.3389/fphar.2019.00214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
Regulatory factors that control gene transcription in multicellular organisms are assembled in multicomponent complexes by combinatorial interactions. In this context, nuclear receptors provide well-characterized and physiologically relevant systems to study ligand-induced transcription resulting from the integration of cellular and genomic information in a cell- and gene-specific manner. Here, we developed a mathematical model describing the interactions between the glucocorticoid receptor (GR) and other components of a multifactorial regulatory complex controlling the transcription of GR-target genes, such as coregulator peptides. We support the validity of the model in relation to gene-specific GR transactivation with gene transcription data from A549 cells and in vitro real time quantification of coregulator-GR interactions. The model accurately describes and helps to interpret ligand-specific and gene-specific transcriptional regulation by the GR. The comprehensive character of the model allows future insight into the function and relative contribution of the molecular species proposed in ligand- and gene-specific transcriptional regulation.
Collapse
Affiliation(s)
- Federico Monczor
- Laboratorio de Farmacología de Receptores, Instituto de Investigaciones Farmacológicas, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Antonia Chatzopoulou
- Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
| | - Carlos Daniel Zappia
- Laboratorio de Farmacología de Receptores, Instituto de Investigaciones Farmacológicas, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - René Houtman
- PamGene International B.V., 's-Hertogenbosch, Netherlands
| | - Onno C Meijer
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Centre, Leiden, Netherlands
| | - Carlos P Fitzsimons
- Neuroscience Collaboration, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
5
|
McDowell IC, Barrera A, D'Ippolito AM, Vockley CM, Hong LK, Leichter SM, Bartelt LC, Majoros WH, Song L, Safi A, Koçak DD, Gersbach CA, Hartemink AJ, Crawford GE, Engelhardt BE, Reddy TE. Glucocorticoid receptor recruits to enhancers and drives activation by motif-directed binding. Genome Res 2018; 28:1272-1284. [PMID: 30097539 PMCID: PMC6120625 DOI: 10.1101/gr.233346.117] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 07/05/2018] [Indexed: 12/22/2022]
Abstract
Glucocorticoids are potent steroid hormones that regulate immunity and metabolism by activating the transcription factor (TF) activity of glucocorticoid receptor (GR). Previous models have proposed that DNA binding motifs and sites of chromatin accessibility predetermine GR binding and activity. However, there are vast excesses of both features relative to the number of GR binding sites. Thus, these features alone are unlikely to account for the specificity of GR binding and activity. To identify genomic and epigenetic contributions to GR binding specificity and the downstream changes resultant from GR binding, we performed hundreds of genome-wide measurements of TF binding, epigenetic state, and gene expression across a 12-h time course of glucocorticoid exposure. We found that glucocorticoid treatment induces GR to bind to nearly all pre-established enhancers within minutes. However, GR binds to only a small fraction of the set of accessible sites that lack enhancer marks. Once GR is bound to enhancers, a combination of enhancer motif composition and interactions between enhancers then determines the strength and persistence of GR binding, which consequently correlates with dramatic shifts in enhancer activation. Over the course of several hours, highly coordinated changes in TF binding and histone modification occupancy occur specifically within enhancers, and these changes correlate with changes in the expression of nearby genes. Following GR binding, changes in the binding of other TFs precede changes in chromatin accessibility, suggesting that other TFs are also sensitive to genomic features beyond that of accessibility.
Collapse
Affiliation(s)
- Ian C McDowell
- Graduate Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27708, USA.,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - Alejandro Barrera
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA.,Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina 27708, USA
| | - Anthony M D'Ippolito
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA.,University Program in Genetics and Genomics, Duke University, Durham, North Carolina 27708, USA
| | - Christopher M Vockley
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA.,Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina 27708, USA
| | - Linda K Hong
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA.,Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27708, USA
| | - Sarah M Leichter
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA.,Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina 27708, USA
| | - Luke C Bartelt
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA.,Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina 27708, USA
| | - William H Majoros
- Graduate Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27708, USA.,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - Lingyun Song
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA.,Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27708, USA
| | - Alexias Safi
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA.,Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27708, USA
| | - D Dewran Koçak
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA.,Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Charles A Gersbach
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA.,University Program in Genetics and Genomics, Duke University, Durham, North Carolina 27708, USA.,Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA.,Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina 27708, USA
| | - Alexander J Hartemink
- Graduate Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27708, USA.,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA.,Department of Computer Science, Duke University, Durham, North Carolina 27708, USA.,Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Gregory E Crawford
- Graduate Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27708, USA.,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA.,Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27708, USA.,Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27708, USA
| | - Barbara E Engelhardt
- Department of Computer Science, Princeton University, Princeton, New Jersey 08540, USA.,Center for Statistics and Machine Learning, Princeton University, Princeton, New Jersey 08540, USA
| | - Timothy E Reddy
- Graduate Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27708, USA.,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA.,Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina 27708, USA.,University Program in Genetics and Genomics, Duke University, Durham, North Carolina 27708, USA.,Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA.,Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
6
|
Lewis DD, Chavez M, Chiu KL, Tan C. Reconfigurable Analog Signal Processing by Living Cells. ACS Synth Biol 2018; 7:107-120. [PMID: 29113433 DOI: 10.1021/acssynbio.7b00255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Living cells are known for their capacity for versatile signal processing, particularly the ability to respond differently to the same stimuli using biochemical networks that integrate environmental signals and reconfigure their dynamic responses. However, the complexity of natural biological networks confounds the discovery of fundamental mechanisms behind versatile signaling. Here, we study one specific aspect of reconfigurable signal processing in which a minimal biological network integrates two signals, using one to reconfigure the network's transfer function with respect to the other, producing an emergent switch between induction and repression. In contrast to known mechanisms, the new mechanism reconfigures transfer functions through genetic networks without extensive protein-protein interactions. These results provide a novel explanation for the versatility of genetic programs, and suggest a new mechanism of signal integration that may govern flexibility and plasticity of gene expression.
Collapse
Affiliation(s)
- Daniel D. Lewis
- Department
of Biomedical Engineering, University of California Davis, 1 Shields Avenue, Davis, California 95616, United States
- Integrative
Genetics and Genomics, University of California Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Michael Chavez
- Department
of Biomedical Engineering, University of California Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Kwan Lun Chiu
- Department
of Biomedical Engineering, University of California Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Cheemeng Tan
- Department
of Biomedical Engineering, University of California Davis, 1 Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
7
|
Chow CC, Simons SS. An Approach to Greater Specificity for Glucocorticoids. Front Endocrinol (Lausanne) 2018; 9:76. [PMID: 29593646 PMCID: PMC5859375 DOI: 10.3389/fendo.2018.00076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/19/2018] [Indexed: 11/13/2022] Open
Abstract
Glucocorticoid steroids are among the most prescribed drugs each year. Nonetheless, the many undesirable side effects, and lack of selectivity, restrict their greater usage. Research to increase glucocorticoid specificity has spanned many years. These efforts have been hampered by the ability of glucocorticoids to both induce and repress gene transcription and also by the lack of success in defining any predictable properties that control glucocorticoid specificity. Correlations of transcriptional specificity have been observed with changes in steroid structure, receptor and chromatin conformation, DNA sequence for receptor binding, and associated cofactors. However, none of these studies have progressed to the point of being able to offer guidance for increased specificity. We summarize here a mathematical theory that allows a novel and quantifiable approach to increase selectivity. The theory applies to all three major actions of glucocorticoid receptors: induction by agonists, induction by antagonists, and repression by agonists. Simple graphical analysis of competition assays involving any two factors (steroid, chemical, peptide, protein, DNA, etc.) yields information (1) about the kinetically described mechanism of action for each factor at that step where the factor acts in the overall reaction sequence and (2) about the relative position of that step where each factor acts. These two pieces of information uniquely provide direction for increasing the specificity of glucocorticoid action. Consideration of all three modes of action indicate that the most promising approach for increased specificity is to vary the concentrations of those cofactors/pharmaceuticals that act closest to the observed end point. The potential for selectivity is even greater when varying cofactors/pharmaceuticals in conjunction with a select class of antagonists.
Collapse
Affiliation(s)
- Carson C. Chow
- Mathematical Biology Section, NIDDK/LBM, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Carson C. Chow, ; S. Stoney Simons, Jr.,
| | - S. Stoney Simons
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Carson C. Chow, ; S. Stoney Simons, Jr.,
| |
Collapse
|
8
|
Weikum ER, Knuesel MT, Ortlund EA, Yamamoto KR. Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nat Rev Mol Cell Biol 2017; 18:159-174. [PMID: 28053348 PMCID: PMC6257982 DOI: 10.1038/nrm.2016.152] [Citation(s) in RCA: 342] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The glucocorticoid receptor (GR) is a constitutively expressed transcriptional regulatory factor (TRF) that controls many distinct gene networks, each uniquely determined by particular cellular and physiological contexts. The precision of GR-mediated responses seems to depend on combinatorial, context-specific assembly of GR-nucleated transcription regulatory complexes at genomic response elements. In turn, evidence suggests that context-driven plasticity is conferred by the integration of multiple signals, each serving as an allosteric effector of GR conformation, a key determinant of regulatory complex composition and activity. This structural and mechanistic perspective on GR regulatory specificity is likely to extend to other eukaryotic TRFs.
Collapse
Affiliation(s)
- Emily R Weikum
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322, USA
| | - Matthew T Knuesel
- Department of Cellular and Molecular Pharmacology, University of California San Francisco School of Medicine, 600 16th Street, San Francisco, California 94143, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322, USA
| | - Keith R Yamamoto
- Department of Cellular and Molecular Pharmacology, University of California San Francisco School of Medicine, 600 16th Street, San Francisco, California 94143, USA
| |
Collapse
|
9
|
Abstract
Glucocorticoid hormones (GC) regulate essential physiological functions including energy homeostasis, embryonic and postembryonic development, and the stress response. From the biomedical perspective, GC have garnered a tremendous amount of attention as highly potent anti-inflammatory and immunosuppressive medications indispensable in the clinic. GC signal through the GC receptor (GR), a ligand-dependent transcription factor whose structure, DNA binding, and the molecular partners that it employs to regulate transcription have been under intense investigation for decades. In particular, next-generation sequencing-based approaches have revolutionized the field by introducing a unified platform for a simultaneous genome-wide analysis of cellular activities at the level of RNA production, binding of transcription factors to DNA and RNA, and chromatin landscape and topology. Here we describe fundamental concepts of GC/GR function as established through traditional molecular and in vivo approaches and focus on the novel insights of GC biology that have emerged over the last 10 years from the rapidly expanding arsenal of system-wide genomic methodologies.
Collapse
Affiliation(s)
- Maria A Sacta
- Hospital for Special Surgery, The David Rosensweig Genomics Center, New York, NY 10021; .,Weill Cornell/Rockefeller/Sloan Kettering MD/PhD program, New York, NY 10021
| | - Yurii Chinenov
- Hospital for Special Surgery, The David Rosensweig Genomics Center, New York, NY 10021;
| | - Inez Rogatsky
- Hospital for Special Surgery, The David Rosensweig Genomics Center, New York, NY 10021; .,Weill Cornell/Rockefeller/Sloan Kettering MD/PhD program, New York, NY 10021
| |
Collapse
|
10
|
Bose SK, Hutson I, Harris CA. Hepatic Glucocorticoid Receptor Plays a Greater Role Than Adipose GR in Metabolic Syndrome Despite Renal Compensation. Endocrinology 2016; 157:4943-4960. [PMID: 27754788 PMCID: PMC5133352 DOI: 10.1210/en.2016-1615] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Exogenous glucocorticoid administration results in hyperglycemia, insulin resistance, hepatic dyslipidemia, and hypertension, a constellation of findings known as Cushing's syndrome. These effects are mediated by the glucocorticoid receptor (GR). Because GR activation in liver and adipose has been implicated in metabolic syndrome (MS), we wanted to determine the role of GR in these tissues in the development of MS. Because GR knockout (KO) mice (whole-body KO) exhibit perinatal lethality due to respiratory failure, we generated tissue-specific (liver or adipose) GRKO mice using cre-lox technology. Real-time PCR analysis of liver mRNA from dexamethasone-treated wildtype (WT) and liver GRKO mice indicated that hepatic GR regulates the expression of key genes involved in gluconeogenesis and glycogen metabolism. Interestingly, we have observed that liver-specific deletion of GR resulted in a significant increase in mRNA expression of key genes involved in gluconeogenesis and glycogen metabolism in kidney tissue, indicating a compensatory mechanism to maintain glucose homeostasis. We have also observed that GR plays an important role in regulating the mRNA expression of key genes involved in lipid metabolism. Liver GRKO mice demonstrated decreased fat mass and liver glycogen content compared with WT mice administered dexamethasone for 2 weeks. Adipose-specific deletion of GR did not alter glucose tolerance or insulin sensitivity of adipose GRKO mice compared with WT mice administrated dexamethasone. This indicates that liver GR might be more important in development of MS in dexamethasone-treated mice, whereas adipose GR plays a little role in these paradigms.
Collapse
Affiliation(s)
- Sandip K Bose
- Department of Internal Medicine (S.K.B., I.H., C.A.H.), Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110; and John Cochran Division (C.A.H.), Veterans Affairs St. Louis Health Care System, St. Louis, Missouri 63106
| | - Irina Hutson
- Department of Internal Medicine (S.K.B., I.H., C.A.H.), Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110; and John Cochran Division (C.A.H.), Veterans Affairs St. Louis Health Care System, St. Louis, Missouri 63106
| | - Charles A Harris
- Department of Internal Medicine (S.K.B., I.H., C.A.H.), Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110; and John Cochran Division (C.A.H.), Veterans Affairs St. Louis Health Care System, St. Louis, Missouri 63106
| |
Collapse
|
11
|
Gerber AN. Glucocorticoids and the Lung. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015. [PMID: 26215999 DOI: 10.1007/978-1-4939-2895-8_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The lung is a major clinical target of glucocorticoid-based therapeutics, and GR signaling has broad effects on respiratory physiology and inflammation. During lung development, expression of GR in the mesenchyme is required for normal terminal alveolar epithelial differentiation. Prenatal administration of exogenous glucocorticoids (GCs) to prevent neonatal respiratory distress syndrome, however, promotes alveolar maturation and accelerates surfactant expression in a manner consistent with direct effects on the developing alveolar epithelium. Likewise, cell autonomous effects of GCs in regulating gene expression and phenotype of the airway epithelium and airway smooth muscle have been demonstrated to control important therapeutic effects of GCs in treating asthma and chronic obstructive pulmonary disease. Here, mechanisms and consequences of GR signaling in the developing lung and in treating obstructive lung disease are reviewed, with a focus on direct effects of GR signaling on alveolar differentiation, surfactant expression, and airway epithelial and smooth muscle pathophysiology.
Collapse
Affiliation(s)
- Anthony N Gerber
- Department of Medicine, National Jewish Health, University of Colorado, Denver, 1400 Jackson Street, Room K621b, Denver, CO, 80206, USA,
| |
Collapse
|
12
|
Function does not follow form in gene regulatory circuits. Sci Rep 2015; 5:13015. [PMID: 26290154 PMCID: PMC4542331 DOI: 10.1038/srep13015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/06/2015] [Indexed: 11/08/2022] Open
Abstract
Gene regulatory circuits are to the cell what arithmetic logic units are to the chip: fundamental components of information processing that map an input onto an output. Gene regulatory circuits come in many different forms, distinct structural configurations that determine who regulates whom. Studies that have focused on the gene expression patterns (functions) of circuits with a given structure (form) have examined just a few structures or gene expression patterns. Here, we use a computational model to exhaustively characterize the gene expression patterns of nearly 17 million three-gene circuits in order to systematically explore the relationship between circuit form and function. Three main conclusions emerge. First, function does not follow form. A circuit of any one structure can have between twelve and nearly thirty thousand distinct gene expression patterns. Second, and conversely, form does not follow function. Most gene expression patterns can be realized by more than one circuit structure. And third, multifunctionality severely constrains circuit form. The number of circuit structures able to drive multiple gene expression patterns decreases rapidly with the number of these patterns. These results indicate that it is generally not possible to infer circuit function from circuit form, or vice versa.
Collapse
|
13
|
Iglesias PA, Shi C. Comparison of adaptation motifs: temporal, stochastic and spatial responses. IET Syst Biol 2015; 8:268-81. [PMID: 25478701 DOI: 10.1049/iet-syb.2014.0026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The cells' ability to adapt to changes in the external environment is crucial for the survival of many organisms. There are two broad classes of signalling networks that achieve perfect adaptation. Both rely on complementary regulation of the response by an external signal and an inhibitory process. In one class of systems, inhibition comes about from the response itself, closing a negative feedback (NFB) loop. In the other, the inhibition comes directly from the external signal in what is referred to as an incoherent feedforward (IFF) loop. Although both systems show adaptive behaviour to constant changes in the level of the stimulus, their response to other forms of stimuli can differ. Here the authors consider the respective response to various such disturbances, including ramp increases, removal of the stimulus and pulses. The authors also consider the effect of stochastic fluctuations in signalling that come about from the interaction of the signalling elements. Finally, the authors consider the possible effect of spatially varying signals. The authors show that both the NFB and the IFF motifs can be used to sense static spatial gradients, under a local excitation, global inhibition assumption. The results may help experimentalists develop protocols that can discriminate between the two adaptation motifs.
Collapse
Affiliation(s)
- Pablo A Iglesias
- Departments of Cell Biology, Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | - Changji Shi
- Department of Electrical and Computer Engineering, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
14
|
Chow CC, Finn KK, Storchan GB, Lu X, Sheng X, Simons SS. Kinetically-defined component actions in gene repression. PLoS Comput Biol 2015; 11:e1004122. [PMID: 25816223 PMCID: PMC4376387 DOI: 10.1371/journal.pcbi.1004122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 01/11/2015] [Indexed: 11/19/2022] Open
Abstract
Gene repression by transcription factors, and glucocorticoid receptors (GR) in particular, is a critical, but poorly understood, physiological response. Among the many unresolved questions is the difference between GR regulated induction and repression, and whether transcription cofactor action is the same in both. Because activity classifications based on changes in gene product level are mechanistically uninformative, we present a theory for gene repression in which the mechanisms of factor action are defined kinetically and are consistent for both gene repression and induction. The theory is generally applicable and amenable to predictions if the dose-response curve for gene repression is non-cooperative with a unit Hill coefficient, which is observed for GR-regulated repression of AP1LUC reporter induction by phorbol myristate acetate. The theory predicts the mechanism of GR and cofactors, and where they act with respect to each other, based on how each cofactor alters the plots of various kinetic parameters vs. cofactor. We show that the kinetically-defined mechanism of action of each of four factors (reporter gene, p160 coactivator TIF2, and two pharmaceuticals [NU6027 and phenanthroline]) is the same in GR-regulated repression and induction. What differs is the position of GR action. This insight should simplify clinical efforts to differentially modulate factor actions in gene induction vs. gene repression.
Collapse
Affiliation(s)
- Carson C. Chow
- Mathematical Biology Section, NIDDK/LBM, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (CCC); (SSS)
| | - Kelsey K. Finn
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Geoffery B. Storchan
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xinping Lu
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xiaoyan Sheng
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, Maryland, United States of America
| | - S. Stoney Simons
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (CCC); (SSS)
| |
Collapse
|
15
|
Noise decomposition of intracellular biochemical signaling networks using nonequivalent reporters. Proc Natl Acad Sci U S A 2014; 111:17330-5. [PMID: 25404303 DOI: 10.1073/pnas.1411932111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Experimental measurements of biochemical noise have primarily focused on sources of noise at the gene expression level due to limitations of existing noise decomposition techniques. Here, we introduce a mathematical framework that extends classical extrinsic-intrinsic noise analysis and enables mapping of noise within upstream signaling networks free of such restrictions. The framework applies to systems for which the responses of interest are linearly correlated on average, although the framework can be easily generalized to the nonlinear case. Interestingly, despite the high degree of complexity and nonlinearity of most mammalian signaling networks, three distinct tumor necrosis factor (TNF) signaling network branches displayed linearly correlated responses, in both wild-type and perturbed versions of the network, across multiple orders of magnitude of ligand concentration. Using the noise mapping analysis, we find that the c-Jun N-terminal kinase (JNK) pathway generates higher noise than the NF-κB pathway, whereas the activation of c-Jun adds a greater amount of noise than the activation of ATF-2. In addition, we find that the A20 protein can suppress noise in the activation of ATF-2 by separately inhibiting the TNF receptor complex and JNK pathway through a negative feedback mechanism. These results, easily scalable to larger and more complex networks, pave the way toward assessing how noise propagates through cellular signaling pathways and create a foundation on which we can further investigate the relationship between signaling system architecture and biological noise.
Collapse
|
16
|
Feed-forward transcriptional programming by nuclear receptors: regulatory principles and therapeutic implications. Pharmacol Ther 2014; 145:85-91. [PMID: 25168919 DOI: 10.1016/j.pharmthera.2014.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 08/19/2014] [Indexed: 01/22/2023]
Abstract
Nuclear receptors (NRs) are widely targeted to treat a range of human diseases. Feed-forward loops are an ancient mechanism through which single cell organisms organize transcriptional programming and modulate gene expression dynamics, but they have not been systematically studied as a regulatory paradigm for NR-mediated transcriptional responses. Here, we provide an overview of the basic properties of feed-forward loops as predicted by mathematical models and validated experimentally in single cell organisms. We review existing evidence implicating feed-forward loops as important in controlling clinically relevant transcriptional responses to estrogens, progestins, and glucocorticoids, among other NR ligands. We propose that feed-forward transcriptional circuits are a major mechanism through which NRs integrate signals, exert temporal control over gene regulation, and compartmentalize client transcriptomes into discrete subunits. Implications for the design and function of novel selective NR ligands are discussed.
Collapse
|
17
|
Chinenov Y, Coppo M, Gupte R, Sacta MA, Rogatsky I. Glucocorticoid receptor coordinates transcription factor-dominated regulatory network in macrophages. BMC Genomics 2014; 15:656. [PMID: 25099603 PMCID: PMC4133603 DOI: 10.1186/1471-2164-15-656] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/25/2014] [Indexed: 12/11/2022] Open
Abstract
Background Inflammation triggered by infection or injury is tightly controlled by glucocorticoid hormones which signal via a dedicated transcription factor, the Glucocorticoid Receptor (GR), to regulate hundreds of genes. However, the hierarchy of transcriptional responses to GR activation and the molecular basis of their oftentimes non-linear dynamics are not understood. Results We investigated early glucocorticoid-driven transcriptional events in macrophages, a cell type highly responsive to both pro- and anti-inflammatory stimuli. Using whole transcriptome analyses in resting and acutely lipopolysaccharide (LPS)-stimulated macrophages, we show that early GR target genes form dense networks with the majority of control nodes represented by transcription factors. The expression dynamics of several glucocorticoid-responsive genes are consistent with feed forward loops (FFL) and coincide with rapid GR recruitment. Notably, GR binding sites in genes encoding members of the KLF transcription factor family colocalize with KLF binding sites. Moreover, our gene expression, transcription factor binding and computational data are consistent with the existence of the GR-KLF9-KLF2 incoherent FFL. Analysis of LPS-downregulated genes revealed striking enrichment in multimerized Zn-fingers- and KRAB domain-containing proteins known to bind nucleic acids and repress transcription by propagating heterochromatin. This raises an intriguing possibility that an increase in chromatin accessibility in inflammatory macrophages results from broad downregulation of negative chromatin remodelers. Conclusions Pro- and anti-inflammatory stimuli alter the expression of a vast array of transcription factors and chromatin remodelers. By regulating multiple transcription factors, which propagate the initial hormonal signal, GR acts as a coordinating hub in anti-inflammatory responses. As several KLFs promote the anti-inflammatory program in macrophages, we propose that GR and KLFs functionally cooperate to curb inflammation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-656) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yurii Chinenov
- Hospital for Special Surgery, The David Rosensweig Genomics Center, 535 East 70th Street, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
18
|
Ward JD, Bojanala N, Bernal T, Ashrafi K, Asahina M, Yamamoto KR. Sumoylated NHR-25/NR5A regulates cell fate during C. elegans vulval development. PLoS Genet 2013; 9:e1003992. [PMID: 24348269 PMCID: PMC3861103 DOI: 10.1371/journal.pgen.1003992] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 10/16/2013] [Indexed: 11/19/2022] Open
Abstract
Individual metazoan transcription factors (TFs) regulate distinct sets of genes depending on cell type and developmental or physiological context. The precise mechanisms by which regulatory information from ligands, genomic sequence elements, co-factors, and post-translational modifications are integrated by TFs remain challenging questions. Here, we examine how a single regulatory input, sumoylation, differentially modulates the activity of a conserved C. elegans nuclear hormone receptor, NHR-25, in different cell types. Through a combination of yeast two-hybrid analysis and in vitro biochemistry we identified the single C. elegans SUMO (SMO-1) as an NHR-25 interacting protein, and showed that NHR-25 is sumoylated on at least four lysines. Some of the sumoylation acceptor sites are in common with those of the NHR-25 mammalian orthologs SF-1 and LRH-1, demonstrating that sumoylation has been strongly conserved within the NR5A family. We showed that NHR-25 bound canonical SF-1 binding sequences to regulate transcription, and that NHR-25 activity was enhanced in vivo upon loss of sumoylation. Knockdown of smo-1 mimicked NHR-25 overexpression with respect to maintenance of the 3° cell fate in vulval precursor cells (VPCs) during development. Importantly, however, overexpression of unsumoylatable alleles of NHR-25 revealed that NHR-25 sumoylation is critical for maintaining 3° cell fate. Moreover, SUMO also conferred formation of a developmental time-dependent NHR-25 concentration gradient across the VPCs. That is, accumulation of GFP-tagged NHR-25 was uniform across VPCs at the beginning of development, but as cells began dividing, a smo-1-dependent NHR-25 gradient formed with highest levels in 1° fated VPCs, intermediate levels in 2° fated VPCs, and low levels in 3° fated VPCs. We conclude that sumoylation operates at multiple levels to affect NHR-25 activity in a highly coordinated spatial and temporal manner.
Collapse
Affiliation(s)
- Jordan D. Ward
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Nagagireesh Bojanala
- Institute of Parasitology, Biology Centre ASCR, Ceske Budejovice, Czech Republic
- University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Teresita Bernal
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Kaveh Ashrafi
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - Masako Asahina
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- Institute of Parasitology, Biology Centre ASCR, Ceske Budejovice, Czech Republic
- University of South Bohemia, Ceske Budejovice, Czech Republic
- * E-mail: (MA); (KRY)
| | - Keith R. Yamamoto
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (MA); (KRY)
| |
Collapse
|
19
|
Chinenov Y, Gupte R, Rogatsky I. Nuclear receptors in inflammation control: repression by GR and beyond. Mol Cell Endocrinol 2013; 380:55-64. [PMID: 23623868 PMCID: PMC3787948 DOI: 10.1016/j.mce.2013.04.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/14/2013] [Accepted: 04/15/2013] [Indexed: 01/05/2023]
Abstract
Inflammation is a protective response of organisms to pathogens, irritation or injury. Primary inflammatory sensors activate an array of signaling pathways that ultimately converge upon a few transcription factors such as AP1, NFκB and STATs that in turn stimulate expression of inflammatory genes to ultimately eradicate infection and repair the damage. A disturbed balance between activation and inhibition of inflammatory pathways can set the stage for chronic inflammation which is increasingly recognized as a key pathogenic component of autoimmune, metabolic, cardiovascular and neurodegenerative disorders. Nuclear receptors (NRs) are a large family of transcription factors many of which are known for their potent anti-inflammatory actions. Activated by small lipophilic ligands, NRs interact with a wide range of transcription factors, cofactors and chromatin-modifying enzymes, assembling numerous cell- and tissue-specific DNA-protein transcriptional regulatory complexes with diverse activities. Here we discuss established and emerging roles and mechanisms by which NRs and, in particular, the glucocorticoid receptor (GR) repress genes encoding cytokines, chemokines and other pro-inflammatory mediators.
Collapse
Affiliation(s)
- Yurii Chinenov
- Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021
| | - Rebecca Gupte
- Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021
- Graduate Program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| | - Inez Rogatsky
- Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021
- Graduate Program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
- Corresponding author: , Tel: 1 212-606-1462, Fax: 1 212-774-2560
| |
Collapse
|
20
|
The biology of the glucocorticoid receptor: new signaling mechanisms in health and disease. J Allergy Clin Immunol 2013; 132:1033-44. [PMID: 24084075 DOI: 10.1016/j.jaci.2013.09.007] [Citation(s) in RCA: 669] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 12/20/2022]
Abstract
Glucocorticoids are primary stress hormones necessary for life that regulate numerous physiologic processes in an effort to maintain homeostasis. Synthetic derivatives of these hormones have been mainstays in the clinic for treating inflammatory diseases, autoimmune disorders, and hematologic cancers. The physiologic and pharmacologic actions of glucocorticoids are mediated by the glucocorticoid receptor (GR), a member of the nuclear receptor superfamily of ligand-dependent transcription factors. Ligand-occupied GR induces or represses the transcription of thousands of genes through direct binding to DNA response elements, physically associating with other transcription factors, or both. The traditional view that glucocorticoids act through a single GR protein has changed dramatically with the discovery of a large cohort of receptor isoforms with unique expression, gene-regulatory, and functional profiles. These GR subtypes are derived from a single gene by means of alternative splicing and alternative translation initiation mechanisms. Posttranslational modification of these GR isoforms further expands the diversity of glucocorticoid responses. Here we discuss the origin and molecular properties of the GR isoforms and their contribution to the specificity and sensitivity of glucocorticoid signaling in healthy and diseased tissues.
Collapse
|