1
|
Csorba G, Moldován O, Schneider V, Németh A. Conservation status of the blind mole rat populations in Hungary (Rodentia: Spalacinae: Nannospalax) revisited. Biol Futur 2023; 74:475-487. [PMID: 38363538 DOI: 10.1007/s42977-024-00204-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024]
Abstract
Regular reviews of long-term research and conservation programs are useful sources of information for future directions in science and for the assessment of current conservation status of taxa. In this paper, we compiled all available data from the last 10 years related to Hungarian blind mole rat populations and assessed this information according to the following main themes: systematics, distribution and threats, and conservation actions. Based on the most recent information, national and global risk assessments are provided for the three species of Nannospalax (N. montanosyrmiensis, N. hungaricus and N. syrmiensis), currently accepted as part of the Hungarian fauna.
Collapse
Affiliation(s)
- Gábor Csorba
- Hungarian Natural History Museum, Baross 13, Budapest, 1088, Hungary.
| | - Orsolya Moldován
- Hortobágy National Park Directorate, Sumen u. 2, Debrecen, 4024, Hungary
- Doctoral School of Animal Science, University of Debrecen, Böszörményi út 138, Debrecen, 4032, Hungary
| | - Viktor Schneider
- Institute of Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, Gödöllő, 2100, Hungary
| | - Attila Németh
- Department of Nature Conservation, Zoology and Game Management, University of Debrecen, Böszörményi út 138, Debrecen, 4032, Hungary
- BirdLife Hungary - Hungarian Ornithological and Nature Conservation Society, Költő u. 21, Budapest, 1121, Hungary
| |
Collapse
|
2
|
Šumbera R, Lövy M, Nevo E, Okrouhlík J. Thermal biology in the Upper Galili Mountain blind mole rat (Nannospalax galili) and an overview of spalacine energetics. J Therm Biol 2023; 115:103618. [PMID: 37399744 DOI: 10.1016/j.jtherbio.2023.103618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/26/2023] [Accepted: 06/09/2023] [Indexed: 07/05/2023]
Abstract
Several hundred mammalian species thrive in complex burrow systems, which protect them from climatic extremes and predation. At the same time, it is also a stressful environment due to low food supply, high humidity, and, in some cases, a hypoxic and hypercapnic atmosphere. To face such conditions, subterranean rodents have convergently evolved low basal metabolic rate, high minimal thermal conductance and low body temperature. Although these parameters have been intensively studied in the last decades, such information is far from being well-known in one of the most studied groups of subterranean rodents, the blind mole rats of the genus Nannospalax. The lack of information is particularly noticeable for parameters such as the upper critical temperature and the width of the thermoneutral zone. In our study, we analysed the energetics of the Upper Galilee Mountain blind mole rat Nannospalax galili and found its basal metabolic rate of 0.84 ± 0.10 mL O2×g-1 × h-1, thermoneutral zone between 28 and 35 °C, mean Tb within the zone of 36.3 ± 0.6 °C, and minimal thermal conductance equal to 0.082 mL O2×g-1 × h-1 × C-1. Nannospalax galili is a truly homeothermic rodent well adapted to face lower ambient temperatures, because its Tb was stable down to the lowest temperature measured (10 °C). At the same time, a relatively high basal metabolic rate and relatively low minimal thermal conductance for a subterranean rodent of such body mass, and the difficulty of surviving ambient temperatures slightly above upper critical temperature, indicates problems with sufficient heat dissipation at higher temperatures. This can easily lead to overheating, that is relevant mainly during the hot-dry season. These findings suggest that N. galili can be threatened by ongoing global climate change.
Collapse
Affiliation(s)
- Radim Šumbera
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic.
| | - Matěj Lövy
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, 3498838, Haifa, Israel
| | - Jan Okrouhlík
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| |
Collapse
|
3
|
Nevo E, Li K. Sympatric Speciation in Mole Rats and Wild Barley and Their Genome Repeatome Evolution: A Commentary. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2200009. [PMID: 36911292 PMCID: PMC9993473 DOI: 10.1002/ggn2.202200009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/16/2022] [Indexed: 11/05/2022]
Abstract
The theories of sympatric speciation (SS) and coding and noncoding (cd and ncd =repeatome) genome function are still contentious. Studies on SS in our two new models, "Evolution Canyon" and "Evolution Plateau", in Israel, divergent microclimatically and geologically-edaphically, respectively, indicated that in ecologically divergent microsites SS is a common speciation model across life from bacteria to mammals. Genomically, the intergenic ncd repeatome was and is still regarded by many biologists as "selfish," "junk," and non-functional. In contrast, it is considered by the encyclopedia of DNA elements discovery as biochemically functional and regulatory, and the transposable elements were considered earlier by Barbara McClintock as "controlling elements" of genes. Remarkably, it is found that repeated elements can statistically identify significantly, the five species of subterranean mole rats of Spalax ehrenbergi superspecies adapted to increasingly arid climatic trend southward in Israel. Moreover, it is first discovered in the SS studies in two distant taxa, subterranean mole rats and wild barley, and later also in spiny mice in Israel and subterranean zokors in China, that the noncoding repeatome is genomically mirroring the image of the protein-coding genome in divergent ecologies. It is shown that this mirroring image is statistically significant both within and between the ecologically divergent taxa supporting the hypothesis that much of the repeatome might be regulatory and selected as the protein-coding genome by the same ecological stresses.
Collapse
Affiliation(s)
- Eviatar Nevo
- Institute of EvolutionUniversity of HaifaHaifa3498838Israel
| | - Kexin Li
- State Key Laboratory of Grassland Agro‐ecosystemCollege of EcologyLanzhou UniversityLanzhou730000China
| |
Collapse
|
4
|
Kuang Z, Li F, Duan Q, Tian C, Nevo E, Li K. Host diet shapes functionally differentiated gut microbiomes in sympatric speciation of blind mole rats in Upper Galilee, Israel. Front Microbiol 2022; 13:1062763. [PMID: 36458196 PMCID: PMC9707624 DOI: 10.3389/fmicb.2022.1062763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
The gut microbiome is important for host nutrient metabolism and ecological adaptation. However, how the gut microbiome is affected by host phylogeny, ecology and diet during sympatric speciation remain unclear. Here, we compare and contrast the gut microbiome of two sympatric blind mole rat species and correlate them with their corresponding host phylogeny, ecology soil metagenomes, and diet to determine how these factors may influence their gut microbiome. Our results indicate that within the host microbiome there is no significant difference in community composition, but the functions between the two sympatric species populations vary significantly. No significant correlations were found between the gut microbiome differentiation and their corresponding ecological soil metagenomes and host phylogeny. Functional enrichment analysis suggests that the host diets may account for the functional divergence of the gut microbiome. Our results will help us understand how the gut microbiome changes with corresponding ecological dietary factors in sympatric speciation of blind subterranean mole rats.
Collapse
Affiliation(s)
- Zhuoran Kuang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Fang Li
- Department of Zoology, College of Life Sciences and Technology, Mudanjiang Normal University, Mudanjiang, China
| | - Qijiao Duan
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Cuicui Tian
- Northwest Surveying and Planning Institute of National Forestry and Grassland Administration, Xi’an, China
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Kexin Li
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Mukherjee S, Kuang Z, Ghosh S, Detroja R, Carmi G, Tripathy S, Barash D, Frenkel-Morgenstern M, Nevo E, Li K. Incipient Sympatric Speciation and Evolution of Soil Bacteria Revealed by Metagenomic and Structured Non-Coding RNAs Analysis. BIOLOGY 2022; 11:biology11081110. [PMID: 35892966 PMCID: PMC9331176 DOI: 10.3390/biology11081110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022]
Abstract
Simple Summary The microevolutionary dynamics of soil bacteria under microclimatic differences are largely unexplored in contrast to our improving knowledge of their vast diversity. In this study, we performed a comparative metagenomic analysis of two sharply divergent rocks and soil types at the Evolution Plateau (EP) in eastern Upper Galilee, Israel. We have identified the significant differences in bacterial taxonomic diversity, functions, and patterns of RNA-based gene regulation between the bacteria from two different soil types. Furthermore, we have identified several species with a significant genetic divergence of the same species between the two soil types, highlighting the soil bacteria’s incipient sympatric speciation. Abstract Soil bacteria respond rapidly to changes in new environmental conditions. For adaptation to the new environment, they could mutate their genome, which impacts the alternation of the functional and regulatory landscape. Sometimes, these genetic and ecological changes may drive the bacterial evolution and sympatric speciation. Although sympatric speciation has been controversial since Darwin suggested it in 1859, there are several strong theoretical or empirical evidences to support it. Sympatric speciation associated with soil bacteria remains largely unexplored. Here, we provide potential evidence of sympatric speciation of soil bacteria by comparison of metagenomics from two sharply contrasting abutting divergence rock and soil types (Senonian chalk and its rendzina soil, and abutting Pleistocene basalt rock and basalt soil). We identified several bacterial species with significant genetic differences in the same species between the two soil types and ecologies. We show that the bacterial community composition has significantly diverged between the two soils; correspondingly, their functions were differentiated in order to adapt to the local ecological stresses. The ecologies, such as water availability and pH value, shaped the adaptation and speciation of soil bacteria revealed by the clear-cut genetic divergence. Furthermore, by a novel analysis scheme of riboswitches, we highlight significant differences in structured non-coding RNAs between the soil bacteria from two divergence soil types, which could be an important driver for functional adaptation. Our study provides new insight into the evolutionary divergence and incipient sympatric speciation of soil bacteria under microclimatic ecological differences.
Collapse
Affiliation(s)
- Sumit Mukherjee
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730050, China;
- Department of Computer Science, Ben-Gurion University, Beer-Sheva 8410501, Israel;
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (R.D.); (G.C.); (M.F.-M.)
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa 3498838, Israel;
- Correspondence: (S.M.); (K.L.)
| | - Zhuoran Kuang
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730050, China;
| | - Samrat Ghosh
- Computational Genomics Laboratory, Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata 700054, India; (S.G.); (S.T.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201009, India
| | - Rajesh Detroja
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (R.D.); (G.C.); (M.F.-M.)
| | - Gon Carmi
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (R.D.); (G.C.); (M.F.-M.)
| | - Sucheta Tripathy
- Computational Genomics Laboratory, Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata 700054, India; (S.G.); (S.T.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201009, India
| | - Danny Barash
- Department of Computer Science, Ben-Gurion University, Beer-Sheva 8410501, Israel;
| | - Milana Frenkel-Morgenstern
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (R.D.); (G.C.); (M.F.-M.)
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa 3498838, Israel;
| | - Kexin Li
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730050, China;
- Correspondence: (S.M.); (K.L.)
| |
Collapse
|
6
|
Sympatric speciation of the spiny mouse from Evolution Canyon in Israel substantiated genomically and methylomically. Proc Natl Acad Sci U S A 2022; 119:e2121822119. [PMID: 35320043 PMCID: PMC9060526 DOI: 10.1073/pnas.2121822119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceWhether sympatric speciation (SS) is rare or common is still debated. Two populations of the spiny mouse, Acomys cahirinus, from Evolution Canyon I (EC I) in Israel have been depicted earlier as speciating sympatrically by molecular markers and transcriptome. Here, we investigated SS both genomically and methylomically, demonstrating that the opposite populations of spiny mice are sister taxa and split from the common ancestor around 20,000 years ago without an allopatric history. Mate choice, olfactory receptors, and speciation genes contributed to prezygotic/postzygotic reproductive isolation. The two populations showed different methylation patterns, facilitating adaptation to their local environment. They cope with abiotic and biotic stresses, due to high solar interslope radiation differences. We conclude that our new genomic and methylomic data substantiated SS.
Collapse
|
7
|
Li F, Qiao Z, Duan Q, Nevo E. Adaptation of mammals to hypoxia. Animal Model Exp Med 2021; 4:311-318. [PMID: 34977482 PMCID: PMC8690989 DOI: 10.1002/ame2.12189] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 12/19/2022] Open
Abstract
Oxygen plays a pivotal role in the metabolism and activities of mammals. However, oxygen is restricted in some environments-subterranean burrow systems or habitats at high altitude or deep in the ocean-and this could exert hypoxic stresses such as oxidative damage on organisms living in these environments. In order to cope with these stresses, organisms have evolved specific strategies to adapt to hypoxia, including changes in physiology, gene expression regulation, and genetic mutations. Here, we review how mammals have adapted to the three high-altitude plateaus of the world, the limited oxygen dissolved in deep water habitats, and underground tunnels, with the aim of better understanding the adaptation of mammals to hypoxia.
Collapse
Affiliation(s)
- Fang Li
- College of Life Sciences and TechnologyMudanjiang Normal UniversityMudanjiangChina
| | - Zhenglei Qiao
- College of Life Sciences and TechnologyMudanjiang Normal UniversityMudanjiangChina
| | - Qijiao Duan
- College of Natural Resources and EnvironmentSouth China Agriculture UniversityGuangzhouChina
| | - Eviatar Nevo
- Institute of EvolutionUniversity of HaifaHaifaIsrael
| |
Collapse
|
8
|
Cai S, Shen Q, Huang Y, Han Z, Wu D, Chen ZH, Nevo E, Zhang G. Multi-Omics Analysis Reveals the Mechanism Underlying the Edaphic Adaptation in Wild Barley at Evolution Slope (Tabigha). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101374. [PMID: 34390227 PMCID: PMC8529432 DOI: 10.1002/advs.202101374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/27/2021] [Indexed: 06/13/2023]
Abstract
At the microsite "Evolution Slope", Tabigha, Israel, wild barley (Hordeum spontaneum) populations adapted to dry Terra Rossa soil, and its derivative abutting wild barley population adapted to moist and fungi-rich Basalt soil. However, the mechanisms underlying the edaphic adaptation remain elusive. Accordingly, whole genome bisulfite sequencing, RNA-sequencing, and metabolome analysis are performed on ten wild barley accessions inhabiting Terra Rossa and Basalt soil. A total of 121 433 differentially methylated regions (DMRs) and 10 478 DMR-genes are identified between the two wild barley populations. DMR-genes in CG context (CG-DMR-genes) are enriched in the pathways related with the fundamental processes, and DMR-genes in CHH context (CHH-DMR-genes) are mainly associated with defense response. Transcriptome and metabolome analysis reveal that the primary and secondary metabolisms are more active in Terra Rossa and Basalt wild barley populations, respectively. Multi-omics analysis indicate that sugar metabolism facilitates the adaptation of wild barley to dry Terra Rossa soil, whereas the enhancement of phenylpropanoid/phenolamide biosynthesis is beneficial for wild barley to inhabit moist and fungi pathogen-rich Basalt soil. The current results make a deep insight into edaphic adaptation of wild barley and provide elite genetic and epigenetic resources for developing barley with high abiotic stress tolerance.
Collapse
Affiliation(s)
- Shengguan Cai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qiufang Shen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yuqing Huang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| | - Zhigang Han
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dezhi Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, 34988384, Israel
| | - Guoping Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
9
|
Jiao H, Wang Q, Wang BJ, Li K, Lövy M, Nevo E, Li Q, Su W, Jiang P, Zhao H. Local adaptation of bitter taste and ecological speciation in a wild mammal. Mol Biol Evol 2021; 38:4562-4572. [PMID: 34240186 PMCID: PMC8476172 DOI: 10.1093/molbev/msab205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sensory systems are attractive evolutionary models to address how organisms adapt to local environments that can cause ecological speciation. However, tests of these evolutionary models have focused on visual, auditory, and olfactory senses. Here, we show local adaptation of bitter taste receptor genes in two neighboring populations of a wild mammal—the blind mole rat Spalax galili—that show ecological speciation in divergent soil environments. We found that basalt-type bitter receptors showed higher response intensity and sensitivity compared with chalk-type ones using both genetic and cell-based functional analyses. Such functional changes could help animals adapted to basalt soil select plants with less bitterness from diverse local foods, whereas a weaker reception to bitter taste may allow consumption of a greater range of plants for animals inhabiting chalk soil with a scarcity of food supply. Our study shows divergent selection on food resources through local adaptation of bitter receptors, and suggests that taste plays an important yet underappreciated role in speciation.
Collapse
Affiliation(s)
- Hengwu Jiao
- Department of Ecology, Tibetan Centre for Ecology and Conservation at Wuhan University-Tibet University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qian Wang
- Department of Ecology, Tibetan Centre for Ecology and Conservation at Wuhan University-Tibet University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Bing-Jun Wang
- Department of Ecology, Tibetan Centre for Ecology and Conservation at Wuhan University-Tibet University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kexin Li
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, 3498838, Israel.,State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Matěj Lövy
- Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, 37005, Czech Republic
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, 3498838, Israel
| | - Qiyang Li
- Department of Ecology, Tibetan Centre for Ecology and Conservation at Wuhan University-Tibet University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenchuan Su
- Department of Ecology, Tibetan Centre for Ecology and Conservation at Wuhan University-Tibet University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Peihua Jiang
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, 19104, USA
| | - Huabin Zhao
- Department of Ecology, Tibetan Centre for Ecology and Conservation at Wuhan University-Tibet University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Research Center for Ecology, College of Science, Tibet University, Lhasa, 850000, China
| |
Collapse
|
10
|
Kakioka R, Sutra N, Kobayashi H, Ansai S, Masengi KWA, Nagano AJ, Okuda N, Tanaka R, Sato M, Yamahira K. Resource partitioning is not coupled with assortative mating in sympatrically divergent ricefish in a Wallacean ancient lake. J Evol Biol 2021; 34:1133-1143. [PMID: 34077583 DOI: 10.1111/jeb.13874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/07/2021] [Accepted: 05/25/2021] [Indexed: 11/30/2022]
Abstract
Sympatric speciation is considered to be difficult without the coupling between ecological traits that allow resource partitioning and reproductive traits that allow assortative mating. Such "magic traits" are known to be involved in most of the compelling examples of sympatric speciation. In this study, we report a possible case of sympatric speciation without magic traits. Three species of ricefish (genus Oryzias) are suggested to have diverged sympatrically within Lake Poso, an ancient lake in Sulawesi. An analysis of genome-wide single-nucleotide polymorphisms showed that these three species are reproductively isolated from each other throughout the lake. Stable isotope analyses revealed that the three species use different food resources, which reflect differences in their feeding morphologies (gill rakers and digestive tracts) and feeding sites. Field and laboratory observations showed that O. nebulosus and O. orthognathus share a mating habitat of cobbles, where they scatter fertilized eggs, whereas this site is never used by O. nigrimas, indicating that assortative mating is partly achieved by spatial isolation. The small, less-adhesive eggs of O. nebulosus and O. orthognathus probably reflect their adaptation to spawning on cobble beaches. Laboratory mating experiments showed strong prezygotic isolation between O. nebulosus and O. orthognathus, which is achieved by strong species recognition presumably by both sexes based on species-specific mating dances and nuptial coloration. In summary, the assortative mating of O. nebulosus and O. orthognathus is probably not coupled to resource partitioning. We discussed how sympatric speciation among these species might have been achieved even without magic traits.
Collapse
Affiliation(s)
- Ryo Kakioka
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Nobu Sutra
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Hirozumi Kobayashi
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | | | - Noboru Okuda
- Center for Ecological Research, Kyoto University, Shiga, Japan
| | - Rieko Tanaka
- World Medaka Aquarium, Nagoya Higashiyama Zoo and Botanical Gardens, Nagoya, Japan
| | - Masahiro Sato
- World Medaka Aquarium, Nagoya Higashiyama Zoo and Botanical Gardens, Nagoya, Japan
| | - Kazunori Yamahira
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
11
|
Genome evolution of blind subterranean mole rats: Adaptive peripatric versus sympatric speciation. Proc Natl Acad Sci U S A 2020; 117:32499-32508. [PMID: 33277437 DOI: 10.1073/pnas.2018123117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Speciation mechanisms remain controversial. Two speciation models occur in Israeli subterranean mole rats, genus Spalax: a regional speciation cline southward of four peripatric climatic chromosomal species and a local, geologic-edaphic, genic, and sympatric speciation. Here we highlight their genome evolution. The five species were separated into five genetic clusters by single nucleotide polymorphisms, copy number variations (CNVs), repeatome, and methylome in sympatry. The regional interspecific divergence correspond to Pleistocene climatic cycles. Climate warmings caused chromosomal speciation. Triple effective population size, N e , declines match glacial cold cycles. Adaptive genes evolved under positive selection to underground stresses and to divergent climates, involving interspecies reproductive isolation. Genomic islands evolved mainly due to adaptive evolution involving ancient polymorphisms. Repeatome, including both CNV and LINE1 repetitive elements, separated the five species. Methylation in sympatry identified geologically chalk-basalt species that differentially affect thermoregulation, hypoxia, DNA repair, P53, and other pathways. Genome adaptive evolution highlights climatic and geologic-edaphic stress evolution and the two speciation models, peripatric and sympatric.
Collapse
|
12
|
Bian J, Cui L, Wang X, Yang G, Huo F, Ling H, Chen L, She K, Du X, Levi B, Levi AJ, Yan Z, Nie X, Weining S. Genomic and Phenotypic Divergence in Wild Barley Driven by Microgeographic Adaptation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000709. [PMID: 33344112 PMCID: PMC7740101 DOI: 10.1002/advs.202000709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 09/14/2020] [Indexed: 05/17/2023]
Abstract
Microgeographic adaptation is a fundamental driving force of evolution, but the underlying causes remain undetermined. Here, the phenotypic, genomic and transcriptomic variations of two wild barley populations collected from sharply divergent and adjacent micro-geographic sites to identify candidate genes associated with edaphic local adaptation are investigated. Common garden and reciprocal transplant studies show that large phenotypic differentiation and local adaptation to soils occur between these populations. Genetic, phylogenetic and admixture analyses based on population resequencing show that significant genetic divergences occur between basalt and chalk populations. These divergences are consistent with the phenotypic variations observed in the field. Genome sweep analyses reveal 162.7 Mb of selected regions driven by edaphic local adaptation, in which 445 genes identified, including genes associated with root architecture, metal transport/detoxification, and ABA signaling. When the phenotypic, genomic and transcriptomic data are combined, HvMOR, encoding an LBD transcription factor, is determined to be the vital candidate for regulating the root architecture to adapt to edaphic conditions at the microgeographic scale. This study provides new insights into the genetic basis of edaphic adaptation and demonstrates that edaphic factors may contribute to the evolution and speciation of barley.
Collapse
Affiliation(s)
- Jianxin Bian
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingShaanxi712100China
| | - Licao Cui
- College of Life ScienceJiangxi Agricultural UniversityNanchangJiangxi330045China
| | - Xiaoyu Wang
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingShaanxi712100China
| | - Guang Yang
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingShaanxi712100China
| | - Fulin Huo
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingShaanxi712100China
| | - Hubin Ling
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingShaanxi712100China
| | - Liqin Chen
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingShaanxi712100China
| | - Kuijun She
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingShaanxi712100China
| | - Xianghong Du
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingShaanxi712100China
| | - Boaz Levi
- Reidman CollegeTel Aviv6997536Israel
| | - Adi Jonas Levi
- Faculty of Sciences and TechnologyTel Hai CollegeUpper Galilee1220800Israel
| | - Zhaogui Yan
- College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhan430070China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingShaanxi712100China
| | - Song Weining
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingShaanxi712100China
- Australia‐China Joint Research Centre for Abiotic and Biotic Stress Management in AgricultureHorticulture and ForestryYanglingShaanxi712100China
| |
Collapse
|
13
|
Abstract
The study of chromosome evolution is undergoing a resurgence of interest owing to advances in DNA sequencing technology that facilitate the production of chromosome-scale whole-genome assemblies de novo. This review focuses on the history, methods, discoveries, and current challenges facing the field, with an emphasis on vertebrate genomes. A detailed examination of the literature on the biology of chromosome rearrangements is presented, specifically the relationship between chromosome rearrangements and phenotypic evolution, adaptation, and speciation. A critical review of the methods for identifying, characterizing, and visualizing chromosome rearrangements and computationally reconstructing ancestral karyotypes is presented. We conclude by looking to the future, identifying the enormous technical and scientific challenges presented by the accumulation of hundreds and eventually thousands of chromosome-scale assemblies.
Collapse
Affiliation(s)
- Joana Damas
- The Genome Center, University of California, Davis, California 95616, USA; , ,
| | - Marco Corbo
- The Genome Center, University of California, Davis, California 95616, USA; , ,
| | - Harris A Lewin
- The Genome Center, University of California, Davis, California 95616, USA; , , .,Department of Evolution and Ecology, College of Biological Sciences, University of California, Davis, California 95616, USA
| |
Collapse
|
14
|
Li K, Ren X, Song X, Li X, Zhou Y, Harlev E, Sun D, Nevo E. Incipient sympatric speciation in wild barley caused by geological-edaphic divergence. Life Sci Alliance 2020; 3:3/12/e202000827. [PMID: 33082129 PMCID: PMC7652381 DOI: 10.26508/lsa.202000827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 12/26/2022] Open
Abstract
Sympatric speciation is still contentious but here based on genome-wide analysis; we show incipient sympatric speciation of an emerging new wild barley species from Hordeum spontaneum, the progenitor of all cultivated barleys at “Evolution Plateau” (EP), Upper Galilee, Israel. Sympatric speciation (SS) has been contentious since the idea was suggested by Darwin. Here, we show in wild barley SS due to geologic and edaphic divergence in “Evolution Plateau,” Upper Galilee, Israel. Our whole genome resequencing data showed SS separating between the progenitor old Senonian chalk and abutting derivative young Pleistocene basalt wild barley populations. The basalt wild barley species unfolds larger effective population size, lower recombination rates, and larger genetic diversity. Both species populations show similar descending trend ∼200,000 yr ago associated with the last glacial maximum. Coalescent demography analysis indicates that SS was local, primary, in situ, and not due to a secondary contact from ex situ allopatric population. Adaptive divergent putatively selected genes were identified in both populations. Remarkably, disease resistant genes were selected in the wet basalt population, and genes related to flowering time, leading to temporal reproductive isolation, were selected in the chalk population. The evidence substantiates adaptive ecological SS in wild barley, highlighting the genome landscape during SS with gene flow, due to geologic-edaphic divergence.
Collapse
Affiliation(s)
- Kexin Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou, China.,Institute of Evolution, University of Haifa, Haifa, Israel
| | - Xifeng Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoying Song
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou, China
| | - Xiujuan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yu Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Eli Harlev
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa, Israel
| |
Collapse
|
15
|
Chen J, Yang L, Zhang R, Uebbing S, Zhang C, Jiang H, Lei Y, Lv W, Tian F, Zhao K, He S. Transcriptome-Wide Patterns of the Genetic and Expression Variations in Two Sympatric Schizothoracine Fishes in a Tibetan Plateau Glacier Lake. Genome Biol Evol 2020; 12:3725-3737. [PMID: 31917411 PMCID: PMC6978627 DOI: 10.1093/gbe/evz276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2019] [Indexed: 12/25/2022] Open
Abstract
Sympatric speciation remains a central focus of evolutionary biology. Although some evidence shows speciation occurring in this way, little is known about the gene expression evolution and the characteristics of population genetics as species diverge. Two closely related Gymnocypris fish (Gymnocypris chui and Gymnocypris scleracanthus), which come from a small glacier lake in the Tibetan Plateau, Lake Langcuo, exist a possible incipient sympatric adaptive ecological speciation. We generated large amounts of RNA-Seq data from multiple individuals and tissues from each of the two species and compared gene expression patterns and genetic polymorphisms between them. Ordination analysis separated samples by organ rather than by species. The degree of expression difference between organs within and between species was different. Phylogenetic analyses indicated that the two closely related taxa formed a monophyletic complex. Population structure analysis displayed two distinctly divergent clusters of G. chui and G. scleracanthus populations. By contrast, G. scleracanthus population genetic diversity is higher than that of G. chui. Considerable sites of the two populations were differentiated with a coefficient of FST = 0.25–0.50, implying that a small proportion of loci nevertheless exhibited deep divergence in two comparisons. Concomitantly, putatively selected genes during speciation revealed functional categories are enriched in bone morphogenesis, cell growth, neurogenetics, enzyme activity, and binding activity in G. chui population. In contrast, nutrition and localization were highlighted in G. scleracanthus. Collectively, morphological traits and dietary preference combine with genetic variation and expression variation, probably contributed to the incipient speciation of two sympatric populations.
Collapse
Affiliation(s)
- Juan Chen
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liandong Yang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Renyi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Severin Uebbing
- Department of Genetics, Yale University School of Medicine, New Haven, CT
| | - Cunfang Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Haifeng Jiang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi Lei
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenqi Lv
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fei Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Shunping He
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
16
|
Visser JH, Bennett NC, Jansen van Vuuren B. Phylogeny and biogeography of the African Bathyergidae: a review of patterns and processes. PeerJ 2019; 7:e7730. [PMID: 31637115 PMCID: PMC6798870 DOI: 10.7717/peerj.7730] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/23/2019] [Indexed: 12/18/2022] Open
Abstract
Background We review genealogical relationships, biogeographic patterns and broad historical drivers of speciation within the Bathyergidae, a group of endemic African rodents, as well as identify key taxa which need further research. Methods We sourced comparable cytochrome b sequence data (comparable data available for all members for the Family) and geographic information for all six genera of the African subterranean rodent. This information was combined into the most comprehensive and geographically representative evolutionary study for the Bathyergidae to date. Results Species richness within the Bathyergidae appears to be underestimated, with undescribed taxa in five of the six genera. Biogeographic patterns suggest large historical distributions, which were repeatedly fragmented by major landscape changes (especially rifting, uplift and drainage evolution) since the Miocene. Aside from vicariant events, other factors (ecological specialization, population-level responses and climatic change) may have been instrumental in driving divergences in the Bathyergidae. As such, adaptive differences may exist among both populations and species across their discrete ranges, driving independent evolutionary trajectories among taxa. In addition, highly fragmented distributions of divergent (and often relict) lineages indicates the possibility of narrow endemics restricted to diminishing suitable habitats. From this, it is clear that a systematic revision of the Bathyergidae is necessary; such a revision should include comprehensive sampling of all putative taxa, the addition of genomic information to assess adaptive differences, as well as ecological information.
Collapse
Affiliation(s)
- Jacobus H Visser
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Johannesburg, Gauteng Province, South Africa
| | - Nigel C Bennett
- Department of Zoology and Entomology, University of Pretoria, Pretoria, Gauteng Province, South Africa
| | - Bettine Jansen van Vuuren
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Johannesburg, Gauteng Province, South Africa
| |
Collapse
|
17
|
Lövy M, Šumbera R, Heth G, Nevo E. Presumed ecological speciation in blind mole rats: does soil type influence mate preferences? ETHOL ECOL EVOL 2019. [DOI: 10.1080/03949370.2019.1646809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Matěj Lövy
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Radim Šumbera
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Giora Heth
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa, Israel
| |
Collapse
|
18
|
Speciation in Howea Palms Occurred in Sympatry, Was Preceded by Ancestral Admixture, and Was Associated with Edaphic and Phenological Adaptation. Mol Biol Evol 2019; 36:2682-2697. [DOI: 10.1093/molbev/msz166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
Howea palms are viewed as one of the most clear-cut cases of speciation in sympatry. The sister species Howea belmoreana and H. forsteriana are endemic to the oceanic Lord Howe Island, Australia, where they have overlapping distributions and are reproductively isolated mainly by flowering time differences. However, the potential role of introgression from Australian mainland relatives had not previously been investigated, a process that has recently put other examples of sympatric speciation into question. Furthermore, the drivers of flowering time-based reproductive isolation remain unclear. We sequenced an RNA-seq data set that comprehensively sampled Howea and their closest mainland relatives (Linospadix, Laccospadix), and collected detailed soil chemistry data on Lord Howe Island to evaluate whether secondary gene flow had taken place and to examine the role of soil preference in speciation. D-statistics analyses strongly support a scenario whereby ancestral Howea hybridized frequently with its mainland relatives, but this only occurred prior to speciation. Expression analysis, population genetic and phylogenetic tests of selection, identified several flowering time genes with evidence of adaptive divergence between the Howea species. We found expression plasticity in flowering time genes in response to soil chemistry as well as adaptive expression and sequence divergence in genes pleiotropically linked to soil adaptation and flowering time. Ancestral hybridization may have provided the genetic diversity that promoted their subsequent adaptive divergence and speciation, a process that may be common for rapid ecological speciation.
Collapse
|
19
|
Qian C, Yan X, Yin H, Fan X, Yin X, Sun P, Li Z, Nevo E, Ma XF. Transcriptomes Divergence of Ricotia lunaria Between the Two Micro-Climatic Divergent Slopes at "Evolution Canyon" I, Israel. Front Genet 2018; 9:506. [PMID: 30487810 PMCID: PMC6246625 DOI: 10.3389/fgene.2018.00506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/08/2018] [Indexed: 01/19/2023] Open
Abstract
As one of the hotspot regions for sympatric speciation studies, Evolution Canyon (EC) became an ideal place for its high level of microclimatic divergence interslopes. In this study, to highlight the genetic mechanisms of sympatric speciation, phenotypic variation on flowering time and transcriptomic divergence were investigated between two ecotypes of Ricotia lunaria, which inhabit the opposite temperate and tropical slopes of EC I (Lower Nahal Oren, Mount Carmel, Israel) separated by 100 m at the bottom of the slopes. Growth chamber results showed that flowering time of the ecotype from south-facing slope population # 3 (SFS 3) was significantly 3 months ahead of the north-facing slope population # 5 (NFS 5). At the same floral development stage, transcriptome analysis showed that 1,064 unigenes were differentially expressed between the two ecotypes, which enriched in the four main pathways involved in abiotic and/or biotic stresses responses, including flavonoid biosynthesis, α-linolenic acid metabolism, plant-pathogen interaction and linoleic acid metabolism. Furthermore, based on Ka/Ks analysis, nine genes were suggested to be involved in the ecological divergence between the two ecotypes, whose homologs functioned in RNA editing, ABA signaling, photoprotective response, chloroplasts protein-conducting channel, and carbohydrate metabolism in Arabidopsis thaliana. Among them, four genes, namely, SPDS1, FCLY, Tic21 and BGLU25, also showed adaptive divergence between R. lunaria and A. thaliana, suggesting that these genes could play an important role in plant speciation, at least in Brassicaceae. Based on results of both the phenotype of flowering time and comparative transcriptome, we hypothesize that, after long-time local adaptations to their interslope microclimatic environments, the molecular functions of these nine genes could have been diverged between the two ecotypes. They might differentially regulate the expression of the downstream genes and pathways that are involved in the interslope abiotic stresses, which could further diverge the flowering time between the two ecotypes, and finally induce the reproductive isolation establishment by natural selection overruling interslope gene flow, promoting sympatric speciation.
Collapse
Affiliation(s)
- Chaoju Qian
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xia Yan
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Hengxia Yin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Xingke Fan
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyue Yin
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Peipei Sun
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zhijun Li
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar, China
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Xiao-Fei Ma
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
20
|
Kubiak BB, Maestri R, de Almeida TS, Borges LR, Galiano D, Fornel R, de Freitas TRO. Evolution in action: soil hardness influences morphology in a subterranean rodent (Rodentia: Ctenomyidae). Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Bruno B Kubiak
- Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, Porto Alegre – RS, Brazil
- Departamento de Ciências Biológicas da Universidade Regional Integrada do Alto Uruguai e das Missões – Campus de Frederico Westphalen, Av. Assis Brasil, Frederico Westphalen – RS, Brazil
| | - Renan Maestri
- Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, Porto Alegre – RS, Brazil
| | - Thamara S de Almeida
- Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, Porto Alegre – RS, Brazil
| | - Leandro R Borges
- Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, Porto Alegre – RS, Brazil
| | - Daniel Galiano
- Universidade Federal da Fronteira Sul, Campus Realeza, Rua Edmundo Gaievisk, Realeza, PR, Brazil
| | - Rodrigo Fornel
- Programa de Pós-graduação em Ecologia, Universidade Regional do Alto Uruguai e das Missões – Campus de Erechim, Av. Sete de Setembro, Erechim – RS, Brazil
| | - Thales R O de Freitas
- Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, Porto Alegre – RS, Brazil
| |
Collapse
|
21
|
Zagorodniuk I, Korobchenko M, Parkhomenko V, Barkaszi Z. Steppe rodents at the edge of their range: A case study of Spalax microphthalmus in the north of Ukraine. BIOSYSTEMS DIVERSITY 2018. [DOI: 10.15421/011829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Based on results obtained during 2000–2018 by field research, polls of colleagues, and OSINT analysis, features of distribution of the greater mole rat Spalax microphthalmus in the eastern forest steppe of Ukraine were considered. The studied part of the species’ range is unique and represents the northern range edge of the entire Spalacidae family and of European steppe faunal assemblages in general. In total, data on 146 record localities were amassed, including 13 localities in the fragmented and 133 in the continuous part of the range. The offshoots of the Central Russian Upland in the valley of the Psel river (east of Sumy Oblast) are the sites with the highest density of settlements, while the species’ type biotopes are steppe balka slopes. The abundance of the greater mole rat decreased from the east to the west, and its colonies are the most fragmented along the Dnipro River. The species occurs in steppe and meadow habitats of an area of at least 20–50 ha. Analysis of the current and former distribution of the greater mole rat revealed that the species range contracts from the west; earlier it was a common species in different regions of the Middle Dnipro Area (including Kyiv city), but the current range edge runs along the line connecting Buryn – Nedryhailiv – Lokhvytsia – Myrhorod – Hadiach – Zinkiv – Zaliznychne. Isolated settlements exist in adjacent territories, particularly in Ichnia Raion of Chernihiv Oblast, and Lubny, Khorol, and Kobeliaky Raions of Poltava Oblast. The study showed that the species’ range contracted by two times to 35,000 km2 for the last 100 years, which includes only 430,000 ha of suitable habitats (15% of the range), allowing the existence here of 86,000–215,000 individuals. In fact, the species remained only in habitats that have been minimally affected by arable farming and other forms of active agricultural use. Besides, the species shows a clear confinement to habitats located near human settlements such as untilled lands, pastures with moderate grazing, waste and neglected lands, which constitute a separate group of transformed and semi-natural habitats. Formally, this allows the greater mole rat to be considered as a synanthropic species, because its inhabited biotopes, beside the zone of offshoots of the Central Russian Upland, have remained only near villages and along roads. The species also has an important biocoenotic role due to its burrowing activity and as prey of predatory birds (e.g., of the long-legged buzzard and Eurasian eagle owl) and mammals. The feeding period of the offspring of these predators generally coincides with the aboveground activity of mole rats, which lasts during May–July with a peak in June. Aboveground activity is mainly related to the resettlement of mole rats to new sites and dispersal of the young, due to which they became victims of predators.
Collapse
|
22
|
Poelstra JW, Richards EJ, Martin CH. Speciation in sympatry with ongoing secondary gene flow and a potential olfactory trigger in a radiation of Cameroon cichlids. Mol Ecol 2018; 27:4270-4288. [DOI: 10.1111/mec.14784] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/30/2018] [Accepted: 05/14/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Jelmer W. Poelstra
- Department of Biology; University of North Carolina at Chapel Hill; Chapel Hill North Carolina
- Department of Biology; Duke University; Durham North Carolina
| | - Emilie J. Richards
- Department of Biology; University of North Carolina at Chapel Hill; Chapel Hill North Carolina
| | - Christopher H. Martin
- Department of Biology; University of North Carolina at Chapel Hill; Chapel Hill North Carolina
| |
Collapse
|
23
|
Lin D, Bi K, Conroy CJ, Lacey EA, Schraiber JG, Bowie RCK. Mito-nuclear discordance across a recent contact zone for California voles. Ecol Evol 2018; 8:6226-6241. [PMID: 29988439 PMCID: PMC6024151 DOI: 10.1002/ece3.4129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/16/2018] [Accepted: 03/29/2018] [Indexed: 11/17/2022] Open
Abstract
To examine the processes that maintain genetic diversity among closely related taxa, we investigated the dynamics of introgression across a contact zone between two lineages of California voles (Microtus californicus). We tested the prediction that introgression of nuclear loci would be greater than that for mitochondrial loci, assuming ongoing gene flow across the contact zone. We also predicted that genomic markers would show a mosaic pattern of differentiation across this zone, consistent with genomes that are semi-permeable. Using mitochondrial cytochrome b sequences and genome-wide loci developed via ddRAD-seq, we analyzed genetic variation for 10 vole populations distributed along the central California coast; this transect included populations from within the distributions of both parental lineages as well as the putative contact zone. Our analyses revealed that (1) the two lineages examined are relatively young, having diverged ca. 8.5-54 kya, (2) voles from the contact zone in Santa Barbara County did not include F1 or early generation backcrossed individuals, and (3) there appeared to be little to no recurrent gene flow across the contact zone. Introgression patterns for mitochondrial and nuclear markers were not concordant; only mitochondrial markers revealed evidence of introgression, putatively due to historical hybridization. These differences in genetic signatures are intriguing given that the contact zone occurs in a region of continuous vole habitat, with no evidence of past or present physical barriers. Future studies that examine specific isolating mechanisms, such as microhabitat use and mate choice, will facilitate our understanding of how genetic boundaries are maintained in this system.
Collapse
Affiliation(s)
- Dana Lin
- Museum of Vertebrate ZoologyUniversity of California, BerkeleyBerkeleyCalifornia
- Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyCalifornia
| | - Ke Bi
- Computational Genomics Resource LaboratoryCalifornia Institute for Quantitative BiosciencesUniversity of California, BerkeleyBerkeleyCalifornia
| | - Christopher J. Conroy
- Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyCalifornia
| | - Eileen A. Lacey
- Museum of Vertebrate ZoologyUniversity of California, BerkeleyBerkeleyCalifornia
- Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyCalifornia
| | - Joshua G. Schraiber
- Department of BiologyCenter for Computational Genetics and GenomicsTemple UniversityPhiladelphiaPennsylvania
- Institute for Genomics and Evolutionary MedicineTemple UniversityPhiladelphiaPennsylvania
| | - Rauri C. K. Bowie
- Museum of Vertebrate ZoologyUniversity of California, BerkeleyBerkeleyCalifornia
- Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyCalifornia
| |
Collapse
|
24
|
Fernández-Meirama M, Carvajal-Rodríguez A, Rolán-Alvarez E. Testing the role of mating preference in a case of incomplete ecological speciation with gene flow. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- M Fernández-Meirama
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, 36310 Vigo, Spain
| | - A Carvajal-Rodríguez
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, 36310 Vigo, Spain
| | - E Rolán-Alvarez
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, 36310 Vigo, Spain
- ECIMAT, Centro Tecnológico Singular de Galicia, Universidad de Vigo, 36331 Vigo, Spain
| |
Collapse
|
25
|
Lövy M, Šklíba J, Šumbera R, Nevo E. Soil preference in blind mole rats in an area of supposed sympatric speciation: do they choose the fertile or the familiar? J Zool (1987) 2017. [DOI: 10.1111/jzo.12489] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. Lövy
- Faculty of Science; University of South Bohemia; České Budějovice Czech Republic
| | - J. Šklíba
- Faculty of Science; University of South Bohemia; České Budějovice Czech Republic
| | - R. Šumbera
- Faculty of Science; University of South Bohemia; České Budějovice Czech Republic
| | - E. Nevo
- Institute of Evolution; University of Haifa; Haifa Israel
| |
Collapse
|
26
|
Danial‐Farran N, Nasser NJ, Beiles A, Brenner B, Sarig G, Nevo E. Adaptive evolution of coagulation and blood properties in hypoxia tolerant
Spalax
in Israel. J Zool (1987) 2017. [DOI: 10.1111/jzo.12480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- N. Danial‐Farran
- Institute of Evolution International Graduate Center of Evolution University of Haifa Haifa Israel
| | - N. J. Nasser
- Institute of Evolution International Graduate Center of Evolution University of Haifa Haifa Israel
| | - A. Beiles
- Institute of Evolution International Graduate Center of Evolution University of Haifa Haifa Israel
| | - B. Brenner
- Thrombosis and Hemostasis Unit Department of Hematology and Bone Marrow Transplantation Rambam Health Care Campus Haifa Israel
- Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology Haifa Israel
| | - G. Sarig
- Thrombosis and Hemostasis Unit Department of Hematology and Bone Marrow Transplantation Rambam Health Care Campus Haifa Israel
- Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology Haifa Israel
- Hematology Laboratory Rambam Health Care Campus Haifa Israel
| | - E. Nevo
- Institute of Evolution International Graduate Center of Evolution University of Haifa Haifa Israel
| |
Collapse
|
27
|
Kubiak BB, Galiano D, Freitas TRO. Can the environment influence species home‐range size? A case study on
Ctenomys minutus
(Rodentia, Ctenomyidae). J Zool (1987) 2017. [DOI: 10.1111/jzo.12444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- B. B. Kubiak
- Programa de Pós‐Graduação em Biologia Animal Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - D. Galiano
- Programa de Pós‐Graduação em Ciências Ambientais Área de Ciências Exatas e Ambientais Universidade Comunitária da Região de Chapecó Chapecó Brazil
| | - T. R. O. Freitas
- Programa de Pós‐Graduação em Biologia Animal Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
- Programa de Pós‐Graduação em Genética e Biologia Molecular Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
28
|
Arslan A, Kryštufek B, Matur F, Zima J. Review of chromosome races in blind mole rats (SpalaxandNannospalax). FOLIA ZOOLOGICA 2016. [DOI: 10.25225/fozo.v65.i4.a1.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Atilla Arslan
- Department of Biology, Faculty of Science, Selçuk University, 42031 Konya, Turkey
| | - Boris Kryštufek
- Slovenian Museum of Natural History, Prešernova 20, 1000 Ljubljana, Slovenia
| | - Ferhat Matur
- Dokuz Eylül University, Faculty of Science, Department of Biology, Buca, 35370 İzmir, Turkey
| | - Jan Zima
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
| |
Collapse
|
29
|
Wallace SJ, Morris-Pocock JA, González-Solís J, Quillfeldt P, Friesen VL. A phylogenetic test of sympatric speciation in the Hydrobatinae (Aves: Procellariiformes). Mol Phylogenet Evol 2016; 107:39-47. [PMID: 27693526 DOI: 10.1016/j.ympev.2016.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 07/22/2016] [Accepted: 09/28/2016] [Indexed: 10/20/2022]
Abstract
Phylogenetic relationships among species can provide insight into how new species arise. For example, careful consideration of both the phylogenetic and geographic distributions of species in a group can reveal the geographic models of speciation within the group. One such model, sympatric speciation, may be more common than previously thought. The Hydrobatinae (Aves: Procellariformes) is a diverse subfamily of Northern Hemisphere storm-petrels for which the taxonomy is unclear. Previous studies showed that Hydrobates (formally Oceanodroma) castro breeding in the Azores during the cool season is sister species to H. monteiroi, a hot season breeder at the same locations, which suggests sympatric speciation by allochrony. To test whether other species within the subfamily arose via sympatric speciation by allochrony, we sequenced the cytochrome b gene and five nuclear introns to estimate a phylogenetic tree using multispecies coalescent methods, and to test whether species breeding in the same geographic area are monophyletic. We found that speciation within the Hydrobatinae appears to have followed several geographic modes of divergence. Sympatric seasonal species in Japan likely did not arise through sympatric speciation, but allochrony may have played a role in the divergence of H. matsudairae, a cool season breeder, and H. monorhis, a hot season breeder. No other potential cases of sympatric speciation were discovered within the subfamily. Despite breeding in the same geographic area, hydrobatine storm-petrels breeding in Baja California (H. microsoma and H. melania) are each sister to a species breeding off the coast of Peru (H. tethys and H. markhami, respectively). In fact, antitropical sister species appear to have diverged at multiple times, suggesting allochronic divergence might be common. In addition, allopatry has likely played a role in divergence of H. furcata, a north Pacific breeder, and H. pelagius, a north Atlantic breeder. This study demonstrates that a variety of mechanisms of divergence have played a role in generating the diversity of the Hydrobatinae and supports the current taxonomy of the subfamily.
Collapse
Affiliation(s)
- S J Wallace
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - J A Morris-Pocock
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - J González-Solís
- Institut de Recerca de la Biodiversitat (IRBio) and Dept. Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain
| | - P Quillfeldt
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - V L Friesen
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
30
|
Sympatric speciation of spiny mice, Acomys, unfolded transcriptomically at Evolution Canyon, Israel. Proc Natl Acad Sci U S A 2016; 113:8254-9. [PMID: 27370801 DOI: 10.1073/pnas.1608743113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spiny mice, Acomys cahirinus, colonized Israel 30,000 y ago from dry tropical Africa and inhabited rocky habitats across Israel. Earlier, we had shown by mtDNA that A. cahirinus incipiently sympatrically speciates at Evolution Canyon I (EC I) in Mount Carmel, Israel because of microclimatic interslope divergence. The EC I microsite consists of a dry and hot savannoid "African" slope (AS) and an abutting humid and cool-forested "European" slope (ES). Here, we substantiate incipient SS in A. cahirinus at EC I based on the entire transcriptome, showing that multiple slope-specific adaptive complexes across the transcriptome result in two divergent clusters. Tajima's D distribution of the abutting Acomys interslope populations shows that the ES population is under stronger positive selection, whereas the AS population is under balancing selection, harboring higher genetic polymorphisms. Considerable sites of the two populations were differentiated with a coefficient of FST = 0.25-0.75. Remarkably, 24 and 37 putatively adaptively selected genes were detected in the AS and ES populations, respectively. The AS genes involved DNA repair, growth arrest, neural cell differentiation, and heat-shock proteins adapting to the local AS stresses of high solar radiation, drought, and high temperature. In contrast, the ES genes involved high ATP associated with energetics stress. The sharp ecological interslope divergence led to strong slope-specific selection overruling the interslope gene flow. Earlier tests suggested slope-specific mate choice. Habitat interslope-adaptive selection across the transcriptome and mate choice substantiate sympatric speciation (SS), suggesting its prevalence at EC I and commonality in nature.
Collapse
|
31
|
Transcriptome, genetic editing, and microRNA divergence substantiate sympatric speciation of blind mole rat, Spalax. Proc Natl Acad Sci U S A 2016; 113:7584-9. [PMID: 27339131 DOI: 10.1073/pnas.1607497113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Incipient sympatric speciation in blind mole rat, Spalax galili, in Israel, caused by sharp ecological divergence of abutting chalk-basalt ecologies, has been proposed previously based on mitochondrial and whole-genome nuclear DNA. Here, we present new evidence, including transcriptome, DNA editing, microRNA, and codon usage, substantiating earlier evidence for adaptive divergence in the abutting chalk and basalt populations. Genetic divergence, based on the previous and new evidence, is ongoing despite restricted gene flow between the two populations. The principal component analysis, neighbor-joining tree, and genetic structure analysis of the transcriptome clearly show the clustered divergent two mole rat populations. Gene-expression level analysis indicates that the population transcriptome divergence is displayed not only by soil divergence but also by sex. Gene ontology enrichment of the differentially expressed genes from the two abutting soil populations highlights reproductive isolation. Alternative splicing variation of the two abutting soil populations displays two distinct splicing patterns. L-shaped FST distribution indicates that the two populations have undergone divergence with gene flow. Transcriptome divergent genes highlight neurogenetics and nutrition characterizing the chalk population, and energetics, metabolism, musculature, and sensory perception characterizing the abutting basalt population. Remarkably, microRNAs also display divergence between the two populations. The GC content is significantly higher in chalk than in basalt, and stress-response genes mostly prefer nonoptimal codons. The multiple lines of evidence of ecological-genomic and genetic divergence highlight that natural selection overrules the gene flow between the two abutting populations, substantiating the sharp ecological chalk-basalt divergence driving sympatric speciation.
Collapse
|
32
|
Adaptive methylation regulation of p53 pathway in sympatric speciation of blind mole rats, Spalax. Proc Natl Acad Sci U S A 2016; 113:2146-51. [PMID: 26858405 DOI: 10.1073/pnas.1522658112] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epigenetic modifications play significant roles in adaptive evolution. The tumor suppressor p53, well known for controlling cell fate and maintaining genomic stability, is much less known as a master gene in environmental adaptation involving methylation modifications. The blind subterranean mole rat Spalax eherenbergi superspecies in Israel consists of four species that speciated peripatrically. Remarkably, the northern Galilee species Spalax galili (2n = 52) underwent adaptive ecological sympatric speciation, caused by the sharply divergent chalk and basalt ecologies. This was demonstrated by mitochondrial and nuclear genomic evidence. Here we show that the expression patterns of the p53 regulatory pathway diversified between the abutting sympatric populations of S. galili in sharply divergent chalk-basalt ecologies. We identified higher methylation on several sites of the p53 promoter in the population living in chalk soil (chalk population). Site mutagenesis showed that methylation on these sites linked to the transcriptional repression of p53 involving Cut-Like Homeobox 1 (Cux1), paired box 4 (Pax 4), Pax 6, and activator protein 1 (AP-1). Diverse expression levels of p53 between the incipiently sympatrically speciating chalk-basalt abutting populations of S. galili selectively affected cell-cycle arrest but not apoptosis. We hypothesize that methylation modification of p53 has adaptively shifted in supervising its target genes during sympatric speciation of S. galili to cope with the contrasting environmental stresses of the abutting divergent chalk-basalt ecologies.
Collapse
|
33
|
Martínez JJ, Gardenal CN. Phylogenetic relationships among species of the Neotropical genusGraomys(Rodentia: Cricetidae): contrasting patterns of skull morphometric variation and genetic divergence. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12767] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Juan J. Martínez
- Centro de Investigaciones y Transferencia de Jujuy (CIT-Jujuy); CONICET and Universidad Nacional de Jujuy; Av. Bolivia 1711, San Salvador de Jujuy, Jujuy, 4600 Argentina
| | - Cristina N. Gardenal
- Instituto de Diversidad y Ecología Animal (IDEA); CONICET and Universidad Nacional de Córdoba; Av. Vélez Sarsfield 299, Córdoba, Córdoba, 5000 Argentina
| |
Collapse
|
34
|
Tzur S, Rosset S. Strictly conserved tri-nucleotide motif "CAT" is associated with TAS DNA protein-binding sites in human mitochondrial DNA control region. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 28:250-253. [PMID: 26713725 DOI: 10.3109/19401736.2015.1118068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mitochondrial DNA (mtDNA) control region is a highly variable segment that contains functional elements that control mtDNA transcription and replication. By analysis of the polymorphic nucleotide spectrum of that segment, we aimed to identify the most conserved sites that should be associated with these elements. For that aim, we analyzed 50 033 human mtDNA control region sequences (mtDNA positions 16 066-16 374). We identified 10 conserved tri-nucleotides, one conserved tetra-nucleotide, and one conserved penta-nucleotide, containing six repetitions of the motif CAT, and two of its complement motif ATG (p value < 2 × 10 - 4). Three other appearances of the tri-nucleotide CAT were almost perfectly preserved. The positions of the preserved CAT elements are associated with the location of previously identified termination-associated sequences (TAS) which are the binding locations for proteins involved in mtDNA replication. We, therefore, hypothesize that the CAT tri-nucleotide elements within the control region may be the binding sites for TAS proteins and are directly involved in mtDNA transcription and replication.
Collapse
Affiliation(s)
- Shay Tzur
- a Molecular Medicine Laboratory , Rambam Health Care Campus , Haifa , Israel
| | - Saharon Rosset
- b Department of Statistics and Operations Research , Tel Aviv University , Tel Aviv , Israel
| |
Collapse
|
35
|
Šklíba J, Lövy M, Koeppen SCW, Pleštilová L, Vitámvás M, Nevo E, Šumbera R. Activity of free-living subterranean blind mole ratsSpalax galili(Rodentia: Spalacidae) in an area of supposed sympatric speciation. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12741] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jan Šklíba
- Department of Zoology; Faculty of Science; University of South Bohemia; Branišovská 31 37005 České Budějovice Czech Republic
| | - Matěj Lövy
- Department of Zoology; Faculty of Science; University of South Bohemia; Branišovská 31 37005 České Budějovice Czech Republic
| | - Stephan C. W. Koeppen
- Department of General Zoology; Faculty of Biology; University of Duisburg-Essen; Universitätsstr. 5 45141 Essen Germany
| | - Lucie Pleštilová
- Department of Zoology; Faculty of Science; University of South Bohemia; Branišovská 31 37005 České Budějovice Czech Republic
| | - Miloš Vitámvás
- Department of Zoology; Faculty of Science; University of South Bohemia; Branišovská 31 37005 České Budějovice Czech Republic
| | - Eviatar Nevo
- Institute of Evolution; University of Haifa; Haifa 31905 Israel
| | - Radim Šumbera
- Department of Zoology; Faculty of Science; University of South Bohemia; Branišovská 31 37005 České Budějovice Czech Republic
| |
Collapse
|
36
|
Sympatric speciation revealed by genome-wide divergence in the blind mole rat Spalax. Proc Natl Acad Sci U S A 2015; 112:11905-10. [PMID: 26340990 DOI: 10.1073/pnas.1514896112] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sympatric speciation (SS), i.e., speciation within a freely breeding population or in contiguous populations, was first proposed by Darwin [Darwin C (1859) On the Origins of Species by Means of Natural Selection] and is still controversial despite theoretical support [Gavrilets S (2004) Fitness Landscapes and the Origin of Species (MPB-41)] and mounting empirical evidence. Speciation of subterranean mammals generally, including the genus Spalax, was considered hitherto allopatric, whereby new species arise primarily through geographic isolation. Here we show in Spalax a case of genome-wide divergence analysis in mammals, demonstrating that SS in continuous populations, with gene flow, encompasses multiple widespread genomic adaptive complexes, associated with the sharply divergent ecologies. The two abutting soil populations of S. galili in northern Israel habituate the ancestral Senonian chalk population and abutting derivative Plio-Pleistocene basalt population. Population divergence originated ∼0.2-0.4 Mya based on both nuclear and mitochondrial genome analyses. Population structure analysis displayed two distinctly divergent clusters of chalk and basalt populations. Natural selection has acted on 300+ genes across the genome, diverging Spalax chalk and basalt soil populations. Gene ontology enrichment analysis highlights strong but differential soil population adaptive complexes: in basalt, sensory perception, musculature, metabolism, and energetics, and in chalk, nutrition and neurogenetics are outstanding. Population differentiation of chemoreceptor genes suggests intersoil population's mate and habitat choice substantiating SS. Importantly, distinctions in protein degradation may also contribute to SS. Natural selection and natural genetic engineering [Shapiro JA (2011) Evolution: A View From the 21st Century] overrule gene flow, evolving divergent ecological adaptive complexes. Sharp ecological divergences abound in nature; therefore, SS appears to be an important mode of speciation as first envisaged by Darwin [Darwin C (1859) On the Origins of Species by Means of Natural Selection].
Collapse
|
37
|
Lövy M, Šklíba J, Hrouzková E, Dvořáková V, Nevo E, Šumbera R. Habitat and Burrow System Characteristics of the Blind Mole Rat Spalax galili in an Area of Supposed Sympatric Speciation. PLoS One 2015; 10:e0133157. [PMID: 26192762 PMCID: PMC4508111 DOI: 10.1371/journal.pone.0133157] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/23/2015] [Indexed: 11/18/2022] Open
Abstract
A costly search for food in subterranean rodents resulted in various adaptations improving their foraging success under given ecological conditions. In Spalax ehrenbergi superspecies, adaptations to local ecological conditions can promote speciation, which was recently supposed to occur even in sympatry at sites where two soil types of contrasting characteristics abut each other. Quantitative description of ecological conditions in such a site has been, nevertheless, missing. We measured characteristics of food supply and soil within 16 home ranges of blind mole rats Spalax galili in an area subdivided into two parts formed by basaltic soil and pale rendzina. We also mapped nine complete mole rat burrow systems to compare burrowing patterns between the soil types. Basaltic soil had a higher food supply and was harder than rendzina even under higher moisture content and lower bulk density. Population density of mole rats was five-times lower in rendzina, possibly due to the lower food supply and higher cover of Sarcopoterium shrubs which seem to be avoided by mole rats. A combination of food supply and soil parameters probably influences burrowing patterns resulting in shorter and more complex burrow systems in basaltic soil.
Collapse
Affiliation(s)
- Matěj Lövy
- Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- * E-mail:
| | - Jan Šklíba
- Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Ema Hrouzková
- Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Veronika Dvořáková
- Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Radim Šumbera
- Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
38
|
Martin CH, Cutler JS, Friel JP, Dening Touokong C, Coop G, Wainwright PC. Complex histories of repeated gene flow in Cameroon crater lake cichlids cast doubt on one of the clearest examples of sympatric speciation. Evolution 2015; 69:1406-1422. [PMID: 25929355 DOI: 10.1111/evo.12674] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/20/2015] [Indexed: 12/19/2022]
Abstract
One of the most celebrated examples of sympatric speciation in nature are monophyletic radiations of cichlid fishes endemic to Cameroon crater lakes. However, phylogenetic inference of monophyly may not detect complex colonization histories involving some allopatric isolation, such as double invasions obscured by genome-wide gene flow. Population genomic approaches are better suited to test hypotheses of sympatric speciation in these cases. Here, we use comprehensive sampling from all four sympatric crater lake cichlid radiations in Cameroon and outgroups across Africa combined with next-generation sequencing to genotype tens of thousands of SNPs. We find considerable evidence of gene flow between all four radiations and neighboring riverine populations after initial colonization. In a few cases, some sympatric species are more closely related to outgroups than others, consistent with secondary gene flow facilitating their speciation. Our results do not rule out sympatric speciation in Cameroon cichlids, but rather reveal a complex history of speciation with gene flow, including allopatric and sympatric phases, resulting in both reproductively isolated species and incipient species complexes. The best remaining non-cichlid examples of sympatric speciation all involve assortative mating within microhabitats. We speculate that this feature may be necessary to complete the process of sympatric speciation in nature.
Collapse
Affiliation(s)
- Christopher H Martin
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina
| | - Joseph S Cutler
- Department of Conservation Biology, University of California, Santa Cruz, California
| | - John P Friel
- Alabama Museum of Natural History, University of Alabama, Tuscaloosa, Alabama
| | | | - Graham Coop
- Center for Population Biology and Department of Evolution & Ecology, University of California, Davis, California
| | - Peter C Wainwright
- Center for Population Biology and Department of Evolution & Ecology, University of California, Davis, California
| |
Collapse
|
39
|
p53 gene discriminates two ecologically divergent sister species of pine voles. Heredity (Edinb) 2015; 115:444-51. [PMID: 25990877 DOI: 10.1038/hdy.2015.44] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/10/2015] [Accepted: 03/24/2015] [Indexed: 12/11/2022] Open
Abstract
Genes with relevant roles in the differentiation of closely-related species are likely to have diverged simultaneously with the species and more accurately reproduce the species tree. The Lusitanian (Microtus lusitanicus) and Mediterranean (M. duodecimcostatus) pine voles are two recently separated sister species with fossorial lifestyles whose different ecological, physiological and morphological phenotypes reflect the better adaptation of M. duodecimcostatus to the underground habitat. Here we asked whether the differentiation of M. lusitanicus and M. duodecimcostatus involved genetic variations within the tumour suppressor p53 gene, given its role in stress-associated responses. We performed a population-genetic analysis through sequencing of exons and introns of p53 in individuals from sympatric and allopatric populations of both the species in the Iberian Peninsula in which a unidirectional introgression of mitochondrial DNA was previously observed. We were able to discriminate the two species to a large extent. We show that M. duodecimcostatus is composed of one genetically unstructured group of populations sharing a P53 protein that carries a mutation in the DNA-binding region not observed in M. lusitanicus, raising the possibility that this mutation may have been central in the evolutionary history of M. duodecimcostatus. Our results provide suggestive evidence for the involvement of a master transcription factor in the separation of M. lusitanicus and M. duodecimcostatus during Microtus radiation in the Quaternary presumably via a differential adaptive role of the novel p53 in M. duodecimcostatus.
Collapse
|
40
|
|
41
|
Šklíba J, Lövy M, Hrouzková E, Kott O, Okrouhlík J, Šumbera R. Social and Environmental Influences on Daily Activity Pattern in Free-Living Subterranean Rodents. J Biol Rhythms 2014; 29:203-214. [DOI: 10.1177/0748730414526358] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Predictable daily activity patterns have been detected repeatedly even in mammals living in stable environments, as is the case for subterranean rodents. Whereas studies on activity of these rodents under laboratory conditions almost exclusively have concerned themselves with the influence of light, many field studies have revealed signs of an association between the activity pattern and daily fluctuations of temperature under the ground. This would assume that behavioral thermoregulation is probably involved. The only exceptions to the relationship between temperature and activity are 2 eusocial mole-rats of the genus Fukomys (Bathyergidae, Rodentia), which indicates that activity patterns could be affected also by social cues. To better understand how social and environmental factors influence the activity pattern in a eusocial mole-rat, we monitored the outside-nest activity in another species of this genus, the Ansell’s mole-rat ( Fukomys anselli), which has a relatively small body mass, high conductance, and more superficially situated burrows. Its daily activity had 1 prominent peak (around 1400 h), and it was tightly correlated with the temperature measured at depth of foraging burrows. Since F. anselli has high thermoregulatory requirements to maintain stable body temperature below the lower critical temperature, we conclude that the observed pattern is probably the result of minimizing the cost of thermoregulation. There were no significant differences in the daily activity patterns of breeding males and females and nonbreeders. Members of the same family group tended to have more similar activity patterns, but consistent activity synchronization between individuals was not proven. From the comparison of available data on all subterranean rodents, we assume that social cues in communally nesting mole-rats may disrupt (mask) temperature-related daily activity rhythms but probably only if the additional cost of thermoregulation is not too high, as it likely is in the Ansell’s mole-rat.
Collapse
Affiliation(s)
- Jan Šklíba
- Department of Zoology, Faculty of Science, University of South Bohemia, Cˇeské Budeˇjovice, Czech Republic
| | - Matěj Lövy
- Department of Zoology, Faculty of Science, University of South Bohemia, Cˇeské Budeˇjovice, Czech Republic
| | - Ema Hrouzková
- Department of Zoology, Faculty of Science, University of South Bohemia, Cˇeské Budeˇjovice, Czech Republic
| | - Ondřej Kott
- Department of Zoology, Faculty of Science, University of South Bohemia, Cˇeské Budeˇjovice, Czech Republic
| | - Jan Okrouhlík
- Department of Zoology, Faculty of Science, University of South Bohemia, Cˇeské Budeˇjovice, Czech Republic
| | - Radim Šumbera
- Department of Zoology, Faculty of Science, University of South Bohemia, Cˇeské Budeˇjovice, Czech Republic
| |
Collapse
|
42
|
Nevo E. Evolution in action: adaptation and incipient sympatric speciation with gene flow across life at “Evolution Canyon”, Israel. Isr J Ecol Evol 2014. [DOI: 10.1080/15659801.2014.986879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Various major evolutionary problems are still open, controversial or unsettled. These include even the basic evolutionary processes of adaptation and speciation. The “Evolution Canyon” model is a microscale natural laboratory that can highlight some of the basic problems requiring clarification (Nevo list of “Evolution Canyon” publications at http://evolution.haifa.ac.il). This is especially true if an interdisciplinary approach is practiced including ecological functional genomics, transcriptomics, proteomics, metabolomics and phenomics. Here I overview and reanalyze the incipient sympatric adaptive ecological speciation of five model organisms at “Evolution Canyon”, across life: the soil bacterium, Bacillus simplex; wild barley, the progenitor of cultivated barley, Hordeum spontaneum; the tiny beetle Oryzaephilus surinamensis; the cosmopolitan fruit-fly, Drosophila melanogaster, and the Africa-originated spiny mouse, Acomys cahirinus. All five models of organisms display evolution in action of microclimatic adaptation and incipient sympatric adaptive ecological speciation on the tropical and temperate abutting slopes, separated on average by only 250 meters. Some distant species converge in their micro-climatic adaptations to the hot and dry “African”, south-facing slope (SFS or AS) and to the cool and humid “European”, north-facing slope (NSF or ES). Natural selection overrules ongoing inter-slope gene-flow between the free interbreeding populations within and between slopes, and leads to adaptive incipient sympatric ecological speciation on the dramatically opposite abutting xeric savannoid and mesic forested slopes.
Collapse
|
43
|
Hadid Y, Pavlíček T, Beiles A, Ianovici R, Raz S, Nevo E. Sympatric incipient speciation of spiny mice Acomys at "Evolution Canyon," Israel. Proc Natl Acad Sci U S A 2014; 111:1043-8. [PMID: 24402169 PMCID: PMC3903241 DOI: 10.1073/pnas.1322301111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Does the paucity of empirical evidence of sympatric speciation in nature reflect reality, despite theoretical support? Or is it due to inappropriate searches in nature with overly restrictive assumptions and an incorrect null hypothesis? Spiny mice, Acomys, described here at Evolution Canyon (EC) incipiently and sympatrically speciate owing to microclimatic interslope divergence. The opposite slopes at EC vary dramatically, physically and biotically, representing the dry and hot south-facing slope savannoid-African continent ["African" slope (AS)], abutting with the north-facing slope forested south-European continent ["European" slope (ES)]. African-originated spiny mice, of the Acomys cahirinus complex, colonized Israel 30,000 y ago based on fossils. Genotypically, we showed significantly higher genetic diversity of mtDNA and amplified fragment length polymorphism of Acomys on the AS compared with the ES. This is also true regionally across Israel. In complete mtDNA, 25% of the haplotypes at EC were slope-biased. Phenotypically, the opposite slope's populations also showed adaptive morphology, physiology, and behavior divergence paralleling regional populations across Israel. Preliminary tests indicate slope-specific mate choices. Colonization of Acomys at the EC first occurred on the AS and then moved to the ES. Strong slope-specific natural selection (both positive and negative) overrules low interslope gene flow. Both habitat slope selection and mate choices suggest ongoing incipient sympatric speciation. We conclude that Acomys at the EC is ecologically and genetically adaptively, incipiently, sympatrically speciating on the ES owing to adaptive microclimatic natural selection.
Collapse
Affiliation(s)
- Yarin Hadid
- Institute of Evolution and
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa 31905, Israel
| | | | | | - Ron Ianovici
- Faculty of Chemical Engineering, Technion Institute of Technology, Haifa 32000, Israel; and
| | - Shmuel Raz
- Institute of Evolution and
- Rowland Institute at Harvard, Harvard University, Cambridge, MA 02142
| | | |
Collapse
|
44
|
Crawford JE, Nielsen R. Detecting adaptive trait loci in nonmodel systems: divergence or admixture mapping? Mol Ecol 2013; 22:6131-48. [DOI: 10.1111/mec.12562] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/09/2013] [Accepted: 10/11/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Jacob E. Crawford
- Department of Integrative Biology; University of California; Berkeley 4134 Valley Life Sciences Building Berkeley CA 94720-3140 USA
| | - Rasmus Nielsen
- Department of Integrative Biology; University of California; Berkeley 4098 Valley Life Sciences Building Berkeley CA 94720-3140 USA
| |
Collapse
|