1
|
Bilger R, Migur A, Wulf A, Steglich C, Urlaub H, Hess WR. A type III-Dv CRISPR-Cas system is controlled by the transcription factor RpaB and interacts with the DEAD-box RNA helicase CrhR. Cell Rep 2024; 43:114485. [PMID: 38996066 DOI: 10.1016/j.celrep.2024.114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/26/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
How CRISPR-Cas systems defend bacteria and archaea against invading genetic elements is well understood, but less is known about their regulation. In the cyanobacterium Synechocystis sp. PCC 6803, the expression of one of the three different CRISPR-Cas systems responds to changes in environmental conditions. The cas operon promoter of this system is controlled by the light- and redox-responsive transcription factor RpaB binding to an HLR1 motif, resulting in transcriptional activation at low light intensities. However, the strong promoter that drives transcription of the cognate repeat-spacer array is not controlled by RpaB. Instead, the leader transcript is bound by the redox-sensitive RNA helicase CrhR. Crosslinking coupled with mass spectrometry analysis and site-directed mutagenesis revealed six residues involved in the CrhR-RNA interaction, with C371 being critically important. Thus, the expression of a type III-Dv CRISPR-Cas system is linked to the redox status of the photosynthetic cell at the transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Raphael Bilger
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Angela Migur
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Alexander Wulf
- Bioanalytics Research Group, Department of Clinical Chemistry, University Medical Centre, 37075 Göttingen, Germany; Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Claudia Steglich
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Henning Urlaub
- Bioanalytics Research Group, Department of Clinical Chemistry, University Medical Centre, 37075 Göttingen, Germany; Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Wolfgang R Hess
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| |
Collapse
|
2
|
Wimmer F, Englert F, Beisel CL. A TXTL-Based Assay to Rapidly Identify PAMs for CRISPR-Cas Systems with Multi-Protein Effector Complexes. Methods Mol Biol 2022; 2433:391-411. [PMID: 34985758 DOI: 10.1007/978-1-0716-1998-8_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Type I CRISPR-Cas systems represent the most common and diverse type of these prokaryotic defense systems and are being harnessed for a growing set of applications. As these systems rely on multi-protein effector complexes, their characterization remains challenging. Here, we report a rapid and straightforward method to characterize these systems in a cell-free transcription-translation (TXTL) system. A ribonucleoprotein complex is produced and binds to its target next to a recognized PAM, thereby preventing the targeted sequence from being cleaved by a restriction enzyme. Selection for uncleaved targeted plasmids leads to an enrichment of recognized sequences within a PAM library. This assay will aid the exploration of CRISPR-Cas diversity and evolution and help contribute new systems for CRISPR technologies and applications.
Collapse
Affiliation(s)
- Franziska Wimmer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Frank Englert
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany.
- Medical Faculty, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
3
|
Guzmán NM, Esquerra-Ruvira B, Mojica FJM. Digging into the lesser-known aspects of CRISPR biology. Int Microbiol 2021; 24:473-498. [PMID: 34487299 PMCID: PMC8616872 DOI: 10.1007/s10123-021-00208-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022]
Abstract
A long time has passed since regularly interspaced DNA repeats were discovered in prokaryotes. Today, those enigmatic repetitive elements termed clustered regularly interspaced short palindromic repeats (CRISPR) are acknowledged as an emblematic part of multicomponent CRISPR-Cas (CRISPR associated) systems. These systems are involved in a variety of roles in bacteria and archaea, notably, that of conferring protection against transmissible genetic elements through an adaptive immune-like response. This review summarises the present knowledge on the diversity, molecular mechanisms and biology of CRISPR-Cas. We pay special attention to the most recent findings related to the determinants and consequences of CRISPR-Cas activity. Research on the basic features of these systems illustrates how instrumental the study of prokaryotes is for understanding biology in general, ultimately providing valuable tools for diverse fields and fuelling research beyond the mainstream.
Collapse
Affiliation(s)
- Noemí M Guzmán
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Belén Esquerra-Ruvira
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Francisco J M Mojica
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain.
- Instituto Multidisciplinar para el Estudio del Medio, Universidad de Alicante, Alicante, Spain.
| |
Collapse
|
4
|
Münch PC, Franzosa EA, Stecher B, McHardy AC, Huttenhower C. Identification of Natural CRISPR Systems and Targets in the Human Microbiome. Cell Host Microbe 2021; 29:94-106.e4. [PMID: 33217332 PMCID: PMC7813156 DOI: 10.1016/j.chom.2020.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/28/2020] [Accepted: 10/26/2020] [Indexed: 01/13/2023]
Abstract
Many bacteria resist invasive DNA by incorporating sequences into CRISPR loci, which enable sequence-specific degradation. CRISPR systems have been well studied from isolate genomes, but culture-independent metagenomics provide a new window into their diversity. We profiled CRISPR loci and cas genes in the body-wide human microbiome using 2,355 metagenomes, yielding functional and taxonomic profiles for 2.9 million spacers by aligning the spacer content to each sample's metagenome and corresponding gene families. Spacer and repeat profiles agree qualitatively with those from isolate genomes but expand their diversity by approximately 13-fold, with the highest spacer load present in the oral microbiome. The taxonomy of spacer sequences parallels that of their source community, with functional targets enriched for viral elements. When coupled with cas gene systems, CRISPR-Cas subtypes are highly site and taxon specific. Our analysis provides a comprehensive collection of natural CRISPR-cas loci and targets in the human microbiome.
Collapse
Affiliation(s)
- Philipp C Münch
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA; Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany; Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig-Maximilian University of Munich, 80336 Munich, Germany
| | - Eric A Franzosa
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Bärbel Stecher
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig-Maximilian University of Munich, 80336 Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Alice C McHardy
- Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany.
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Ye Q, Zhao X, Liu J, Zeng Z, Zhang Z, Liu T, Li Y, Han W, Peng N. CRISPR-Associated Factor Csa3b Regulates CRISPR Adaptation and Cmr-Mediated RNA Interference in Sulfolobus islandicus. Front Microbiol 2020; 11:2038. [PMID: 32983033 PMCID: PMC7480081 DOI: 10.3389/fmicb.2020.02038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Acquisition of spacers confers the CRISPR–Cas system with the memory to defend against invading mobile genetic elements. We previously reported that the CRISPR-associated factor Csa3a triggers CRISPR adaptation in Sulfolobus islandicus. However, a feedback regulation of CRISPR adaptation remains unclear. Here we show that another CRISPR-associated factor, Csa3b, binds a cyclic oligoadenylate (cOA) analog (5′-CAAAA-3′) and mutation at its CARF domain, which reduces the binding affinity. Csa3b also binds the promoter of adaptation cas genes, and the cOA analog enhances their binding probably by allosteric regulation. Deletion of the csa3b gene triggers spacer acquisition from both plasmid and viral DNAs, indicating that Csa3b acted as a repressor for CRISPR adaptation. Moreover, we also find that Csa3b activates the expression of subtype cmr-α and cmr-β genes according to transcriptome data and demonstrate that Csa3b binds the promoters of cmr genes. The deletion of the csa3b gene reduces Cmr-mediated RNA interference activity, indicating that Csa3b acts as a transcriptional activator for Cmr-mediated RNA interference. In summary, our findings reveal a novel pathway for the regulation of CRISPR adaptation and CRISPR–Cmr RNA interference in S. islandicus. Our results also suggest a feedback repression of CRIPSR adaptation by the Csa3b factor and the cOA signal produced by the Cmr complex at the CRISPR interference stage.
Collapse
Affiliation(s)
- Qing Ye
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueqiao Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jilin Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhifeng Zeng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhufeng Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tao Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yingjun Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenyuan Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Detection of CRISPR adaptation. Biochem Soc Trans 2020; 48:257-269. [PMID: 32010936 PMCID: PMC7054753 DOI: 10.1042/bst20190662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/26/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022]
Abstract
Prokaryotic adaptive immunity is built when short DNA fragments called spacers are acquired into CRISPR (clustered regularly interspaced short palindromic repeats) arrays. CRISPR adaptation is a multistep process which comprises selection, generation, and incorporation of prespacers into arrays. Once adapted, spacers provide immunity through the recognition of complementary nucleic acid sequences, channeling them for destruction. To prevent deleterious autoimmunity, CRISPR adaptation must therefore be a highly regulated and infrequent process, at least in the absence of genetic invaders. Over the years, ingenious methods to study CRISPR adaptation have been developed. In this paper, we discuss and compare methods that detect CRISPR adaptation and its intermediates in vivo and propose suppressing PCR as a simple modification of a popular assay to monitor spacer acquisition with increased sensitivity.
Collapse
|
7
|
Wimmer F, Beisel CL. CRISPR-Cas Systems and the Paradox of Self-Targeting Spacers. Front Microbiol 2020; 10:3078. [PMID: 32038537 PMCID: PMC6990116 DOI: 10.3389/fmicb.2019.03078] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas immune systems in bacteria and archaea record prior infections as spacers within each system’s CRISPR arrays. Spacers are normally derived from invasive genetic material and direct the immune system to complementary targets as part of future infections. However, not all spacers appear to be derived from foreign genetic material and instead can originate from the host genome. Their presence poses a paradox, as self-targeting spacers would be expected to induce an autoimmune response and cell death. In this review, we discuss the known frequency of self-targeting spacers in natural CRISPR-Cas systems, how these spacers can be incorporated into CRISPR arrays, and how the host can evade lethal attack. We also discuss how self-targeting spacers can become the basis for alternative functions performed by CRISPR-Cas systems that extend beyond adaptive immunity. Overall, the acquisition of genome-targeting spacers poses a substantial risk but can aid in the host’s evolution and potentially lead to or support new functionalities.
Collapse
Affiliation(s)
- Franziska Wimmer
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Chase L Beisel
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany.,Medical Faculty, University of Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Yoganand KN, Muralidharan M, Nimkar S, Anand B. Fidelity of prespacer capture and processing is governed by the PAM-mediated interactions of Cas1-2 adaptation complex in CRISPR-Cas type I-E system. J Biol Chem 2019; 294:20039-20053. [PMID: 31748409 PMCID: PMC6937570 DOI: 10.1074/jbc.ra119.009438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 11/18/2019] [Indexed: 12/11/2022] Open
Abstract
Prokaryotes deploy CRISPR-Cas-based RNA-guided adaptive immunity to fend off mobile genetic elements such as phages and plasmids. During CRISPR adaptation, which is the first stage of CRISPR immunity, the Cas1-2 integrase complex captures invader-derived prespacer DNA and specifically integrates it at the leader-repeat junction as spacers. For this integration, several variants of CRISPR-Cas systems use Cas4 as an indispensable nuclease for selectively processing the protospacer adjacent motif (PAM) containing prespacers to a defined length. Surprisingly, however, a few CRISPR-Cas systems, such as type I-E, are bereft of Cas4. Despite the absence of Cas4, how the prespacers show impeccable conservation for length and PAM selection in type I-E remains intriguing. Here, using in vivo and in vitro integration assays, deep sequencing, and exonuclease footprinting, we show that Cas1-2/I-E-via the type I-E-specific extended C-terminal tail of Cas1-displays intrinsic affinity for PAM containing prespacers of variable length in Escherichia coli Although Cas1-2/I-E does not prune the prespacers, its binding protects the prespacer boundaries from exonuclease action. This ensures the pruning of exposed ends by exonucleases to aptly sized substrates for integration into the CRISPR locus. In summary, our work reveals that in a few CRISPR-Cas variants, such as type I-E, the specificity of PAM selection resides with Cas1-2, whereas the prespacer processing is co-opted by cellular non-Cas exonucleases, thereby offsetting the need for Cas4.
Collapse
Affiliation(s)
- Kakimani Nagarajan Yoganand
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Manasasri Muralidharan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Siddharth Nimkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Baskaran Anand
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
9
|
Genome Maintenance Proteins Modulate Autoimmunity Mediated Primed Adaptation by the Escherichia coli Type I-E CRISPR-Cas System. Genes (Basel) 2019; 10:genes10110872. [PMID: 31683605 PMCID: PMC6896009 DOI: 10.3390/genes10110872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 12/21/2022] Open
Abstract
Bacteria and archaea use CRISPR-Cas adaptive immunity systems to interfere with viruses, plasmids, and other mobile genetic elements. During the process of adaptation, CRISPR-Cas systems acquire immunity by incorporating short fragments of invaders’ genomes into CRISPR arrays. The acquisition of fragments of host genomes leads to autoimmunity and may drive chromosomal rearrangements, negative cell selection, and influence bacterial evolution. In this study, we investigated the role of proteins involved in genome stability maintenance in spacer acquisition by the Escherichia coli type I-E CRISPR-Cas system targeting its own genome. We show here, that the deletion of recJ decreases adaptation efficiency and affects accuracy of spacers incorporation into CRISPR array. Primed adaptation efficiency is also dramatically inhibited in double mutants lacking recB and sbcD but not in single mutants suggesting independent involvement and redundancy of RecBCD and SbcCD pathways in spacer acquisition. While the presence of at least one of two complexes is crucial for efficient primed adaptation, RecBCD and SbcCD affect the pattern of acquired spacers. Overall, our data suggest distinct roles of the RecBCD and SbcCD complexes and of RecJ in spacer precursor selection and insertion into CRISPR array and highlight the functional interplay between CRISPR-Cas systems and host genome maintenance mechanisms.
Collapse
|
10
|
Cas4 Nucleases Can Effect Specific Integration of CRISPR Spacers. J Bacteriol 2019; 201:JB.00747-18. [PMID: 30936372 DOI: 10.1128/jb.00747-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/26/2019] [Indexed: 01/19/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems incorporate short DNA fragments from invasive genetic elements into host CRISPR arrays in order to generate host immunity. Recently, we demonstrated that the Csa3a regulator protein triggers CCN protospacer-adjacent motif (PAM)-dependent CRISPR spacer acquisition in the subtype I-A CRISPR-Cas system of Sulfolobus islandicus However, the mechanisms underlying specific protospacer selection and spacer insertion remained unclear. Here, we demonstrate that two Cas4 family proteins (Cas4 and Csa1) have essential roles (i) in recognizing the 5' PAM and 3' nucleotide motif of protospacers and (ii) in determining both the spacer length and its orientation. Furthermore, we identify amino acid residues of the Cas4 proteins that facilitate these functions. Overexpression of the Cas4 and Csa1 proteins, and also that of an archaeal virus-encoded Cas4 protein, resulted in strongly reduced adaptation efficiency, and the former proteins yielded a high incidence of PAM-dependent atypical spacer integration or of PAM-independent spacer integration. We further demonstrated that in plasmid challenge experiments, overexpressed Cas4-mediated defective spacer acquisition in turn potentially enabled targeted DNA to escape subtype I-A CRISPR-Cas interference. In summary, these results define the specific involvement of diverse Cas4 proteins in in vivo CRISPR spacer acquisition. Furthermore, we provide support for an anti-CRISPR role for virus-encoded Cas4 proteins that involves compromising CRISPR-Cas interference activity by hindering spacer acquisition.IMPORTANCE The Cas4 family endonuclease is an essential component of the adaptation module in many variants of CRISPR-Cas adaptive immunity systems. The Crenarchaeota Sulfolobus islandicus REY15A carries two cas4 genes (cas4 and csa1) linked to the CRISPR arrays. Here, we demonstrate that Cas4 and Csa1 are essential to CRISPR spacer acquisition in this organism. Both proteins specify the upstream and downstream conserved nucleotide motifs of the protospacers and define the spacer length and orientation in the acquisition process. Conserved amino acid residues, in addition to those recently reported, were identified to be important for these functions. More importantly, overexpression of the Sulfolobus viral Cas4 abolished spacer acquisition, providing support for an anti-CRISPR role for virus-encoded Cas4 proteins that inhibit spacer acquisition.
Collapse
|
11
|
Hou S, Brenes-Álvarez M, Reimann V, Alkhnbashi OS, Backofen R, Muro-Pastor AM, Hess WR. CRISPR-Cas systems in multicellular cyanobacteria. RNA Biol 2019; 16:518-529. [PMID: 29995583 PMCID: PMC6546389 DOI: 10.1080/15476286.2018.1493330] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/01/2018] [Accepted: 06/19/2018] [Indexed: 01/12/2023] Open
Abstract
Novel CRISPR-Cas systems possess substantial potential for genome editing and manipulation of gene expression. The types and numbers of CRISPR-Cas systems vary substantially between different organisms. Some filamentous cyanobacteria harbor > 40 different putative CRISPR repeat-spacer cassettes, while the number of cas gene instances is much lower. Here we addressed the types and diversity of CRISPR-Cas systems and of CRISPR-like repeat-spacer arrays in 171 publicly available genomes of multicellular cyanobacteria. The number of 1328 repeat-spacer arrays exceeded the total of 391 encoded Cas1 proteins suggesting a tendency for fragmentation or the involvement of alternative adaptation factors. The model cyanobacterium Anabaena sp. PCC 7120 contains only three cas1 genes but hosts three Class 1, possibly one Class 2 and five orphan repeat-spacer arrays, all of which exhibit crRNA-typical expression patterns suggesting active transcription, maturation and incorporation into CRISPR complexes. The CRISPR-Cas system within the element interrupting the Anabaena sp. PCC 7120 fdxN gene, as well as analogous arrangements in other strains, occupy the genetic elements that become excised during the differentiation-related programmed site-specific recombination. This fact indicates the propensity of these elements for the integration of CRISPR-cas systems and points to a previously not recognized connection. The gene all3613 resembling a possible Class 2 effector protein is linked to a short repeat-spacer array and a single tRNA gene, similar to its homologs in other cyanobacteria. The diversity and presence of numerous CRISPR-Cas systems in DNA elements that are programmed for homologous recombination make filamentous cyanobacteria a prolific resource for their study. Abbreviations: Cas: CRISPR associated sequences; CRISPR: Clustered Regularly Interspaced Short Palindromic Repeats; C2c: Class 2 candidate; SDR: small dispersed repeat; TSS: transcriptional start site; UTR: untranslated region.
Collapse
Affiliation(s)
- Shengwei Hou
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Manuel Brenes-Álvarez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Viktoria Reimann
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Omer S. Alkhnbashi
- Bioinformatics group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- Center for Biological Systems Analysis (ZBSA), University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Alicia M. Muro-Pastor
- Bioinformatics group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Wolfgang R. Hess
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
- Freiburg Institute for Advanced Studies,University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
McKenzie RE, Almendros C, Vink JNA, Brouns SJJ. Using CAPTURE to detect spacer acquisition in native CRISPR arrays. Nat Protoc 2019; 14:976-990. [PMID: 30742049 PMCID: PMC6831484 DOI: 10.1038/s41596-018-0123-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/20/2018] [Indexed: 11/09/2022]
Abstract
CRISPR-Cas systems are able to acquire immunological memories (spacers) from bacteriophages and plasmids in order to survive infection; however, this often occurs at low frequency within a population, which can make it difficult to detect. Here we describe CAPTURE (CRISPR adaptation PCR technique using reamplification and electrophoresis), a versatile and adaptable protocol to detect spacer-acquisition events by electrophoresis imaging with high-enough sensitivity to identify spacer acquisition in 1 in 105 cells. Our method harnesses two simple PCR steps, separated by automated electrophoresis and extraction of size-selected DNA amplicons, thus allowing the removal of unexpanded arrays from the sample pool and enabling 1,000-times more sensitive detection of new spacers than alternative PCR protocols. CAPTURE is a straightforward method that requires only 1 d to enable the detection of spacer acquisition in all native CRISPR systems and facilitate studies aimed both at unraveling the mechanism of spacer integration and more sensitive tracing of integration events in natural ecosystems.
Collapse
Affiliation(s)
- Rebecca E McKenzie
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Cristóbal Almendros
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Jochem N A Vink
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
13
|
da Silva Xavier A, de Almeida JCF, de Melo AG, Rousseau GM, Tremblay DM, de Rezende RR, Moineau S, Alfenas‐Zerbini P. Characterization of CRISPR-Cas systems in the Ralstonia solanacearum species complex. MOLECULAR PLANT PATHOLOGY 2019; 20:223-239. [PMID: 30251378 PMCID: PMC6637880 DOI: 10.1111/mpp.12750] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPRs) are composed of an array of short DNA repeat sequences separated by unique spacer sequences that are flanked by associated (Cas) genes. CRISPR-Cas systems are found in the genomes of several microbes and can act as an adaptive immune mechanism against invading foreign nucleic acids, such as phage genomes. Here, we studied the CRISPR-Cas systems in plant-pathogenic bacteria of the Ralstonia solanacearum species complex (RSSC). A CRISPR-Cas system was found in 31% of RSSC genomes present in public databases. Specifically, CRISPR-Cas types I-E and II-C were found, with I-E being the most common. The presence of the same CRISPR-Cas types in distinct Ralstonia phylotypes and species suggests the acquisition of the system by a common ancestor before Ralstonia species segregation. In addition, a Cas1 phylogeny (I-E type) showed a perfect geographical segregation of phylotypes, supporting an ancient acquisition. Ralstoniasolanacearum strains CFBP2957 and K60T were challenged with a virulent phage, and the CRISPR arrays of bacteriophage-insensitive mutants (BIMs) were analysed. No new spacer acquisition was detected in the analysed BIMs. The functionality of the CRISPR-Cas interference step was also tested in R. solanacearum CFBP2957 using a spacer-protospacer adjacent motif (PAM) delivery system, and no resistance was observed against phage phiAP1. Our results show that the CRISPR-Cas system in R. solanacearum CFBP2957 is not its primary antiviral strategy.
Collapse
Affiliation(s)
- André da Silva Xavier
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO)Universidade Federal de ViçosaViçosaMG36570‐000Brazil
| | - Juliana Cristina Fraleon de Almeida
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO)Universidade Federal de ViçosaViçosaMG36570‐000Brazil
| | - Alessandra Gonçalves de Melo
- Département de Biochimie, de Microbiologie, et de Bioinformatique, Faculté des Sciences et de GénieUniversité LavalQuébec CityQCGIV0A6Canada
| | - Geneviève M. Rousseau
- Département de Biochimie, de Microbiologie, et de Bioinformatique, Faculté des Sciences et de GénieUniversité LavalQuébec CityQCGIV0A6Canada
- Félix d'Hérelle Reference Center for Bacterial Viruses, and GREB, Faculté de Médecine DentaireUniversité LavalQuébec CityQCGIV0A6Canada
| | - Denise M. Tremblay
- Département de Biochimie, de Microbiologie, et de Bioinformatique, Faculté des Sciences et de GénieUniversité LavalQuébec CityQCGIV0A6Canada
- Félix d'Hérelle Reference Center for Bacterial Viruses, and GREB, Faculté de Médecine DentaireUniversité LavalQuébec CityQCGIV0A6Canada
| | - Rafael Reis de Rezende
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO)Universidade Federal de ViçosaViçosaMG36570‐000Brazil
| | - Sylvain Moineau
- Département de Biochimie, de Microbiologie, et de Bioinformatique, Faculté des Sciences et de GénieUniversité LavalQuébec CityQCGIV0A6Canada
- Félix d'Hérelle Reference Center for Bacterial Viruses, and GREB, Faculté de Médecine DentaireUniversité LavalQuébec CityQCGIV0A6Canada
| | - Poliane Alfenas‐Zerbini
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO)Universidade Federal de ViçosaViçosaMG36570‐000Brazil
| |
Collapse
|
14
|
Xue C, Sashital DG. Mechanisms of Type I-E and I-F CRISPR-Cas Systems in Enterobacteriaceae. EcoSal Plus 2019; 8:10.1128/ecosalplus.ESP-0008-2018. [PMID: 30724156 PMCID: PMC6368399 DOI: 10.1128/ecosalplus.esp-0008-2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Indexed: 12/17/2022]
Abstract
CRISPR-Cas systems provide bacteria and archaea with adaptive immunity against invasion by bacteriophages and other mobile genetic elements. Short fragments of invader DNA are stored as immunological memories within CRISPR (clustered regularly interspaced short palindromic repeat) arrays in the host chromosome. These arrays provide a template for RNA molecules that can guide CRISPR-associated (Cas) proteins to specifically neutralize viruses upon subsequent infection. Over the past 10 years, our understanding of CRISPR-Cas systems has benefited greatly from a number of model organisms. In particular, the study of several members of the Gram-negative Enterobacteriaceae family, especially Escherichia coli and Pectobacterium atrosepticum, have provided significant insights into the mechanisms of CRISPR-Cas immunity. In this review, we provide an overview of CRISPR-Cas systems present in members of the Enterobacteriaceae. We also detail the current mechanistic understanding of the type I-E and type I-F CRISPR-Cas systems that are commonly found in enterobacteria. Finally, we discuss how phages can escape or inactivate CRISPR-Cas systems and the measures bacteria can enact to counter these types of events.
Collapse
Affiliation(s)
- Chaoyou Xue
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA
- Present address: Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY
| | - Dipali G Sashital
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA
| |
Collapse
|
15
|
Heler R, Wright AV, Vucelja M, Doudna JA, Marraffini LA. Spacer Acquisition Rates Determine the Immunological Diversity of the Type II CRISPR-Cas Immune Response. Cell Host Microbe 2019; 25:242-249.e3. [PMID: 30709780 DOI: 10.1016/j.chom.2018.12.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/02/2018] [Accepted: 12/14/2018] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas systems provide acquired immunity in prokaryotes. Upon infection, short sequences from the phage genome, known as spacers, are inserted between the CRISPR repeats. Spacers are transcribed into small RNA molecules that guide nucleases to their targets. The forces that shape the distribution of newly acquired spacers, which is observed to be uneven, are poorly understood. We studied the spacer patterns that arise after phage infection of Staphylococcus aureus harboring the Streptococcus pyogenes type II-A CRISPR-Cas system. We observed that spacer patterns are established early during the CRISPR-Cas immune response and correlate with spacer acquisition rates, but not with spacer targeting efficiency. The rate of spacer acquisition depended on sequence elements within the spacer, which in turn determined the abundance of different spacers within the adapted population. Our results reveal how the two main forces of the CRISPR-Cas immune response, acquisition and targeting, affect the generation of immunological diversity.
Collapse
Affiliation(s)
- Robert Heler
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA
| | - Addison V Wright
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Marija Vucelja
- Department of Physics, University of Virginia, Charlottesville, VA 22904, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Initiative, University of California, Berkeley, Berkeley, CA 94720, USA; Center for RNA Systems Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
16
|
Abstract
Pervasive application of CRISPR-Cas systems in genome editing has prompted an increase in both interest and necessity to further elucidate existing systems as well as discover putative novel systems. The ubiquity and power of current computational platforms have made in silico approaches to CRISPR-Cas identification and characterization accessible to a wider audience and increasingly amenable for processing extensive data sets. Here, we describe in silico methods for predicting and visualizing notable features of CRISPR-Cas systems, including Cas domain determination, CRISPR array visualization, and inference of the protospacer-adjacent motif. The efficiency of these tools enables rapid exploration of CRISPR-Cas diversity across prokaryotic genomes and supports scalable analysis of large genomic data sets.
Collapse
Affiliation(s)
- Matthew A Nethery
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, United States; Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Rodolphe Barrangou
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, United States; Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
17
|
Avoidance of Trinucleotide Corresponding to Consensus Protospacer Adjacent Motif Controls the Efficiency of Prespacer Selection during Primed Adaptation. mBio 2018; 9:mBio.02169-18. [PMID: 30514784 PMCID: PMC6282206 DOI: 10.1128/mbio.02169-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adaptive immunity of prokaryotes depends on acquisition of foreign DNA fragments into CRISPR arrays as spacers followed by destruction of foreign DNA by CRISPR interference machinery. Different fragments are acquired into CRISPR arrays with widely different efficiencies, but the factors responsible are not known. We analyzed the frequency of spacers acquired during primed adaptation in an E. coli CRISPR array and found that AAG motif was depleted from highly acquired spacers. AAG is also a consensus protospacer adjacent motif (PAM) that must be present upstream from the target of the CRISPR spacer for its efficient destruction by the interference machinery. These results are important because they provide new information on the mechanism of primed spacer acquisition. They add to other previous evidence in the field that pointed out to a “directionality” in the capture of new spacers. Our data strongly suggest that the recognition of an AAG PAM by the interference machinery components prior to spacer capture occludes downstream AAG sequences, thus preventing their recognition by the adaptation machinery. CRISPR DNA arrays of unique spacers separated by identical repeats ensure prokaryotic immunity through specific targeting of foreign nucleic acids complementary to spacers. New spacers are acquired into a CRISPR array in a process of CRISPR adaptation. Selection of foreign DNA fragments to be integrated into CRISPR arrays relies on PAM (protospacer adjacent motif) recognition, as only those spacers will be functional against invaders. However, acquisition of different PAM-associated spacers proceeds with markedly different efficiency from the same DNA. Here, we used a combination of bioinformatics and experimental approaches to understand factors affecting the efficiency of acquisition of spacers by the Escherichia coli type I-E CRISPR-Cas system, for which two modes of CRISPR adaptation have been described: naive and primed. We found that during primed adaptation, efficiency of spacer acquisition is strongly negatively affected by the presence of an AAG trinucleotide—a consensus PAM—within the sequence being selected. No such trend is observed during naive adaptation. The results are consistent with a unidirectional spacer selection process during primed adaptation and provide a specific signature for identification of spacers acquired through primed adaptation in natural populations.
Collapse
|
18
|
Medina-Aparicio L, Dávila S, Rebollar-Flores JE, Calva E, Hernández-Lucas I. The CRISPR-Cas system in Enterobacteriaceae. Pathog Dis 2018; 76:4794941. [PMID: 29325038 DOI: 10.1093/femspd/fty002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/08/2018] [Indexed: 12/20/2022] Open
Abstract
In nature, microorganisms are constantly exposed to multiple viral infections and thus have developed many strategies to survive phage attack and invasion by foreign DNA. One of such strategies is the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) bacterial immunological system. This defense mechanism is widespread in prokaryotes including several families such as Enterobacteriaceae. Much knowledge about the CRISPR-Cas system has been generated, including its biological functions, transcriptional regulation, distribution, utility as a molecular marker and as a tool for specific genome editing. This review focuses on these aspects and describes the state of the art of the CRISPR-Cas system in the Enterobacteriaceae bacterial family.
Collapse
Affiliation(s)
- Liliana Medina-Aparicio
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Sonia Dávila
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Cuernavaca, Morelos 62209, México
| | - Javier E Rebollar-Flores
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Edmundo Calva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Ismael Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| |
Collapse
|
19
|
Gleditzsch D, Pausch P, Müller-Esparza H, Özcan A, Guo X, Bange G, Randau L. PAM identification by CRISPR-Cas effector complexes: diversified mechanisms and structures. RNA Biol 2018; 16:504-517. [PMID: 30109815 PMCID: PMC6546366 DOI: 10.1080/15476286.2018.1504546] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Adaptive immunity of prokaryotes is mediated by CRISPR-Cas systems that employ a large variety of Cas protein effectors to identify and destroy foreign genetic material. The different targeting mechanisms of Cas proteins rely on the proper protection of the host genome sequence while allowing for efficient detection of target sequences, termed protospacers. A short DNA sequence, the protospacer-adjacent motif (PAM), is frequently used to mark proper target sites. Cas proteins have evolved a multitude of PAM-interacting domains, which enables them to cope with viral anti-CRISPR measures that alter the sequence or accessibility of PAM elements. In this review, we summarize known PAM recognition strategies for all CRISPR-Cas types. Available structures of target bound Cas protein effector complexes highlight the diversity of mechanisms and domain architectures that are employed to guarantee target specificity.
Collapse
Affiliation(s)
- Daniel Gleditzsch
- a Prokaryotic Small RNA Biology Group, Max-Planck-Institute for terrestrial Microbiology & LOEWE Center for synthetic Microbiology (Synmikro) , Marburg , Germany
| | - Patrick Pausch
- b Philipps-University-Marburg , LOEWE Center for synthetic Microbiology (Synmikro) & Faculty of Chemistry , Marburg , Germany
| | - Hanna Müller-Esparza
- a Prokaryotic Small RNA Biology Group, Max-Planck-Institute for terrestrial Microbiology & LOEWE Center for synthetic Microbiology (Synmikro) , Marburg , Germany
| | - Ahsen Özcan
- a Prokaryotic Small RNA Biology Group, Max-Planck-Institute for terrestrial Microbiology & LOEWE Center for synthetic Microbiology (Synmikro) , Marburg , Germany
| | - Xiaohan Guo
- a Prokaryotic Small RNA Biology Group, Max-Planck-Institute for terrestrial Microbiology & LOEWE Center for synthetic Microbiology (Synmikro) , Marburg , Germany
| | - Gert Bange
- b Philipps-University-Marburg , LOEWE Center for synthetic Microbiology (Synmikro) & Faculty of Chemistry , Marburg , Germany
| | - Lennart Randau
- a Prokaryotic Small RNA Biology Group, Max-Planck-Institute for terrestrial Microbiology & LOEWE Center for synthetic Microbiology (Synmikro) , Marburg , Germany
| |
Collapse
|
20
|
Liu T, Liu Z, Ye Q, Pan S, Wang X, Li Y, Peng W, Liang Y, She Q, Peng N. Coupling transcriptional activation of CRISPR-Cas system and DNA repair genes by Csa3a in Sulfolobus islandicus. Nucleic Acids Res 2017; 45:8978-8992. [PMID: 28911114 PMCID: PMC5587795 DOI: 10.1093/nar/gkx612] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/05/2017] [Indexed: 12/16/2022] Open
Abstract
CRISPR-Cas system provides the adaptive immunity against invading genetic elements in prokaryotes. Recently, we demonstrated that Csa3a regulator mediates spacer acquisition in Sulfolobus islandicus by activating the expression of Type I-A adaptation cas genes. However, links between the activation of spacer adaptation and CRISPR transcription/processing, and the requirement for DNA repair genes during spacer acquisition remained poorly understood. Here, we demonstrated that de novo spacer acquisition required Csa1, Cas1, Cas2 and Cas4 proteins of the Sulfolobus Type I-A system. Disruption of genes implicated in crRNA maturation or DNA interference led to a significant accumulation of acquired spacers, mainly derived from host genomic DNA. Transcriptome and proteome analyses showed that Csa3a activated expression of adaptation cas genes, CRISPR RNAs, and DNA repair genes, including herA helicase, nurA nuclease and DNA polymerase II genes. Importantly, Csa3a specifically bound the promoters of the above DNA repair genes, suggesting that they were directly activated by Csa3a for adaptation. The Csa3a regulator also specifically bound to the leader sequence to activate CRISPR transcription in vivo. Our data indicated that the Csa3a regulator couples transcriptional activation of the CRISPR-Cas system and DNA repair genes for spacer adaptation and efficient interference of invading genetic elements.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Zhenzhen Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Qing Ye
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Saifu Pan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Xiaodi Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Yingjun Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China.,Archaeal Centre, Department of Biology, University of Copenhagen, Ole Maal⊘es Vej 5, DK-2200 Copenhagen N, Denmark
| | - Wenfang Peng
- Archaeal Centre, Department of Biology, University of Copenhagen, Ole Maal?es Vej 5, DK-2200 Copenhagen N, Denmark
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Qunxin She
- Archaeal Centre, Department of Biology, University of Copenhagen, Ole Maal?es Vej 5, DK-2200 Copenhagen N, Denmark
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| |
Collapse
|
21
|
Rao C, Chin D, Ensminger AW. Priming in a permissive type I-C CRISPR-Cas system reveals distinct dynamics of spacer acquisition and loss. RNA (NEW YORK, N.Y.) 2017; 23:1525-1538. [PMID: 28724535 PMCID: PMC5602111 DOI: 10.1261/rna.062083.117] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
CRISPR-Cas is a bacterial and archaeal adaptive immune system that uses short, invader-derived sequences termed spacers to target invasive nucleic acids. Upon recognition of previously encountered invaders, the system can stimulate secondary spacer acquisitions, a process known as primed adaptation. Previous studies of primed adaptation have been complicated by intrinsically high interference efficiency of most systems against bona fide targets. As such, most primed adaptation to date has been studied within the context of imperfect sequence complementarity between spacers and targets. Here, we take advantage of a native type I-C CRISPR-Cas system in Legionella pneumophila that displays robust primed adaptation even within the context of a perfectly matched target. Using next-generation sequencing to survey acquired spacers, we observe strand bias and positional preference that are consistent with a 3'-5' translocation of the adaptation machinery. We show that spacer acquisition happens in a wide range of frequencies across the plasmid, including a remarkable hotspot that predominates irrespective of the priming strand. We systematically characterize protospacer sequence constraints in both adaptation and interference and reveal extensive flexibilities regarding the protospacer adjacent motif in both processes. Lastly, in a strain with a genetically truncated CRISPR array, we observe increased interference efficiency, which, when coupled with forced maintenance of a targeted plasmid, provides a useful experimental system to study spacer loss. Based on these observations, we propose that the Legionella pneumophila type I-C system represents a powerful model to study primed adaptation and the interplay between CRISPR interference and adaptation.
Collapse
Affiliation(s)
- Chitong Rao
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Denny Chin
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Alexander W Ensminger
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1, Canada
- Public Health Ontario, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
22
|
Li M, Gong L, Zhao D, Zhou J, Xiang H. The spacer size of I-B CRISPR is modulated by the terminal sequence of the protospacer. Nucleic Acids Res 2017; 45:4642-4654. [PMID: 28379481 PMCID: PMC5416893 DOI: 10.1093/nar/gkx229] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/25/2017] [Indexed: 12/29/2022] Open
Abstract
Prokaryotes memorize invader information by incorporating alien DNA as spacers into CRISPR arrays. Although the spacer size has been suggested to be predefined by the architecture of the acquisition complex, there is usually an unexpected heterogeneity. Here, we explored the causes of this heterogeneity in Haloarcula hispanica I-B CRISPR. High-throughput sequencing following adaptation assays demonstrated significant size variation among 37 957 new spacers, which appeared to be sequence-dependent. Consistently, the third nucleotide at the spacer 3΄-end (PAM-distal end) showed an evident bias for cytosine and mutating this cytosine in the protospacer sequence could change the final spacer size. In addition, slippage of the 5΄-end (PAM-end), which contributed to most of the observed PAM (protospacer adjacent motif) inaccuracy, also tended to change the spacer size. We propose that both ends of the PAM-protospacer sequence should exhibit nucleotide selectivity (with different stringencies), which fine-tunes the structural ruler, to a certain extent, to specify the spacer size.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Luyao Gong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Musharova O, Klimuk E, Datsenko KA, Metlitskaya A, Logacheva M, Semenova E, Severinov K, Savitskaya E. Spacer-length DNA intermediates are associated with Cas1 in cells undergoing primed CRISPR adaptation. Nucleic Acids Res 2017; 45:3297-3307. [PMID: 28204574 PMCID: PMC5389516 DOI: 10.1093/nar/gkx097] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/06/2017] [Indexed: 01/16/2023] Open
Abstract
During primed CRISPR adaptation spacers are preferentially selected from DNA recognized by CRISPR interference machinery, which in the case of Type I CRISPR-Cas systems consists of CRISPR RNA (crRNA) bound effector Cascade complex that locates complementary targets, and Cas3 executor nuclease/helicase. A complex of Cas1 and Cas2 proteins is capable of inserting new spacers in the CRISPR array. Here, we show that in Escherichia coli cells undergoing primed adaptation, spacer-sized fragments of foreign DNA are associated with Cas1. Based on sensitivity to digestion with nucleases, the associated DNA is not in a standard double-stranded state. Spacer-sized fragments are cut from one strand of foreign DNA in Cas1- and Cas3-dependent manner. These fragments are generated from much longer S1-nuclease sensitive fragments of foreign DNA that require Cas3 for their production. We propose that in the course of CRISPR interference Cas3 generates fragments of foreign DNA that are recognized by the Cas1-Cas2 adaptation complex, which excises spacer-sized fragments and channels them for insertion into CRISPR array.
Collapse
Affiliation(s)
- Olga Musharova
- Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Evgeny Klimuk
- Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Kirill A Datsenko
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | - Maria Logacheva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Ekaterina Semenova
- Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Konstantin Severinov
- Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia.,Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ekaterina Savitskaya
- Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| |
Collapse
|
24
|
Shipman SL, Nivala J, Macklis JD, Church GM. CRISPR-Cas encoding of a digital movie into the genomes of a population of living bacteria. Nature 2017; 547:345-349. [PMID: 28700573 PMCID: PMC5842791 DOI: 10.1038/nature23017] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 06/02/2017] [Indexed: 02/06/2023]
Abstract
DNA is an excellent medium for archiving data. Recent efforts have illustrated the potential for information storage in DNA using synthesized oligonucleotides assembled in vitro. A relatively unexplored avenue of information storage in DNA is the ability to write information into the genome of a living cell by the addition of nucleotides over time. Using the Cas1-Cas2 integrase, the CRISPR-Cas microbial immune system stores the nucleotide content of invading viruses to confer adaptive immunity. When harnessed, this system has the potential to write arbitrary information into the genome. Here we use the CRISPR-Cas system to encode the pixel values of black and white images and a short movie into the genomes of a population of living bacteria. In doing so, we push the technical limits of this information storage system and optimize strategies to minimize those limitations. We also uncover underlying principles of the CRISPR-Cas adaptation system, including sequence determinants of spacer acquisition that are relevant for understanding both the basic biology of bacterial adaptation and its technological applications. This work demonstrates that this system can capture and stably store practical amounts of real data within the genomes of populations of living cells.
Collapse
Affiliation(s)
- Seth L Shipman
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Bauer Laboratory 103, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Jeff Nivala
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Bauer Laboratory 103, Cambridge, MA 02138, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
25
|
Van Orden MJ, Klein P, Babu K, Najar FZ, Rajan R. Conserved DNA motifs in the type II-A CRISPR leader region. PeerJ 2017; 5:e3161. [PMID: 28392985 PMCID: PMC5382924 DOI: 10.7717/peerj.3161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/07/2017] [Indexed: 12/26/2022] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats associated (CRISPR-Cas) systems consist of RNA-protein complexes that provide bacteria and archaea with sequence-specific immunity against bacteriophages, plasmids, and other mobile genetic elements. Bacteria and archaea become immune to phage or plasmid infections by inserting short pieces of the intruder DNA (spacer) site-specifically into the leader-repeat junction in a process called adaptation. Previous studies have shown that parts of the leader region, especially the 3′ end of the leader, are indispensable for adaptation. However, a comprehensive analysis of leader ends remains absent. Here, we have analyzed the leader, repeat, and Cas proteins from 167 type II-A CRISPR loci. Our results indicate two distinct conserved DNA motifs at the 3′ leader end: ATTTGAG (noted previously in the CRISPR1 locus of Streptococcus thermophilus DGCC7710) and a newly defined CTRCGAG, associated with the CRISPR3 locus of S. thermophilus DGCC7710. A third group with a very short CG DNA conservation at the 3′ leader end is observed mostly in lactobacilli. Analysis of the repeats and Cas proteins revealed clustering of these CRISPR components that mirrors the leader motif clustering, in agreement with the coevolution of CRISPR-Cas components. Based on our analysis of the type II-A CRISPR loci, we implicate leader end sequences that could confer site-specificity for the adaptation-machinery in the different subsets of type II-A CRISPR loci.
Collapse
Affiliation(s)
- Mason J Van Orden
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Peter Klein
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Kesavan Babu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Fares Z Najar
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
26
|
Leenay RT, Beisel CL. Deciphering, Communicating, and Engineering the CRISPR PAM. J Mol Biol 2017; 429:177-191. [PMID: 27916599 PMCID: PMC5235977 DOI: 10.1016/j.jmb.2016.11.024] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/15/2016] [Accepted: 11/25/2016] [Indexed: 12/26/2022]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) loci and their flanking CRISPR-associated (cas) genes make up RNA-guided, adaptive immune systems in prokaryotes whose effector proteins have become powerful tools for basic research and biotechnology. While the Cas effector proteins are remarkably diverse, they commonly rely on protospacer-adjacent motifs (PAMs) as the first step in target recognition. PAM sequences are known to vary considerably between systems and have proven to be difficult to predict, spurring the need for new tools to rapidly identify and communicate these sequences. Recent advances have also shown that Cas proteins can be engineered to alter PAM recognition, opening new opportunities to develop CRISPR-based tools with enhanced targeting capabilities. In this review, we discuss the properties of the CRISPR PAM and the emerging tools for determining, visualizing, and engineering PAM recognition. We also propose a standard means of orienting the PAM to simplify how its location and sequence are communicated.
Collapse
Affiliation(s)
- Ryan T Leenay
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, United States
| | - Chase L Beisel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, United States.
| |
Collapse
|
27
|
Yoganand KNR, Sivathanu R, Nimkar S, Anand B. Asymmetric positioning of Cas1-2 complex and Integration Host Factor induced DNA bending guide the unidirectional homing of protospacer in CRISPR-Cas type I-E system. Nucleic Acids Res 2016; 45:367-381. [PMID: 27899566 PMCID: PMC5224486 DOI: 10.1093/nar/gkw1151] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 01/21/2023] Open
Abstract
CRISPR-Cas system epitomizes prokaryote-specific quintessential adaptive defense machinery that limits the genome invasion of mobile genetic elements. It confers adaptive immunity to bacteria by capturing a protospacer fragment from invading foreign DNA, which is later inserted into the leader proximal end of CRIPSR array and serves as immunological memory to recognize recurrent invasions. The universally conserved Cas1 and Cas2 form an integration complex that is known to mediate the protospacer invasion into the CRISPR array. However, the mechanism by which this protospacer fragment gets integrated in a directional fashion into the leader proximal end is elusive. Here, we employ CRISPR/dCas9 mediated immunoprecipitation and genetic analysis to identify Integration Host Factor (IHF) as an indispensable accessory factor for spacer acquisition in Escherichia coli Further, we show that the leader region abutting the first CRISPR repeat localizes IHF and Cas1-2 complex. IHF binding to the leader region induces bending by about 120° that in turn engenders the regeneration of the cognate binding site for protospacer bound Cas1-2 complex and brings it in proximity with the first CRISPR repeat. This appears to guide Cas1-2 complex to orient the protospacer invasion towards the leader-repeat junction thus driving the integration in a polarized fashion.
Collapse
Affiliation(s)
- K N R Yoganand
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - R Sivathanu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Siddharth Nimkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - B Anand
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
28
|
Interference-driven spacer acquisition is dominant over naive and primed adaptation in a native CRISPR-Cas system. Nat Commun 2016; 7:12853. [PMID: 27694798 PMCID: PMC5059440 DOI: 10.1038/ncomms12853] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 08/08/2016] [Indexed: 12/20/2022] Open
Abstract
CRISPR–Cas systems provide bacteria with adaptive immunity against foreign nucleic acids by acquiring short, invader-derived sequences called spacers. Here, we use high-throughput sequencing to analyse millions of spacer acquisition events in wild-type populations of Pectobacterium atrosepticum. Plasmids not previously encountered, or plasmids that had escaped CRISPR–Cas targeting via point mutation, are used to provoke naive or primed spacer acquisition, respectively. The origin, location and order of spacer acquisition show that spacer selection through priming initiates near the site of CRISPR–Cas recognition (the protospacer), but on the displaced strand, and is consistent with 3′–5′ translocation of the Cas1:Cas2-3 acquisition machinery. Newly acquired spacers determine the location and strand specificity of subsequent spacers and demonstrate that interference-driven spacer acquisition (‘targeted acquisition') is a major contributor to adaptation in type I-F CRISPR–Cas systems. Finally, we show that acquisition of self-targeting spacers is occurring at a constant rate in wild-type cells and can be triggered by foreign DNA with similarity to the bacterial chromosome. Prokaryotic CRISPR-Cas systems provide adaptive immunity against foreign nucleic acids by acquiring short, invader-derived sequences called spacers. Here, Staals et al. analyse millions of such events in a native CRISPR-Cas system, showing that newly acquired spacers provoke additional rounds of spacer acquisition.
Collapse
|
29
|
Wright AV, Doudna JA. Protecting genome integrity during CRISPR immune adaptation. Nat Struct Mol Biol 2016; 23:876-883. [PMID: 27595346 DOI: 10.1038/nsmb.3289] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022]
Abstract
Bacterial CRISPR-Cas systems include genomic arrays of short repeats flanking foreign DNA sequences and provide adaptive immunity against viruses. Integration of foreign DNA must occur specifically to avoid damaging the genome or the CRISPR array, but surprisingly promiscuous activity occurs in vitro. Here we reconstituted full-site DNA integration and show that the Streptococcus pyogenes type II-A Cas1-Cas2 integrase maintains specificity in part through limitations on the second integration step. At non-CRISPR sites, integration stalls at the half-site intermediate, thereby enabling reaction reversal. S. pyogenes Cas1-Cas2 is highly specific for the leader-proximal repeat and recognizes the repeat's palindromic ends, thus fitting a model of independent recognition by distal Cas1 active sites. These findings suggest that DNA-insertion sites are less common than suggested by previous work, thereby preventing toxicity during CRISPR immune adaptation and maintaining host genome integrity.
Collapse
Affiliation(s)
- Addison V Wright
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA.,Department of Chemistry, University of California, Berkeley, Berkeley, California, USA.,Innovative Genomics Initiative, University of California, Berkeley, Berkeley, California, USA.,Center for RNA Systems Biology, University of California, Berkeley, Berkeley, California, USA.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, USA.,Molecular Biophysics &Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
30
|
Künne T, Kieper SN, Bannenberg JW, Vogel AIM, Miellet WR, Klein M, Depken M, Suarez-Diez M, Brouns SJJ. Cas3-Derived Target DNA Degradation Fragments Fuel Primed CRISPR Adaptation. Mol Cell 2016; 63:852-64. [PMID: 27546790 DOI: 10.1016/j.molcel.2016.07.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/01/2016] [Accepted: 07/15/2016] [Indexed: 11/16/2022]
Abstract
Prokaryotes use a mechanism called priming to update their CRISPR immunological memory to rapidly counter revisiting, mutated viruses, and plasmids. Here we have determined how new spacers are produced and selected for integration into the CRISPR array during priming. We show that Cas3 couples CRISPR interference to adaptation by producing DNA breakdown products that fuel the spacer integration process in a two-step, PAM-associated manner. The helicase-nuclease Cas3 pre-processes target DNA into fragments of about 30-100 nt enriched for thymine-stretches in their 3' ends. The Cas1-2 complex further processes these fragments and integrates them sequence-specifically into CRISPR repeats by coupling of a 3' cytosine of the fragment. Our results highlight that the selection of PAM-compliant spacers during priming is enhanced by the combined sequence specificities of Cas3 and the Cas1-2 complex, leading to an increased propensity of integrating functional CTT-containing spacers.
Collapse
Affiliation(s)
- Tim Künne
- Laboratory of Microbiology, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Sebastian N Kieper
- Laboratory of Microbiology, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Jasper W Bannenberg
- Laboratory of Microbiology, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Anne I M Vogel
- Laboratory of Microbiology, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Willem R Miellet
- Laboratory of Microbiology, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Misha Klein
- Kavli Institute of Nanoscience and Department of BioNanoscience, Delft University of Technology, 2629 HZ, Delft, the Netherlands
| | - Martin Depken
- Kavli Institute of Nanoscience and Department of BioNanoscience, Delft University of Technology, 2629 HZ, Delft, the Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Stan J J Brouns
- Laboratory of Microbiology, Wageningen University, 6708 WE Wageningen, the Netherlands; Kavli Institute of Nanoscience and Department of BioNanoscience, Delft University of Technology, 2629 HZ, Delft, the Netherlands.
| |
Collapse
|
31
|
Shipman SL, Nivala J, Macklis JD, Church GM. Molecular recordings by directed CRISPR spacer acquisition. Science 2016; 353:aaf1175. [PMID: 27284167 DOI: 10.1126/science.aaf1175] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/22/2016] [Indexed: 01/15/2023]
Abstract
The ability to write a stable record of identified molecular events into a specific genomic locus would enable the examination of long cellular histories and have many applications, ranging from developmental biology to synthetic devices. We show that the type I-E CRISPR (clustered regularly interspaced short palindromic repeats)-Cas system of Escherichia coli can mediate acquisition of defined pieces of synthetic DNA. We harnessed this feature to generate records of specific DNA sequences into a population of bacterial genomes. We then applied directed evolution so as to alter the recognition of a protospacer adjacent motif by the Cas1-Cas2 complex, which enabled recording in two modes simultaneously. We used this system to reveal aspects of spacer acquisition, fundamental to the CRISPR-Cas adaptation process. These results lay the foundations of a multimodal intracellular recording device.
Collapse
Affiliation(s)
- Seth L Shipman
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA. Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Bauer Laboratory 103, Cambridge, MA 02138, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Jeff Nivala
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Bauer Laboratory 103, Cambridge, MA 02138, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
32
|
Wright AV, Nuñez JK, Doudna JA. Biology and Applications of CRISPR Systems: Harnessing Nature's Toolbox for Genome Engineering. Cell 2016; 164:29-44. [PMID: 26771484 DOI: 10.1016/j.cell.2015.12.035] [Citation(s) in RCA: 706] [Impact Index Per Article: 78.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Indexed: 12/26/2022]
Abstract
Bacteria and archaea possess a range of defense mechanisms to combat plasmids and viral infections. Unique among these are the CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated) systems, which provide adaptive immunity against foreign nucleic acids. CRISPR systems function by acquiring genetic records of invaders to facilitate robust interference upon reinfection. In this Review, we discuss recent advances in understanding the diverse mechanisms by which Cas proteins respond to foreign nucleic acids and how these systems have been harnessed for precision genome manipulation in a wide array of organisms.
Collapse
Affiliation(s)
- Addison V Wright
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - James K Nuñez
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute HHMI, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Center for RNA Systems Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Initiative, University of California, Berkeley, Berkeley, CA 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
33
|
Delannoy S, Beutin L, Fach P. Improved traceability of Shiga-toxin-producing Escherichia coli using CRISPRs for detection and typing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8163-8174. [PMID: 26449676 DOI: 10.1007/s11356-015-5446-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/16/2015] [Indexed: 06/05/2023]
Abstract
Among strains of Shiga-toxin-producing Escherichia coli (STEC), seven serogroups (O26, O45, O103, O111, O121, O145, and O157) are frequently associated with severe clinical illness in humans. The development of methods for their reliable detection from complex samples such as food has been challenging thus far, and is currently based on the PCR detection of the major virulence genes stx1, stx2, and eae, and O-serogroup-specific genes. However, this approach lacks resolution. Moreover, new STEC serotypes are continuously emerging worldwide. For example, in May 2011, strains belonging to the hitherto rarely detected STEC serotype O104:H4 were identified as causative agents of one of the world's largest outbreak of disease with a high incidence of hemorrhagic colitis and hemolytic uremic syndrome in the infected patients. Discriminant typing of pathogens is crucial for epidemiological surveillance and investigations of outbreaks, and especially for tracking and tracing in case of accidental and deliberate contamination of food and water samples. Clustered regularly interspaced short palindromic repeats (CRISPRs) are composed of short, highly conserved DNA repeats separated by unique sequences of similar length. This distinctive sequence signature of CRISPRs can be used for strain typing in several bacterial species including STEC. This review discusses how CRISPRs have recently been used for STEC identification and typing.
Collapse
Affiliation(s)
- Sabine Delannoy
- ANSES, Food Safety Laboratory, Platform IdentyPath, Université Paris-Est, Maisons-Alfort, France.
| | - Lothar Beutin
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Patrick Fach
- ANSES, Food Safety Laboratory, Platform IdentyPath, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|
34
|
|
35
|
Qiu Y, Wang S, Chen Z, Guo Y, Song Y. An Active Type I-E CRISPR-Cas System Identified in Streptomyces avermitilis. PLoS One 2016; 11:e0149533. [PMID: 26901661 PMCID: PMC4762764 DOI: 10.1371/journal.pone.0149533] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/02/2016] [Indexed: 01/21/2023] Open
Abstract
CRISPR-Cas systems, the small RNA-dependent immune systems, are widely distributed in prokaryotes. However, only a small proportion of CRISPR-Cas systems have been identified to be active in bacteria. In this work, a naturally active type I-E CRISPR-Cas system was found in Streptomyces avermitilis. The system shares many common genetic features with the type I-E system of Escherichia coli, and meanwhile shows unique characteristics. It not only degrades plasmid DNA with target protospacers, but also acquires new spacers from the target plasmid DNA. The naive features of spacer acquisition in the type I-E system of S. avermitilis were investigated and a completely conserved PAM 5'-AAG-3' was identified. Spacer acquisition displayed differential strand bias upstream and downstream of the priming spacer, and irregular integrations of new spacers were observed. In addition, introduction of this system into host conferred phage resistance to some extent. This study will give new insights into adaptation mechanism of the type I-E systems in vivo, and meanwhile provide theoretical foundation for applying this system on the genetic modification of S. avermitilis.
Collapse
Affiliation(s)
- Yi Qiu
- Department of Microbiology, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - Shiwei Wang
- Department of Microbiology, College of Biological Sciences, China Agricultural University, Beijing, PR China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | - Zhi Chen
- Department of Microbiology, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - Yajie Guo
- Department of Microbiology, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - Yuan Song
- Department of Microbiology, College of Biological Sciences, China Agricultural University, Beijing, PR China
| |
Collapse
|
36
|
Abstract
Since the first demonstration that CRISPR-Cas systems provide bacteria and archaea with adaptive immunity against phages and plasmids, numerous studies have yielded key insights into the molecular mechanisms governing how these systems attack and degrade foreign DNA. However, the molecular mechanisms underlying the adaptation stage, in which new immunological memory is formed, have until recently represented a major unresolved question. In this Progress article, we discuss recent discoveries that have shown both how foreign DNA is identified by the CRISPR-Cas adaptation machinery and the molecular basis for its integration into the chromosome to form an immunological memory. Furthermore, we describe the roles of each of the specific CRISPR-Cas components that are involved in memory formation, and consider current models for their evolutionary origin.
Collapse
|
37
|
Xue C, Seetharam AS, Musharova O, Severinov K, Brouns SJJ, Severin AJ, Sashital DG. CRISPR interference and priming varies with individual spacer sequences. Nucleic Acids Res 2015; 43:10831-47. [PMID: 26586800 PMCID: PMC4678831 DOI: 10.1093/nar/gkv1259] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/30/2015] [Indexed: 12/21/2022] Open
Abstract
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated) systems allow bacteria to adapt to infection by acquiring 'spacer' sequences from invader DNA into genomic CRISPR loci. Cas proteins use RNAs derived from these loci to target cognate sequences for destruction through CRISPR interference. Mutations in the protospacer adjacent motif (PAM) and seed regions block interference but promote rapid 'primed' adaptation. Here, we use multiple spacer sequences to reexamine the PAM and seed sequence requirements for interference and priming in the Escherichia coli Type I-E CRISPR-Cas system. Surprisingly, CRISPR interference is far more tolerant of mutations in the seed and the PAM than previously reported, and this mutational tolerance, as well as priming activity, is highly dependent on spacer sequence. We identify a large number of functional PAMs that can promote interference, priming or both activities, depending on the associated spacer sequence. Functional PAMs are preferentially acquired during unprimed 'naïve' adaptation, leading to a rapid priming response following infection. Our results provide numerous insights into the importance of both spacer and target sequences for interference and priming, and reveal that priming is a major pathway for adaptation during initial infection.
Collapse
Affiliation(s)
- Chaoyou Xue
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Arun S Seetharam
- Genome Informatics Facility, Office of Biotechnology, Iowa State University Ames, IA 50011, USA
| | - Olga Musharova
- Institutes of Gene Biology and Molecular Genetics, Russian Academy of Sciences, Moscow 119991, Russia Skolkovo Institute of Science and Technology, Skolkovo, Russia, Moscow, Russia Peter the Great Polytechnical University, St. Petersburg, Russia
| | - Konstantin Severinov
- Institutes of Gene Biology and Molecular Genetics, Russian Academy of Sciences, Moscow 119991, Russia Skolkovo Institute of Science and Technology, Skolkovo, Russia, Moscow, Russia Peter the Great Polytechnical University, St. Petersburg, Russia Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Stan J J Brouns
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Andrew J Severin
- Genome Informatics Facility, Office of Biotechnology, Iowa State University Ames, IA 50011, USA
| | - Dipali G Sashital
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
38
|
Vorontsova D, Datsenko KA, Medvedeva S, Bondy-Denomy J, Savitskaya EE, Pougach K, Logacheva M, Wiedenheft B, Davidson AR, Severinov K, Semenova E. Foreign DNA acquisition by the I-F CRISPR-Cas system requires all components of the interference machinery. Nucleic Acids Res 2015; 43:10848-60. [PMID: 26586803 PMCID: PMC4678832 DOI: 10.1093/nar/gkv1261] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/02/2015] [Indexed: 12/11/2022] Open
Abstract
CRISPR immunity depends on acquisition of fragments of foreign DNA into CRISPR arrays. For type I-E CRISPR–Cas systems two modes of spacer acquisition, naïve and primed adaptation, were described. Naïve adaptation requires just two most conserved Cas1 and Cas2 proteins; it leads to spacer acquisition from both foreign and bacterial DNA and results in multiple spacers incapable of immune response. Primed adaptation requires all Cas proteins and a CRISPR RNA recognizing a partially matching target. It leads to selective acquisition of spacers from DNA molecules recognized by priming CRISPR RNA, with most spacers capable of protecting the host. Here, we studied spacer acquisition by a type I-F CRISPR–Cas system. We observe both naïve and primed adaptation. Both processes require not just Cas1 and Cas2, but also intact Csy complex and CRISPR RNA. Primed adaptation shows a gradient of acquisition efficiency as a function of distance from the priming site and a strand bias that is consistent with existence of single-stranded adaption intermediates. The results provide new insights into the mechanism of spacer acquisition and illustrate surprising mechanistic diversity of related CRISPR–Cas systems.
Collapse
Affiliation(s)
- Daria Vorontsova
- Skolkovo Institute of Science and Technology, Skolkovo, Russia Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Kirill A Datsenko
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Sofia Medvedeva
- Skolkovo Institute of Science and Technology, Skolkovo, Russia Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Joseph Bondy-Denomy
- Department of Molecular Genetics and Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Ekaterina E Savitskaya
- Skolkovo Institute of Science and Technology, Skolkovo, Russia Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ksenia Pougach
- Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | | | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Alan R Davidson
- Department of Molecular Genetics and Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Konstantin Severinov
- Skolkovo Institute of Science and Technology, Skolkovo, Russia Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Semenova
- Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
39
|
Structural and Mechanistic Basis of PAM-Dependent Spacer Acquisition in CRISPR-Cas Systems. Cell 2015; 163:840-53. [PMID: 26478180 DOI: 10.1016/j.cell.2015.10.008] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/28/2015] [Accepted: 10/04/2015] [Indexed: 12/26/2022]
Abstract
Bacteria acquire memory of viral invaders by incorporating invasive DNA sequence elements into the host CRISPR locus, generating a new spacer within the CRISPR array. We report on the structures of Cas1-Cas2-dual-forked DNA complexes in an effort toward understanding how the protospacer is sampled prior to insertion into the CRISPR locus. Our study reveals a protospacer DNA comprising a 23-bp duplex bracketed by tyrosine residues, together with anchored flanking 3' overhang segments. The PAM-complementary sequence in the 3' overhang is recognized by the Cas1a catalytic subunits in a base-specific manner, and subsequent cleavage at positions 5 nt from the duplex boundary generates a 33-nt DNA intermediate that is incorporated into the CRISPR array via a cut-and-paste mechanism. Upon protospacer binding, Cas1-Cas2 undergoes a significant conformational change, generating a flat surface conducive to proper protospacer recognition. Here, our study provides important structure-based mechanistic insights into PAM-dependent spacer acquisition.
Collapse
|
40
|
Rollie C, Schneider S, Brinkmann AS, Bolt EL, White MF. Intrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition. eLife 2015; 4. [PMID: 26284603 PMCID: PMC4574026 DOI: 10.7554/elife.08716] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/17/2015] [Indexed: 11/13/2022] Open
Abstract
The adaptive prokaryotic immune system CRISPR-Cas provides RNA-mediated protection from invading genetic elements. The fundamental basis of the system is the ability to capture small pieces of foreign DNA for incorporation into the genome at the CRISPR locus, a process known as Adaptation, which is dependent on the Cas1 and Cas2 proteins. We demonstrate that Cas1 catalyses an efficient trans-esterification reaction on branched DNA substrates, which represents the reverse- or disintegration reaction. Cas1 from both Escherichia coli and Sulfolobus solfataricus display sequence specific activity, with a clear preference for the nucleotides flanking the integration site at the leader-repeat 1 boundary of the CRISPR locus. Cas2 is not required for this activity and does not influence the specificity. This suggests that the inherent sequence specificity of Cas1 is a major determinant of the adaptation process.
Collapse
Affiliation(s)
- Clare Rollie
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| | - Stefanie Schneider
- Faculty of Medicine, Institute of Cell Biology, University of Duisburg-Essen, Essen, Germany
| | - Anna Sophie Brinkmann
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Edward L Bolt
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Malcolm F White
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
41
|
|
42
|
Levy A, Goren MG, Yosef I, Auster O, Manor M, Amitai G, Edgar R, Qimron U, Sorek R. CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature 2015; 520:505-510. [PMID: 25874675 PMCID: PMC4561520 DOI: 10.1038/nature14302] [Citation(s) in RCA: 299] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/09/2015] [Indexed: 12/21/2022]
Abstract
CRISPR-Cas (clustered, regularly interspaced short palindromic repeats coupled with CRISPR-associated proteins) is a bacterial immunity system that protects against invading phages or plasmids. In the process of CRISPR adaptation, short pieces of DNA ('spacers') are acquired from foreign elements and integrated into the CRISPR array. So far, it has remained a mystery how spacers are preferentially acquired from the foreign DNA while the self chromosome is avoided. Here we show that spacer acquisition is replication-dependent, and that DNA breaks formed at stalled replication forks promote spacer acquisition. Chromosomal hotspots of spacer acquisition were confined by Chi sites, which are sequence octamers highly enriched on the bacterial chromosome, suggesting that these sites limit spacer acquisition from self DNA. We further show that the avoidance of self is mediated by the RecBCD double-stranded DNA break repair complex. Our results suggest that, in Escherichia coli, acquisition of new spacers largely depends on RecBCD-mediated processing of double-stranded DNA breaks occurring primarily at replication forks, and that the preference for foreign DNA is achieved through the higher density of Chi sites on the self chromosome, in combination with the higher number of forks on the foreign DNA. This model explains the strong preference to acquire spacers both from high copy plasmids and from phages.
Collapse
Affiliation(s)
- Asaf Levy
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moran G Goren
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ido Yosef
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Oren Auster
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Miriam Manor
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rotem Edgar
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Udi Qimron
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
43
|
Liu T, Li Y, Wang X, Ye Q, Li H, Liang Y, She Q, Peng N. Transcriptional regulator-mediated activation of adaptation genes triggers CRISPR de novo spacer acquisition. Nucleic Acids Res 2015; 43:1044-55. [PMID: 25567986 PMCID: PMC4333418 DOI: 10.1093/nar/gku1383] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acquisition of de novo spacer sequences confers CRISPR-Cas with a memory to defend against invading genetic elements. However, the mechanism of regulation of CRISPR spacer acquisition remains unknown. Here we examine the transcriptional regulation of the conserved spacer acquisition genes in Type I-A of Sulfolobus islandicus REY15A. Csa3a, a MarR-like transcription factor encoded by the gene located adjacent to csa1, cas1, cas2 and cas4 cluster, but on the reverse strand, was demonstrated to specifically bind to the csa1 and cas1 promoters with the imperfect palindromic sequence. Importantly, it was demonstrated that the transcription level of csa1, cas1, cas2 and cas4 was significantly enhanced in a csa3a-overexpression strain and, moreover, the Csa1 and Cas1 protein levels were increased in this strain. Furthermore, we demonstrated the hyperactive uptake of unique spacers within both CRISPR loci in the presence of the csa3a overexpression vector. The spacer acquisition process is dependent on the CCN PAM sequence and protospacer selection is random and non-directional. These results suggested a regulation mechanism of CRISPR spacer acquisition where a single transcriptional regulator senses the presence of an invading element and then activates spacer acquisition gene expression which leads to de novo spacer uptake from the invading element.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yingjun Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xiaodi Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Qing Ye
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Huan Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China Hubei Collaborative Innovation Center for Industrial Fermentation, Wuhan 430070, P. R. China
| | - Qunxin She
- Archaeal Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China Hubei Collaborative Innovation Center for Industrial Fermentation, Wuhan 430070, P. R. China
| |
Collapse
|
44
|
Dy RL, Richter C, Salmond GP, Fineran PC. Remarkable Mechanisms in Microbes to Resist Phage Infections. Annu Rev Virol 2014; 1:307-31. [DOI: 10.1146/annurev-virology-031413-085500] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ron L. Dy
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand;
| | - Corinna Richter
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand;
| | - George P.C. Salmond
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Peter C. Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand;
| |
Collapse
|
45
|
Abstract
The CRISPRs (clustered regularly interspaced short palindromic repeats) and their associated Cas (CRISPR-associated) proteins are a prokaryotic adaptive defence system against foreign nucleic acids. The CRISPR array comprises short repeats flanking short segments, called 'spacers', which are derived from foreign nucleic acids. The process of spacer insertion into the CRISPR array is termed 'adaptation'. Adaptation allows the system to rapidly evolve against emerging threats. In the present article, we review the most recent studies on the adaptation process, and focus primarily on the subtype I-E CRISPR-Cas system of Escherichia coli.
Collapse
|
46
|
Kupczok A, Bollback JP. Motif depletion in bacteriophages infecting hosts with CRISPR systems. BMC Genomics 2014; 15:663. [PMID: 25103210 PMCID: PMC4246573 DOI: 10.1186/1471-2164-15-663] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 02/15/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND CRISPR is a microbial immune system likely to be involved in host-parasite coevolution. It functions using target sequences encoded by the bacterial genome, which interfere with invading nucleic acids using a homology-dependent system. The system also requires protospacer associated motifs (PAMs), short motifs close to the target sequence that are required for interference in CRISPR types I and II. Here, we investigate whether PAMs are depleted in phage genomes due to selection pressure to escape recognition. RESULTS To this end, we analyzed two data sets. Phages infecting all bacterial hosts were analyzed first, followed by a detailed analysis of phages infecting the genus Streptococcus, where PAMs are best understood. We use two different measures of motif underrepresentation that control for codon bias and the frequency of submotifs. We compare phages infecting species with a particular CRISPR type to those infecting species without that type. Since only known PAMs were investigated, the analysis is restricted to CRISPR types I-C and I-E and in Streptococcus to types I-C and II. We found evidence for PAM depletion in Streptococcus phages infecting hosts with CRISPR type I-C, in Vibrio phages infecting hosts with CRISPR type I-E and in Streptococcus thermopilus phages infecting hosts with type II-A, known as CRISPR3. CONCLUSIONS The observed motif depletion in phages with hosts having CRISPR can be attributed to selection rather than to mutational bias, as mutational bias should affect the phages of all hosts. This observation implies that the CRISPR system has been efficient in the groups discussed here.
Collapse
Affiliation(s)
- Anne Kupczok
- />IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
- />Institute of Microbiology, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | | |
Collapse
|
47
|
Richter C, Dy RL, McKenzie RE, Watson BNJ, Taylor C, Chang JT, McNeil MB, Staals RHJ, Fineran PC. Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer. Nucleic Acids Res 2014; 42:8516-26. [PMID: 24990370 PMCID: PMC4117759 DOI: 10.1093/nar/gku527] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 12/23/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR), in combination with CRISPR associated (cas) genes, constitute CRISPR-Cas bacterial adaptive immune systems. To generate immunity, these systems acquire short sequences of nucleic acids from foreign invaders and incorporate these into their CRISPR arrays as spacers. This adaptation process is the least characterized step in CRISPR-Cas immunity. Here, we used Pectobacterium atrosepticum to investigate adaptation in Type I-F CRISPR-Cas systems. Pre-existing spacers that matched plasmids stimulated hyperactive primed acquisition and resulted in the incorporation of up to nine new spacers across all three native CRISPR arrays. Endogenous expression of the cas genes was sufficient, yet required, for priming. The new spacers inhibited conjugation and transformation, and interference was enhanced with increasing numbers of new spacers. We analyzed ∼ 350 new spacers acquired in priming events and identified a 5'-protospacer-GG-3' protospacer adjacent motif. In contrast to priming in Type I-E systems, new spacers matched either plasmid strand and a biased distribution, including clustering near the primed protospacer, suggested a bi-directional translocation model for the Cas1:Cas2-3 adaptation machinery. Taken together these results indicate priming adaptation occurs in different CRISPR-Cas systems, that it can be highly active in wild-type strains and that the underlying mechanisms vary.
Collapse
Affiliation(s)
- Corinna Richter
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Ron L Dy
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Rebecca E McKenzie
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Bridget N J Watson
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Corinda Taylor
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - James T Chang
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Matthew B McNeil
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Raymond H J Staals
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
48
|
Arslan Z, Hermanns V, Wurm R, Wagner R, Pul Ü. Detection and characterization of spacer integration intermediates in type I-E CRISPR-Cas system. Nucleic Acids Res 2014; 42:7884-93. [PMID: 24920831 PMCID: PMC4081107 DOI: 10.1093/nar/gku510] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/22/2014] [Accepted: 05/22/2014] [Indexed: 12/26/2022] Open
Abstract
The adaptation against foreign nucleic acids by the CRISPR-Cas system (Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins) depends on the insertion of foreign nucleic acid-derived sequences into the CRISPR array as novel spacers by still unknown mechanism. We identified and characterized in Escherichia coli intermediate states of spacer integration and mapped the integration site at the chromosomal CRISPR array in vivo. The results show that the insertion of new spacers occurs by site-specific nicking at both strands of the leader proximal repeat in a staggered way and is accompanied by joining of the resulting 5'-ends of the repeat strands with the 3'-ends of the incoming spacer. This concerted cleavage-ligation reaction depends on the metal-binding center of Cas1 protein and requires the presence of Cas2. By acquisition assays using plasmid-located CRISPR array with mutated repeat sequences, we demonstrate that the primary sequence of the first repeat is crucial for cleavage of the CRISPR array and the ligation of new spacer DNA.
Collapse
Affiliation(s)
- Zihni Arslan
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Veronica Hermanns
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Reinhild Wurm
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Rolf Wagner
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Ümit Pul
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
49
|
Heler R, Marraffini LA, Bikard D. Adapting to new threats: the generation of memory by CRISPR-Cas immune systems. Mol Microbiol 2014; 93:1-9. [PMID: 24806524 DOI: 10.1111/mmi.12640] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2014] [Indexed: 12/11/2022]
Abstract
Clustered, regularly interspaced, short palindromic repeats (CRISPR) loci and their associated genes (cas) confer bacteria and archaea with adaptive immunity against phages and other invading genetic elements. A fundamental requirement of any immune system is the ability to build a memory of past infections in order to deal more efficiently with recurrent infections. The adaptive feature of CRISPR-Cas immune systems relies on their ability to memorize DNA sequences of invading molecules and integrate them in between the repetitive sequences of the CRISPR array in the form of 'spacers'. The transcription of a spacer generates a small antisense RNA that is used by RNA-guided Cas nucleases to cleave the invading nucleic acid in order to protect the cell from infection. The acquisition of new spacers allows the CRISPR-Cas immune system to rapidly adapt against new threats and is therefore termed 'adaptation'. Recent studies have begun to elucidate the genetic requirements for adaptation and have demonstrated that rather than being a stochastic process, the selection of new spacers is influenced by several factors. We review here our current knowledge of the CRISPR adaptation mechanism.
Collapse
Affiliation(s)
- Robert Heler
- Laboratory of Bacteriology, The Rockefeller University, New York, NY, 10065, USA
| | | | | |
Collapse
|
50
|
Fineran PC, Gerritzen MJH, Suárez-Diez M, Künne T, Boekhorst J, van Hijum SAFT, Staals RHJ, Brouns SJJ. Degenerate target sites mediate rapid primed CRISPR adaptation. Proc Natl Acad Sci U S A 2014; 111:E1629-38. [PMID: 24711427 PMCID: PMC4000823 DOI: 10.1073/pnas.1400071111] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Prokaryotes encode adaptive immune systems, called CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated), to provide resistance against mobile invaders, such as viruses and plasmids. Host immunity is based on incorporation of invader DNA sequences in a memory locus (CRISPR), the formation of guide RNAs from this locus, and the degradation of cognate invader DNA (protospacer). Invaders can escape type I-E CRISPR-Cas immunity in Escherichia coli K12 by making point mutations in the seed region of the protospacer or its adjacent motif (PAM), but hosts quickly restore immunity by integrating new spacers in a positive-feedback process termed "priming." Here, by using a randomized protospacer and PAM library and high-throughput plasmid loss assays, we provide a systematic analysis of the constraints of both direct interference and subsequent priming in E. coli. We have defined a high-resolution genetic map of direct interference by Cascade and Cas3, which includes five positions of the protospacer at 6-nt intervals that readily tolerate mutations. Importantly, we show that priming is an extremely robust process capable of using degenerate target regions, with up to 13 mutations throughout the PAM and protospacer region. Priming is influenced by the number of mismatches, their position, and is nucleotide dependent. Our findings imply that even outdated spacers containing many mismatches can induce a rapid primed CRISPR response against diversified or related invaders, giving microbes an advantage in the coevolutionary arms race with their invaders.
Collapse
Affiliation(s)
- Peter C. Fineran
- Laboratory of Microbiology and
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | | | - María Suárez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University, 6703 HB Wageningen, The Netherlands
| | | | - Jos Boekhorst
- NIZO Food Research, 6718 ZB Ede, The Netherlands; and
| | - Sacha A. F. T. van Hijum
- NIZO Food Research, 6718 ZB Ede, The Netherlands; and
- Center for Molecular and Biomolecular Informatics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|