1
|
Kim SJ, Lee KM, Park SH, Yang T, Song I, Rai F, Hoshino R, Yun M, Zhang C, Kim JI, Lee S, Suh GSB, Niwa R, Park ZY, Kim YJ. A sexually transmitted sugar orchestrates reproductive responses to nutritional stress. Nat Commun 2024; 15:8477. [PMID: 39353950 PMCID: PMC11445483 DOI: 10.1038/s41467-024-52807-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
Seminal fluid is rich in sugars, but their role beyond supporting sperm motility is unknown. In this study, we found Drosophila melanogaster males transfer a substantial amount of a phospho-galactoside to females during mating, but only half as much when undernourished. This seminal substance, which we named venerose, induces an increase in germline stem cells (GSCs) and promotes sperm storage in females, especially undernourished ones. Venerose enters the hemolymph and directly activates nutrient-sensing Dh44+ neurons in the brain. Food deprivation directs the nutrient-sensing neurons to secrete more of the neuropeptide Dh44 in response to infused venerose. The secreted Dh44 then enhances the local niche signal, stimulating GSC proliferation. It also extends the retention of ejaculate by females, resulting in greater venerose absorption and increased sperm storage. In this study, we uncovered the role of a sugar-like seminal substance produced by males that coordinates reproductive responses to nutritional challenges in females.
Collapse
Affiliation(s)
- Seong-Jin Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Kang-Min Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Si Hyung Park
- School of Horticulture and Forestry, College of Bio and Medical Sciences, Mokpo National University, Muan, 58554, Republic of Korea
| | - Taekyun Yang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Ingyu Song
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Fumika Rai
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Ryo Hoshino
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Minsik Yun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Chen Zhang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jae-Il Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Greg S B Suh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
2
|
Manas F, Piterois H, Labrousse C, Beaugeard L, Uzbekov R, Bressac C. Gone but not forgotten: dynamics of sperm storage and potential ejaculate digestion in the black soldier fly Hermetia illucens. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241205. [PMID: 39479251 PMCID: PMC11521600 DOI: 10.1098/rsos.241205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024]
Abstract
Understanding the dynamics of sperm storage is essential to unravel the complexity of post-copulatory sexual selection processes in internally fertilized species. This physiological process goes from sperm transfer during copulation to its use for fertilization. In this context, the spatiotemporal dynamics of sperm storage were described in the black soldier fly (BSF) with fluorescence and transmission electron microscopy (TEM). BSF females have compartmentalized spermathecae with a transfer compartment, the fishnet canals, and a storage compartment, the reservoirs. Spermatozoa were counted both during and after mating in the two compartments. In addition to seminal fluids, the male transfers a mass of sperm in the fishnet canals, then only 49% of the transferred spermatozoa reach the reservoirs over two days. TEM observations of the fishnet canals revealed potential digestive functions, explaining the decline in the number and viability of spermatozoa in this compartment but not in the reservoirs. After one mating, females laid up to three fertile clutches, showing no constraints on sperm quantity or quality. Spermatic and ultrastructural investigations strongly suggest that BSF ejaculate acts both as a sperm plug and as a nuptial gift, reinforcing the interest in studying this farming insect as a new model for sexual selection.
Collapse
Affiliation(s)
- Frédéric Manas
- Insect Research Biology Institute (IRBI), UMR CNRS 7261 University of Tours, Tours37200, France
| | - Harmony Piterois
- Insect Research Biology Institute (IRBI), UMR CNRS 7261 University of Tours, Tours37200, France
| | - Carole Labrousse
- Insect Research Biology Institute (IRBI), UMR CNRS 7261 University of Tours, Tours37200, France
| | - Laureen Beaugeard
- Insect Research Biology Institute (IRBI), UMR CNRS 7261 University of Tours, Tours37200, France
| | - Rustem Uzbekov
- Plateforme IBiSA de Microscopie Electronique, University of Tours and CHRU of Tours, Tours37200, France
| | - Christophe Bressac
- Insect Research Biology Institute (IRBI), UMR CNRS 7261 University of Tours, Tours37200, France
| |
Collapse
|
3
|
Santhosh S, Ebert D, Janicke T. Sperm competition favours intermediate sperm size in a hermaphrodite1. J Evol Biol 2024; 37:829-838. [PMID: 38738700 DOI: 10.1093/jeb/voae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/22/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Sperm competition is a potent mechanism of postcopulatory sexual selection that has been found to shape reproductive morphologies and behaviours in promiscuous animals. Especially sperm size has been argued to evolve in response to sperm competition through its effect on sperm longevity, sperm motility, the ability to displace competing sperm, and ultimately fertilization success. Additionally, sperm size has been observed to co-evolve with female reproductive morphology. Theoretical work predicts that sperm competition may select for longer sperm but may also favour shorter sperm if sperm size trades-off with number. In this study, we studied the relationship between sperm size and postmating success in the free-living flatworm, Macrostomum lignano. Specifically, we used inbred isolines of M. lignano that varied in sperm size to investigate how sperm size translated into the ability of worms to transfer and deposit sperm in a mating partner. Our results revealed a hump-shaped relationship with individuals producing sperm of intermediate size having the highest sperm competitiveness. This finding broadens our understanding of the evolution of sperm morphology by providing empirical support for stabilizing selection on sperm size under sperm competition.
Collapse
Affiliation(s)
- Santhosh Santhosh
- Department of Environmental Sciences, Zoology, University of Basel, CH-4 4051 Basel, Switzerland
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, CH-4 4051 Basel, Switzerland
| | - Tim Janicke
- Centre d'Ecologie Fonctionelle et Evolutive, Univ. Montpellier, CNRS, EPHE, IRD, 34293 Montpellier Cedex 05, France
| |
Collapse
|
4
|
Míčková K, Jelínek V, Tomášek O, Stopková R, Stopka P, Albrecht T. Proteomic analysis reveals dynamic changes in cloacal fluid composition during the reproductive season in a sexually promiscuous passerine. Sci Rep 2024; 14:14259. [PMID: 38902251 PMCID: PMC11190206 DOI: 10.1038/s41598-024-62244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Cryptic female choice (CFC) is a component of postcopulatory sexual selection that allows females to influence the fertilization success of sperm from different males. While its precise mechanisms remain unclear, they may involve the influence of the protein composition of the female reproductive fluids on sperm functionality. This study maps the protein composition of the cloacal fluid across different phases of female reproductive cycle in a sexually promiscuous passerine, the barn swallow. Similar to mammals, the protein composition in the female reproductive tract differed between receptive (when females copulate) and nonreceptive phases. With the change in the protein background, the enriched gene ontology terms also shifted. Within the receptive phase, distinctions were observed between proteomes sampled just before and during egg laying. However, three proteins exhibited increased abundance during the entire receptive phase compared to nonreceptive phases. These proteins are candidates in cryptic female choice, as all of them can influence the functionality of sperm or sperm-egg interaction. Our study demonstrates dynamic changes in the cloacal environment throughout the avian breeding cycle, emphasizing the importance of considering these fluctuations in studies of cryptic female choice.
Collapse
Affiliation(s)
- Kristýna Míčková
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic
| | - Václav Jelínek
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic
| | - Oldřich Tomášek
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Romana Stopková
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Tomáš Albrecht
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
5
|
Wang Q, Wang B, Li J, Sun C, Yang N, Wen C. Paternity bias and cryptic female choice in chickens. Poult Sci 2024; 103:103744. [PMID: 38652945 PMCID: PMC11063506 DOI: 10.1016/j.psj.2024.103744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Sperm competition and cryptic female choice (CFC) are 2 significant mechanisms of postcopulatory sexual selection that greatly impact fertilization success in various species. Despite extensive research has conducted on sperm competition and the evolution of sperm traits in internal fertilization, our understanding of the female preferences in selecting sperm is still limited. Here, we aimed to investigate the characteristics of CFC in chickens by utilizing artificial insemination with mixed semen to control for variations in male fertilization success caused by female perception of male quality and mating order. Our results revealed that the offspring from multiple-mated females exhibited mixed paternity. Although the males had an equal number of viable sperm, 1 male consistently exhibited a 15% higher success rate on average, regardless of whether the insemination was performed with fresh or diluted semen. This result suggested that this male demonstrates superior performance in sperm competition, and exhibited a potential advantage in fertilization success. While the dominant male generally made a greater genetic contribution to most offspring, the degree of this advantage varied greatly, ranging from 11.11 to 75%. Furthermore, our study provided evidence of female preferences influenced the precedence of sperm from certain males over others. Interestingly, this bias is not consistently observed among all individuals, as offspring derived from some females were predominantly sired by an overall disadvantaged male while others were predominantly by a different disadvantaged male. Overall, these results underscored the complex processes involved in sperm selection and emphasized the importance of females in sexual selection theory.
Collapse
Affiliation(s)
- Qunpu Wang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Bin Wang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Junying Li
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572025, China.
| |
Collapse
|
6
|
Assersohn K, Richards JP, Hemmings N. The surprising complexity and diversity of sperm storage structures across Galliformes. Ecol Evol 2024; 14:e11585. [PMID: 38911493 PMCID: PMC11190584 DOI: 10.1002/ece3.11585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024] Open
Abstract
In internal fertilisers, the precise timing of ovulation with the arrival of sperm at the site of fertilisation is essential for fertilisation success. In birds, mating is often not synchronised with ovulation, but instead females utilise specialised sperm storage tubules (SSTs) in the reproductive tract, which can ensure sperm are always available for fertilisation at the time of ovulation, whilst simultaneously providing a mechanism of post-copulatory sexual selection. Despite the clear importance of SSTs for fertilisation success, we know little about the mechanisms involved in sperm acceptance, storage, and release. Furthermore, most research has been conducted on only a small number of species, based on which SSTs are usually assumed to look and function in the same way across all species. Here, we conduct a comparative exploration of SST morphology across 26 species of Galliformes. We show that SSTs, and the surrounding tissue, can vary significantly in morphology across species. We provide observational evidence that Galliformes exhibit at least 5 distinct categories of tubule types, including distinctive coiled and multi-branched tubules, and describe 2 additional features of the surrounding tissue. We suggest functional explanations for variation in tubule morphology and propose next steps for future research. Our findings indicate that SSTs are likely to be far more variable than has previously been assumed, with potentially important consequences for our understanding of sperm storage in birds and post-copulatory sexual selection in general.
Collapse
|
7
|
Mahdjoub H, Khelifa R, Roy J, Sbilordo SH, Zeender V, Perdigón Ferreira J, Gourgoulianni N, Lüpold S. Interplay between male quality and male-female compatibility across episodes of sexual selection. SCIENCE ADVANCES 2023; 9:eadf5559. [PMID: 37774022 PMCID: PMC10541500 DOI: 10.1126/sciadv.adf5559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023]
Abstract
The processes underlying mate choice profoundly influence the dynamics of sexual selection and the evolution of male sexual traits. Consistent preference for certain phenotypes may erode genetic variation in populations through directional selection, whereas divergent preferences (e.g., genetically compatible mates) provide one mechanism to maintain such variation. However, the relative contributions of these processes across episodes of selection remain unknown. Using Drosophila melanogaster, we followed the fate of male genotypes, previously scored for their overall reproductive value and their compatibility with different female genotypes, across pre- and postmating episodes of selection. When pairs of competitor males differed in their intrinsic quality and their compatibility with the female, both factors influenced outcomes from mating success to paternity but to a varying degree between stages. These results add further dimensions to our understanding of how the interactions between genotypes and forms of selection shape reproductive outcomes and ultimately reproductive trait evolution.
Collapse
Affiliation(s)
- Hayat Mahdjoub
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Biology Department, Concordia University, 7141 Sherbrooke St. W., Montreal QC H4B 1R6, Canada
| | - Rassim Khelifa
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Biology Department, Concordia University, 7141 Sherbrooke St. W., Montreal QC H4B 1R6, Canada
| | - Jeannine Roy
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Sonja H. Sbilordo
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Valérian Zeender
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jhoniel Perdigón Ferreira
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Natalia Gourgoulianni
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
8
|
Zeender V, Pfammatter S, Roschitzki B, Dorus S, Lüpold S. Genotype-by-environment interactions influence the composition of the Drosophila seminal proteome. Proc Biol Sci 2023; 290:20231313. [PMID: 37700651 PMCID: PMC10498039 DOI: 10.1098/rspb.2023.1313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/09/2023] [Indexed: 09/14/2023] Open
Abstract
Ejaculate proteins are key mediators of post-mating sexual selection and sexual conflict, as they can influence both male fertilization success and female reproductive physiology. However, the extent and sources of genetic variation and condition dependence of the ejaculate proteome are largely unknown. Such knowledge could reveal the targets and mechanisms of post-mating selection and inform about the relative costs and allocation of different ejaculate components, each with its own potential fitness consequences. Here, we used liquid chromatography coupled with tandem mass spectrometry to characterize the whole-ejaculate protein composition across 12 isogenic lines of Drosophila melanogaster that were reared on a high- or low-quality diet. We discovered new proteins in the transferred ejaculate and inferred their origin in the male reproductive system. We further found that the ejaculate composition was mainly determined by genotype identity and genotype-specific responses to larval diet, with no clear overall diet effect. Nutrient restriction increased proteolytic protein activity and shifted the balance between reproductive function and RNA metabolism. Our results open new avenues for exploring the intricate role of genotypes and their environment in shaping ejaculate composition, or for studying the functional dynamics and evolutionary potential of the ejaculate in its multivariate complexity.
Collapse
Affiliation(s)
- Valérian Zeender
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| | - Sibylle Pfammatter
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Bernd Roschitzki
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Steve Dorus
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
9
|
Morimoto J, McDonald GC, Wigby S. Social group composition modulates the role of last male sperm precedence in post-copulatory sexual selection. J Evol Biol 2023; 36:1102-1115. [PMID: 37341163 PMCID: PMC10946607 DOI: 10.1111/jeb.14191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/05/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023]
Abstract
In many species, the order in which males mate with a female explains much of the variation in paternity arising from post-copulatory sexual selection. Research in Drosophila suggests that mating order may account for the majority of the variance in male reproductive success. However, the effects of mating order on paternity bias might not be static but could potentially vary with social or environmental factors. To test this idea, we used an existing dataset, collated from an experiment we previously published (Morimoto et al., PLoS One, 11, 2016, e0154468), with the addition of unpublished data from the same experiment. These previous experiments manipulated larval density in Drosophila melanogaster which generated variation in male and female body size, assembled groups of individuals of different sizes, and measured the mating success and paternity share of focal males. The data presented here provides information on each focal male's mating order and the frequency in which focal males remated with same females ('repetitive matings'). We combined this information with our previously reported focal male reproductive success to partition variance in paternity into male mating order and repetitive matings across groups that differed in the body size composition of males and females. We found, as expected, that male mating order explained a considerable portion of the variance in male paternity. However, we also found that the impact of male mating order on male paternity was influenced by the body size composition of groups. Specifically, males that tended to mate last had a greater paternity advantage, and displayed lower variance, in groups containing a heterogenous mixture male body sizes than in groups with a single male body size. Repetitive mating only had a minor contribution to the variance in male paternity share across all experiments. Overall, our findings contribute to the growing body of research showing that post-copulatory sexual selection is subject to socio-ecological influences.
Collapse
Affiliation(s)
- Juliano Morimoto
- School of Biological SciencesUniversity of AberdeenAberdeenUK
- Programa de Pós‐graduação em Ecologia e ConservaçãoUniversidade Federal do ParanáCuritibaBrazil
- Institute of MathematicsUniversity of Aberdeen, King's CollegeAberdeenUK
| | - Grant C. McDonald
- Department of EcologyUniversity of Veterinary Medicine BudapestBudapestHungary
| | - Stuart Wigby
- Department of Evolution, Ecology, and Behaviour, Institute of Infection, Veterinary & Ecological SciencesUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
10
|
Sorci G, Hussein HA, Levêque G, Saint Jalme M, Lacroix F, Hingrat Y, Lesobre L. Ranking parameters driving siring success during sperm competition in the North African houbara bustard. Commun Biol 2023; 6:305. [PMID: 36949210 PMCID: PMC10033649 DOI: 10.1038/s42003-023-04698-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/10/2023] [Indexed: 03/24/2023] Open
Abstract
Sperm competition is a powerful force driving the evolution of ejaculate and sperm traits. However, the outcome of sperm competition depends on many traits that extend beyond ejaculate quality. Here, we study male North African houbara bustards (Chlamydotis undulata undulata) competing for egg fertilization, after artificial insemination, with the aim to rank the importance of 14 parameters as drivers of siring success. Using a machine learning approach, we show that traits independent of male quality (i.e., insemination order, delay between insemination and egg laying) are the most important predictors of siring success. Traits describing intrinsic male quality (i.e., number of sperm in the ejaculate, mass motility index) are also positively associated with siring success, but their contribution to explaining the outcome of sperm competition is much lower than for insemination order. Overall, this analysis shows that males mating at the last position in the mating sequence have the best chance to win the competition for egg fertilization. This raises the question of the importance of female behavior as determinant of mating order.
Collapse
Affiliation(s)
- Gabriele Sorci
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, Dijon, France.
| | - Hiba Abi Hussein
- Reneco International Wildlife Consultants LLC, Abu Dhabi, United Arab Emirates
| | | | - Michel Saint Jalme
- Centre d'Ecologie et des Sciences de la Conservation, CESCO, Museum National d'Histoire Naturelle, CNRS, Ménagerie le zoo du Jardin des Plantes, Sorbonne Université, Paris, France
| | - Frédéric Lacroix
- Reneco International Wildlife Consultants LLC, Abu Dhabi, United Arab Emirates
| | - Yves Hingrat
- Reneco International Wildlife Consultants LLC, Abu Dhabi, United Arab Emirates
| | - Loïc Lesobre
- Reneco International Wildlife Consultants LLC, Abu Dhabi, United Arab Emirates
| |
Collapse
|
11
|
Cramer ERA, Yilma ZB, Lifjeld JT. Selection on sperm size in response to promiscuity and variation in female sperm storage organs. J Evol Biol 2023; 36:131-143. [PMID: 36357998 PMCID: PMC10100110 DOI: 10.1111/jeb.14120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/12/2022]
Abstract
Sperm cells are exceptionally morphologically diverse across taxa. However, morphology can be quite uniform within species, particularly for species where females copulate with many males per reproductive bout. Strong sexual selection in these promiscuous species is widely hypothesized to reduce intraspecific sperm variation. Conversely, we hypothesize that intraspecific sperm size variation may be maintained by high among-female variation in the size of sperm storage organs, assuming that paternity success improves when sperm are compatible in size with the sperm storage organ. We use individual-based simulations and an analytical model to evaluate how selection on sperm size depends on promiscuity level and variation in sperm storage organ size (hereafter, female preference variation). Simulations of high promiscuity (10 mates per female) showed stabilizing selection on sperm when female preference variation was low, and disruptive selection when female preference variation was high, consistent with the analytical model results. With low promiscuity (2-3 mates per female), selection on sperm was stabilizing for all levels of female preference variation in the simulations, contrasting with the analytical model. Promiscuity level, or mate sampling, thus has a strong impact on the selection resulting from female preferences. Furthermore, when promiscuity is low, disruptive selection on male traits will occur under much more limited circumstances (i.e. only with higher among-female variation) than many previous models suggest. Variation in female sperm storage organs likely has strong implications for intraspecific sperm variation in highly promiscuous species, but likely does not explain differences in intraspecific sperm variation for less promiscuous taxa.
Collapse
Affiliation(s)
- Emily R A Cramer
- Sex and Evolution Research Group, Natural History Museum, University of Oslo, Oslo, Norway
| | | | - Jan T Lifjeld
- Sex and Evolution Research Group, Natural History Museum, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Canal Domenech B, Fricke C. Recovery from heat-induced infertility-A study of reproductive tissue responses and fitness consequences in male Drosophila melanogaster. Ecol Evol 2022; 12:e9563. [PMID: 36466140 PMCID: PMC9712812 DOI: 10.1002/ece3.9563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
The predicted temperature increase caused by climate change is a threat to biodiversity. Across animal taxa, male reproduction is often sensitive to elevated temperatures leading to fertility loss, and in more adverse scenarios, this can result in sterility when males reach their upper thermal fertility limit. Here, we investigate temperature-induced changes in reproductive tissues, fertility reduction, sterility, and the associated fitness loss during the subsequent recovery phase in male Drosophila melanogaster. We heat-stressed males during development and either allowed them to recover or not in early adulthood while measuring several determinants of male reproductive success. We found significant differences in recovery rate, organ sizes, sperm production, and other key reproductive traits among males from our different temperature treatments. Sperm maturation was impaired before reaching the upper thermal sterility threshold. While some effects were reversible, this did not compensate for the fitness loss due to damage imposed during development. Surprisingly, developmental heat stress was damaging to accessory gland growth, and female post-mating responses mediated by seminal fluid proteins were impaired regardless of the possibility of recovery. We suggest that sub-lethal thermal sterility and the subsequent fertility reduction are caused by a combination of inefficient functionality of both the accessory gland and testes.
Collapse
Affiliation(s)
- Berta Canal Domenech
- Institute for Evolution and Biodiversity University of Muenster Muenster Germany
- Muenster Graduate School of Evolution University of Muenster Muenster Germany
| | - Claudia Fricke
- Institute for Evolution and Biodiversity University of Muenster Muenster Germany
- Institute for Zoology Halle-Wittenberg University Halle (Saale) Germany
| |
Collapse
|
13
|
Browne JH, Gwynne DT. Paternity sharing in insects with female competition for nuptial gifts. Ecol Evol 2022; 12:e9463. [PMID: 36329813 PMCID: PMC9618826 DOI: 10.1002/ece3.9463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2022] Open
Abstract
Male parental investment is expected to be associated with high confidence of paternity. Studies of species with exclusive male parental care have provided support for this hypothesis because mating typically co-occurs with each oviposition, allowing control over paternity and the allocation of care. However, in systems where males invest by feeding mates (typically arthropods), mating (and thus the investment) is separated from egg-laying, resulting in less control over insemination, as male ejaculates compete with rival sperm stored by females, and a greater risk of investing in unrelated offspring (cuckoldry). As strong selection on males to increase paternity would compromise the fitness of all a female's other mates that make costly nutrient contributions, paternity sharing (males not excluded from siring offspring) is an expected outcome of sperm competition. Using wild-caught females in an orthopteran and a dipteran species, in which sexually selected, ornamented females compete for male nuptial food gifts needed for successful reproduction, we examined paternity patterns and compared them with findings in other insects. We used microsatellite analysis of offspring (lifetime reproduction in the orthopteran) and stored sperm from wild-caught females in both study species. As predicted, there was evidence of shared paternity as few males failed to sire offspring. Further support for paternity sharing is the lack of last-male sperm precedence in our study species. Although paternity was not equal among sires, our estimates of paternity bias were similar to other insects with valuable nuptial gifts and contrasted with the finding that males are frequently excluded from siring offspring in species where males supply little more than sperm. This suggests paternity bias may be reduced in nuptial-gift systems and may help facilitate the evolution of these paternal investments.
Collapse
Affiliation(s)
- Jessica H. Browne
- Department of Ecology and Evolutionary BiologyUniversity of Toronto MississaugaMississaugaOntarioCanada
- Department of BiologyMount Allison UniversitySackvilleNew BrunswickCanada
| | - Darryl T. Gwynne
- Department of Ecology and Evolutionary BiologyUniversity of Toronto MississaugaMississaugaOntarioCanada
| |
Collapse
|
14
|
Himuro C, Honma A, Ikegawa Y, Kumano N. The female Euscepes postfasciatus refractory period is induced by the male but length is determined by the female. JOURNAL OF INSECT PHYSIOLOGY 2022; 142:104427. [PMID: 35908745 DOI: 10.1016/j.jinsphys.2022.104427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Females of many animals mate multiple times during their lives (i.e., polyandry). The period between matings (mating interval) is called the refractory period (RP). In the West Indian sweet potato weevil (Euscepes postfasciatus), males use the ejaculate to induce the RP in females to prevent re-mating. By measuring the RP, a large variation of 1-49 days was observed. This variation may be due to the males (ejaculate quantity and quality) and females (ejaculate sensitivity/degradation ability and body size) and their interactions, but the exact mechanisms are currently unclear. Here, we investigated a tendency towards a particular female RP duration and the associated traits of males and females to test the following three factors responsible for variation in the length of the RP: male manipulation of ejaculate volume, individual differences in male ejaculation substances, and ejaculate sensitivity/degradation ability in females. We prepared virgin males and females to create mating pairs. The following day, another mate was introduced to the females, and the first RP was measured. The same procedure was used for measuring the second RP. The males were also provided with another female (second female), mated, and then the RP of the second female was measured. In addition, the relationship between the length of the RP and female fitness was investigated. The results showed that there was a significant positive correlation between the first and second RP in the focal females, while no significant correlation was observed between the RP of the first and second females induced by the same male. It was also found that the length of the RP did not affect female fitness. This indicated that the males did not adaptively manipulate ejaculation volume depending on the quality of the females, and variance in the length of the RP may be explained by variation in the female physiological ability against ejaculate.
Collapse
Affiliation(s)
- Chihiro Himuro
- Okinawa Prefectural Plant Protection Centre, Naha 902-0072, Japan; Ryukyu Sankei Co., Ltd, Naha, Okinawa 902-0072, Japan; Faculty of Agriculture, University of Ryukyus, Nishihara, Okinawa 903-0213, Japan.
| | - Atsushi Honma
- Okinawa Prefectural Plant Protection Centre, Naha 902-0072, Japan; Ryukyu Sankei Co., Ltd, Naha, Okinawa 902-0072, Japan; Faculty of Agriculture, University of Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Yusuke Ikegawa
- Okinawa Prefectural Plant Protection Centre, Naha 902-0072, Japan; Ryukyu Sankei Co., Ltd, Naha, Okinawa 902-0072, Japan; Faculty of Agriculture, University of Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Norikuni Kumano
- Laboratory of Insect Ecology, Department of Life Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| |
Collapse
|
15
|
Chen DS, Clark AG, Wolfner MF. Octopaminergic/tyraminergic Tdc2 neurons regulate biased sperm usage in female Drosophila melanogaster. Genetics 2022; 221:6637517. [PMID: 35809068 PMCID: PMC9339280 DOI: 10.1093/genetics/iyac096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/07/2022] [Indexed: 02/07/2023] Open
Abstract
In polyandrous internally fertilizing species, a multiply-mated female can use stored sperm from different males in a biased manner to fertilize her eggs. The female's ability to assess sperm quality and compatibility is essential for her reproductive success, and represents an important aspect of postcopulatory sexual selection. In Drosophila melanogaster, previous studies demonstrated that the female nervous system plays an active role in influencing progeny paternity proportion, and suggested a role for octopaminergic/tyraminergic Tdc2 neurons in this process. Here, we report that inhibiting Tdc2 neuronal activity causes females to produce a higher-than-normal proportion of first-male progeny. This difference is not due to differences in sperm storage or release, but instead is attributable to the suppression of second-male sperm usage bias that normally occurs in control females. We further show that a subset of Tdc2 neurons innervating the female reproductive tract is largely responsible for the progeny proportion phenotype that is observed when Tdc2 neurons are inhibited globally. On the contrary, overactivation of Tdc2 neurons does not further affect sperm storage, release or progeny proportion. These results suggest that octopaminergic/tyraminergic signaling allows a multiply-mated female to bias sperm usage, and identify a new role for the female nervous system in postcopulatory sexual selection.
Collapse
Affiliation(s)
- Dawn S Chen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca NY 14853, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca NY 14853, USA
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca NY 14853, USA
| |
Collapse
|
16
|
Hopkins BR, Perry JC. The evolution of sex peptide: sexual conflict, cooperation, and coevolution. Biol Rev Camb Philos Soc 2022; 97:1426-1448. [PMID: 35249265 PMCID: PMC9256762 DOI: 10.1111/brv.12849] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/17/2022]
Abstract
A central paradigm in evolutionary biology is that the fundamental divergence in the fitness interests of the sexes (‘sexual conflict’) can lead to both the evolution of sex‐specific traits that reduce fitness for individuals of the opposite sex, and sexually antagonistic coevolution between the sexes. However, clear examples of traits that evolved in this way – where a single trait in one sex demonstrably depresses the fitness of members of the opposite sex, resulting in antagonistic coevolution – are rare. The Drosophila seminal protein ‘sex peptide’ (SP) is perhaps the most widely cited example of a trait that appears to harm females while benefitting males. Transferred in the ejaculate by males during mating, SP triggers profound and wide‐ranging changes in female behaviour and physiology. Early studies reported that the transfer of SP enhances male fitness while depressing female fitness, providing the foundations for the widespread view that SP has evolved to manipulate females for male benefit. Here, we argue that this view is (i) a simplification of a wider body of contradictory empirical research, (ii) narrow with respect to theory describing the origin and maintenance of sexually selected traits, and (iii) hard to reconcile with what we know of the evolutionary history of SP's effects on females. We begin by charting the history of thought regarding SP, both at proximate (its production, function, and mechanism of action) and ultimate (its fitness consequences and evolutionary history) levels, reviewing how studies of SP were central to the development of the field of sexual conflict. We describe a prevailing paradigm for SP's evolution: that SP originated and continues to evolve to manipulate females for male benefit. In contrast to this view, we argue on three grounds that the weight of evidence does not support the view that receipt of SP decreases female fitness: (i) results from studies of SP's impact on female fitness are mixed and more often neutral or positive, with fitness costs emerging only under nutritional extremes; (ii) whether costs from SP are appreciable in wild‐living populations remains untested; and (iii) recently described confounds in genetic manipulations of SP raise the possibility that measures of the costs and benefits of SP have been distorted. Beyond SP's fitness effects, comparative and genetic data are also difficult to square with the idea that females suffer fitness costs from SP. Instead, these data – from functional and evolutionary genetics and the neural circuitry of female responses to SP – suggest an evolutionary history involving the evolution of a dedicated SP‐sensing apparatus in the female reproductive tract that is likely to have evolved because it benefits females, rather than harms them. We end by exploring theory and evidence that SP benefits females by functioning as a signal of male quality or of sperm receipt and storage (or both). The expanded view of the evolution of SP that we outline recognises the context‐dependent and fluctuating roles played by both cooperative and antagonistic selection in the origin and maintenance of reproductive traits.
Collapse
Affiliation(s)
- Ben R. Hopkins
- Department of Evolution and Ecology University of California – Davis One Shields Avenue Davis CA 95616 U.S.A
| | - Jennifer C. Perry
- School of Biological Sciences University of East Anglia Norwich NR4 7TJ U.K
| |
Collapse
|
17
|
Patlar B, Civetta A. Seminal fluid gene expression and reproductive fitness in Drosophila melanogaster. BMC Ecol Evol 2022; 22:20. [PMID: 35196983 PMCID: PMC8867848 DOI: 10.1186/s12862-022-01975-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/15/2022] [Indexed: 11/24/2022] Open
Abstract
Background The rapid evolution of seminal fluid proteins (SFPs) has been suggested to be driven by adaptations to postcopulatory sexual selection (e.g. sperm competition). However, we have recently shown that most SFPs evolve rapidly under relaxed selective pressures. Given the role of SFPs in competition for fertilization phenotypes, like the ability to transfer and store sperm and the modulation of female receptivity and ovulation, the prevalence of selectively relaxed SFPs appears as a conundrum. One possible explanation is that selection on SFPs might be relaxed in terms of protein amino acid content, but adjustments of expression are essential for post-mating function. Interestingly, there is a general lack of systematic implementation of gene expression perturbation assays to monitor their effect on phenotypes related to sperm competition. Results We successfully manipulated the expression of 16 SFP encoding genes using tissue-specific knockdowns (KDs) and determined the effect of these genes’ perturbation on three important post-mating phenotypes: female refractoriness to remating, defensive (P1), and offensive (P2) sperm competitive abilities in Drosophila melanogaster. Our analyses show that KDs of tested SFP genes do not affect female refractoriness to remating and P2, however, most gene KDs significantly decreased P1. Moreover, KDs of SFP genes that are selectively constrained in terms of protein-coding sequence evolution have lower P1 than KDs of genes evolving under relaxed selection. Conclusions Our results suggest a more predominant role, than previously acknowledged, of variation in gene expression than coding sequence changes on sperm competitive ability in D. melanogaster. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01975-1.
Collapse
Affiliation(s)
- Bahar Patlar
- Department of Biology, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada.
| |
Collapse
|
18
|
McDonough-Goldstein CE, Pitnick S, Dorus S. Drosophila female reproductive glands contribute to mating plug composition and the timing of sperm ejection. Proc Biol Sci 2022; 289:20212213. [PMID: 35105240 PMCID: PMC8808094 DOI: 10.1098/rspb.2021.2213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/04/2022] [Indexed: 01/09/2023] Open
Abstract
Reproductive traits that influence female remating and competitive fertilization rapidly evolve in response to sexual selection and sexual conflict. One such trait, observed across diverse animal taxa, is the formation of a structural plug inside the female reproductive tract (FRT), either during or shortly after mating. In Drosophila melanogaster, male seminal fluid forms a mating plug inside the female bursa, which has been demonstrated to influence sperm entry into storage and latency of female remating. Processing of the plug, including its eventual ejection from the female's reproductive tract, influences the competitive fertilization success of her mates and is mediated by female × male genotypic interactions. However, female contributions to plug formation and processing have received limited attention. Using developmental mutants that lack glandular FRT tissues, we reveal that these tissues are essential for mating plug ejection. We further use proteomics to demonstrate that female glandular proteins, and especially proteolytic enzymes, contribute to mating plug composition and have a widespread impact on plug formation and composition. Together, these phenotypic and molecular data identify female contributions to intersexual interactions that are a potential mechanism of post-copulatory sexual selection.
Collapse
Affiliation(s)
| | - Scott Pitnick
- Center for Reproductive Evolution, Biology Department, Syracuse University, Syracuse, NY 13244, USA
| | - Steve Dorus
- Center for Reproductive Evolution, Biology Department, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
19
|
Farrow RA, Deeming DC, Eady PE. Male and female developmental temperature modulate post-copulatory interactions in a beetle. J Therm Biol 2022; 103:103155. [PMID: 35027191 DOI: 10.1016/j.jtherbio.2021.103155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
Sexual selection theory has proven to be fundamental to our understanding of the male-female (sperm-egg) interactions that characterise fertilisation. However, sexual selection does not operate in a void and abiotic environmental factors have been shown to modulate the outcome of pre-copularory sexual interactions. Environmental modulation of post-copulatory interactions are particularly likely because the form and function of primary reproductive traits appears to be acutely sensitive to temperature stress. Here we report the effects of developmental temperature on female reproductive architecture and the interaction between male and female developmental temperature on the outcome of sperm competition in the bruchid beetle Callosobruchus maculatus. When females were reared at developmental temperatures above and below typical temperatures the bursa copulatrix (site of spermatophore deposition) were smaller and, were either shorter and broader (high temperatures) or longer and thinner (low temperatures) than those reared at intermediate temperatures. Males and females reared at low developmental temperatures were less likely to mate than those reared at higher temperatures. Where copulation occurred, females reared at the highest temperature copulated for longest, whilst males reared at the lowest temperature spent longer in copula. Male developmental temperature had a significant impact on the outcome of sperm competition: males reared at 17 °C were largely unsuccessful in sperm competition against control (27 °C) males, although some of the variation in the outcome of sperm competition was a product of the interaction between male and female developmental temperature. Our results demonstrate that male-female interactions that characterise pre- and post-copulatory outcomes are sensitive to developmental temperature and that plasticity in cryptic female preferences could lead to heterogeneous selection on the male reproductive phenotype.
Collapse
Affiliation(s)
- Rachel A Farrow
- Foundation Studies Centre, Janet Lane-Claypon Building, University of Lincoln, LN6 7TS, UK
| | - D Charles Deeming
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
| | - Paul E Eady
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK.
| |
Collapse
|
20
|
Dallai R, Mercati D, Cucini C, Fanciulli PP, Lupetti P. The sperm structure and the spermiogenesis of the drugstore beetle Stegobium paniceum (L.) (Coleoptera-Ptinidae-Anobinae). ZOOL ANZ 2021. [DOI: 10.1016/j.jcz.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Macartney EL, Zeender V, Meena A, De Nardo AN, Bonduriansky R, Lüpold S. Sperm depletion in relation to developmental nutrition and genotype in Drosophila melanogaster. Evolution 2021; 75:2830-2841. [PMID: 34617270 PMCID: PMC9297908 DOI: 10.1111/evo.14373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/15/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022]
Abstract
Nutrient limitation during development can restrict the ability of adults to invest in costly fitness traits, and genotypes can vary in their sensitivity to developmental nutrition. However, little is known about how genotype and nutrition affect male ability to maintain ejaculate allocation and achieve fertilization across successive matings. Using 17 isogenic lines of Drosophila melanogaster, we investigated how variation in developmental nutrition affects males' abilities to mate, transfer sperm, and sire offspring when presented with successive virgin females. We found that, with each successive mating, males required longer to initiate copulation, transferred fewer sperm, and sired fewer offspring. Males reared on a low-nutrient diet transferred fewer sperm than those reared on nutritionally superior diets, but the rate at which males depleted their sperm, as well as their reproductive performance, was largely independent of diet. Genotype and the genotype × diet interaction explained little of the variation in these male reproductive traits. Our results show that sperm depletion can occur rapidly and impose substantial fitness costs for D. melanogaster males across multiple genotypes and developmental environments.
Collapse
Affiliation(s)
- Erin L. Macartney
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNSW2052Australia
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichCH‐8057Switzerland
| | - Valérian Zeender
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichCH‐8057Switzerland
| | - Abhishek Meena
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichCH‐8057Switzerland
- Department of Biological SciencesIndian Institute of Science Education and Research MohaliMohali140306India
| | - Alessio N. De Nardo
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichCH‐8057Switzerland
| | - Russell Bonduriansky
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNSW2052Australia
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichCH‐8057Switzerland
| |
Collapse
|
22
|
Syed ZA, Dallai R, Nasirzadeh N, Brill JA, O’Grady PM, Cong S, Leef EM, Rice S, Asif A, Nguyen S, Hansen MM, Dorus S, Pitnick S. Sperm Cyst "Looping": A Developmental Novelty Enabling Extreme Male Ornament Evolution. Cells 2021; 10:cells10102762. [PMID: 34685746 PMCID: PMC8534658 DOI: 10.3390/cells10102762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 01/20/2023] Open
Abstract
Postcopulatory sexual selection is credited as a principal force behind the rapid evolution of reproductive characters, often generating a pattern of correlated evolution between interacting, sex-specific traits. Because the female reproductive tract is the selective environment for sperm, one taxonomically widespread example of this pattern is the co-diversification of sperm length and female sperm-storage organ dimension. In Drosophila, having testes that are longer than the sperm they manufacture was believed to be a universal physiological constraint. Further, the energetic and time costs of developing long testes have been credited with underlying the steep evolutionary allometry of sperm length and constraining sperm length evolution in Drosophila. Here, we report on the discovery of a novel spermatogenic mechanism—sperm cyst looping—that enables males to produce relatively long sperm in short testis. This phenomenon (restricted to members of the saltans and willistoni species groups) begins early during spermatogenesis and is potentially attributable to heterochronic evolution, resulting in growth asynchrony between spermatid tails and the surrounding spermatid and somatic cyst cell membranes. By removing the allometric constraint on sperm length, this evolutionary innovation appears to have enabled males to evolve extremely long sperm for their body mass while evading delays in reproductive maturation time. On the other hand, sperm cyst looping was found to exact a cost by requiring greater total energetic investment in testes and a pronounced reduction in male lifespan. We speculate on the ecological selection pressures underlying the evolutionary origin and maintenance of this unique adaptation.
Collapse
Affiliation(s)
- Zeeshan A. Syed
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY 13244, USA; (S.C.); (E.M.L.); (S.R.); (A.A.); (S.N.); (M.M.H.); (S.D.)
- Correspondence: (Z.A.S.); (S.P.)
| | - Romano Dallai
- Department of Life Sciences, University of Siena, via Aldo Moro 2, 53100 Siena, Italy;
| | - Negar Nasirzadeh
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (N.N.); (J.A.B.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Julie A. Brill
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (N.N.); (J.A.B.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Siyuan Cong
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY 13244, USA; (S.C.); (E.M.L.); (S.R.); (A.A.); (S.N.); (M.M.H.); (S.D.)
| | - Ethan M. Leef
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY 13244, USA; (S.C.); (E.M.L.); (S.R.); (A.A.); (S.N.); (M.M.H.); (S.D.)
| | - Sarah Rice
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY 13244, USA; (S.C.); (E.M.L.); (S.R.); (A.A.); (S.N.); (M.M.H.); (S.D.)
| | - Amaar Asif
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY 13244, USA; (S.C.); (E.M.L.); (S.R.); (A.A.); (S.N.); (M.M.H.); (S.D.)
| | - Stephanie Nguyen
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY 13244, USA; (S.C.); (E.M.L.); (S.R.); (A.A.); (S.N.); (M.M.H.); (S.D.)
| | - Matthew M. Hansen
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY 13244, USA; (S.C.); (E.M.L.); (S.R.); (A.A.); (S.N.); (M.M.H.); (S.D.)
| | - Steve Dorus
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY 13244, USA; (S.C.); (E.M.L.); (S.R.); (A.A.); (S.N.); (M.M.H.); (S.D.)
| | - Scott Pitnick
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY 13244, USA; (S.C.); (E.M.L.); (S.R.); (A.A.); (S.N.); (M.M.H.); (S.D.)
- Correspondence: (Z.A.S.); (S.P.)
| |
Collapse
|
23
|
McDonough-Goldstein CE, Whittington E, McCullough EL, Buel SM, Erdman S, Pitnick S, Dorus S. Pronounced Postmating Response in the Drosophila Female Reproductive Tract Fluid Proteome. Mol Cell Proteomics 2021; 20:100156. [PMID: 34597791 PMCID: PMC9357439 DOI: 10.1016/j.mcpro.2021.100156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 12/30/2022] Open
Abstract
Fertility depends on the progression of complex and coordinated postmating processes within the extracellular environment of the female reproductive tract (FRT). Molecular interactions between ejaculate and FRT proteins regulate many of these processes, including sperm motility, migration, storage, and modification, along with concurrent changes in the female. Although extensive progress has been made in the proteomic characterization of the male-derived components of sperm and seminal fluid, investigations into the FRT have remained more limited. To achieve a comparable level of knowledge regarding female-derived proteins that comprise the reproductive environment, we utilized semiquantitative MS-based proteomics to study the composition of the FRT tissue and, separately, the luminal fluid, before and after mating in Drosophila melanogaster. Our approach leveraged whole-fly isotopic labeling to delineate female proteins from transferred male ejaculate proteins. Our results revealed several characteristics that distinguish the FRT fluid proteome from the FRT tissue proteome: (1) the fluid proteome is encoded by genes with higher overall levels of FRT gene expression and tissue specificity, including many genes with enriched expression in the fat body, (2) fluid-biased proteins are enriched for metabolic functions, and (3) the fluid exhibits pronounced postmating compositional changes. The dynamic mating-induced proteomic changes in the FRT fluid inform our understanding of secretory mechanisms of the FRT, serve as a foundation for establishing female contributions to the ejaculate-female interactions that regulate fertility, and highlight the importance of applying proteomic approaches to characterize the composition and dynamics of the FRT environment.
Collapse
Affiliation(s)
| | - Emma Whittington
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Erin L McCullough
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Sharleen M Buel
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Scott Erdman
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Scott Pitnick
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Steve Dorus
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, New York, USA.
| |
Collapse
|
24
|
Can Sexual Selection Drive the Evolution of Sperm Cell Structure? Cells 2021; 10:cells10051227. [PMID: 34067752 PMCID: PMC8156441 DOI: 10.3390/cells10051227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/04/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Sperm cells have undergone an extraordinarily divergent evolution among metazoan animals. Parker recognized that because female animals frequently mate with more than one male, sexual selection would continue after mating and impose strong selection on sperm cells to maximize fertilization success. Comparative analyses among species have revealed a general relationship between the strength of selection from sperm competition and the length of sperm cells and their constituent parts. However, comparative analyses cannot address causation. Here, we use experimental evolution to ask whether sexual selection can drive the divergence of sperm cell phenotype, using the dung beetle Onthophagus taurus as a model. We either relaxed sexual selection by enforcing monogamy or allowed sexual selection to continue for 20 generations before sampling males and measuring the total length of sperm cells and their constituent parts, the acrosome, nucleus, and flagella. We found differences in the length of the sperm cell nucleus but no differences in the length of the acrosome, flagella, or total sperm length. Our data suggest that different sperm cell components may respond independently to sexual selection and contribute to the divergent evolution of these extraordinary cells.
Collapse
|
25
|
Strategic adjustment of ejaculate quality in response to variation of the socio-sexual environment. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03032-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Demont M, Ward PI, Blanckenhorn WU, Lüpold S, Martin OY, Bussière LF. How biases in sperm storage relate to sperm use during oviposition in female yellow dung flies. Behav Ecol 2021. [DOI: 10.1093/beheco/arab026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Precise mechanisms underlying sperm storage and utilization are largely unknown, and data directly linking stored sperm to paternity remain scarce. We used competitive microsatellite PCR to study the effects of female morphology, copula duration and oviposition on the proportion of stored sperm provided by the second of two copulating males (S2) in Scathophaga stercoraria (Diptera: Scathophagidae), the classic model for sperm competition studies. We genotyped all offspring from potentially mixed-paternity clutches to establish the relationship between a second male’s stored sperm (S2) and paternity success (P2). We found consistent skew in sperm storage across the three female spermathecae, with relatively more second-male sperm stored in the singlet spermatheca than in the doublet spermathecae. S2 generally decreased with increasing spermathecal size, consistent with either heightened first-male storage in larger spermathecae, or less efficient sperm displacement in them. Additionally, copula duration and several two-way interactions influenced S2, highlighting the complexity of postcopulatory processes and sperm storage. Importantly, S2 and P2 were strongly correlated. Manipulation of the timing of oviposition strongly influenced observed sperm-storage patterns, with higher S2 when females laid no eggs before being sacrificed than when they oviposited between copulations, an observation consistent with adaptive plasticity in insemination. Our results identified multiple factors influencing sperm storage, nevertheless suggesting that the proportion of stored sperm is strongly linked to paternity (i.e., a fair raffle). Even more detailed data in this vein are needed to evaluate the general importance of sperm competition relative to cryptic female choice in postcopulatory sexual selection.
Collapse
Affiliation(s)
- Marco Demont
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel Winterthurerstrasse 190, Zurich, Switzerland
- Department of Biology and Institute of Integrative Biology, ETH Zurich, Universitätsstrasse 16, 8092 Zurich, Switzerland
| | - Paul I Ward
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel Winterthurerstrasse 190, Zurich, Switzerland
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel Winterthurerstrasse 190, Zurich, Switzerland
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel Winterthurerstrasse 190, Zurich, Switzerland
| | - Oliver Y Martin
- Department of Biology and Institute of Integrative Biology, ETH Zurich, Universitätsstrasse 16, 8092 Zurich, Switzerland
| | - Luc F Bussière
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel Winterthurerstrasse 190, Zurich, Switzerland
- Biological and Environmental Sciences, University of Stirling, Stirling, Scotland, UK
- Biology and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
27
|
De Nardo AN, Roy J, Sbilordo SH, Lüpold S. Condition-dependent interaction between mating success and competitive fertilization success in Drosophila melanogaster. Evolution 2021; 75:2014-2026. [PMID: 33834478 DOI: 10.1111/evo.14228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/06/2021] [Accepted: 03/13/2021] [Indexed: 12/12/2022]
Abstract
Dietary restriction during development can affect adult body size and condition. In many species, larger (high-condition) males gain higher mating success through male-male competition and female choice, and female condition can affect the extent of both female mate choice and male investment in courtship or ejaculates. However, few studies have examined the joint effects and interplay of male and female condition during both the pre- and the postcopulatory phases of sexual selection. We therefore manipulated the larval diet of male and female Drosophila melanogaster to study how body size variation in both sexes biases competitive outcomes at different reproductive stages, from mating to paternity. We did not find a difference in mate preference or mating latency between females of different conditions, nor any interaction between male and female conditions. However, large males were more successful in gaining matings, but only when in direct competition, whereas mating latencies were shorter for low-condition males in noncompetitive settings. Small males also transferred more sperm to nonvirgin females, displaced a larger proportion of resident sperm, and achieved higher paternity shares per mating than large males. In agreement with existing theory, we suggest that small males might partially compensate for their low mating success by strategically investing in larger sperm numbers and potentially other, unmeasured ejaculate traits, when they do have a mating opportunity.
Collapse
Affiliation(s)
- Alessio N De Nardo
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, CH-8057, Switzerland
| | - Jeannine Roy
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, CH-8057, Switzerland
| | - Sonja H Sbilordo
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, CH-8057, Switzerland
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, CH-8057, Switzerland
| |
Collapse
|
28
|
Brown TA, Tsurusaki N, Burns M. Genomic Determination of Reproductive Mode in Facultatively Parthenogenetic Opiliones. J Hered 2021; 112:34-44. [PMID: 33448304 DOI: 10.1093/jhered/esaa045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 11/03/2020] [Indexed: 01/15/2023] Open
Abstract
Sexual reproduction may pose myriad short-term costs to females. Despite these costs, sexual reproduction is near ubiquitous. Facultative parthenogenesis is theorized to mitigate some of the costs of sex, as individuals can participate in occasional sex to limit costs while obtaining many benefits. However, most theoretical models assume sexual reproduction is fixed following mating, with no possibility of clutches of mixed reproductive ontogeny. Therefore, we asked: if coercive males are present at high frequency in a population of facultative parthenogens, will their clutches be solely sexually produced, or will there be evidence of sexually and asexually-produced offspring? How will their offspring production compare to conspecifics in low-frequency male populations? We addressed our questions by collecting females and egg clutches of the facultatively parthenogenetic Opiliones species Leiobunum manubriatum and L. globosum. In L. manubriatum, females from populations with few males were not significantly more fecund than females from populations with higher male relative frequency, despite the potential release of the former from sexual conflict. We used 3 genotyping methods along with a custom set of DNA capture probes to reveal that offspring of L. manubriatum from these high male populations were primarily produced via asexual reproduction. This is surprising because sex ratios in these southern populations approach equality, increasing the probability for females to encounter mates and produce offspring sexually. We additionally found evidence for reproductive polymorphisms within populations. Rapid and accurate SNP genotyping data will continue to allow us to address broader evolutionary questions regarding the role of facultative reproductive modes in the maintenance of sex.
Collapse
Affiliation(s)
- Tyler A Brown
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD
| | - Nobuo Tsurusaki
- Laboratory of Biodiversity and Taxonomy, Department of Agricultural, Life, and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Mercedes Burns
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD
| |
Collapse
|
29
|
Matsuzaki M, Hirohashi N, Tsudzuki M, Haqani MI, Maeda T, Mizushima S, Sasanami T. Longer and faster sperm exhibit better fertilization success in Japanese quail. Poult Sci 2021; 100:100980. [PMID: 33610899 PMCID: PMC7905478 DOI: 10.1016/j.psj.2021.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/18/2020] [Accepted: 01/01/2021] [Indexed: 11/06/2022] Open
Abstract
In birds, sperm storage tubules (SST) located in the utero-vaginal junction are thought to be a site of sperm selection; however, the exact mechanism of sperm selection is poorly understood. Here, we investigated sperm entry into the SST and subsequent fertilization success under a competitive situation created by artificial insemination of a sperm mixture obtained from 2 males. We employed 2 quail strains, a wild-type and a dominant black (DB) type, as this allows easy assessment of paternity by feather coloration. We found paternity of embryos was biased toward DB males when a sperm mix with similar sperm numbers from the 2 males strains was artificially inseminated into females. Our novel sperm staining method with 2 different fluorescent dyes showed that the DB-biased fertilization was because of the better ability of DB sperm to enter the SST. Moreover, we found that DB sperm had a longer flagellum and midpiece. These characteristics probably allow sperm to swim faster in a high viscosity medium, which may be a similar environment to the lumen of the female reproductive tract. Our results indicated that sperm competition occurs to win a place in the SST and that filling the SST with their own spermatozoa is a critical step to achieve better fertilization success for the male Japanese quail.
Collapse
Affiliation(s)
- Mei Matsuzaki
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City, Hiroshima 739-8528, Japan
| | - Noritaka Hirohashi
- Oki Marine Biological Station, Education and Research Center for Biological Resources, Faculty of Life and Environmental Science, Shimane University, Oki, Shimane 685-0024, Japan
| | - Masaoki Tsudzuki
- Laboratory of Animal Breeding and Genetics, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City, Hiroshima 739-8528, Japan; Japanese Avian Bioresource Project Research Center, Hiroshima University, Higashi-Hiroshima City, Hiroshima 739-8528, Japan
| | - Mohammad Ibrahim Haqani
- Laboratory of Animal Breeding and Genetics, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City, Hiroshima 739-8528, Japan
| | - Teruo Maeda
- Laboratory of Animal Reproduction, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City, Hiroshima 739-8528, Japan; Japanese Avian Bioresource Project Research Center, Hiroshima University, Higashi-Hiroshima City, Hiroshima 739-8528, Japan
| | - Shusei Mizushima
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan; Japanese Avian Bioresource Project Research Center, Hiroshima University, Higashi-Hiroshima City, Hiroshima 739-8528, Japan
| | - Tomohiro Sasanami
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka City, Shizuoka 422-8529, Japan; Japanese Avian Bioresource Project Research Center, Hiroshima University, Higashi-Hiroshima City, Hiroshima 739-8528, Japan.
| |
Collapse
|
30
|
Carleial R, McDonald GC, Spurgin LG, Fairfield EA, Wang Y, Richardson DS, Pizzari T. Temporal dynamics of competitive fertilization in social groups of red junglefowl ( Gallus gallus) shed new light on avian sperm competition. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200081. [PMID: 33070718 PMCID: PMC7661449 DOI: 10.1098/rstb.2020.0081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2020] [Indexed: 01/28/2023] Open
Abstract
Studies of birds have made a fundamental contribution to elucidating sperm competition processes, experimentally demonstrating the role of individual mechanisms in competitive fertilization. However, the relative importance of these mechanisms and the way in which they interact under natural conditions remain largely unexplored. Here, we conduct a detailed behavioural study of freely mating replicate groups of red junglefowl, Gallus gallus, to predict the probability that competing males fertilize individual eggs over the course of 10-day trials. Remating frequently with a female and mating last increased a male's probability of fertilization, but only for eggs ovulated in the last days of a trial. Conversely, older males, and those mating with more polyandrous females, had consistently lower fertilization success. Similarly, resistance to a male's mating attempts, particularly by younger females, reduced fertilization probability. After considering these factors, male social status, partner relatedness and the estimated state of male extragonadal sperm reserves did not predict sperm competition outcomes. These results shed new light on sperm competition dynamics in taxa such as birds, with prolonged female sperm storage and staggered fertilizations. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Rômulo Carleial
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford OX1 3SZ, UK
| | - Grant C. McDonald
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford OX1 3SZ, UK
- Department of Ecology, University of Veterinary Medicine Budapest, Budapest 1077, Hungary
| | - Lewis G. Spurgin
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | - Yunke Wang
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford OX1 3SZ, UK
| | - David S. Richardson
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Tommaso Pizzari
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford OX1 3SZ, UK
| |
Collapse
|
31
|
Wigby S, Brown NC, Allen SE, Misra S, Sitnik JL, Sepil I, Clark AG, Wolfner MF. The Drosophila seminal proteome and its role in postcopulatory sexual selection. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200072. [PMID: 33070726 DOI: 10.1098/rstb.2020.0072] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Postcopulatory sexual selection (PCSS), comprised of sperm competition and cryptic female choice, has emerged as a widespread evolutionary force among polyandrous animals. There is abundant evidence that PCSS can shape the evolution of sperm. However, sperm are not the whole story: they are accompanied by seminal fluid substances that play many roles, including influencing PCSS. Foremost among seminal fluid models is Drosophila melanogaster, which displays ubiquitous polyandry, and exhibits intraspecific variation in a number of seminal fluid proteins (Sfps) that appear to modulate paternity share. Here, we first consolidate current information on the identities of D. melanogaster Sfps. Comparing between D. melanogaster and human seminal proteomes, we find evidence of similarities between many protein classes and individual proteins, including some D. melanogaster Sfp genes linked to PCSS, suggesting evolutionary conservation of broad-scale functions. We then review experimental evidence for the functions of D. melanogaster Sfps in PCSS and sexual conflict. We identify gaps in our current knowledge and areas for future research, including an enhanced identification of PCSS-related Sfps, their interactions with rival sperm and with females, the role of qualitative changes in Sfps and mechanisms of ejaculate tailoring. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Stuart Wigby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK.,Faculty Biology, Applied Zoology, Technische Universität Dresden, 01069 Dresden, Germany
| | - Nora C Brown
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Sarah E Allen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Snigdha Misra
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Jessica L Sitnik
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Irem Sepil
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
32
|
Lüpold S, Reil JB, Manier MK, Zeender V, Belote JM, Pitnick S. How female × male and male × male interactions influence competitive fertilization in Drosophila melanogaster. Evol Lett 2020; 4:416-429. [PMID: 33014418 PMCID: PMC7523561 DOI: 10.1002/evl3.193] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/02/2020] [Accepted: 08/13/2020] [Indexed: 01/01/2023] Open
Abstract
How males and females contribute to joint reproductive success has been a long‐standing question in sexual selection. Under postcopulatory sexual selection, paternity success is predicted to derive from complex interactions among females engaging in cryptic female choice and males engaging in sperm competition. Such interactions have been identified as potential sources of genetic variation in sexually selected traits but are also expected to inhibit trait diversification. To date, studies of interactions between females and competing males have focused almost exclusively on genotypes and not phenotypic variation in sexually selected traits. Here, we characterize within‐ and between‐sex interactions in Drosophila melanogaster using isogenic lines with heritable variation in both male and female traits known to influence competitive fertilization. We confirmed, and expanded on, previously reported genotypic interactions within and between the sexes, and showed that several reproductive events, including sperm transfer, female sperm ejection, and sperm storage, were explained by two‐ and three‐way interactions among sex‐specific phenotypes. We also documented complex interactions between the lengths of competing males’ sperm and the female seminal receptacle, which are known to have experienced rapid female‐male co‐diversification. Our results highlight the nonindependence of sperm competition and cryptic female choice and demonstrate that complex interactions between the sexes do not limit the ability of multivariate systems to respond to directional sexual selection.
Collapse
Affiliation(s)
- Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich CH-8057 Switzerland.,Department of Biology Syracuse University Syracuse New York 13244
| | - Jonathan Bradley Reil
- Department of Entomology Cornell University Ithaca New York 14853.,Department of Plant and Environmental Protection Sciences University of Hawaii at Mānoa Honolulu Hawaii 96822
| | - Mollie K Manier
- Department of Biology Syracuse University Syracuse New York 13244.,Department of Biological Sciences George Washington University Washington DC 20052
| | - Valérian Zeender
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich CH-8057 Switzerland
| | - John M Belote
- Department of Biology Syracuse University Syracuse New York 13244
| | - Scott Pitnick
- Department of Biology Syracuse University Syracuse New York 13244
| |
Collapse
|
33
|
Jokiniemi A, Magris M, Ritari J, Kuusipalo L, Lundgren T, Partanen J, Kekäläinen J. Post-copulatory genetic matchmaking: HLA-dependent effects of cervical mucus on human sperm function. Proc Biol Sci 2020; 287:20201682. [PMID: 32811307 PMCID: PMC7482290 DOI: 10.1098/rspb.2020.1682] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Several studies have demonstrated that women show pre-copulatory mating preferences for human leucocyte antigen (HLA)-dissimilar men. A fascinating, yet unexplored, possibility is that the ultimate mating bias towards HLA-dissimilar partners could occur after copulation, at the gamete level. Here, we explored this possibility by investigating whether the selection towards HLA-dissimilar partners occurs in the cervical mucus. After combining sperm and cervical mucus from multiple males and females (full factorial design), we found that sperm performance (swimming velocity, hyperactivation, and viability) was strongly influenced by the male–female combination. This indicates that sperm fertilization capability may be dependent on the compatibility between cervical mucus (female) and sperm (male). We also found that sperm viability was associated with partners' HLA dissimilarity, indicating that cervical mucus may selectively facilitate later gamete fusion between immunogenetically compatible partners. Together, these results provide novel insights into the female-mediated sperm selection (cryptic female choice) in humans and indicate that processes occurring after copulation may contribute to the mating bias towards HLA-dissimilar partners. Finally, by showing that sperm performance in cervical mucus is influenced by partners' genetic compatibility, the present findings may promote a deeper understanding of infertility.
Collapse
Affiliation(s)
- Annalaura Jokiniemi
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Martina Magris
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Jarmo Ritari
- Finnish Red Cross Blood Service, Research and Development, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Liisa Kuusipalo
- North Karelia Central Hospital, Tikkamäentie 16, 80210 Joensuu, Finland
| | - Tuulia Lundgren
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Jukka Partanen
- Finnish Red Cross Blood Service, Research and Development, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Jukka Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| |
Collapse
|
34
|
Zulekha K, Tagide D, Mercedes B. Spermathecal variation in temperate Opiliones. Integr Comp Biol 2020; 63:icaa120. [PMID: 32805033 PMCID: PMC10388384 DOI: 10.1093/icb/icaa120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 11/12/2022] Open
Abstract
Most arachnid fertilization occurs internally, allowing for a variety of post-copulatory mechanisms to take place. Females are expected to exert some level of control over sperm fate when 1) the point of gametic fusion is particularly distant from the point of oogenesis, 2) the time of syngamy is significantly later than the time of mating, 3) sperm are non-motile, and/or 4) the morphology of females allows for selective containment of sperm. Many of these conditions are met in Opiliones (a.k.a. "harvesters," "harvestmen," or "daddy-longlegs"), where we have evidence of sexual antagonism, multiple mating, and delayed oviposition for a number of species. We used confocal laser scanning microscopy to capture and analyze images of harvester spermathecae, structures within the genitalia of female arthropods that store and maintain sperm after copulation. Spermathecal morphology may have critical function in controlling seminal movement. We anticipated that species with previously identified traits associated with sexual antagonism would also have thicker and/or relatively more complex spermathecae. We examined spermathecal morphology in thirteen species of Leiobunum and one species of Hadrobunus, which were collected from North America and Japan. Our results show that eight species had structures consisting of a single chamber with no or partial invagination, and the remainder had multiple cuticular invaginations producing 2-3 lumina within the spermathecae. Using phylogenetic multivariate comparative methods, we estimated a trend towards cross-correlation between conflict and spermathecal traits. Some, but not all, of the species with thicker, more complex spermathecae had morphological traits associated with sexual conflict (larger body size, thicker genital muscle). In conclusion, we discuss methods to elucidate spermathecal mechanism and sperm precedence in these species. Confocal microscopy allowed us to visualize internal structures difficult to interpret with two-dimensional brightfield microscopy, a technique that could be applied to the characterization of internal reproductive structures in other arthropods.
Collapse
Affiliation(s)
- Karachiwalla Zulekha
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - deCarvalho Tagide
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
- Keith R. Porter Imaging Facility, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Burns Mercedes
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
35
|
Cardozo G, Devigili A, Antonelli P, Pilastro A. Female sperm storage mediates post-copulatory costs and benefits of ejaculate anticipatory plasticity in the guppy. J Evol Biol 2020; 33:1294-1305. [PMID: 32614995 DOI: 10.1111/jeb.13673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/02/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
Males of many species evolved the capability of adjusting their ejaculate phenotype in response to social cues to match the expected mating conditions. When females store sperm for a prolonged time, the expected fitness return of plastic adjustments of ejaculate phenotype may depend on the interval between mating and fertilization. Although prolonged female sperm storage (FSS) increases the opportunity for sperm competition, as a consequence of the longer temporal overlap of ejaculates from several males, it may also create variable selective forces on ejaculate phenotype, for example by exposing trade-offs between sperm velocity and sperm survival. We evaluated the relationship between the plasticity of ejaculate quality and FSS in the guppy, Poecilia reticulata, a polyandrous live-bearing fish in which females store sperm for several months and where stored sperm contribute significantly to a male's lifelong reproductive success. In this species, males respond to the perception of future mating opportunities by increasing the quantity (number) and quality (swimming velocity) of ready-to-use sperm (an anticipatory response called 'sperm priming'). Here we investigated (a) the effect of sperm priming on in vitro sperm viability at stripping and its temporal decline (as an estimate of sperm survival), and (b) the in vivo competitive fertilization success in relation to female sperm storage using artificial insemination. As expected, sperm-primed males produced more numerous and faster sperm, but with a reduced in vitro sperm viability at stripping and after 4 hr, compared with their counterparts. Artificial insemination revealed that the small (nonsignificant) advantage of primed sperm when fertilization immediately follows insemination is reversed when eggs are fertilized by female-stored sperm, weeks after insemination. By suggesting a plastic trade-off between sperm velocity and viability, these results demonstrate that prolonged female sperm storage generates divergent selection pressures on ejaculate phenotype.
Collapse
Affiliation(s)
- Gabriela Cardozo
- Laboratorio de Biología del Comportamiento, Instituto de Diversidad y Ecología Animal (IDEA), CONICET-UNC and Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.,Department of Biology, University of Padova, Padua, Italy
| | - Alessandro Devigili
- Department of Biology, University of Padova, Padua, Italy.,Department of Zoology, Stockholm University, Stockholm, Sweden
| | | | | |
Collapse
|
36
|
McCullough EL, McDonough CE, Pitnick S, Dorus S. Quantitative proteomics reveals rapid divergence in the postmating response of female reproductive tracts among sibling species. Proc Biol Sci 2020; 287:20201030. [PMID: 32576111 DOI: 10.1098/rspb.2020.1030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fertility depends, in part, on interactions between male and female reproductive proteins inside the female reproductive tract (FRT) that mediate postmating changes in female behaviour, morphology, and physiology. Coevolution between interacting proteins within species may drive reproductive incompatibilities between species, yet the mechanisms underlying postmating-prezygotic (PMPZ) isolating barriers remain poorly resolved. Here, we used quantitative proteomics in sibling Drosophila species to investigate the molecular composition of the FRT environment and its role in mediating species-specific postmating responses. We found that (i) FRT proteomes in D. simulans and D. mauritiana virgin females express unique combinations of secreted proteins and are enriched for distinct functional categories, (ii) mating induces substantial changes to the FRT proteome in D. mauritiana but not in D. simulans, and (iii) the D. simulans FRT proteome exhibits limited postmating changes irrespective of whether females mate with conspecific or heterospecific males, suggesting an active female role in mediating reproductive interactions. Comparisons with similar data in the closely related outgroup species D. melanogaster suggest that divergence is concentrated on the D. simulans lineage. Our study suggests that divergence in the FRT extracellular environment and postmating response contribute to previously described patterns of PMPZ isolation and the maintenance of species boundaries.
Collapse
Affiliation(s)
- Erin L McCullough
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - Caitlin E McDonough
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - Scott Pitnick
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - Steve Dorus
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
37
|
Pitnick S, Wolfner MF, Dorus S. Post-ejaculatory modifications to sperm (PEMS). Biol Rev Camb Philos Soc 2020; 95:365-392. [PMID: 31737992 PMCID: PMC7643048 DOI: 10.1111/brv.12569] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022]
Abstract
Mammalian sperm must spend a minimum period of time within a female reproductive tract to achieve the capacity to fertilize oocytes. This phenomenon, termed sperm 'capacitation', was discovered nearly seven decades ago and opened a window into the complexities of sperm-female interaction. Capacitation is most commonly used to refer to a specific combination of processes that are believed to be widespread in mammals and includes modifications to the sperm plasma membrane, elevation of intracellular cyclic AMP levels, induction of protein tyrosine phosphorylation, increased intracellular Ca2+ levels, hyperactivation of motility, and, eventually, the acrosome reaction. Capacitation is only one example of post-ejaculatory modifications to sperm (PEMS) that are widespread throughout the animal kingdom. Although PEMS are less well studied in non-mammalian taxa, they likely represent the rule rather than the exception in species with internal fertilization. These PEMS are diverse in form and collectively represent the outcome of selection fashioning complex maturational trajectories of sperm that include multiple, sequential phenotypes that are specialized for stage-specific functionality within the female. In many cases, PEMS are critical for sperm to migrate successfully through the female reproductive tract, survive a protracted period of storage, reach the site of fertilization and/or achieve the capacity to fertilize eggs. We predict that PEMS will exhibit widespread phenotypic plasticity mediated by sperm-female interactions. The successful execution of PEMS thus has important implications for variation in fitness and the operation of post-copulatory sexual selection. Furthermore, it may provide a widespread mechanism of reproductive isolation and the maintenance of species boundaries. Despite their possible ubiquity and importance, the investigation of PEMS has been largely descriptive, lacking any phylogenetic consideration with regard to divergence, and there have been no theoretical or empirical investigations of their evolutionary significance. Here, we (i) clarify PEMS-related nomenclature; (ii) address the evolutionary origin, maintenance and divergence in PEMS in the context of the protracted life history of sperm and the complex, selective environment of the female reproductive tract; (iii) describe taxonomically widespread types of PEMS: sperm activation, chemotaxis and the dissociation of sperm conjugates; (iv) review the occurence of PEMS throughout the animal kingdom; (v) consider alternative hypotheses for the adaptive value of PEMS; (vi) speculate on the evolutionary implications of PEMS for genomic architecture, sexual selection, and reproductive isolation; and (vii) suggest fruitful directions for future functional and evolutionary analyses of PEMS.
Collapse
Affiliation(s)
- Scott Pitnick
- Department of Biology, Center for Reproductive Evolution, Syacuse University, Syracuse, NY 13244, USA
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Steve Dorus
- Department of Biology, Center for Reproductive Evolution, Syacuse University, Syracuse, NY 13244, USA
| |
Collapse
|
38
|
Hopkins BR, Sepil I, Wigby S. Structural variation in Drosophila melanogaster spermathecal ducts and its association with sperm competition dynamics. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200130. [PMID: 32269825 PMCID: PMC7137968 DOI: 10.1098/rsos.200130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
Abstract
The ability of female insects to retain and use sperm for days, months, or even years after mating requires specialized storage organs in the reproductive tract. In most orders, these organs include a pair of sclerotized capsules known as spermathecae. Here, we report that some Drosophila melanogaster females exhibit previously uncharacterized structures within the distal portion of the muscular duct that links a spermatheca to the uterus. We find that these 'spermathecal duct presences' (SDPs) may form in either or both ducts and can extend from the duct into the sperm-storing capsule itself. We further find that the incidence of SDPs varies significantly between genotypes, but does not change significantly with the age or mating status of females, the latter indicating that SDPs are not composed of or stimulated by sperm or male seminal proteins. We show that SDPs affect neither the number of first male sperm held in a spermatheca nor the number of offspring produced after a single mating. However, we find evidence that SDPs are associated with a lack of second male sperm in the spermathecae after females remate. This raises the possibility that SDPs provide a mechanism for variation in sperm competition outcome among females.
Collapse
Affiliation(s)
- Ben R. Hopkins
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
- Department of Evolution and Ecology, University of California – Davis, One Shields Ave., Davis, CA 95616, USA
| | - Irem Sepil
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
| | - Stuart Wigby
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
- Faculty Biology, Applied Zoology, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
39
|
Lenschow C, Lima SQ. In the mood for sex: neural circuits for reproduction. Curr Opin Neurobiol 2020; 60:155-168. [DOI: 10.1016/j.conb.2019.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022]
|
40
|
BMP signaling inhibition in Drosophila secondary cells remodels the seminal proteome and self and rival ejaculate functions. Proc Natl Acad Sci U S A 2019; 116:24719-24728. [PMID: 31740617 PMCID: PMC6900634 DOI: 10.1073/pnas.1914491116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Seminal fluid proteins (SFPs) exert potent effects on male and female fitness. Rapidly evolving and molecularly diverse, they derive from multiple male secretory cells and tissues. In Drosophila melanogaster, most SFPs are produced in the accessory glands, which are composed of ∼1,000 fertility-enhancing "main cells" and ∼40 more functionally cryptic "secondary cells." Inhibition of bone morphogenetic protein (BMP) signaling in secondary cells suppresses secretion, leading to a unique uncoupling of normal female postmating responses to the ejaculate: refractoriness stimulation is impaired, but offspring production is not. Secondary-cell secretions might therefore make highly specific contributions to the seminal proteome and ejaculate function; alternatively, they might regulate more global-but hitherto undiscovered-SFP functions and proteome composition. Here, we present data that support the latter model. We show that in addition to previously reported phenotypes, secondary-cell-specific BMP signaling inhibition compromises sperm storage and increases female sperm use efficiency. It also impacts second male sperm, tending to slow entry into storage and delay ejection. First male paternity is enhanced, which suggests a constraint on ejaculate evolution whereby high female refractoriness and sperm competitiveness are mutually exclusive. Using quantitative proteomics, we reveal changes to the seminal proteome that surprisingly encompass alterations to main-cell-derived proteins, indicating important cross-talk between classes of SFP-secreting cells. Our results demonstrate that ejaculate composition and function emerge from the integrated action of multiple secretory cell types, suggesting that modification to the cellular make-up of seminal-fluid-producing tissues is an important factor in ejaculate evolution.
Collapse
|
41
|
Civetta A, Ranz JM. Genetic Factors Influencing Sperm Competition. Front Genet 2019; 10:820. [PMID: 31572439 PMCID: PMC6753916 DOI: 10.3389/fgene.2019.00820] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/08/2019] [Indexed: 12/26/2022] Open
Abstract
Females of many different species often mate with multiple males, creating opportunities for competition among their sperm. Although originally unappreciated, sperm competition is now considered a central form of post-copulatory male–male competition that biases fertilization. Assays of differences in sperm competitive ability between males, and interactions between females and males, have made it possible to infer some of the main mechanisms of sperm competition. Nevertheless, classical genetic approaches have encountered difficulties in identifying loci influencing sperm competitiveness while functional and comparative genomic methodologies, as well as genetic variant association studies, have uncovered some interesting candidate genes. We highlight how the systematic implementation of approaches that incorporate gene perturbation assays in experimental competitive settings, together with the monitoring of progeny output or sperm features and behavior, has allowed the identification of genes unambiguously linked to sperm competitiveness. The emerging portrait from 45 genes (33 from fruit flies, 8 from rodents, 2 from nematodes, and 2 from ants) is their remarkable breadth of biological roles exerted through males and females, the non-preponderance of sperm genes, and their overall pleiotropic nature.
Collapse
Affiliation(s)
- Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - José M Ranz
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, United States
| |
Collapse
|
42
|
Female remating rate and pattern of sperm use suggest intense sperm competition in Drosophila antonietae (Diptera: Drosophilidae). Evol Ecol 2019. [DOI: 10.1007/s10682-019-10003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Chen DS, Delbare SYN, White SL, Sitnik J, Chatterjee M, DoBell E, Weiss O, Clark AG, Wolfner MF. Female Genetic Contributions to Sperm Competition in Drosophila melanogaster. Genetics 2019; 212:789-800. [PMID: 31101677 PMCID: PMC6614900 DOI: 10.1534/genetics.119.302284] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/11/2019] [Indexed: 11/18/2022] Open
Abstract
In many species, sperm can remain viable in the reproductive tract of a female well beyond the typical interval to remating. This creates an opportunity for sperm from different males to compete for oocyte fertilization inside the female's reproductive tract. In Drosophila melanogaster, sperm characteristics and seminal fluid content affect male success in sperm competition. On the other hand, although genome-wide association studies (GWAS) have demonstrated that female genotype plays a role in sperm competition outcome as well, the biochemical, sensory, and physiological processes by which females detect and selectively use sperm from different males remain elusive. Here, we functionally tested 26 candidate genes implicated via a GWAS for their contribution to the female's role in sperm competition, measured as changes in the relative success of the first male to mate (P1). Of these 26 candidates, we identified eight genes that affect P1 when knocked down in females, and showed that five of them do so when knocked down in the female nervous system. In particular, Rim knockdown in sensory pickpocket (ppk)+ neurons lowered P1, confirming previously published results, and a novel candidate, caup, lowered P1 when knocked down in octopaminergic Tdc2+ neurons. These results demonstrate that specific neurons in the female's nervous system play a functional role in sperm competition and expand our understanding of the genetic, neuronal, and mechanistic basis of female responses to multiple matings. We propose that these neurons in females are used to sense, and integrate, signals from courtship or ejaculates, to modulate sperm competition outcome accordingly.
Collapse
Affiliation(s)
- Dawn S Chen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Sofie Y N Delbare
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Simone L White
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Jessica Sitnik
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Martik Chatterjee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Elizabeth DoBell
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Orli Weiss
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| |
Collapse
|
44
|
Dosselli R, Grassl J, den Boer SPA, Kratz M, Moran JM, Boomsma JJ, Baer B. Protein-Level Interactions as Mediators of Sexual Conflict in Ants. Mol Cell Proteomics 2019; 18:S34-S45. [PMID: 30598476 PMCID: PMC6427229 DOI: 10.1074/mcp.ra118.000941] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/06/2018] [Indexed: 12/11/2022] Open
Abstract
All social insects with obligate reproductive division of labor evolved from strictly monogamous ancestors, but multiple queen-mating (polyandry) arose de novo, in several evolutionarily derived lineages. Polyandrous ant queens are inseminated soon after hatching and store sperm mixtures for a potential reproductive life of decades. However, they cannot re-mate later in life and are thus expected to control the loss of viable sperm because their lifetime reproductive success is ultimately sperm limited. In the leaf-cutting ant Atta colombica,, the survival of newly inseminated sperm is known to be compromised by seminal fluid of rival males and to be protected by secretions of the queen sperm storage organ (spermatheca). Here we investigate the main protein-level interactions that appear to mediate sperm competition dynamics and sperm preservation. We conducted an artificial insemination experiment and DIGE-based proteomics to identify proteomic changes when seminal fluid is exposed to spermathecal fluid followed by a mass spectrometry analysis of both secretions that allowed us to identify the sex-specific origins of the proteins that had changed in abundance. We found that spermathecal fluid targets only seven (2%) of the identified seminal fluid proteins for degradation, including two proteolytic serine proteases, a SERPIN inhibitor, and a semen-liquefying acid phosphatase. In vitro, and in vivo, experiments provided further confirmation that these proteins are key molecules mediating sexual conflict over sperm competition and viability preservation during sperm storage. In vitro, exposure to spermathecal fluid reduced the capacity of seminal fluid to compromise survival of rival sperm in a matter of hours and biochemical inhibition of these seminal fluid proteins largely eliminated that adverse effect. Our findings indicate that A. colombica, queens are in control of sperm competition and sperm storage, a capacity that has not been documented in other animals but is predicted to have independently evolved in other polyandrous social insects.
Collapse
Affiliation(s)
- Ryan Dosselli
- From the ‡ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, Bayliss Building (M316),; Centre for Evolutionary Biology, School of Biological Sciences (M092),; Honey Bee Health Research Group, School of Molecular Sciences (M316), The University of Western Australia, Crawley WA 6009, Australia
| | - Julia Grassl
- From the ‡ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, Bayliss Building (M316),; Honey Bee Health Research Group, School of Molecular Sciences (M316), The University of Western Australia, Crawley WA 6009, Australia
| | - Susanne P A den Boer
- From the ‡ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, Bayliss Building (M316),; Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Madlen Kratz
- From the ‡ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, Bayliss Building (M316),; Honey Bee Health Research Group, School of Molecular Sciences (M316), The University of Western Australia, Crawley WA 6009, Australia
| | - Jessica M Moran
- From the ‡ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, Bayliss Building (M316),; Centre for Evolutionary Biology, School of Biological Sciences (M092),; Honey Bee Health Research Group, School of Molecular Sciences (M316), The University of Western Australia, Crawley WA 6009, Australia
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark;.
| | - Boris Baer
- Center for Integrative Bee Research (CIBER), Department of Entomology, The University of California, Riverside CA 92506.
| |
Collapse
|
45
|
Schenkel MA, Pen I, Beukeboom LW, Billeter J. Making sense of intralocus and interlocus sexual conflict. Ecol Evol 2018; 8:13035-13050. [PMID: 30619603 PMCID: PMC6309128 DOI: 10.1002/ece3.4629] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/13/2023] Open
Abstract
Sexual conflict occurs because males and females are exposed to different selection pressures. This can affect many aspects of female and male biology, such as physiology, behavior, genetics, and even population ecology. Its broad impact has caused widespread interest in sexual conflict. However, a key aspect of sexual conflict is often confused; it comprises two distinct forms: intralocus and interlocus sexual conflict (IASC and IRSC). Although both are caused by sex differences in selection, they operate via different proximate and ultimate mechanisms. Intralocus sexual conflict and IRSC are often not clearly defined as separate processes in the scientific literature, which impedes a proper understanding of each form as well as of their relative impact on sexual conflict. Furthermore, our current knowledge of the genetics of these phenomena is severely limited. This prevents us from empirically testing numerous theories regarding the role of these two forms of sexual conflict in evolution. Here, we clarify the distinction between IASC and IRSC, by discussing how male and female interests differ, how and when sex-specific adaptation occurs, and how this may lead to evolutionary change. We then describe a framework for their study, focusing on how future experiments may help identify the genetics underlying these phenomena. Through this, we hope to promote a more critical reflection on IASC and IRSC as well as underline the necessity of genetic and mechanistic studies of these two phenomena.
Collapse
Affiliation(s)
- Martijn A. Schenkel
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Ido Pen
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Leo W. Beukeboom
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Jean‐Christophe Billeter
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
46
|
Takami Y, Fukuhara T, Yokoyama J, Kawata M. Impact of sexually antagonistic genital morphologies on female reproduction and wild population demography. Evolution 2018; 72:2449-2461. [DOI: 10.1111/evo.13603] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Yasuoki Takami
- Graduate School of Human Development & Environment; Kobe University; Tsurukabuto 3-11, Nada-ku Kobe 657-8501 Japan
| | - Tomohiko Fukuhara
- Graduate School of Life Sciences; Tohoku University; Aoba-ku Sendai 980-8578 Japan
| | - Jun Yokoyama
- Graduate School of Life Sciences; Tohoku University; Aoba-ku Sendai 980-8578 Japan
- Faculty of Science; Yamagata University; Kojirakawa-machi 1-4-12 Yamagata 990-8560 Japan
| | - Masakado Kawata
- Graduate School of Life Sciences; Tohoku University; Aoba-ku Sendai 980-8578 Japan
| |
Collapse
|
47
|
Gasparini C, Evans JP. Female control over multiple matings increases the opportunity for postcopulatory sexual selection. Proc Biol Sci 2018; 285:rspb.2018.1505. [PMID: 30282652 DOI: 10.1098/rspb.2018.1505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/10/2018] [Indexed: 11/12/2022] Open
Abstract
It is widely acknowledged that in most species sexual selection continues after mating. Although it is generally accepted that females play an important role in generating paternity biases (i.e. cryptic female choice, CFC), we lack a quantitative understanding of the relative importance of female-controlled processes in influencing variance in male reproductive fitness. Here, we address this question experimentally using the guppy Poecilia reticulata, a polyandrous fish in which pre- and postcopulatory sexual selection jointly determine male reproductive fitness. We used a paired design to quantify patterns of paternity for pairs of rival males across two mating contexts, one in which the female retained full control over double (natural) matings and one where sperm from the same two males were artificially inseminated into the female. We then compared the relative paternity share for a given pair of males across both contexts, enabling us to test the key prediction that patterns of paternity will depend on the extent to which females retain behavioural control over matings. As predicted, we found stronger paternity biases when females retained full control over mating compared with when artificial insemination (AI) was used. Concomitantly, we show that the opportunity for postcopulatory sexual selection (standardized variance in male reproductive success) was greater when females retained control over double matings compared with when AI was used. Finally, we show that the paternity success of individual males exhibited higher repeatability across successive brood cycles when females retained behavioural control of matings compared with when AI was used. Collectively, these findings underscore the critical role that females play in determining the outcome of sexual selection and to our knowledge provide the first experimental evidence that behaviourally moderated components of CFC increase the opportunity for sexual selection.
Collapse
Affiliation(s)
- Clelia Gasparini
- School of Biological Sciences, Centre for Evolutionary Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Jonathan P Evans
- School of Biological Sciences, Centre for Evolutionary Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
48
|
Lymbery RA, Kennington WJ, Evans JP. Multivariate Sexual Selection on Ejaculate Traits under Sperm Competition. Am Nat 2018; 192:94-104. [DOI: 10.1086/697447] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
49
|
Lüpold S, Pitnick S. Sperm form and function: what do we know about the role of sexual selection? Reproduction 2018; 155:R229-R243. [DOI: 10.1530/rep-17-0536] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/19/2018] [Indexed: 12/20/2022]
Abstract
Sperm morphological variation has attracted considerable interest and generated a wealth of predominantly descriptive studies over the past three centuries. Yet, apart from biophysical studies linking sperm morphology to swimming velocity, surprisingly little is known about the adaptive significance of sperm form and the selective processes underlying its tremendous diversification throughout the animal kingdom. Here, we first discuss the challenges of examining sperm morphology in an evolutionary context and why our understanding of it is far from complete. Then, we review empirical evidence for how sexual selection theory applies to the evolution of sperm form and function, including putative secondary sexual traits borne by sperm.
Collapse
|
50
|
Delbare SYN, Chow CY, Wolfner MF, Clark AG. Roles of Female and Male Genotype in Post-Mating Responses in Drosophila melanogaster. J Hered 2018; 108:740-753. [PMID: 29036644 DOI: 10.1093/jhered/esx081] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/25/2017] [Indexed: 12/18/2022] Open
Abstract
Mating induces a multitude of changes in female behavior, physiology, and gene expression. Interactions between female and male genotype lead to variation in post-mating phenotypes and reproductive success. So far, few female molecules responsible for these interactions have been identified. Here, we used Drosophila melanogaster from 5 geographically dispersed populations to investigate such female × male genotypic interactions at the female transcriptomic and phenotypic levels. Females from each line were singly-mated to males from the same 5 lines, for a total of 25 combinations. Reproductive output and refractoriness to re-mating were assayed in females from the 25 mating combinations. Female × male genotypic interactions resulted in significant differences in these post-mating phenotypes. To assess whether female × male genotypic interactions affect the female post-mating transcriptome, next-generation RNA sequencing was performed on virgin and mated females at 5 to 6 h post-mating. Seventy-seven genes showed strong variation in mating-induced expression changes in a female × male genotype-dependent manner. These genes were enriched for immune response and odorant-binding functions, and for expression exclusively in the head. Strikingly, variation in post-mating transcript levels of a gene encoding a spermathecal endopeptidase was correlated with short-term egg production. The transcriptional variation found in specific functional classes of genes might be a read-out of female × male compatibility at a molecular level. Understanding the roles these genes play in the female post-mating response will be crucial to better understand the evolution of post-mating responses and related conflicts between the sexes.
Collapse
Affiliation(s)
- Sofie Y N Delbare
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703
| | - Clement Y Chow
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703.,Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703
| |
Collapse
|