1
|
Zhang JM, Yuan GY, Zou Y. Enzymatic ester bond formation strategies in fungal macrolide skeletons. Nat Prod Rep 2025. [PMID: 39831437 DOI: 10.1039/d4np00050a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Covering: up to August 2024Macrolides, the core skeletons of numerous marketed drugs and bioactive natural products, have garnered considerable scientific interest owing to their structural diversity and broad spectrum of pharmaceutical activities. The formation of intramolecular ester bonds is a critical biocatalytic step in constructing macrolide skeletons. Here, we summarised enzymatic ester bond formation strategies in fungal polyketide (PK)-type, nonribosomal peptide (NRP)-type, and PK-NRP hybrid-type macrolides. In PK-type macrolides, ester bond formation is commonly catalysed by a trans-acting thioesterase (TE) or a cis-acting TE domain during the product release process. In NRP-type and PK-NRP hybrid-type macrolides, the ester bond is usually introduced through condensation (C) domain-catalysed esterification during the elongation or product release step. Although the TE and C domains share similarities in their catalytic mechanism, using hydroxyl groups as nucleophiles in an intramolecular nucleophilic attack, they differ in terms of the hydroxyl origin, the timing of ester bond formation, and domain location. Furthermore, some TE domains are utilized as chemoenzymatic catalysts to construct macrolides with different ring sizes. A comparison of ester bond formation between fungi and bacteria is also discussed. Exploring the biosynthetic pathways of fungal macrolides, elucidating the diverse strategies employed in the formation of ester bonds, and understanding the application of enzymes/domains in chemoenzymatic synthesis hold promise for the discovery of new bioactive macrolides in the future.
Collapse
Affiliation(s)
- Jin-Mei Zhang
- College of Pharmaceutical Sciences, Southwest University, 400715 Chongqing, China.
| | - Guan-Yin Yuan
- College of Pharmaceutical Sciences, Southwest University, 400715 Chongqing, China.
| | - Yi Zou
- College of Pharmaceutical Sciences, Southwest University, 400715 Chongqing, China.
| |
Collapse
|
2
|
Skellam E, Rajendran S, Li L. Combinatorial biosynthesis for the engineering of novel fungal natural products. Commun Chem 2024; 7:89. [PMID: 38637654 PMCID: PMC11026467 DOI: 10.1038/s42004-024-01172-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Natural products are small molecules synthesized by fungi, bacteria and plants, which historically have had a profound effect on human health and quality of life. These natural products have evolved over millions of years resulting in specific biological functions that may be of interest for pharmaceutical, agricultural, or nutraceutical use. Often natural products need to be structurally modified to make them suitable for specific applications. Combinatorial biosynthesis is a method to alter the composition of enzymes needed to synthesize a specific natural product resulting in structurally diversified molecules. In this review we discuss different approaches for combinatorial biosynthesis of natural products via engineering fungal enzymes and biosynthetic pathways. We highlight the biosynthetic knowledge gained from these studies and provide examples of new-to-nature bioactive molecules, including molecules synthesized using combinations of fungal and non-fungal enzymes.
Collapse
Affiliation(s)
- Elizabeth Skellam
- Department of Chemistry, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA.
- BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA.
- Department of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA.
| | - Sanjeevan Rajendran
- Department of Chemistry, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
- BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
| | - Lei Li
- Department of Chemistry, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
- BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
| |
Collapse
|
3
|
Wang YR, Dong YL, Li XM, Shi XS, Li HL, Meng LH, Xu R, Wang BG. Curvularin derivatives from the marine mangrove derived fungus Penicillium sumatrense MA-325. PHYTOCHEMISTRY 2024; 220:114000. [PMID: 38278465 DOI: 10.1016/j.phytochem.2024.114000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Sumalarins D-G (1-4), four previously undescribed curvularin derivatives, along with two known related metabolites, curvularin (5) and dehydrocurvularin (6), were isolated and identified from the mangrove-derived fungus Penicillium sumatrense MA-325. Among them, sumalarin D (1) represents a unique example of curvularin derivative featuring a 5-methylfuran-2-yl-methyl group. Their structures were elucidated based on analysis of NMR and MS data as well as comparison of ECD spectra and quantum chemical calculations of NMR, and compound 1 was confirmed by X-ray crystallographic analysis. Compounds 1, 2, 5, and 6 are active against aquatic pathogenic bacteria Vibrio alginolyticus and V. harveyi with MIC values ranging from 4 to 64 μg/mL, while compound 6 is cytotoxic against tumor cell lines 5673, HCT 116, 786-O, and Hela with IC50 values of 3.5, 10.6, 10.9, and 14.9 μM, respectively.
Collapse
Affiliation(s)
- Yi-Ran Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, People's Republic of China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao, 266237, People's Republic of China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, People's Republic of China
| | - Yu-Liang Dong
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, People's Republic of China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao, 266237, People's Republic of China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, People's Republic of China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao, 266237, People's Republic of China
| | - Xiao-Shan Shi
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, People's Republic of China
| | - Hong-Lei Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, People's Republic of China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao, 266237, People's Republic of China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, People's Republic of China
| | - Ling-Hong Meng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, People's Republic of China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao, 266237, People's Republic of China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, People's Republic of China
| | - Rui Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, People's Republic of China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, People's Republic of China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao, 266237, People's Republic of China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, People's Republic of China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
4
|
Li L, Zhong W, Liu H, Espinosa-Artiles P, Xu YM, Wang C, Robles JMV, Paz TA, Inácio MC, Chen F, Xu Y, Gunatilaka AAL, Molnár I. Biosynthesis of Cytosporones in Leotiomycetous Filamentous Fungi. J Am Chem Soc 2024; 146:6189-6198. [PMID: 38386630 PMCID: PMC11106036 DOI: 10.1021/jacs.3c14066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Polyketides with the isochroman-3-one pharmacophore are rare among fungal natural products as their biosynthesis requires an unorthodox S-type aromatic ring cyclization. Genome mining uncovered a conserved gene cluster in select leotiomycetous fungi that encodes the biosynthesis of cytosporones, including isochroman-3-one congeners. Combinatorial biosynthesis in total biosynthetic and biocatalytic formats in Saccharomyces cerevisiae and in vitro reconstitution of key reactions with purified enzymes revealed how cytosporone structural and bioactivity diversity is generated. The S-type acyl dihydroxyphenylacetic acid (ADA) core of cytosporones is assembled by a collaborating polyketide synthase pair. Thioesterase domain-catalyzed transesterification releases ADA esters, some of which are known Nur77 modulators. Alternatively, hydrolytic release allows C6 hydroxylation by a flavin-dependent monooxygenase, yielding a trihydroxybenzene moiety. Reduction of the C9 carbonyl by a short chain dehydrogenase/reductase initiates isochroman-3-one formation, affording cytosporones with cytotoxic and antimicrobial activity. Enoyl di- or trihydroxyphenylacetic acids are generated as shunt products, while isocroman-3,4-diones are formed by autoxidation. The cytosporone pathway offers novel polyketide biosynthetic enzymes for combinatorial synthetic biology to advance the production of "unnatural" natural products for drug discovery.
Collapse
Affiliation(s)
- Li Li
- Southwest Center for Natural Products Research, University of Arizona, Tucson 85719, Arizona, United States
- College of Life Science, Yangtze University, Jingzhou 434025, P. R. China
| | - Weimao Zhong
- Southwest Center for Natural Products Research, University of Arizona, Tucson 85719, Arizona, United States
| | - Hang Liu
- Southwest Center for Natural Products Research, University of Arizona, Tucson 85719, Arizona, United States
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Patricia Espinosa-Artiles
- Southwest Center for Natural Products Research, University of Arizona, Tucson 85719, Arizona, United States
| | - Ya-ming Xu
- Southwest Center for Natural Products Research, University of Arizona, Tucson 85719, Arizona, United States
| | - Chen Wang
- Southwest Center for Natural Products Research, University of Arizona, Tucson 85719, Arizona, United States
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Jose Manuel Verdugo Robles
- Southwest Center for Natural Products Research, University of Arizona, Tucson 85719, Arizona, United States
| | - Tiago Antunes Paz
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil
| | - Marielle Cascaes Inácio
- Southwest Center for Natural Products Research, University of Arizona, Tucson 85719, Arizona, United States
| | - Fusheng Chen
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, P. R. China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yuquan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - A. A. Leslie Gunatilaka
- Southwest Center for Natural Products Research, University of Arizona, Tucson 85719, Arizona, United States
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, Tucson 85719, Arizona, United States
- VTT Technical Research Center of Finland Ltd., Espoo 02150, Finland
| |
Collapse
|
5
|
Cox RJ. Engineered and total biosynthesis of fungal specialized metabolites. Nat Rev Chem 2024; 8:61-78. [PMID: 38172201 DOI: 10.1038/s41570-023-00564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2023] [Indexed: 01/05/2024]
Abstract
Filamentous fungi produce a very wide range of complex and often bioactive metabolites, demonstrating their inherent ability as hosts of complex biosynthetic pathways. Recent advances in molecular sciences related to fungi have afforded the development of new tools that allow the rational total biosynthesis of highly complex specialized metabolites in a single process. Increasingly, these pathways can also be engineered to produce new metabolites. Engineering can be at the level of gene deletion, gene addition, formation of mixed pathways, engineering of scaffold synthases and engineering of tailoring enzymes. Combination of these approaches with hosts that can metabolize low-value waste streams opens the prospect of one-step syntheses from garbage.
Collapse
Affiliation(s)
- Russell J Cox
- Institute for Organic Chemistry and BMWZ, Leibniz University of Hannover, Hannover, Germany.
| |
Collapse
|
6
|
Li Y, Lin P, Lu X, Yan H, Wei H, Liu C, Liu X, Yang Y, Molnár I, Bai Z. Plasmid Copy Number Engineering Accelerates Fungal Polyketide Discovery upon Unnatural Polyketide Biosynthesis. ACS Synth Biol 2023; 12:2226-2235. [PMID: 37463503 DOI: 10.1021/acssynbio.3c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Saccharomyces cerevisiae has been extensively used as a convenient synthetic biology chassis to reconstitute fungal polyketide biosynthetic pathways. Despite progress in refactoring these pathways for expression and optimization of the yeast production host by metabolic engineering, product yields often remain unsatisfactory. Such problems are especially acute when synthetic biological production is used for bioprospecting via genome mining or when chimeric fungal polyketide synthases (PKSs) are employed to produce novel bioactive compounds. In this work, we demonstrate that empirically balancing the expression levels of the two collaborating PKS subunits that afford benzenediol lactone (BDL)-type fungal polyketides is a facile strategy to improve the product yields. This is accomplished by systematically and independently altering the copy numbers of the two plasmids that express these PKS subunits. We applied this plasmid copy number engineering strategy to two orphan PKSs from genome mining where the yields of the presumed BDL products in S. cerevisiae were far too low for product isolation. This optimization resulted in product yield improvements of up to 10-fold, allowing for the successful isolation and structure elucidation of new BDL analogues. Heterocombinations of these PKS subunits from genome mining with those from previously identified BDL pathways led to the combinatorial biosynthesis of several additional novel BDL-type polyketides.
Collapse
Affiliation(s)
- Ye Li
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Pingxin Lin
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Xuan Lu
- School of Life Science and Biotechnology, Dalian University, Dalian 116622, China
| | - Hao Yan
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Huan Wei
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Chunli Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Xiuxia Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Yankun Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, Tucson, Arizona 85706, United States
- VTT Technical Research Centre of Finland Ltd., Espoo 02044, Finland
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Liu Q, Zhang D, Gao S, Cai X, Yao M, Xu Y, Gong Y, Zheng K, Mao Y, Yang L, Yang D, Molnár I, Yang X. Didepside Formation by the Nonreducing Polyketide Synthase Preu6 of Preussia isomera Requires Interaction of Starter Acyl Transferase and Thioesterase Domains. Angew Chem Int Ed Engl 2023; 62:e202214379. [PMID: 36484777 DOI: 10.1002/anie.202214379] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/13/2022]
Abstract
Orsellinic acid (OA) derivatives are produced by filamentous fungi using nonreducing polyketide synthases (nrPKSs). The chain-releasing thioesterase (TE) domains of such nrPKSs were proposed to also catalyze dimerization to yield didepsides, such as lecanoric acid. Here, we use combinatorial domain exchanges, domain dissections and reconstitutions to reveal that the TE domain of the lecanoric acid synthase Preu6 of Preussia isomera must collaborate with the starter acyl transferase (SAT) domain from the same nrPKS. We show that artificial SAT-TE fusion proteins are highly effective catalysts and reprogram the ketide homologation chassis to form didepsides. We also demonstrate that dissected SAT and TE domains of Preu6 physically interact, and SAT and TE domains of OA-synthesizing nrPKSs may co-evolve. Our work highlights an unexpected domain-domain interaction in nrPKSs that must be considered for the combinatorial biosynthesis of unnatural didepsides, depsidones, and diphenyl ethers.
Collapse
Affiliation(s)
- Qingpei Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minyuan Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Dan Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minyuan Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Shuaibiao Gao
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minyuan Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Xianhua Cai
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minyuan Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Ming Yao
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minyuan Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Yao Xu
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minyuan Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Yifu Gong
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minyuan Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Ke Zheng
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minyuan Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Yigui Mao
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minyuan Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Liyan Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, No.98 Daling Road, Nanning, 530007, P. R. China
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, No.98 Daling Road, Nanning, 530007, P. R. China
| | - István Molnár
- VTT Technical Research Centre of Finland, Division of Industrial Biotechnology and Food Solutions, Tietotie 2, Espoo, 02150, Finland
| | - Xiaolong Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minyuan Road, Hongshan District, Wuhan, 430074, P. R. China
| |
Collapse
|
8
|
Yan H, Fu Z, Lin P, Gu Y, Cao J, Li Y. Inhibition of human glioblastoma multiforme cells by 10,11-dehydrocurvularin through the MMP-2 and PI3K/AKT signaling pathways. Eur J Pharmacol 2022; 936:175348. [DOI: 10.1016/j.ejphar.2022.175348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022]
|
9
|
Liu Q, Zhang D, Xu Y, Gao S, Gong Y, Cai X, Yao M, Yang X. Cloning and Functional Characterization of the Polyketide Synthases Based on Genome Mining of Preussia isomera XL-1326. Front Microbiol 2022; 13:819086. [PMID: 35602042 PMCID: PMC9116485 DOI: 10.3389/fmicb.2022.819086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/31/2022] [Indexed: 11/21/2022] Open
Abstract
Fungal polyketides (PKs) are one of the largest families of structurally diverse bioactive natural products biosynthesized by multidomain megasynthases, in which thioesterase (TE) domains act as nonequivalent decision gates determining both the shape and the yield of the polyketide intermediate. The endophytic fungus Preussia isomera XL-1326 was discovered to have an excellent capacity for secreting diverse bioactive PKs, i.e., the hot enantiomers (±)-preuisolactone A with antibacterial activity, the single-spiro minimoidione B with α-glucosidase inhibition activity, and the uncommon heptaketide setosol with antifungal activity, which drive us to illustrate how the unique PKs are biosynthesized. In this study, we first reported the genome sequence information of P. isomera. Based on genome mining, we discovered nine transcriptionally active genes encoding polyketide synthases (PKSs), Preu1–Preu9, of which those of Preu3, Preu4, and Preu6 were cloned and functionally characterized due to possessing complete sets of synthetic and release domains. Through heterologous expression in Saccharomyces cerevisiae, Preu3 and Preu6 could release high yields of orsellinic acid (OA) derivatives [3-methylorsellinic acid (3-MOA) and lecanoric acid, respectively]. Correspondingly, we found that Preu3 and Preu6 were clustered into OA derivative synthase groups by phylogenetic analysis. Next, with TE domain swapping, we constructed a novel “non-native” PKS, Preu6-TEPreu3, which shared a very low identity with OA synthase, OrsA, from Aspergillus nidulans but could produce a large amount of OA. In addition, with the use of Preu6-TEPreu3, we synthesized methyl 3-methylorsellinate (synthetic oak moss of great economic value) from 3-MOA as the substrate, and interestingly, 3-MOA exhibited remarkable antibacterial activities, while methyl 3-methylorsellinate displayed broad-spectrum antifungal activity. Taken together, we identified two novel PKSs to biosynthesize 3-MOA and lecanoric acid, respectively, with information on such kinds of PKSs rarely reported, and constructed one novel “non-native” PKS to largely biosynthesize OA. This work is our first step to explore the biosynthesis of the PKs in P. isomera, and it also provides a new platform for high-level environment-friendly production of OA derivatives and the development of new antimicrobial agents.
Collapse
Affiliation(s)
- Qingpei Liu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Dan Zhang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Yao Xu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Shuaibiao Gao
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Yifu Gong
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Xianhua Cai
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Ming Yao
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Xiaolong Yang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| |
Collapse
|
10
|
Kahlert L, Villanueva M, Cox RJ, Skellam EJ. Biosynthesis of 6-Hydroxymellein Requires a Collaborating Polyketide Synthase-like Enzyme. Angew Chem Int Ed Engl 2021; 60:11423-11429. [PMID: 33661567 PMCID: PMC8251887 DOI: 10.1002/anie.202100969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/22/2021] [Indexed: 12/12/2022]
Abstract
The polyketide synthase (PKS)-like protein TerB, consisting of inactive dehydratase, inactive C-methyltransferase, and functional ketoreductase domains collaborates with the iterative non reducing PKS TerA to produce 6-hydroxymellein, a key pathway intermediate during the biosynthesis of various fungal natural products. The catalytically inactive dehydratase domain of TerB appears to mediate productive interactions with TerA, demonstrating a new mode of trans-interaction between iterative PKS components.
Collapse
Affiliation(s)
- Lukas Kahlert
- Institute for Organic Chemistry and BMWZLeibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| | - Miranda Villanueva
- Institute for Organic Chemistry and BMWZLeibniz Universität HannoverSchneiderberg 3830167HannoverGermany
- Current address: The Molecular Biology InstituteUCLALos AngelesCA90095-1570USA
| | - Russell J. Cox
- Institute for Organic Chemistry and BMWZLeibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| | - Elizabeth J. Skellam
- Institute for Organic Chemistry and BMWZLeibniz Universität HannoverSchneiderberg 3830167HannoverGermany
- Current address: Department of Chemistry & BioDiscovery InstituteUniversity of North Texas1155 Union Circle 305220DentonTX76203USA
| |
Collapse
|
11
|
Kahlert L, Villanueva M, Cox RJ, Skellam EJ. Biosynthesis of 6‐Hydroxymellein Requires a Collaborating Polyketide Synthase‐like Enzyme. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lukas Kahlert
- Institute for Organic Chemistry and BMWZ Leibniz Universität Hannover Schneiderberg 38 30167 Hannover Germany
| | - Miranda Villanueva
- Institute for Organic Chemistry and BMWZ Leibniz Universität Hannover Schneiderberg 38 30167 Hannover Germany
- Current address: The Molecular Biology Institute UCLA Los Angeles CA 90095-1570 USA
| | - Russell J. Cox
- Institute for Organic Chemistry and BMWZ Leibniz Universität Hannover Schneiderberg 38 30167 Hannover Germany
| | - Elizabeth J. Skellam
- Institute for Organic Chemistry and BMWZ Leibniz Universität Hannover Schneiderberg 38 30167 Hannover Germany
- Current address: Department of Chemistry & BioDiscovery Institute University of North Texas 1155 Union Circle 305220 Denton TX 76203 USA
| |
Collapse
|
12
|
Zhou F, Zhou Y, Guo Z, Yu X, Deng Z. Review of 10,11-Dehydrocurvularin: Synthesis, Structural Diversity, Bioactivities and Mechanisms. Mini Rev Med Chem 2021; 22:836-847. [PMID: 33913403 DOI: 10.2174/1389557521666210428132256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 11/22/2022]
Abstract
10,11-Dehydrocurvularin is a natural benzenediol lactone (BDL) with a 12-membered macrolide fused to resorcinol ring produced as secondary metabolite by many fungi. In this review, we summarized literatures regarding the biosynthesis, chemical synthesis, biological activities and assumed work mechanisms of 10,11-dehydrocurvularin, which presented potential for agricultural and pharmaceutical uses.
Collapse
Affiliation(s)
- FuGui Zhou
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Yiqing Zhou
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou, Jiangsu, China
| | - ZhiYong Guo
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - XianJun Yu
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research,Hubei Key Laboratory of Wudang Local Chinese Medicine Research,Hubei University of Medicine, Shiyan, China
| | - Zhangshuang Deng
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| |
Collapse
|
13
|
Das P, Reddy DS. Total synthesis of twelve membered resorcyclic acid lactones, (R)-penicimenolide A, (R)-resorcyclide and (R)-dihydroresorcyclide. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Xie L, Xiao D, Wang X, Wang C, Bai J, Yue Q, Yue H, Li Y, Molnár I, Xu Y, Zhang L. Combinatorial Biosynthesis of Sulfated Benzenediol Lactones with a Phenolic Sulfotransferase from Fusarium graminearum PH-1. mSphere 2020; 5:e00949-20. [PMID: 33239367 PMCID: PMC7690957 DOI: 10.1128/msphere.00949-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/04/2020] [Indexed: 11/20/2022] Open
Abstract
Total biosynthesis or whole-cell biocatalytic production of sulfated small molecules relies on the discovery and implementation of appropriate sulfotransferase enzymes. Although fungi are prominent biocatalysts and have been used to sulfate drug-like phenolics, no gene encoding a sulfotransferase enzyme has been functionally characterized from these organisms. Here, we identify a phenolic sulfotransferase, FgSULT1, by genome mining from the plant-pathogenic fungus Fusarium graminearum PH-1. We expressed FgSULT1 in a Saccharomyces cerevisiae chassis to modify a broad range of benzenediol lactones and their nonmacrocyclic congeners, together with an anthraquinone, with the resulting unnatural natural product (uNP) sulfates displaying increased solubility. FgSULT1 shares low similarity with known animal and plant sulfotransferases. Instead, it forms a sulfotransferase family with putative bacterial and fungal enzymes for phase II detoxification of xenobiotics and allelochemicals. Among fungi, putative FgSULT1 homologues are encoded in the genomes of Fusarium spp. and a few other genera in nonsyntenic regions, some of which may be related to catabolic sulfur recycling. Computational structure modeling combined with site-directed mutagenesis revealed that FgSULT1 retains the key catalytic residues and the typical fold of characterized animal and plant sulfotransferases. Our work opens the way for the discovery of hitherto unknown fungal sulfotransferases and provides a synthetic biological and enzymatic platform that can be adapted to produce bioactive sulfates, together with sulfate ester standards and probes for masked mycotoxins, precarcinogenic toxins, and xenobiotics.IMPORTANCE Sulfation is an expedient strategy to increase the solubility, bioavailability, and bioactivity of nutraceuticals and clinically important drugs. However, chemical or biological synthesis of sulfoconjugates is challenging. Genome mining, heterologous expression, homology structural modeling, and site-directed mutagenesis identified FgSULT1 of Fusarium graminearum PH-1 as a cytosolic sulfotransferase with the typical fold and active site architecture of characterized animal and plant sulfotransferases, despite low sequence similarity. FgSULT1 homologues are sparse in fungi but form a distinct clade with bacterial sulfotransferases. This study extends the functionally characterized sulfotransferase superfamily to the kingdom Fungi and demonstrates total biosynthetic and biocatalytic synthetic biological platforms to produce unnatural natural product (uNP) sulfoconjugates. Such uNP sulfates may be utilized for drug discovery in human and veterinary medicine and crop protection. Our synthetic biological methods may also be adapted to generate masked mycotoxin standards for food safety and environmental monitoring applications and to expose precarcinogenic xenobiotics.
Collapse
Affiliation(s)
- Linan Xie
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Dongliang Xiao
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xiaojing Wang
- Southwest Center for Natural Products Research, University of Arizona, Tucson, Arizona, USA
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, People's Republic of China
| | - Chen Wang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Jing Bai
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- School of Chemistry, Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province, People's Republic of China
| | - Qun Yue
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Haitao Yue
- Department of Biology and Biotechnology, Xinjiang University, Urumqi, People's Republic of China
| | - Ye Li
- Southwest Center for Natural Products Research, University of Arizona, Tucson, Arizona, USA
- National Engineering Lab for Cereal Fermentation Technology, Jiangnan University, Wuxi, People's Republic of China
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, Tucson, Arizona, USA
| | - Yuquan Xu
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Liwen Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
15
|
Wang C, Wang X, Zhang L, Yue Q, Liu Q, Xu YM, Gunatilaka AAL, Wei X, Xu Y, Molnár I. Intrinsic and Extrinsic Programming of Product Chain Length and Release Mode in Fungal Collaborating Iterative Polyketide Synthases. J Am Chem Soc 2020; 142:17093-17104. [PMID: 32833442 DOI: 10.1021/jacs.0c07050] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Combinatorial biosynthesis with fungal polyketide synthases (PKSs) promises to produce unprecedented bioactive "unnatural" natural products (uNPs) for drug discovery. Genome mining of the dothideomycete Rhytidhysteron rufulum uncovered a collaborating highly reducing PKS (hrPKS)-nonreducing PKS (nrPKS) pair. These enzymes produce trace amounts of rare S-type benzenediol macrolactone congeners with a phenylacetate core in a heterologous host. However, subunit shuffling and domain swaps with voucher enzymes demonstrated that all PKS domains are highly productive. This contradiction led us to reveal novel programming layers exerted by the starter unit acyltransferase (SAT) and the thioesterase (TE) domains on the PKS system. First, macrocyclic vs linear product formation is dictated by the intrinsic biosynthetic program of the TE domain. Next, the chain length of the hrPKS product is strongly influenced in trans by the off-loading preferences of the nrPKS SAT domain. Last, TE domains are size-selective filters that facilitate or obstruct product formation from certain priming units. Thus, the intrinsic programs of the SAT and TE domains are both part of the extrinsic program of the hrPKS subunit and modulate the observable metaprogram of the whole PKS system. Reconstruction of SAT and TE phylogenies suggests that these domains travel different evolutionary trajectories, with the resulting divergence creating potential conflicts in the PKS metaprogram. Such conflicts often emerge in chimeric PKSs created by combinatorial biosynthesis, reducing biosynthetic efficiency or even incapacitating the system. Understanding the points of failure for such engineered biocatalysts is pivotal to advance the biosynthetic production of uNPs.
Collapse
Affiliation(s)
- Chen Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.,Southwest Center for Natural Products Research, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - Xiaojing Wang
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai 201318, P. R. China
| | - Liwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Qun Yue
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Qingpei Liu
- Southwest Center for Natural Products Research, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States.,School of Pharmaceutical Sciences, South-Central University for Nationalities, 182 Minyuan Road, Hongshan District, Wuhan 430074, P. R. China
| | - Ya-Ming Xu
- Southwest Center for Natural Products Research, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - A A Leslie Gunatilaka
- Southwest Center for Natural Products Research, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - Xiaoyi Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
| | - Yuquan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States
| |
Collapse
|
16
|
Yuan S, Gopal JV, Ren S, Chen L, Liu L, Gao Z. Anticancer fungal natural products: Mechanisms of action and biosynthesis. Eur J Med Chem 2020; 202:112502. [PMID: 32652407 DOI: 10.1016/j.ejmech.2020.112502] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 01/07/2023]
Abstract
Many fungal metabolites show promising anticancer properties both in vitro and in animal models, and some synthetic analogs of those metabolites have progressed into clinical trials. However, currently, there are still no fungi-derived agents approved as anticancer drugs. Two potential reasons could be envisioned: 1) lacking a clear understanding of their anticancer mechanism of action, 2) unable to supply enough materials to support the preclinical and clinic developments. In this review, we will summarize recent efforts on elucidating the anticancer mechanisms and biosynthetic pathways of several promising anticancer fungal natural products.
Collapse
Affiliation(s)
- Siwen Yuan
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jannu Vinay Gopal
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shuya Ren
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Litong Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Zhizeng Gao
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
17
|
Stereochemical determination of four 10-membered ring resorcylic acid lactones from the desert plant endophytic fungus Chaetosphaeronema hispidulum. J Antibiot (Tokyo) 2020; 73:471-474. [PMID: 32157185 DOI: 10.1038/s41429-020-0297-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/10/2020] [Accepted: 02/18/2020] [Indexed: 11/08/2022]
Abstract
Four 10-membered ring resorcylic acid lactones (RALs) including a new compound hispidulactone F (1) and three known analogs hispidulactone B (2), 2 R, 4R-sonnerlactone (3), and 2 R, 4S-sonnerlactone (4) were isolated from the special bioenvironmental desert plant endophytic fungus Chaetosphaeronema hispidulum. The structure of the new compound hispidulactone F (1) was determined by extensive spectra analysis including HR-ESI-MS, NMR (1H, 13C, 1H-1H COSY, HSQC, and HMBC). Hispidulactone F (1) and hispidulactone B (2) were a pair of stereoisomers at C-3, whereas 2 R, 4R-sonnerlactone (3) and 2 R, 4S-sonnerlactone (4) were another pair of stereoisomers at C-4. The stereochemistries of the hydroxyl groups at C-3 in 1 and 2, and at C-4 in 3 and 4 were first determined by modified Mosher's reactions. Thus, the absolute configuration C-3 in hispidulactone B (2) was not right in our previous report, and was rectified to be R. Compounds 1 and 4 were evaluated for their cytotoxic effects on the proliferation of HepG2. The possible biosynthetic pathway of compounds 1-4 was also presented.
Collapse
|
18
|
Xu F, Butler R, May K, Rexhepaj M, Yu D, Zi J, Chen Y, Liang Y, Zeng J, Hevel J, Zhan J. Modified substrate specificity of a methyltransferase domain by protein insertion into an adenylation domain of the bassianolide synthetase. J Biol Eng 2019; 13:65. [PMID: 31388353 PMCID: PMC6670151 DOI: 10.1186/s13036-019-0195-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/17/2019] [Indexed: 02/05/2023] Open
Abstract
Background Creating designer molecules using a combination of select domains from polyketide synthases and/or nonribosomal peptide synthetases (NRPS) continues to be a synthetic goal. However, an incomplete understanding of how protein-protein interactions and dynamics affect each of the domain functions stands as a major obstacle in the field. Of particular interest is understanding the basis for a class of methyltransferase domains (MT) that are found embedded within the adenylation domain (A) of fungal NRPS systems instead of in an end-to-end architecture. Results The MT domain from bassianolide synthetase (BSLS) was removed and the truncated enzyme BSLS-ΔMT was recombinantly expressed. The biosynthesis of bassianolide was abolished and N-desmethylbassianolide was produced in low yields. Co-expression of BSLS-ΔMT with standalone MT did not recover bassianolide biosynthesis. In order to address the functional implications of the protein insertion, we characterized the N-methyltransferase activity of the MT domain as both the isolated domain (MTBSLS) and as part of the full NRPS megaenzyme. Surprisingly, the MTBSLS construct demonstrated a relaxed substrate specificity and preferentially methylated an amino acid (L-Phe-SNAC) that is rarely incorporated into the final product. By testing the preference of a series of MT constructs (BSLS, MTBSLS, cMT, XLcMT, and aMT) to L-Phe-SNAC and L-Leu-SNAC, we further showed that restricting and/or fixing the termini of the MTBSLS by crosslinking or embedding the MT within an A domain narrowed the substrate specificity of the methyltransferase toward L-Leu-SNAC, the preferred substrate for the BSLS megaenzyme. Conclusions The embedding of MT into the A2 domain of BSLS is not required for the product assembly, but is critical for the overall yields of the final products. The substrate specificity of MT is significantly affected by the protein context within which it is present. While A domains are known to be responsible for selecting and activating the biosynthetic precursors for NRPS systems, our results suggest that embedding the MT acts as a secondary gatekeeper for the assembly line. This work thus provides new insights into the embedded MT domain in NRPSs, which will facilitate further engineering of this type of biosynthetic machinery to create structural diversity in natural products. Electronic supplementary material The online version of this article (10.1186/s13036-019-0195-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fuchao Xu
- 1Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105 USA
| | - Russell Butler
- 2Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300 USA
| | - Kyle May
- 2Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300 USA
| | - Megi Rexhepaj
- 2Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300 USA
| | - Dayu Yu
- 1Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105 USA.,3Department of Applied Chemistry and Biological Engineering, College of Chemical Engineering, Northeast Electric Power University, Jilin, 132012 Jilin China
| | - Jiachen Zi
- 1Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105 USA
| | - Yi Chen
- 1Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105 USA
| | - Yonghong Liang
- 1Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105 USA.,4Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004 Jiangxi China
| | - Jia Zeng
- 1Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105 USA
| | - Joan Hevel
- 2Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300 USA
| | - Jixun Zhan
- 1Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105 USA
| |
Collapse
|
19
|
Li L, Zhang X, Tan X, Sun B, Wu B, Yu M, Zhang T, Zhang Y, Ding G. Rhinoclactones A-E, Resorcylic Acid Analogs from Desert Plant Endophytic Fungus Rhinocladiella similis. Molecules 2019; 24:molecules24071405. [PMID: 30974765 PMCID: PMC6480478 DOI: 10.3390/molecules24071405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/16/2022] Open
Abstract
Seven resorcylic acid lactones (RALs) including five new analog rhinoclactones, A–E (1, 2, 4–6), were isolated from an endophytic fungus Rhinocladiella similis in the plant Agriophyllum squarrosum collected from the Tengger Desert of the Ningxia Province, China. The structures of these new compounds were determined by HR-ESI-MS (High Resolution Electrospray Ionization Mass Spectrometry), NMR data, modified Mosher’s method, and X-ray diffraction experiments. All compounds isolated from this fungus possessed the 16-OMe/14-OH, not the common 16-OH/14-OH or 16-OH/14-OMe groups on the aromatic ring, which are rarely found in nature. Compound 7 displayed cytotoxic activities against HCT116 and HeLa cancer cell lines. The possible biosynthesis of 1–7 is suggested, and the potential ecological roles of these fungal secondary metabolites is discussed.
Collapse
Affiliation(s)
- Luying Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Xiaoyan Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Xiangmei Tan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Bingda Sun
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Bin Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Meng Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Tao Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Yonggang Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Gang Ding
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
20
|
Wang X, Wang C, Duan L, Zhang L, Liu H, Xu YM, Liu Q, Mao T, Zhang W, Chen M, Lin M, Gunatilaka AAL, Xu Y, Molnár I. Rational Reprogramming of O-Methylation Regioselectivity for Combinatorial Biosynthetic Tailoring of Benzenediol Lactone Scaffolds. J Am Chem Soc 2019; 141:4355-4364. [PMID: 30767524 PMCID: PMC6416077 DOI: 10.1021/jacs.8b12967] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 11/28/2022]
Abstract
O-Methylation modulates the pharmacokinetic and pharmacodynamic (PK/PD) properties of small-molecule natural products, affecting their bioavailability, stability, and binding to targets. Diversity-oriented combinatorial biosynthesis of new chemical entities for drug discovery and optimization of known bioactive scaffolds during drug development both demand efficient O-methyltransferase (OMT) biocatalysts with considerable substrate promiscuity and tunable regioselectivity that can be deployed in a scalable and sustainable manner. Here we demonstrate efficient total biosynthetic and biocatalytic platforms that use a pair of fungal OMTs with orthogonal regiospecificity to produce unnatural O-methylated benzenediol lactone polyketides. We show that rational, structure-guided active-site cavity engineering can reprogram the regioselectivity of these enzymes. We also characterize the interplay of engineered regioselectivity with substrate plasticity. These findings will guide combinatorial biosynthetic tailoring of unnatural products toward the generation of diverse chemical matter for drug discovery and the PK/PD optimization of bioactive scaffolds for drug development.
Collapse
Affiliation(s)
- Xiaojing Wang
- Biotechnology
Research Institute, Chinese Academy of Agricultural
Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
- Southwest
Center for Natural Products Research, University
of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United
States
- State
Key Laboratory of Plant Physiology and Biochemistry, Department of
Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, P.R. China
| | - Chen Wang
- Biotechnology
Research Institute, Chinese Academy of Agricultural
Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
- Southwest
Center for Natural Products Research, University
of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United
States
| | - Lixin Duan
- Southwest
Center for Natural Products Research, University
of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United
States
- Guangzhou
University of Chinese Medicine, 232 Waihuan East Road, Guangzhou University
City, Panyu District, Guangzhou 510006, P.R. China
| | - Liwen Zhang
- Biotechnology
Research Institute, Chinese Academy of Agricultural
Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Hang Liu
- Biotechnology
Research Institute, Chinese Academy of Agricultural
Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
- Southwest
Center for Natural Products Research, University
of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United
States
| | - Ya-ming Xu
- Southwest
Center for Natural Products Research, University
of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United
States
| | - Qingpei Liu
- Southwest
Center for Natural Products Research, University
of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United
States
- Key
Laboratory of Environment Correlative Dietology, College of Food Science
and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Tonglin Mao
- State
Key Laboratory of Plant Physiology and Biochemistry, Department of
Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, P.R. China
| | - Wei Zhang
- Biotechnology
Research Institute, Chinese Academy of Agricultural
Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Ming Chen
- Biotechnology
Research Institute, Chinese Academy of Agricultural
Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Min Lin
- Biotechnology
Research Institute, Chinese Academy of Agricultural
Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
| | - A. A. Leslie Gunatilaka
- Southwest
Center for Natural Products Research, University
of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United
States
| | - Yuquan Xu
- Biotechnology
Research Institute, Chinese Academy of Agricultural
Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
| | - István Molnár
- Southwest
Center for Natural Products Research, University
of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United
States
| |
Collapse
|
21
|
Liu L, Zhao J, Huang Y, Xin Q, Wang Z. Diversifying of Chemical Structure of Native Monascus Pigments. Front Microbiol 2018; 9:3143. [PMID: 30622522 PMCID: PMC6308397 DOI: 10.3389/fmicb.2018.03143] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/04/2018] [Indexed: 12/21/2022] Open
Abstract
Red Yeast Rice, produced by solid state fermentation of Monascus species on rice, is a traditional food additive and traditional Chinese medicine. With the introduction of modern microbiology and biotechnology to the traditional edible filamentous fungi Monascus species, it has been revealed that the production of red colorant by fermentation of Monascus species involves the biosynthesis of orange Monascus pigments and further chemical modification of orange Monascus pigments into the corresponding derivates with various amine residues. Further study indicates that non-Monascus species also produce Monascus pigments as well as Monascus-like pigments. Based on the chemical modification of orange Monascus pigments, the diversification of native Monascus pigments, including commercial food additives of Red Monascus Pigments® and Yellow Monascus Pigments® in Chinese market, was reviewed. Furthermore, Monascus pigments as well as their derivates as enzyme inhibitors for anti-obesity, hyperlipidemia, and hyperglycemia was also summarized.
Collapse
Affiliation(s)
- Lujie Liu
- State Key Laboratory of Microbial Metabolism, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jixing Zhao
- Shandong Zhonghui Biotechnology Co., Ltd., Binzhou, China
| | - Yaolin Huang
- State Key Laboratory of Microbial Metabolism, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Qiao Xin
- State Key Laboratory of Microbial Metabolism, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhilong Wang
- State Key Laboratory of Microbial Metabolism, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
22
|
Zhang XY, Liu ZL, Sun BD, Niu SB, Wang MH, Tan XM, Zou ZM, Ding G. Bioactive Resorcylic Acid Lactones with Different Ring Systems from Desert Plant Chaetosphaeronema hispidulum. [corrected]. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8976-8982. [PMID: 30095908 DOI: 10.1021/acs.jafc.8b02648] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Five new resorcylic acid lactones (RALs) hispidulactones A-E (1, 4, 5, 8, and 9), a new natural product (2), and four known ones (3, 6, 7, and 10) with different ring systems were isolated from the desert plant Chaetosphaeronema hispidulum. [corrected]. The new compounds were characterized by NMR data, CD spectra, and X-ray experiment. The new natural product (2) displayed strongly biological effects on the seedlings growth of Arabidopsis thaliana, Digitaria sanguinalis, and Echinochloa crusgalli with a dose-dependent relationship. Compounds 1, 2, and 6 were also tested cytotoxic activities against three cancer cell lines HCT116, Hela, and MCF7 and only did the new natural product (2) display biological activities with IC50 values at 54.86 ± 1.52, 4. 90 ± 0.02, and 20.04 ± 4.00 μM, respectively, whereas the IC50 values of the positive control cis-platinum were 11.36 ± 0.42, 3.54 ± 0.12, and 14.32 ± 1.01 μM, respectively.
Collapse
Affiliation(s)
- Xiao-Yan Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100193 , People's Republic of China
| | - Zhan-Liang Liu
- School of Pharmaceutical Science , Taishan Medical University , Taishan 271016 , People's Republic of China
| | - Bing-Da Sun
- Institute of Microbiology , Chinese Academy of Sciences , Beijing 100101 , People's Republic of China
| | - Shu-Bin Niu
- School of Biological Medicine , Beijing City University , Beijing 100083 , People's Republic of China
| | - Meng-Hua Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100193 , People's Republic of China
| | - Xiang-Mei Tan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100193 , People's Republic of China
| | - Zhong-Mei Zou
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100193 , People's Republic of China
| | - Gang Ding
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100193 , People's Republic of China
| |
Collapse
|
23
|
Tsai SC(S. The Structural Enzymology of Iterative Aromatic Polyketide Synthases: A Critical Comparison with Fatty Acid Synthases. Annu Rev Biochem 2018; 87:503-531. [DOI: 10.1146/annurev-biochem-063011-164509] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polyketides are a large family of structurally complex natural products including compounds with important bioactivities. Polyketides are biosynthesized by polyketide synthases (PKSs), multienzyme complexes derived evolutionarily from fatty acid synthases (FASs). The focus of this review is to critically compare the properties of FASs with iterative aromatic PKSs, including type II PKSs and fungal type I nonreducing PKSs whose chemical logic is distinct from that of modular PKSs. This review focuses on structural and enzymological studies that reveal both similarities and striking differences between FASs and aromatic PKSs. The potential application of FAS and aromatic PKS structures for bioengineering future drugs and biofuels is highlighted.
Collapse
Affiliation(s)
- Shiou-Chuan (Sheryl) Tsai
- Departments of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical Sciences, University of California, Irvine, California 92697, USA
| |
Collapse
|
24
|
Xie L, Zhang L, Wang C, Wang X, Xu YM, Yu H, Wu P, Li S, Han L, Gunatilaka AAL, Wei X, Lin M, Molnár I, Xu Y. Methylglucosylation of aromatic amino and phenolic moieties of drug-like biosynthons by combinatorial biosynthesis. Proc Natl Acad Sci U S A 2018; 115:E4980-E4989. [PMID: 29760061 PMCID: PMC5984488 DOI: 10.1073/pnas.1716046115] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glycosylation is a prominent strategy to optimize the pharmacokinetic and pharmacodynamic properties of drug-like small-molecule scaffolds by modulating their solubility, stability, bioavailability, and bioactivity. Glycosyltransferases applicable for "sugarcoating" various small-molecule acceptors have been isolated and characterized from plants and bacteria, but remained cryptic from filamentous fungi until recently, despite the frequent use of some fungi for whole-cell biocatalytic glycosylations. Here, we use bioinformatic and genomic tools combined with heterologous expression to identify a glycosyltransferase-methyltransferase (GT-MT) gene pair that encodes a methylglucosylation functional module in the ascomycetous fungus Beauveria bassiana The GT is the founding member of a family nonorthologous to characterized fungal enzymes. Using combinatorial biosynthetic and biocatalytic platforms, we reveal that this GT is a promiscuous enzyme that efficiently modifies a broad range of drug-like substrates, including polyketides, anthraquinones, flavonoids, and naphthalenes. It yields both O- and N-glucosides with remarkable regio- and stereospecificity, a spectrum not demonstrated for other characterized fungal enzymes. These glucosides are faithfully processed by the dedicated MT to afford 4-O-methylglucosides. The resulting "unnatural products" show increased solubility, while representative polyketide methylglucosides also display increased stability against glycoside hydrolysis. Upon methylglucosidation, specific polyketides were found to attain cancer cell line-specific antiproliferative or matrix attachment inhibitory activities. These findings will guide genome mining for fungal GTs with novel substrate and product specificities, and empower the efficient combinatorial biosynthesis of a broad range of natural and unnatural glycosides in total biosynthetic or biocatalytic formats.
Collapse
Affiliation(s)
- Linan Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China
| | - Liwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China
| | - Chen Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China
- Natural Products Center, University of Arizona, Tucson, AZ 85706
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, People's Republic of China
| | - Xiaojing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China
- Natural Products Center, University of Arizona, Tucson, AZ 85706
| | - Ya-Ming Xu
- Natural Products Center, University of Arizona, Tucson, AZ 85706
| | - Hefen Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Capital Medical University, 100069 Beijing, People's Republic of China
| | - Ping Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, People's Republic of China
| | - Shenglan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Capital Medical University, 100069 Beijing, People's Republic of China
| | - Lida Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China
| | | | - Xiaoyi Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, People's Republic of China
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China;
| | - István Molnár
- Natural Products Center, University of Arizona, Tucson, AZ 85706;
| | - Yuquan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China;
| |
Collapse
|
25
|
Schor R, Cox R. Classic fungal natural products in the genomic age: the molecular legacy of Harold Raistrick. Nat Prod Rep 2018. [PMID: 29537034 DOI: 10.1039/c8np00021b] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 1893 to 2017Harold Raistrick was involved in the discovery of many of the most important classes of fungal metabolites during the 20th century. This review focusses on how these discoveries led to developments in isotopic labelling, biomimetic chemistry and the discovery, analysis and exploitation of biosynthetic gene clusters for major classes of fungal metabolites including: alternariol; geodin and metabolites of the emodin pathway; maleidrides; citrinin and the azaphilones; dehydrocurvularin; mycophenolic acid; and the tropolones. Key recent advances in the molecular understanding of these important pathways, including the discovery of biosynthetic gene clusters, the investigation of the molecular and chemical aspects of key biosynthetic steps, and the reengineering of key components of the pathways are reviewed and compared. Finally, discussion of key relationships between metabolites and pathways and the most important recent advances and opportunities for future research directions are given.
Collapse
Affiliation(s)
- Raissa Schor
- Institut für Organische Chemie, BMWZ, Leibniz Universität Hannover, Germany.
| | - Russell Cox
- Institut für Organische Chemie, BMWZ, Leibniz Universität Hannover, Germany.
| |
Collapse
|
26
|
Jana N, Nanda S. Resorcylic acid lactones (RALs) and their structural congeners: recent advances in their biosynthesis, chemical synthesis and biology. NEW J CHEM 2018. [DOI: 10.1039/c8nj02534g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Resorcylic acid lactones (RALs) are naturally occurring 14-membered macrolactones that constitute a class of polyketides derived from fungal metabolites and that possess significant and promising biological activity.
Collapse
Affiliation(s)
- Nandan Jana
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Samik Nanda
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| |
Collapse
|
27
|
Qi B, Liu X, Mo T, Li SS, Wang J, Shi XP, Wang XH, Zhu ZX, Zhao YF, Jin HW, Tu PF, Shi SP. Nitric oxide inhibitory polyketides from Penicillium chrysogenum MT-12, an endophytic fungus isolated from Huperzia serrata. Fitoterapia 2017; 123:35-43. [PMID: 28958955 DOI: 10.1016/j.fitote.2017.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/13/2017] [Accepted: 09/19/2017] [Indexed: 11/17/2022]
Abstract
Twelve new polyketides, penicichrysogenins A-L (1-10, 11a, and 11b) along with five known compounds (12a, 12b, and 13-15) were isolated from the solid substrate fermentation cultures of a Huperzia serrata endophytic fungus Penicillium chrysogenum MT-12. The structures of the new compounds were established using extensive spectroscopic (1D and 2D NMR, IR, and HRESIMS) and calculated electronic circular dichroism (ECD) methods. Compounds 11a/11b and 12a/12b were two pairs of enantiomers successfully separated by chiral HPLC resolution. Compounds 4, 5, 8, 9, 11a/11b, and 12a/12b exhibited inhibition of nitric oxide production in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells with IC50 values in the range of 17.5-98.4μM.
Collapse
Affiliation(s)
- Bowen Qi
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Xiao Liu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Ting Mo
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Shan-Shan Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Juan Wang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Xiao-Ping Shi
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Xiao-Hui Wang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Zhi-Xiang Zhu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Yun-Fang Zhao
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Hong-Wei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Peng-Fei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - She-Po Shi
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China.
| |
Collapse
|
28
|
Xu L, Wu P, Xue J, Molnar I, Wei X. Antifungal and Cytotoxic β-Resorcylic Acid Lactones from a Paecilomyces Species. JOURNAL OF NATURAL PRODUCTS 2017; 80:2215-2223. [PMID: 28749671 PMCID: PMC5819736 DOI: 10.1021/acs.jnatprod.7b00066] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Eight new β-resorcylic acid lactones (RALs), including the hypothemycin-type compounds paecilomycins N-P (1-3) and the radicicol-type metabolites dechloropochonin I (4), monocillins VI (5) and VII (6), 4'-hydroxymonocillin IV (7), and 4'-methoxymonocillin IV (8), along with nine known RALs (9-17), were isolated from the cultures of Paecilomyces sp. SC0924. Compounds 1 and 2 feature a novel 6/11/5 ring system, and 3 is the first 5'-keto RAL. The structures of 1-8 were elucidated on the basis of extensive spectroscopic analysis, X-ray diffraction analysis, and theoretical calculations of ECD spectra. Compounds 3, 5, and 6 exhibit cytotoxicity against MCF-7, A549, and HeLa cells, and compounds 5 and 7 display antifungal activity against Peronophythora litchii.
Collapse
Affiliation(s)
- Liangxiong Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
| | - Ping Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
| | - Jinghua Xue
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
| | - Istvan Molnar
- Natural Products Center, School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85706, United States of America
| | - Xiaoyi Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
| |
Collapse
|
29
|
Polyketide mimetics yield structural and mechanistic insights into product template domain function in nonreducing polyketide synthases. Proc Natl Acad Sci U S A 2017; 114:E4142-E4148. [PMID: 28484029 PMCID: PMC5448209 DOI: 10.1073/pnas.1609001114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Product template (PT) domains from fungal nonreducing polyketide synthases (NR-PKSs) are responsible for controlling the aldol cyclizations of poly-β-ketone intermediates assembled during the catalytic cycle. Our ability to understand the high regioselective control that PT domains exert is hindered by the inaccessibility of intrinsically unstable poly-β-ketones for in vitro studies. We describe here the crystallographic application of "atom replacement" mimetics in which isoxazole rings linked by thioethers mimic the alternating sites of carbonyls in the poly-β-ketone intermediates. We report the 1.8-Å cocrystal structure of the PksA PT domain from aflatoxin biosynthesis with a heptaketide mimetic tethered to a stably modified 4'-phosphopantetheine, which provides important empirical evidence for a previously proposed mechanism of PT-catalyzed cyclization. Key observations support the proposed deprotonation at C4 of the nascent polyketide by the catalytic His1345 and the role of a protein-coordinated water network to selectively activate the C9 carbonyl for nucleophilic addition. The importance of the 4'-phosphate at the distal end of the pantetheine arm is demonstrated to both facilitate delivery of the heptaketide mimetic deep into the PT active site and anchor one end of this linear array to precisely meter C4 into close proximity to the catalytic His1345. Additional structural features, docking simulations, and mutational experiments characterize protein-substrate mimic interactions, which likely play roles in orienting and stabilizing interactions during the native multistep catalytic cycle. These findings afford a view of a polyketide "atom-replaced" mimetic in a NR-PKS active site that could prove general for other PKS domains.
Collapse
|
30
|
Sato M, Dander JE, Sato C, Hung YS, Gao SS, Tang MC, Hang L, Winter JM, Garg NK, Watanabe K, Tang Y. Collaborative Biosynthesis of Maleimide- and Succinimide-Containing Natural Products by Fungal Polyketide Megasynthases. J Am Chem Soc 2017; 139:5317-5320. [PMID: 28365998 DOI: 10.1021/jacs.7b02432] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fungal polyketide synthases (PKSs) can function collaboratively to synthesize natural products of significant structural diversity. Here we present a new mode of collaboration between a highly reducing PKS (HRPKS) and a PKS-nonribosomal peptide synthetase (PKS-NRPS) in the synthesis of oxaleimides from the Penicillium species. The HRPKS is recruited in the synthesis of an olefin-containing free amino acid, which is activated and incorporated by the adenylation domain of the PKS-NRPS. The precisely positioned olefin from the unnatural amino acid is proposed to facilitate a scaffold rearrangement of the PKS-NRPS product to forge the maleimide and succinimide cores of oxaleimides.
Collapse
Affiliation(s)
- Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka , Shizuoka 422-8526, Japan
| | | | | | | | | | | | | | - Jaclyn M Winter
- Medicinal Chemistry Department, University of Utah , Salt Lake City, Utah 84112, United States
| | | | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka , Shizuoka 422-8526, Japan
| | | |
Collapse
|
31
|
Wu YH, Zhang ZH, Zhong Y, Huang JJ, Li XX, Jiang JY, Deng YY, Zhang LH, He F. Sumalactones A–D, four new curvularin-type macrolides from a marine deep sea fungus Penicillium Sumatrense. RSC Adv 2017. [DOI: 10.1039/c7ra06933b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Four new curvularin-type macrolides were isolated from a marine fungus Penicillium Sumatrense and their absolute configurations were determined by CD spectra and modified Mosher's methods.
Collapse
Affiliation(s)
- Yue-Hua Wu
- Integrative Microbiology Research Centre
- College of Agriculture
- South China Agricultural University
- Guangzhou 510642
- People's Republic of China
| | - Zhi-Han Zhang
- Integrative Microbiology Research Centre
- College of Agriculture
- South China Agricultural University
- Guangzhou 510642
- People's Republic of China
| | - Yue Zhong
- Integrative Microbiology Research Centre
- College of Agriculture
- South China Agricultural University
- Guangzhou 510642
- People's Republic of China
| | - Jun-Jun Huang
- Pharmaceutical Research Center
- School of Pharmacology
- Guangzhou Medical University
- Guangzhou 510182
- People's Republic of China
| | - Xiao-Xia Li
- Integrative Microbiology Research Centre
- College of Agriculture
- South China Agricultural University
- Guangzhou 510642
- People's Republic of China
| | - Jin-Yan Jiang
- Integrative Microbiology Research Centre
- College of Agriculture
- South China Agricultural University
- Guangzhou 510642
- People's Republic of China
| | - Yin-Yue Deng
- Integrative Microbiology Research Centre
- College of Agriculture
- South China Agricultural University
- Guangzhou 510642
- People's Republic of China
| | - Lian-Hui Zhang
- Integrative Microbiology Research Centre
- College of Agriculture
- South China Agricultural University
- Guangzhou 510642
- People's Republic of China
| | - Fei He
- Integrative Microbiology Research Centre
- College of Agriculture
- South China Agricultural University
- Guangzhou 510642
- People's Republic of China
| |
Collapse
|
32
|
Thomas R. Examination of Potential Exceptions to the F and S Biosynthetic Classification of Fused-Ring Aromatic Polyketides. Chembiochem 2016; 17:2208-2215. [PMID: 27753463 DOI: 10.1002/cbic.201600315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Indexed: 01/20/2023]
Abstract
The reported acetate-derived labelling of the fungal naphthalene γ-pyrone fonsecin, two streptomycete dodecaketide αpyrones TW93f and TW93g, and the streptomycete phenanthraquinones piloquinone, murayaquinone and haloquinone appear to be exceptions to the generalisation that fungi and streptomycetes produce fused-ring aromatic polyketides by different modes of cyclisation. A review of their 1) originally assigned formulae, 2) [13 C2 ]acetate-derived labelling patterns, and 3) modes of cyclisation leads to the recognition of feasible alternative chemical structures or biosynthetic pathways, which are in accord with the originally proposed classification system.
Collapse
|
33
|
Sun L, Wang S, Zhang S, Shao L, Zhang Q, Skidmore C, Chang CWT, Yu D, Zhan J. Characterization of Three Tailoring Enzymes in Dutomycin Biosynthesis and Generation of a Potent Antibacterial Analogue. ACS Chem Biol 2016; 11:1992-2001. [PMID: 27195476 DOI: 10.1021/acschembio.6b00245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The anthracycline natural product dutomycin and its precursor POK-MD1 were isolated from Streptomyces minoensis NRRL B-5482. The dutomycin biosynthetic gene cluster was identified by genome sequencing and disruption of the ketosynthase gene. Two polyketide synthase (PKS) systems are present in the gene cluster, including a type II PKS and a rare highly reducing iterative type I PKS. The type I PKS DutG repeatedly uses its active sites to create a nine-carbon triketide chain that is subsequently transferred to the α-l-axenose moiety of POK-MD1 at 4″-OH to yield dutomycin. Using a heterologous recombination approach, we disrupted a putative methyltransferase gene (dutMT1) and two glycosyltransferase genes (dutGT1 and dutGT2). Analysis of the metabolites of these mutants revealed the functions of these genes and yielded three dutomycin analogues SW140, SW91, and SW75. The major product SW91 in Streptomyces minoensis NRRL B-5482-ΔDutMT1 was identified as 12-desmethyl-dutomycin, suggesting that DutMT1 is the dedicated 12-methyltransferase. This was confirmed by the in vitro enzymatic assay. DutGT1 and DutGT2 were found to be responsible for the introduction of β-d-amicetose and α-l-axenose, respectively. Dutomycin and SW91 showed strong antibacterial activity against Staphylococcus aureus and methicillin-resistant S. aureus, whereas POK-MD1 and SW75 had no obvious inhibition, which revealed the essential role of the C-4″ triketide chain in antibacterial activity. The minimal inhibitory concentration of SW91 against the two strains was 0.125 μg mL(-1), lower than that of dutomycin (0.25 μg mL(-1)), indicating that the antibacterial activity of dutomycin can be improved through biosynthetic structural modification.
Collapse
Affiliation(s)
- Lei Sun
- Department
of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, Utah 84322-4105, United States
| | - Siyuan Wang
- Department
of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, Utah 84322-4105, United States
| | - Shuwei Zhang
- Department
of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, Utah 84322-4105, United States
| | - Lei Shao
- Department
of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, Utah 84322-4105, United States
| | - Qian Zhang
- Department
of Chemistry and Biochemistry, Utah State University, 0300 Old
Main Hill, Logan, Utah 84322-0300, United States
| | - Chad Skidmore
- Department
of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, Utah 84322-4105, United States
| | - Cheng-Wei Tom Chang
- Department
of Chemistry and Biochemistry, Utah State University, 0300 Old
Main Hill, Logan, Utah 84322-0300, United States
| | - Dayu Yu
- Department
of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, Utah 84322-4105, United States
- Department
of Applied Chemistry and Biological Engineering, College of Chemical
Engineering, Northeast Dianli University, Jilin, Jilin 132012, China
| | - Jixun Zhan
- Department
of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, Utah 84322-4105, United States
- TCM and Ethnomedicine Innovation & Development Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
34
|
de Castro MV, Ióca LP, Williams DE, Costa BZ, Mizuno CM, Santos MFC, de Jesus K, Ferreira ÉLF, Seleghim MHR, Sette LD, Pereira Filho ER, Ferreira AG, Gonçalves NS, Santos RA, Patrick BO, Andersen RJ, Berlinck RGS. Condensation of Macrocyclic Polyketides Produced by Penicillium sp. DRF2 with Mercaptopyruvate Represents a New Fungal Detoxification Pathway. JOURNAL OF NATURAL PRODUCTS 2016; 79:1668-1678. [PMID: 27227682 DOI: 10.1021/acs.jnatprod.6b00295] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Application of a refined procedure of experimental design and chemometric analysis to improve the production of curvularin-related polyketides by a marine-derived Penicillium sp. DRF2 resulted in the isolation and identification of cyclothiocurvularins 6-8 and cyclosulfoxicurvularins 10 and 11, novel curvularins condensed with a mercaptolactate residue. Two additional new curvularins, 3 and 4, are also reported. The structures of the sulfur-bearing curvularins were unambiguously established by analysis of spectroscopic data and by X-ray diffraction analysis. Analysis of stable isotope feeding experiments with [U-(13)C3(15)N]-l-cysteine confirmed the presence of the 2-hydroxy-3-mercaptopropanoic acid residue in 6-8 and the oxidized sulfoxide in 10 and 11. Cyclothiocurvularins A (6) and B (7) are formed by spontaneous reaction between 10,11-dehydrocurvularin (2) and mercaptopyruvate (12) obtained by transamination of cysteine. High ratios of [U-(13)C3(15)N]-l-cysteine incorporation into cyclothiocurvularin B (7), the isolation of two diastereomers of cyclothiocurvularins, the lack of cytotoxicity of cyclothiocurvularin B (7) and its methyl ester (8), and the spontaneous formation of cyclothiocurvularins from 10,11-dehydrocurvularin and mercaptopyruvate provide evidence that the formation of cyclothiocurvularins may well correspond to a 10,11-dehydrocurvularin detoxification process by Penicillium sp. DRF2.
Collapse
Affiliation(s)
- Marcos V de Castro
- Instituto de Quimica de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Laura P Ióca
- Instituto de Quimica de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - David E Williams
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia , Vancouver, BC V6T 1Z1, Canada
| | - Bruna Z Costa
- Instituto de Quimica, Universidade Estadual de Campinas , Caixa Postal 6154, CEP 13083-970, Campinas, SP, Brazil
| | - Carolina M Mizuno
- Instituto de Quimica de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Carlos , São Carlos, SP, Brazil
| | - Mario F C Santos
- Instituto de Quimica de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Karen de Jesus
- Instituto de Quimica de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Éverton L F Ferreira
- Instituto de Quimica de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Mirna H R Seleghim
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Carlos , São Carlos, SP, Brazil
| | - Lara D Sette
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" , Campus Rio Claro, Avenida 24-A, 1515, Rio Claro, SP, Brazil
| | - Edenir R Pereira Filho
- Departamento de Química, Universidade Federal de São Carlos , CEP 13565-905, São Carlos, SP, Brazil
| | - Antonio G Ferreira
- Departamento de Química, Universidade Federal de São Carlos , CEP 13565-905, São Carlos, SP, Brazil
| | - Natália S Gonçalves
- Laboratório de Genética e Biologia Molecular, Universidade de Franca , Avenida Dr. Armando Salles Oliveira, 201. Pq. Universitário, Franca, SP, Brazil
| | - Raquel A Santos
- Laboratório de Genética e Biologia Molecular, Universidade de Franca , Avenida Dr. Armando Salles Oliveira, 201. Pq. Universitário, Franca, SP, Brazil
| | - Brian O Patrick
- Department of Chemistry, University of British Columbia , Vancouver, BC V6T 1Z1, Canada
| | - Raymond J Andersen
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia , Vancouver, BC V6T 1Z1, Canada
| | - Roberto G S Berlinck
- Instituto de Quimica de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| |
Collapse
|
35
|
Bond C, Tang Y, Li L. Saccharomyces cerevisiae as a tool for mining, studying and engineering fungal polyketide synthases. Fungal Genet Biol 2016; 89:52-61. [PMID: 26850128 PMCID: PMC4789138 DOI: 10.1016/j.fgb.2016.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/01/2016] [Accepted: 01/09/2016] [Indexed: 12/17/2022]
Abstract
Small molecule secondary metabolites produced by organisms such as plants, bacteria, and fungi form a fascinating and important group of natural products, many of which have shown promise as medicines. Fungi in particular have been important sources of natural product polyketide pharmaceuticals. While the structural complexity of these polyketides makes them interesting and useful bioactive compounds, these same features also make them difficult and expensive to prepare and scale-up using synthetic methods. Currently, nearly all commercial polyketides are prepared through fermentation or semi-synthesis. However, elucidation and engineering of polyketide pathways in the native filamentous fungi hosts are often hampered due to a lack of established genetic tools and of understanding of the regulation of fungal secondary metabolisms. Saccharomyces cerevisiae has many advantages beneficial to the study and development of polyketide pathways from filamentous fungi due to its extensive genetic toolbox and well-studied metabolism. This review highlights the benefits S. cerevisiae provides as a tool for mining, studying, and engineering fungal polyketide synthases (PKSs), as well as notable insights this versatile tool has given us into the mechanisms and products of fungal PKSs.
Collapse
Affiliation(s)
- Carly Bond
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States; Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States.
| | - Li Li
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States; Engineering Research Center of Industrial Microbiology (Ministry of Education), College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, China; State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
36
|
Gao SS, Duan A, Xu W, Yu P, Hang L, Houk KN, Tang Y. Phenalenone Polyketide Cyclization Catalyzed by Fungal Polyketide Synthase and Flavin-Dependent Monooxygenase. J Am Chem Soc 2016; 138:4249-59. [PMID: 26978228 PMCID: PMC4988900 DOI: 10.1021/jacs.6b01528] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Phenalenones are polyketide natural products that display diverse structures and biological activities. The core of phenalenones is a peri-fused tricyclic ring system cyclized from a linear polyketide precursor via an unresolved mechanism. Toward understanding the unusual cyclization steps, the phn biosynthetic gene cluster responsible for herqueinone biosynthesis was identified from the genome of Penicillium herquei. A nonreducing polyketide synthase (NR-PKS) PhnA was shown to synthesize the heptaketide backbone and cyclize it into the angular, hemiketal-containing naphtho-γ-pyrone prephenalenone. The product template (PT) domain of PhnA catalyzes only the C4-C9 aldol condensation, which is unprecedented among known PT domains. The transformation of prephenalenone to phenalenone requires an FAD-dependent monooxygenase (FMO) PhnB, which catalyzes the C2 aromatic hydroxylation of prephenalenone and ring opening of the γ-pyrone ring simultaneously. Density functional theory calculations provide insights into why the hydroxylated intermediate undergoes an aldol-like phenoxide-ketone cyclization to yield the phenalenone core. This study therefore unveiled new routes and biocatalysts for polyketide cyclization.
Collapse
Affiliation(s)
- Shu-Shan Gao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Abing Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Wei Xu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Peiyuan Yu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Leibniz Hang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
37
|
Sun L, Wang S, Zhang S, Yu D, Qin Y, Huang H, Wang W, Zhan J. Identification of a type III polyketide synthase involved in the biosynthesis of spirolaxine. Appl Microbiol Biotechnol 2016; 100:7103-13. [DOI: 10.1007/s00253-016-7444-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/29/2016] [Accepted: 03/06/2016] [Indexed: 11/30/2022]
|
38
|
Bai J, Lu Y, Xu YM, Zhang W, Chen M, Lin M, Gunatilaka AAL, Xu Y, Molnár I. Diversity-Oriented Combinatorial Biosynthesis of Hybrid Polyketide Scaffolds from Azaphilone and Benzenediol Lactone Biosynthons. Org Lett 2016; 18:1262-5. [PMID: 26934205 DOI: 10.1021/acs.orglett.6b00110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two disparate polyketide families, the benzenediol lactones and the azaphilones, are produced by fungi using iterative polyketide synthase (iPKS) enzymes consisting of collaborating partner subunits. Exploitation of this common biosynthetic logic using iPKS subunit shuffling allowed the diversity-oriented combinatorial biosynthesis of unprecedented polyketide scaffolds new to nature, bearing structural motifs from both of these orthogonal natural product families. Starter unit acyltransferase domain replacements proved necessary but not sufficient to guarantee communication between iPKS subunits.
Collapse
Affiliation(s)
- Jing Bai
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street, Beijing 100081, P. R. China.,Natural Products Center, School of Natural Resources and the Environment, The University of Arizona , 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - Yuanyuan Lu
- Natural Products Center, School of Natural Resources and the Environment, The University of Arizona , 250 East Valencia Road, Tucson, Arizona 85706, United States.,State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Ya-ming Xu
- Natural Products Center, School of Natural Resources and the Environment, The University of Arizona , 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - Wei Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Ming Chen
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Min Lin
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - A A Leslie Gunatilaka
- Natural Products Center, School of Natural Resources and the Environment, The University of Arizona , 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - Yuquan Xu
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - István Molnár
- Natural Products Center, School of Natural Resources and the Environment, The University of Arizona , 250 East Valencia Road, Tucson, Arizona 85706, United States
| |
Collapse
|
39
|
Abstract
The emergence of next-generation sequencing has provided new opportunities in the discovery of new nonribosomal peptides (NRPs) and NRP synthethases (NRPSs). However, there remain challenges for the characterization of these megasynthases. While genetic methods in native hosts are critical in elucidation of the function of fungal NRPS, in vitro assays of intact heterologously expressed proteins provide deeper mechanistic insights in NRPS enzymology. Our previous work in the study of NRPS takes advantage of Saccharomyces cerevisiae strain BJ5464-npgA as a robust and versatile platform for characterization of fungal NRPSs. Here we describe the use of yeast recombination strategies in S. cerevisiae for cloning of the NRPS coding sequence in 2μ-based expression vector; the use of affinity chromatography for purification of NRPS from the total S. cerevisiae soluble protein fraction; and strategies for reconstitution of NRPSs activities in vitro.
Collapse
Affiliation(s)
- Ralph A Cacho
- Department of Chemical and Biomolecular Engineering, University of California, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA, 90095, USA.
- Department of Chemistry and Biochemistry, University of California, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA, 90095, USA.
- Department of Bioengineering, University of California, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA, 90095, USA.
| |
Collapse
|
40
|
Cochrane RVK, Gao Z, Lambkin GR, Xu W, Winter JM, Marcus SL, Tang Y, Vederas JC. Comparison of 10,11-Dehydrocurvularin Polyketide Synthases from Alternaria cinerariae and Aspergillus terreus Highlights Key Structural Motifs. Chembiochem 2015; 16:2479-83. [PMID: 26493380 PMCID: PMC4804156 DOI: 10.1002/cbic.201500428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Indexed: 11/09/2022]
Abstract
Iterative type I polyketide synthases (PKSs) from fungi are multifunctional enzymes that use their active sites repeatedly in a highly ordered sequence to assemble complex natural products. A phytotoxic macrolide with anticancer properties, 10,11-dehydrocurvularin (DHC), is produced by cooperation of a highly reducing (HR) iterative PKS and a non-reducing (NR) iterative PKS. We have identified the DHC gene cluster in Alternaria cinerariae, heterologously expressed the active HR PKS (Dhc3) and NR PKS (Dhc5) in yeast, and compared them to corresponding proteins that make DHC in Aspergillus terreus. Phylogenetic analysis and homology modeling of these enzymes identified variable surfaces and conserved motifs that are implicated in product formation.
Collapse
Affiliation(s)
- Rachel V K Cochrane
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Zhizeng Gao
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Gareth R Lambkin
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Wei Xu
- Department of Chemical and Biomolecular Engineering and, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Jaclyn M Winter
- Department of Medicinal Chemistry, The University of Utah, Salt Lake City, Utah, 84112, USA
| | - Sandra L Marcus
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering and, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - John C Vederas
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
| |
Collapse
|
41
|
Shen W, Mao H, Huang Q, Dong J. Benzenediol lactones: a class of fungal metabolites with diverse structural features and biological activities. Eur J Med Chem 2015; 97:747-77. [DOI: 10.1016/j.ejmech.2014.11.067] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/04/2014] [Accepted: 11/26/2014] [Indexed: 12/12/2022]
|
42
|
Guo CJ, Wang CCC. Recent advances in genome mining of secondary metabolites in Aspergillus terreus. Front Microbiol 2014; 5:717. [PMID: 25566227 PMCID: PMC4274970 DOI: 10.3389/fmicb.2014.00717] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/01/2014] [Indexed: 11/23/2022] Open
Abstract
Filamentous fungi are rich resources of secondary metabolites (SMs) with a variety of interesting biological activities. Recent advances in genome sequencing and techniques in genetic manipulation have enabled researchers to study the biosynthetic genes of these SMs. Aspergillus terreus is the well-known producer of lovastatin, a cholesterol-lowering drug. This fungus also produces other SMs, including acetylaranotin, butyrolactones, and territram, with interesting bioactivities. This review will cover recent progress in genome mining of SMs identified in this fungus. The identification and characterization of the gene cluster for these SMs, as well as the proposed biosynthetic pathways, will be discussed in depth.
Collapse
Affiliation(s)
- Chun-Jun Guo
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California Los Angeles, CA, USA
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California Los Angeles, CA, USA ; Department of Chemistry, College of Letters, Arts, and Sciences, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
43
|
Bolte B, Basutto JA, Bryan CS, Garson MJ, Banwell MG, Ward JS. Modular total syntheses of the marine-derived resorcylic Acid lactones cochliomycins a and B using a late-stage nozaki-hiyama-kishi macrocyclization reaction. J Org Chem 2014; 80:460-70. [PMID: 25405580 DOI: 10.1021/jo5024602] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The natural products cochliomycin A (1) and cochliomycin B (2), two resorcylic acid lactones obtained from marine sources, have been prepared in a concise and stereocontrolled manner from the readily accessible building blocks 4-6. Olefin cross-metathesis, trans-esterification and Nozaki-Hiyama-Kishi (NHK) macrocyclization reactions were employed in the key steps. Hydrolysis of the immediate precursor to cochliomycin B affords the resorcylic acid lactone zeaenol (24).
Collapse
Affiliation(s)
- Benoit Bolte
- †Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra ACT 2601, Australia
| | - Jose A Basutto
- †Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra ACT 2601, Australia
| | - Christopher S Bryan
- †Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra ACT 2601, Australia
| | - Mary J Garson
- ‡School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane QLD 4072, Australia
| | - Martin G Banwell
- †Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra ACT 2601, Australia
| | - Jas S Ward
- †Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
44
|
Heberlig GW, Wirz M, Wang M, Boddy CN. Resorcylic acid lactone biosynthesis relies on a stereotolerant macrocyclizing thioesterase. Org Lett 2014; 16:5858-61. [PMID: 25372311 DOI: 10.1021/ol502747t] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Zearalenone and radicicol are highly related resorcylic acid lactones with the rare property of having opposite stereochemical configurations of the secondary alcohol involved in lactone formation. The ability of the thioesterases from the zearalenone and radicicol biosynthetic pathways to macrocyclize both D and L configured synthetic substrate analogs was biochemically characterized and showed that both enzymes were highly stereotolerant, macrocyclizing both substrates with similar kinetic parameters. This observed stereotolerance is consistent with a proposed evolution of both natural products from a common ancestral resorcylic acid lactone.
Collapse
Affiliation(s)
- Graham W Heberlig
- Department of Chemistry, Centre for Catalysis Research and Innovation, University of Ottawa , Ottawa, ON K1N 6N5, Canada
| | | | | | | |
Collapse
|
45
|
|
46
|
Vederas JC. Explorations of fungal biosynthesis of reduced polyketides – a personal viewpoint. Nat Prod Rep 2014; 31:1253-9. [DOI: 10.1039/c4np00091a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
47
|
Diversity-oriented combinatorial biosynthesis of benzenediol lactone scaffolds by subunit shuffling of fungal polyketide synthases. Proc Natl Acad Sci U S A 2014; 111:12354-9. [PMID: 25049383 DOI: 10.1073/pnas.1406999111] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Combinatorial biosynthesis aspires to exploit the promiscuity of microbial anabolic pathways to engineer the synthesis of new chemical entities. Fungal benzenediol lactone (BDL) polyketides are important pharmacophores with wide-ranging bioactivities, including heat shock response and immune system modulatory effects. Their biosynthesis on a pair of sequentially acting iterative polyketide synthases (iPKSs) offers a test case for the modularization of secondary metabolic pathways into "build-couple-pair" combinatorial synthetic schemes. Expression of random pairs of iPKS subunits from four BDL model systems in a yeast heterologous host created a diverse library of BDL congeners, including a polyketide with an unnatural skeleton and heat shock response-inducing activity. Pairwise heterocombinations of the iPKS subunits also helped to illuminate the innate, idiosyncratic programming of these enzymes. Even in combinatorial contexts, these biosynthetic programs remained largely unchanged, so that the iPKSs built their cognate biosynthons, coupled these building blocks into chimeric polyketide intermediates, and catalyzed intramolecular pairing to release macrocycles or α-pyrones. However, some heterocombinations also provoked stuttering, i.e., the relaxation of iPKSs chain length control to assemble larger homologous products. The success of such a plug and play approach to biosynthesize novel chemical diversity bodes well for bioprospecting unnatural polyketides for drug discovery.
Collapse
|
48
|
Newman AG, Vagstad AL, Storm P, Townsend CA. Systematic domain swaps of iterative, nonreducing polyketide synthases provide a mechanistic understanding and rationale for catalytic reprogramming. J Am Chem Soc 2014; 136:7348-62. [PMID: 24815013 PMCID: PMC4046768 DOI: 10.1021/ja5007299] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Indexed: 11/29/2022]
Abstract
Iterative, nonreducing polyketide synthases (NR-PKSs) are multidomain enzymes responsible for the construction of the core architecture of aromatic polyketide natural products in fungi. Engineering these enzymes for the production of non-native metabolites has been a long-standing goal. We conducted a systematic survey of in vitro "domain swapped" NR-PKSs using an enzyme deconstruction approach. The NR-PKSs were dissected into mono- to multidomain fragments and recombined as noncognate pairs in vitro, reconstituting enzymatic activity. The enzymes used in this study produce aromatic polyketides that are representative of the four main chemical features set by the individual NR-PKS: starter unit selection, chain-length control, cyclization register control, and product release mechanism. We found that boundary conditions limit successful chemistry, which are dependent on a set of underlying enzymatic mechanisms. Crucial for successful redirection of catalysis, the rate of productive chemistry must outpace the rate of spontaneous derailment and thioesterase-mediated editing. Additionally, all of the domains in a noncognate system must interact efficiently if chemical redirection is to proceed. These observations refine and further substantiate current understanding of the mechanisms governing NR-PKS catalysis.
Collapse
Affiliation(s)
- Adam G. Newman
- Department of Chemistry, The Johns Hopkins
University, 3400 N. Charles
Street, Baltimore, Maryland 21218, United States
| | | | - Philip
A. Storm
- Department of Chemistry, The Johns Hopkins
University, 3400 N. Charles
Street, Baltimore, Maryland 21218, United States
| | - Craig A. Townsend
- Department of Chemistry, The Johns Hopkins
University, 3400 N. Charles
Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
49
|
Xu Y, Zhou T, Espinosa-Artiles P, Tang Y, Zhan J, Molnár I. Insights into the biosynthesis of 12-membered resorcylic acid lactones from heterologous production in Saccharomyces cerevisiae. ACS Chem Biol 2014; 9:1119-27. [PMID: 24597618 PMCID: PMC4033647 DOI: 10.1021/cb500043g] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
The phytotoxic fungal polyketides
lasiodiplodin and resorcylide
inhibit human blood coagulation factor XIIIa, mineralocorticoid receptors,
and prostaglandin biosynthesis. These secondary metabolites belong
to the 12-membered resorcylic acid lactone (RAL12) subclass
of the benzenediol lactone (BDL) family. Identification of genomic
loci for the biosynthesis of lasiodiplodin from Lasiodiplodia
theobromae and resorcylide from Acremonium zeae revealed collaborating iterative polyketide synthase (iPKS) pairs
whose efficient heterologous expression in Saccharomyces cerevisiae provided a convenient access to the RAL12 scaffolds desmethyl-lasiodiplodin
and trans-resorcylide, respectively. Lasiodiplodin
production was reconstituted in the heterologous host by co-expressing
an O-methyltransferase also encoded in the lasiodiplodin
cluster, while a glutathione-S-transferase was found
not to be necessary for heterologous production. Clarification of
the biogenesis of known resorcylide congeners in the heterologous
host helped to disentangle the roles that biosynthetic irregularities
and chemical interconversions play in generating chemical diversity.
Observation of 14-membered RAL homologues during in vivo heterologous biosynthesis of RAL12 metabolites revealed
“stuttering” by fungal iPKSs. The close global and domain-level
sequence similarities of the orthologous BDL synthases across different
structural subclasses implicate repeated horizontal gene transfers
and/or cluster losses in different fungal lineages. The absence of
straightforward correlations between enzyme sequences and product
structural features (the size of the macrocycle, the conformation
of the exocyclic methyl group, or the extent of reduction by the hrPKS)
suggest that BDL structural variety is the result of a select few
mutations in key active site cavity positions.
Collapse
Affiliation(s)
- Yuquan Xu
- Biotechnology
Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun
South St., Beijing 100081, People’s Republic of China
- Natural
Products Center, School of Natural Resources and the Environment,
College of Agriculture and Life Sciences, The University of Arizona, 250 E. Valencia Rd., Tucson, Arizona 85706, United States
| | - Tong Zhou
- Department
of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, Utah 84322, United States
| | - Patricia Espinosa-Artiles
- Natural
Products Center, School of Natural Resources and the Environment,
College of Agriculture and Life Sciences, The University of Arizona, 250 E. Valencia Rd., Tucson, Arizona 85706, United States
| | - Ying Tang
- Natural
Products Center, School of Natural Resources and the Environment,
College of Agriculture and Life Sciences, The University of Arizona, 250 E. Valencia Rd., Tucson, Arizona 85706, United States
- College
of Sciences, Sichuan University, Chengdu, Sichuan 610064, People’s Republic of China
| | - Jixun Zhan
- Department
of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, Utah 84322, United States
| | - István Molnár
- Natural
Products Center, School of Natural Resources and the Environment,
College of Agriculture and Life Sciences, The University of Arizona, 250 E. Valencia Rd., Tucson, Arizona 85706, United States
- Bio5
Institute, The University of Arizona, 1657 E. Helen St., Tucson, Arizona 85721, United States
| |
Collapse
|
50
|
Xu J, Jiang CS, Zhang ZL, Ma WQ, Guo YW. Recent progress regarding the bioactivities, biosynthesis and synthesis of naturally occurring resorcinolic macrolides. Acta Pharmacol Sin 2014; 35:316-30. [PMID: 24464049 PMCID: PMC4647893 DOI: 10.1038/aps.2013.155] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 09/25/2013] [Indexed: 12/15/2022] Open
Abstract
Macrolides, which comprise a family of lactones with different ring sizes, belong to the polyketide class of natural products. Resorcinolic macrolides, an important subgroup, possess interesting structures and exhibit a wide variety of bioactivities, such as anti-tumor, anti-bacteria, and anti-malaria activities, etc. This review summarizes progress in isolation, bioactivity studies, biosynthesis, and representative chemical syntheses of this group of macrolides in recent decades, encompassing 63 naturally occurring macrolides published in 120 articles.
Collapse
Affiliation(s)
- Jing Xu
- College of Science, China University of Petroleum, Qingdao 266580, China
- Weifang Biomedical Innovation and Entrepreneurship Service Center, Weifang 261205, China
| | - Cheng-shi Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zai-long Zhang
- College of Science, China University of Petroleum, Qingdao 266580, China
| | - Wen-quan Ma
- Weifang Biomedical Innovation and Entrepreneurship Service Center, Weifang 261205, China
| | - Yue-wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|