1
|
Gong W, Wu T, Liu Y, Jiao S, Wang W, Yan W, Li Y, Liu Y, Zhang Y, Wang H. Insight into the photodynamic mechanism and protein binding of a nitrosyl iron-sulfur [Fe 2S 2(NO) 4] 2- cluster. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124603. [PMID: 38878720 DOI: 10.1016/j.saa.2024.124603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 07/08/2024]
Abstract
Iron-sulfur cluster conversion and nitrosyl modification are involved in regulating their functions and play critical roles in signaling for biological systems. Hereby, the photo-induced dynamic process of (Me4N)2[Fe2S2(NO)4] was monitored using time-resolved electron paramagnetic resonance (EPR) spectra, MS spectra and cellular imaging methods. Photo-irradiation and the solvent affect the reaction rates and products. Spectroscopic and kinetic studies have shown that the process involves at least three intermediates: spin-trapped NO free radical species with a gav at 2.040, and two other iron nitrosyl species, dinitrosyl iron units (DNICs) and mononitrosyl iron units (MNICs) with gav values at 2.031 and 2.024, respectively. Moreover, the [Fe2S2(NO)4]2- cluster could bind with ferritin and decompose gradually, and a binding state of dinitrosyl iron coordinated with Cys102 of the recombinant human heavy chain ferritin (rHuHF) was finally formed. This study provides insight into the photodynamic mechanism of nitrosyl iron - sulfur clusters to improve the understanding of physiological activity.
Collapse
Affiliation(s)
- Wenjun Gong
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Tao Wu
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Yuhua Liu
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Shuxiang Jiao
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Wenming Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Wenjun Yan
- Institute of Coal Chemistry, Chinese Academy of Sciences,Taiyuan 030001, China
| | - Yanqiu Li
- Institute of Coal Chemistry, Chinese Academy of Sciences,Taiyuan 030001, China
| | - Yanhong Liu
- Techinical Institute of Physics & Chemistry, CAS, Beijing 100190, China
| | - Yun Zhang
- Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan
| | - Hongfei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
2
|
Querci L, Piccioli M, Ciofi-Baffoni S, Banci L. Structural aspects of iron‑sulfur protein biogenesis: An NMR view. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119786. [PMID: 38901495 DOI: 10.1016/j.bbamcr.2024.119786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Over the last decade, structural aspects involving iron‑sulfur (Fe/S) protein biogenesis have played an increasingly important role in understanding the high mechanistic complexity of mitochondrial and cytosolic machineries maturing Fe/S proteins. In this respect, solution NMR has had a significant impact because of its ability to monitor transient protein-protein interactions, which are abundant in the networks of pathways leading to Fe/S cluster biosynthesis and transfer, as well as thanks to the developments of paramagnetic NMR in both terms of new methodologies and accurate data interpretation. Here, we review the use of solution NMR in characterizing the structural aspects of human Fe/S proteins and their interactions in the framework of Fe/S protein biogenesis. We will first present a summary of the recent advances that have been achieved by paramagnetic NMR and then we will focus our attention on the role of solution NMR in the field of human Fe/S protein biogenesis.
Collapse
Affiliation(s)
- Leonardo Querci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Mario Piccioli
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy.
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy.
| |
Collapse
|
3
|
Li K, Zakharov LN, Pluth MD. Synthesis, Characterization, and Reactivity of a Synthetic End-On Cobalt(II) Alkyl Persulfide Complex as a Model Platform for Thiolate Persulfidation. J Am Chem Soc 2024; 146:21999-22007. [PMID: 39044627 DOI: 10.1021/jacs.4c07276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Persulfides (RSS-) are ubiquitous source of sulfides (S2-) in biology, and interactions between RSS- and bioinorganic metal centers play critical roles in biological hydrogen sulfide (H2S) biogenesis, signaling, and catabolism. Here, we report the use of contact-ion stabilized [Na(15-crown-5)][tBuSS] (1) as a simple synthon to access rare metal alkyl persulfide complexes and to investigate the reactivity of RSS- with transition metal centers to provide insights into metal thiolate persulfidation, including the fundamental difference between alkyl persulfides and alkyl thiolates. Reaction of 1 with [CoII(TPA)(OTf)]+ afforded the η1-alkyl persulfide complex [CoII(TPA)(SStBu)]+ (2), which was characterized by X-ray crystallography, UV-vis spectroscopy, and Raman spectroscopy. RSS- coordination to the Lewis acidic Co2+ center provided additional stability to the S-S bond, as evidenced by a significant increase in the Raman stretching frequency for 2 (vS-S = 522 cm-1, ΔvS-S = 66 cm-1). The effect of persulfidation on metal center redox potentials was further elucidated using cyclic voltammetry, in which the Co2+ → Co3+ oxidation potential of 2 (Ep,a = +89 mV vs SCE) is lowered by nearly 700 mV when compared to the corresponding thiolate complex [CoII(TPA)(StBu)]+ (3) (Ep,a = +818 mV vs SCE), despite persulfidation being generally seen as an oxidative post-translational modification. The reactivity of 2 toward reducing agents including PPh3, BH4-, and biologically relevant thiol reductant DTT led to different S2- output pathways, including formation of a dinuclear 2Co-2SH complex [CoII2(TPA)2(μ2-SH)2]2+(4).
Collapse
Affiliation(s)
- Keyan Li
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Lev N Zakharov
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1253, United States
| |
Collapse
|
4
|
Dodd EL, Le Brun NE. Probing the mechanism of the dedicated NO sensor [4Fe-4S] NsrR: the effect of cluster ligand environment. J Inorg Biochem 2024; 252:112457. [PMID: 38176366 DOI: 10.1016/j.jinorgbio.2023.112457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 01/06/2024]
Abstract
NsrR from Streptomyces coelicolor is a bacterial nitric oxide (NO) sensor/nitrosative stress regulator as its primary function, and has been shown to have differential response at low, mid, and high levels of NO. These must correspond to discrete structural changes at the protein-bound [4Fe-4S] cluster in response to stepwise nitrosylation of the cluster. We have investigated the effect of the monohapto carboxylate ligand in the site differentiated [4Fe-4S] cluster cofactor of the protein NsrR on modulating its reactivity to NO with a focus on indentifying mechanistic intermediates. We have prepared a synthetic model [4Fe-4S] cluster complex with tripodal ligand and one single site differentiated site occupied by either thiolate or carboxylate ligand. We report here the mechanistic details of sequential steps of nitrosylation as observed by ESI MS and IR spectroscopy. Parallel non-denaturing mass spectrometry analyses were performed using site-differentiated variants of NsrR with the native aspartic acid, cysteine, or alanine in the position of the forth ligand to the cluster. A mono-nitrosylated synthetic [4Fe-4S] cluster was observed for the first time in a biologically-relevant thiolate-based coordination environment. Combined synthetic and protein data give unprecedented clarity in the modulation of nitrosylation of a [4Fe-4S] cluster.
Collapse
Affiliation(s)
- Erin L Dodd
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
5
|
Lien Y, Lachowicz JC, Mendauletova A, Zizola C, Ngendahimana T, Kostenko A, Eaton SS, Latham JA, Grove TL. Structural, Biochemical, and Bioinformatic Basis for Identifying Radical SAM Cyclopropyl Synthases. ACS Chem Biol 2024; 19:370-379. [PMID: 38295270 PMCID: PMC10878394 DOI: 10.1021/acschembio.3c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/29/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
The importance of radical S-adenosyl-l-methionine (RS) enzymes in the maturation of ribosomally synthesized and post-translationally modified peptides (RiPPs) continues to expand, specifically for the RS-SPASM subfamily. We recently discovered an RS-SPASM enzyme that installs a carbon-carbon bond between the geminal methyls of valine residues, resulting in the formation of cyclopropylglycine (CPG). Here, we sought to define the family of cyclopropyl (CP) synthases because of the importance of cyclopropane scaffolds in pharmaceutical development. Using RadicalSAM.org, we bioinformatically expanded the family of CP synthases and assigned unique peptide sequences to each subclade. We identified a unique RiPP biosynthetic pathway that encodes a precursor peptide, TigB, with a repeating TIGSVS motif. Using LCMS and NMR techniques, we show that the RS enzyme associated with the pathway, TigE, catalyzes the formation of a methyl-CPG from the conserved isoleucine residing in the repeating motif of TigB. Furthermore, we obtained a crystal structure of TigE, which reveals an unusual tyrosyl ligation to the auxiliary I [4Fe-4S] cluster, provided by a glycine-tyrosine-tryptophan motif unique to all CP synthases. Further, we show that this unique tyrosyl ligation is absolutely required for TigE activity. Together, our results provide insight into how CP synthases perform this unique reaction.
Collapse
Affiliation(s)
- Yi Lien
- Department
of Chemistry and Biochemistry, University
of Denver, Denver, Colorado 80210, United States
| | - Jake C. Lachowicz
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - Aigera Mendauletova
- Department
of Chemistry and Biochemistry, University
of Denver, Denver, Colorado 80210, United States
| | - Cynthia Zizola
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - Thacien Ngendahimana
- Department
of Chemistry and Biochemistry, University
of Denver, Denver, Colorado 80210, United States
| | - Anastasiia Kostenko
- Department
of Chemistry and Biochemistry, University
of Denver, Denver, Colorado 80210, United States
| | - Sandra S. Eaton
- Department
of Chemistry and Biochemistry, University
of Denver, Denver, Colorado 80210, United States
| | - John A. Latham
- Department
of Chemistry and Biochemistry, University
of Denver, Denver, Colorado 80210, United States
| | - Tyler L. Grove
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
6
|
Kang W. Structural Insights and Mechanistic Understanding of Iron-Molybdenum Cofactor Biosynthesis by NifB in Nitrogenase Assembly Process. Mol Cells 2023; 46:736-742. [PMID: 38052488 PMCID: PMC10701300 DOI: 10.14348/molcells.2023.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 12/07/2023] Open
Abstract
NifB, a radical S-adenosylmethionine (SAM) enzyme, is pivotal in the biosynthesis of the iron-molybdenum cofactor (FeMo-co), commonly referred to as the M-cluster. This cofactor, located within the active site of nitrogenase, is essential for the conversion of dinitrogen (N2) to NH3. Recognized as the most intricate metallocluster in nature, FeMo-co biosynthesis involves multiple proteins and a sequence of steps. Of particular significance, NifB directs the fusion of two [Fe4S4] clusters to assemble the 8Fe core, while also incorporating an interstitial carbide. Although NifB has been extensively studied, its molecular mechanisms remain elusive. In this review, we explore recent structural analyses of NifB and provide a comprehensive overview of the established catalytic mechanisms. We propose prospective directions for future research, emphasizing the relevance to biochemistry, agriculture, and environmental science. The goal of this review is to lay a solid foundation for future endeavors aimed at elucidating the atomic details of FeMo-co biosynthesis.
Collapse
Affiliation(s)
- Wonchull Kang
- Department of Chemistry, College of Natural Sciences, Soongsil University, Seoul 06978, Korea
- Department of Green Chemistry and Materials Engineering, Soongsil University, Seoul 06978, Korea
| |
Collapse
|
7
|
Quick and Spontaneous Transformation between [3Fe-4S] and [4Fe-4S] Iron-Sulfur Clusters in the tRNA-Thiolation Enzyme TtuA. Int J Mol Sci 2023; 24:ijms24010833. [PMID: 36614280 PMCID: PMC9821441 DOI: 10.3390/ijms24010833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
Iron-sulfur (Fe-S) clusters are essential cofactors for enzyme activity. These Fe-S clusters are present in structurally diverse forms, including [4Fe-4S] and [3Fe-4S]. Type-identification of the Fe-S cluster is indispensable in understanding the catalytic mechanism of enzymes. However, identifying [4Fe-4S] and [3Fe-4S] clusters in particular is challenging because of their rapid transformation in response to oxidation-reduction events. In this study, we focused on the relationship between the Fe-S cluster type and the catalytic activity of a tRNA-thiolation enzyme (TtuA). We reconstituted [4Fe-4S]-TtuA, prepared [3Fe-4S]-TtuA by oxidizing [4Fe-4S]-TtuA under strictly anaerobic conditions, and then observed changes in the Fe-S clusters in the samples and the enzymatic activity in the time-course experiments. Electron paramagnetic resonance analysis revealed that [3Fe-4S]-TtuA spontaneously transforms into [4Fe-4S]-TtuA in minutes to one hour without an additional free Fe source in the solution. Although the TtuA immediately after oxidation of [4Fe-4S]-TtuA was inactive [3Fe-4S]-TtuA, its activity recovered to a significant level compared to [4Fe-4S]-TtuA after one hour, corresponding to an increase of [4Fe-4S]-TtuA in the solution. Our findings reveal that [3Fe-4S]-TtuA is highly inactive and unstable. Moreover, time-course analysis of structural changes and activity under strictly anaerobic conditions further unraveled the Fe-S cluster type used by the tRNA-thiolation enzyme.
Collapse
|
8
|
Rutledge HL, Field MJ, Rittle J, Green MT, Akif Tezcan F. Role of Serine Coordination in the Structural and Functional Protection of the Nitrogenase P-Cluster. J Am Chem Soc 2022; 144:22101-22112. [PMID: 36445204 PMCID: PMC9957664 DOI: 10.1021/jacs.2c09480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Nitrogenase catalyzes the multielectron reduction of dinitrogen to ammonia. Electron transfer in the catalytic protein (MoFeP) proceeds through a unique [8Fe-7S] cluster (P-cluster) to the active site (FeMoco). In the reduced, all-ferrous (PN) state, the P-cluster is coordinated by six cysteine residues. Upon two-electron oxidation to the P2+ state, the P-cluster undergoes conformational changes in which a highly conserved oxygen-based residue (a Ser or a Tyr) and a backbone amide additionally ligate the cluster. Previous studies of Azotobacter vinelandii (Av) MoFeP revealed that when the oxygen-based residue, βSer188, was mutated to a noncoordinating residue, Ala, the P-cluster became redox-labile and reversibly lost two of its eight Fe centers. Surprisingly, the Av strain with a MoFeP variant that lacked the serine ligand (Av βSer188Ala MoFeP) displayed the same diazotrophic growth and in vitro enzyme turnover rates as wild-type Av MoFeP, calling into question the necessity of this conserved ligand for nitrogenase function. Based on these observations, we hypothesized that βSer188 plays a role in protecting the P-cluster under nonideal conditions. Here, we investigated the protective role of βSer188 both in vivo and in vitro by characterizing the ability of Av βSer188Ala cells to grow under suboptimal conditions (high oxidative stress or Fe limitation) and by determining the tendency of βSer188Ala MoFeP to be mismetallated in vitro. Our results demonstrate that βSer188 (1) increases Av cell survival upon exposure to oxidative stress in the form of hydrogen peroxide, (2) is necessary for efficient Av diazotrophic growth under Fe-limiting conditions, and (3) may protect the P-cluster from metal exchange in vitro. Taken together, our findings suggest a structural adaptation of nitrogenase to protect the P-cluster via Ser ligation, which is a previously unidentified functional role of the Ser residue in redox proteins and adds to the expanding functional roles of non-Cys ligands to FeS clusters.
Collapse
Affiliation(s)
- Hannah L. Rutledge
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Mackenzie J. Field
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Jonathan Rittle
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Michael T. Green
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
9
|
Iron–Sulfur Clusters toward Stresses: Implication for Understanding and Fighting Tuberculosis. INORGANICS 2022. [DOI: 10.3390/inorganics10100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tuberculosis (TB) remains the leading cause of death due to a single pathogen, accounting for 1.5 million deaths annually on the global level. Mycobacterium tuberculosis, the causative agent of TB, is persistently exposed to stresses such as reactive oxygen species (ROS), reactive nitrogen species (RNS), acidic conditions, starvation, and hypoxic conditions, all contributing toward inhibiting bacterial proliferation and survival. Iron–sulfur (Fe-S) clusters, which are among the most ancient protein prosthetic groups, are good targets for ROS and RNS, and are susceptible to Fe starvation. Mtb holds Fe-S containing proteins involved in essential biological process for Mtb. Fe-S cluster assembly is achieved via complex protein machineries. Many organisms contain several Fe-S assembly systems, while the SUF system is the only one in some pathogens such as Mtb. The essentiality of the SUF machinery and its functionality under the stress conditions encountered by Mtb underlines how it constitutes an attractive target for the development of novel anti-TB.
Collapse
|
10
|
Rohac R, Crack JC, de Rosny E, Gigarel O, Le Brun NE, Fontecilla-Camps JC, Volbeda A. Structural determinants of DNA recognition by the NO sensor NsrR and related Rrf2-type [FeS]-transcription factors. Commun Biol 2022; 5:769. [PMID: 35908109 PMCID: PMC9338935 DOI: 10.1038/s42003-022-03745-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/21/2022] [Indexed: 11/20/2022] Open
Abstract
Several transcription factors of the Rrf2 family use an iron-sulfur cluster to regulate DNA binding through effectors such as nitric oxide (NO), cellular redox status and iron levels. [4Fe-4S]-NsrR from Streptomyces coelicolor (ScNsrR) modulates expression of three different genes via reaction and complex formation with variable amounts of NO, which results in detoxification of this gas. Here, we report the crystal structure of ScNsrR complexed with an hmpA1 gene operator fragment and compare it with those previously reported for [2Fe-2S]-RsrR/rsrR and apo-IscR/hyA complexes. Important structural differences reside in the variation of the DNA minor and major groove widths. In addition, different DNA curvatures and different interactions with the protein sensors are observed. We also report studies of NsrR binding to four hmpA1 variants, which indicate that flexibility in the central region is not a key binding determinant. Our study explores the promotor binding specificities of three closely related transcriptional regulators. The crystal structure of the iron-sulfur protein NsrR from Streptomyces coelicolor bound to a gene operator fragment is reported and compared with other structures, giving insight into the structural determinants of DNA recognition by the NO sensor.
Collapse
Affiliation(s)
- Roman Rohac
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Metalloproteins Unit, F-38000, Grenoble, France
| | - Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Eve de Rosny
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Metalloproteins Unit, F-38000, Grenoble, France
| | - Océane Gigarel
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Metalloproteins Unit, F-38000, Grenoble, France
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Juan C Fontecilla-Camps
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Metalloproteins Unit, F-38000, Grenoble, France
| | - Anne Volbeda
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Metalloproteins Unit, F-38000, Grenoble, France.
| |
Collapse
|
11
|
Nicolet Y, Cherrier MV, Amara P. Radical SAM Enzymes and Metallocofactor Assembly: A Structural Point of View. ACS BIO & MED CHEM AU 2022; 2:36-52. [PMID: 37102176 PMCID: PMC10114646 DOI: 10.1021/acsbiomedchemau.1c00044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This Review focuses on the structure-function relationship of radical S-adenosyl-l-methionine (SAM) enzymes involved in the assembly of metallocofactors corresponding to the active sites of [FeFe]-hydrogenase and nitrogenase [MoFe]-protein. It does not claim to correspond to an extensive review on the assembly machineries of these enzyme active sites, for which many good reviews are already available, but instead deals with the contribution of structural data to the understanding of their chemical mechanism (Buren et al. Chem. Rev.2020, 142 ( (25), ) 11006-11012; Britt et al. Chem. Sci.2020, 11 ( (38), ), 10313-10323). Hence, we will present the history and current knowledge about the radical SAM maturases HydE, HydG, and NifB as well as what, in our opinion, should be done in the near future to overcome the existing barriers in our understanding of this fascinating chemistry that intertwine organic radicals and organometallic complexes.
Collapse
Affiliation(s)
- Yvain Nicolet
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France
| | - Mickael V. Cherrier
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France
| | - Patricia Amara
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France
| |
Collapse
|
12
|
Unusual structures and unknown roles of FeS clusters in metalloenzymes seen from a resonance Raman spectroscopic perspective. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214287] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Shepard EM, Impano S, Duffus BR, Pagnier A, Duschene KS, Betz JN, Byer AS, Galambas A, McDaniel EC, Watts H, McGlynn SE, Peters JW, Broderick WE, Broderick JB. HydG, the "dangler" iron, and catalytic production of free CO and CN -: implications for [FeFe]-hydrogenase maturation. Dalton Trans 2021; 50:10405-10422. [PMID: 34240096 PMCID: PMC9154046 DOI: 10.1039/d1dt01359a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The organometallic H-cluster of the [FeFe]-hydrogenase consists of a [4Fe-4S] cubane bridged via a cysteinyl thiolate to a 2Fe subcluster ([2Fe]H) containing CO, CN-, and dithiomethylamine (DTMA) ligands. The H-cluster is synthesized by three dedicated maturation proteins: the radical SAM enzymes HydE and HydG synthesize the non-protein ligands, while the GTPase HydF serves as a scaffold for assembly of [2Fe]H prior to its delivery to the [FeFe]-hydrogenase containing the [4Fe-4S] cubane. HydG uses l-tyrosine as a substrate, cleaving it to produce p-cresol as well as the CO and CN- ligands to the H-cluster, although there is some question as to whether these are formed as free diatomics or as part of a [Fe(CO)2(CN)] synthon. Here we show that Clostridium acetobutylicum (C.a.) HydG catalyzes formation of multiple equivalents of free CO at rates comparable to those for CN- formation. Free CN- is also formed in excess molar equivalents over protein. A g = 8.9 EPR signal is observed for C.a. HydG reconstituted to load the 5th "dangler" iron of the auxiliary [4Fe-4S][FeCys] cluster and is assigned to this "dangler-loaded" cluster state. Free CO and CN- formation and the degree of activation of [FeFe]-hydrogenase all occur regardless of dangler loading, but are increased 10-35% in the dangler-loaded HydG; this indicates the dangler iron is not essential to this process but may affect relevant catalysis. During HydG turnover in the presence of myoglobin, the g = 8.9 signal remains unchanged, indicating that a [Fe(CO)2(CN)(Cys)] synthon is not formed at the dangler iron. Mutation of the only protein ligand to the dangler iron, H272, to alanine nearly completely abolishes both free CO formation and hydrogenase activation, however results show this is not due solely to the loss of the dangler iron. In experiments with wild type and H272A HydG, and with different degrees of dangler loading, we observe a consistent correlation between free CO/CN- formation and hydrogenase activation. Taken in full, our results point to free CO/CN-, but not an [Fe(CO)2(CN)(Cys)] synthon, as essential species in hydrogenase maturation.
Collapse
Affiliation(s)
- Eric M Shepard
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Stella Impano
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Benjamin R Duffus
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Adrien Pagnier
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Kaitlin S Duschene
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Jeremiah N Betz
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Amanda S Byer
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Amanda Galambas
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Elizabeth C McDaniel
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Hope Watts
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Shawn E McGlynn
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - John W Peters
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99163, USA
| | - William E Broderick
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Joan B Broderick
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
14
|
Rohac R, Martin L, Liu L, Basu D, Tao L, Britt RD, Rauchfuss TB, Nicolet Y. Crystal Structure of the [FeFe]-Hydrogenase Maturase HydE Bound to Complex-B. J Am Chem Soc 2021; 143:8499-8508. [PMID: 34048236 DOI: 10.1021/jacs.1c03367] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[FeFe]-hydrogenases use a unique organometallic complex, termed the H cluster, to reversibly convert H2 into protons and low-potential electrons. It can be best described as a [Fe4S4] cluster coupled to a unique [2Fe]H center where the reaction actually takes place. The latter corresponds to two iron atoms, each of which is bound by one CN- ligand and one CO ligand. The two iron atoms are connected by a unique azadithiolate molecule (-S-CH2-NH-CH2-S-) and an additional bridging CO. This [2Fe]H center is built stepwise thanks to the well-orchestrated action of maturating enzymes that belong to the Hyd machinery. Among them, HydG converts l-tyrosine into CO and CN- to produce a unique l-cysteine-Fe(CO)2CN species termed complex-B. Very recently, HydE was shown to perform radical-based chemistry using synthetic complex-B as a substrate. Here we report the high-resolution crystal structure that establishes the identity of the complex-B-bound HydE. By triggering the reaction prior to crystallization, we trapped a new five-coordinate Fe species, supporting the proposal that HydE performs complex modifications of complex-B to produce a monomeric "SFe(CO)2CN" precursor to the [2Fe]H center. Substrate access, product release, and intermediate transfer are also discussed.
Collapse
Affiliation(s)
- Roman Rohac
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France
| | - Lydie Martin
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France
| | - Liang Liu
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Debashis Basu
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Lizhi Tao
- Department of Chemistry, University of California-Davis, Davis, California 95616, United States
| | - R David Britt
- Department of Chemistry, University of California-Davis, Davis, California 95616, United States
| | - Thomas B Rauchfuss
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yvain Nicolet
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France
| |
Collapse
|
15
|
Saudino G, Suraci D, Nasta V, Ciofi-Baffoni S, Banci L. Molecular Basis of Multiple Mitochondrial Dysfunctions Syndrome 2 Caused by CYS59TYR BOLA3 Mutation. Int J Mol Sci 2021; 22:4848. [PMID: 34063696 PMCID: PMC8125686 DOI: 10.3390/ijms22094848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple mitochondrial dysfunctions syndrome (MMDS) is a rare neurodegenerative disorder associated with mutations in genes with a vital role in the biogenesis of mitochondrial [4Fe-4S] proteins. Mutations in one of these genes encoding for BOLA3 protein lead to MMDS type 2 (MMDS2). Recently, a novel phenotype for MMDS2 with complete clinical recovery was observed in a patient containing a novel variant (c.176G > A, p.Cys59Tyr) in compound heterozygosity. In this work, we aimed to rationalize this unique phenotype observed in MMDS2. To do so, we first investigated the structural impact of the Cys59Tyr mutation on BOLA3 by NMR, and then we analyzed how the mutation affects both the formation of a hetero-complex between BOLA3 and its protein partner GLRX5 and the iron-sulfur cluster-binding properties of the hetero-complex by various spectroscopic techniques and by experimentally driven molecular docking. We show that (1) the mutation structurally perturbed the iron-sulfur cluster-binding region of BOLA3, but without abolishing [2Fe-2S]2+ cluster-binding on the hetero-complex; (2) tyrosine 59 did not replace cysteine 59 as iron-sulfur cluster ligand; and (3) the mutation promoted the formation of an aberrant apo C59Y BOLA3-GLRX5 complex. All these aspects allowed us to rationalize the unique phenotype observed in MMDS2 caused by Cys59Tyr mutation.
Collapse
Affiliation(s)
- Giovanni Saudino
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy; (G.S.); (D.S.); (V.N.)
| | - Dafne Suraci
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy; (G.S.); (D.S.); (V.N.)
| | - Veronica Nasta
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy; (G.S.); (D.S.); (V.N.)
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy; (G.S.); (D.S.); (V.N.)
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Lucia Banci
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy; (G.S.); (D.S.); (V.N.)
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), 50019 Sesto Fiorentino, Italy
| |
Collapse
|
16
|
Abstract
Nitrogenase is the only enzyme capable of reducing N2 to NH3. This challenging reaction requires the coordinated transfer of multiple electrons from the reductase, Fe-protein, to the catalytic component, MoFe-protein, in an ATP-dependent fashion. In the last two decades, there have been significant advances in our understanding of how nitrogenase orchestrates electron transfer (ET) from the Fe-protein to the catalytic site of MoFe-protein and how energy from ATP hydrolysis transduces the ET processes. In this review, we summarize these advances, with focus on the structural and thermodynamic redox properties of nitrogenase component proteins and their complexes, as well as on new insights regarding the mechanism of ET reactions during catalysis and how they are coupled to ATP hydrolysis. We also discuss recently developed chemical, photochemical, and electrochemical methods for uncoupling substrate reduction from ATP hydrolysis, which may provide new avenues for studying the catalytic mechanism of nitrogenase.
Collapse
Affiliation(s)
- Hannah L Rutledge
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
17
|
Tao L, Zhu W, Klinman JP, Britt RD. Electron Paramagnetic Resonance Spectroscopic Identification of the Fe-S Clusters in the SPASM Domain-Containing Radical SAM Enzyme PqqE. Biochemistry 2019; 58:5173-5187. [PMID: 31769977 DOI: 10.1021/acs.biochem.9b00960] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pyrroloquinoline quinone (PQQ) is an important redox active quinocofactor produced by a wide variety of bacteria. A key step in PQQ biosynthesis is a carbon-carbon cross-link reaction between glutamate and tyrosine side chains within the ribosomally synthesized peptide substrate PqqA. This reaction is catalyzed by the radical SAM enzyme PqqE. Previous X-ray crystallographic and spectroscopic studies suggested that PqqE, like the other members of the SPASM domain family, contains two auxiliary Fe-S clusters (AuxI and AuxII) in addition to the radical SAM [4Fe-4S] cluster. However, a clear assignment of the electron paramagnetic resonance (EPR) signal of each Fe-S cluster was hindered by the isolation of a His6-tagged PqqE variant with an altered AuxI cluster. In this work, we are able to isolate soluble PqqE variants by using a less disruptive strep-tactin chromatographic approach. We have unambiguously identified the EPR signatures for four forms of Fe-S clusters present in PqqE through the use of multifrequency EPR spectroscopy: the RS [4Fe-4S] cluster, the AuxII [4Fe-4S] cluster, and two different clusters ([4Fe-4S] and [2Fe-2S]) bound in the AuxI site. The RS [4Fe-4S] cluster, the AuxII [4Fe-4S] cluster, and the [2Fe-2S] cluster form in the AuxI site can all be reduced by sodium dithionite, with g tensors of their reduced form determined as [2.040, 1.927, 1.897], [2.059, 1.940, 1.903], and [2.004, 1.958, 1.904], respectively. The AuxI [4Fe-4S] cluster that is determined on the basis of its relaxation profile can be reduced only by using low-potential reductants such as Ti(III) citrate or Eu(II)-DTPA to give rise to a g1 = 2.104 signal. Identification of the EPR signature for each cluster paves the way for further investigations of SPASM domain radical SAM enzymes.
Collapse
Affiliation(s)
- Lizhi Tao
- Department of Chemistry , University of California , Davis , California 95616 , United States
| | - Wen Zhu
- Department of Chemistry, Department of Molecular and Cell Biology, and California Institute for Quantitative Biosciences , University of California , Berkeley , California 94720 , United States
| | - Judith P Klinman
- Department of Chemistry, Department of Molecular and Cell Biology, and California Institute for Quantitative Biosciences , University of California , Berkeley , California 94720 , United States
| | - R David Britt
- Department of Chemistry , University of California , Davis , California 95616 , United States
| |
Collapse
|
18
|
Esselborn J, Kertess L, Apfel UP, Hofmann E, Happe T. Loss of Specific Active-Site Iron Atoms in Oxygen-Exposed [FeFe]-Hydrogenase Determined by Detailed X-ray Structure Analyses. J Am Chem Soc 2019; 141:17721-17728. [PMID: 31609603 DOI: 10.1021/jacs.9b07808] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The [FeFe]-hydrogenases catalyze the uptake and evolution of hydrogen with unmatched speed at low overpotential. However, oxygen induces the degradation of the unique [6Fe-6S] cofactor within the active site, termed the H-cluster. We used X-ray structural analyses to determine possible modes of irreversible oxygen-driven inactivation. To this end, we exposed crystals of the [FeFe]-hydrogenase CpI from Clostridium pasteurianum to oxygen and quantitatively investigated the effects on the H-cluster structure over several time points using multiple data sets, while correlating it to decreases in enzyme activity. Our results reveal the loss of specific Fe atoms from both the diiron (2FeH) and the [4Fe-4S] subcluster (4FeH) of the H-cluster. Within the 2FeH, the Fe atom more distal to the 4FeH is strikingly more affected than the more proximal Fe atom. The 4FeH interconverts to a [2Fe-2S] cluster in parts of the population of active CpIADT, but not in crystals of the inactive apoCpI initially lacking the 2FeH. We thus propose two parallel processes: dissociation of the distal Fe atom and 4FeH interconversion. Both pathways appear to play major roles in the oxidative damage of [FeFe]-hydrogenases under electron-donor deprived conditions probed by our experimental setup.
Collapse
|
19
|
Volbeda A, Martinez MTP, Crack JC, Amara P, Gigarel O, Munnoch JT, Hutchings MI, Darnault C, Le Brun NE, Fontecilla-Camps JC. Crystal Structure of the Transcription Regulator RsrR Reveals a [2Fe-2S] Cluster Coordinated by Cys, Glu, and His Residues. J Am Chem Soc 2019; 141:2367-2375. [PMID: 30657661 DOI: 10.1021/jacs.8b10823] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The recently discovered Rrf2 family transcriptional regulator RsrR coordinates a [2Fe-2S] cluster. Remarkably, binding of the protein to RsrR-regulated promoter DNA sequences is switched on and off through the facile cycling of the [2Fe-2S] cluster between +2 and +1 states. Here, we report high resolution crystal structures of the RsrR dimer, revealing that the [2Fe-2S] cluster is asymmetrically coordinated across the RsrR monomer-monomer interface by two Cys residues from one subunit and His and Glu residues from the other. To our knowledge, this is the first example of a protein bound [Fe-S] cluster with three different amino acid side chains as ligands, and of Glu acting as ligand to a [2Fe-2S] cluster. Analyses of RsrR structures revealed a conformational change, centered on Trp9, which results in a significant shift in the DNA-binding helix-turn-helix region.
Collapse
Affiliation(s)
- Anne Volbeda
- Université Grenoble Alpes, CEA, CNRS , IBS , Metalloproteins Unit, F-38044 Grenoble , France
| | - Ma Teresa Pellicer Martinez
- Centre for Molecular and Structural Biochemistry, School of Chemistry , University of East Anglia , Norwich Research Park, Norwich NR4 7TJ , United Kingdom
| | - Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry , University of East Anglia , Norwich Research Park, Norwich NR4 7TJ , United Kingdom
| | - Patricia Amara
- Université Grenoble Alpes, CEA, CNRS , IBS , Metalloproteins Unit, F-38044 Grenoble , France
| | - Océane Gigarel
- Université Grenoble Alpes, CEA, CNRS , IBS , Metalloproteins Unit, F-38044 Grenoble , France
| | - John T Munnoch
- School of Biological Sciences , University of East Anglia , Norwich Research Park, Norwich NR4 7TJ , United Kingdom
| | - Matthew I Hutchings
- School of Biological Sciences , University of East Anglia , Norwich Research Park, Norwich NR4 7TJ , United Kingdom
| | - Claudine Darnault
- Université Grenoble Alpes, CEA, CNRS , IBS , Metalloproteins Unit, F-38044 Grenoble , France
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry , University of East Anglia , Norwich Research Park, Norwich NR4 7TJ , United Kingdom
| | - Juan C Fontecilla-Camps
- Université Grenoble Alpes, CEA, CNRS , IBS , Metalloproteins Unit, F-38044 Grenoble , France
| |
Collapse
|
20
|
Abstract
SIGNIFICANCE Iron-sulfur cluster proteins carry out multiple functions, including as regulators of gene transcription/translation in response to environmental stimuli. In all known cases, the cluster acts as the sensory module, where the inherent reactivity/fragility of iron-sulfur clusters with small/redox-active molecules is exploited to effect conformational changes that modulate binding to DNA regulatory sequences. This promotes an often substantial reprogramming of the cellular proteome that enables the organism or cell to adapt to, or counteract, its changing circumstances. Recent Advances: Significant progress has been made recently in the structural and mechanistic characterization of iron-sulfur cluster regulators and, in particular, the O2 and NO sensor FNR, the NO sensor NsrR, and WhiB-like proteins of Actinobacteria. These are the main focus of this review. CRITICAL ISSUES Striking examples of how the local environment controls the cluster sensitivity and reactivity are now emerging, but the basis for this is not yet fully understood for any regulatory family. FUTURE DIRECTIONS Characterization of iron-sulfur cluster regulators has long been hampered by a lack of high-resolution structural data. Although this still presents a major future challenge, recent advances now provide a firm foundation for detailed understanding of how a signal is transduced to effect gene regulation. This requires the identification of often unstable intermediate species, which are difficult to detect and may be hard to distinguish using traditional techniques. Novel approaches will be required to solve these problems.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
21
|
Bortolus M, Costantini P, Doni D, Carbonera D. Overview of the Maturation Machinery of the H-Cluster of [FeFe]-Hydrogenases with a Focus on HydF. Int J Mol Sci 2018; 19:E3118. [PMID: 30314343 PMCID: PMC6212873 DOI: 10.3390/ijms19103118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/04/2018] [Accepted: 10/06/2018] [Indexed: 01/01/2023] Open
Abstract
Hydrogen production in nature is performed by hydrogenases. Among them, [FeFe]-hydrogenases have a peculiar active site, named H-cluster, that is made of two parts, synthesized in different pathways. The cubane sub-cluster requires the normal iron-sulfur cluster maturation machinery. The [2Fe] sub-cluster instead requires a dedicated set of maturase proteins, HydE, HydF, and HydG that work to assemble the cluster and deliver it to the apo-hydrogenase. In particular, the delivery is performed by HydF. In this review, we will perform an overview of the latest knowledge on the maturation machinery of the H-cluster, focusing in particular on HydF.
Collapse
Affiliation(s)
- Marco Bortolus
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy.
| | - Paola Costantini
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy.
| | - Davide Doni
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy.
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
22
|
Zanello P. Structure and electrochemistry of proteins harboring iron-sulfur clusters of different nuclearities. Part II. [4Fe-4S] and [3Fe-4S] iron-sulfur proteins. J Struct Biol 2018; 202:250-263. [DOI: 10.1016/j.jsb.2018.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/11/2018] [Accepted: 01/29/2018] [Indexed: 01/27/2023]
|
23
|
Aminofutalosine Synthase (MqnE): A New Catalytic Motif in Radical SAM Enzymology. Methods Enzymol 2018; 606:179-198. [DOI: 10.1016/bs.mie.2018.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Abstract
SIGNIFICANCE Iron-sulfur cluster proteins carry out a wide range of functions, including as regulators of gene transcription/translation in response to environmental stimuli. In all known cases, the cluster acts as the sensory module, where the inherent reactivity/fragility of iron-sulfur clusters towards small/redox active molecules is exploited to effect conformational changes that modulate binding to DNA regulatory sequences. This promotes an often substantial re-programming of the cellular proteome that enables the organism or cell to adapt to, or counteract, its changing circumstances. Recent Advances. Significant progress has been made recently in the structural and mechanistic characterization of iron-sulfur cluster regulators and, in particular, the O2 and NO sensor FNR, the NO sensor NsrR, and WhiB-like proteins of Actinobacteria. These are the main focus of this review. CRITICAL ISSUES Striking examples of how the local environment controls the cluster sensitivity and reactivity are now emerging, but the basis for this is not yet fully understood for any regulatory family. FUTURE DIRECTIONS Characterization of iron-sulfur cluster regulators has long been hampered by a lack of high resolution structural data. Though this still presents a major future challenge, recent advances now provide a firm foundation for detailed understanding of how a signal is transduced to effect gene regulation. This requires the identification of often unstable intermediate species, which are difficult to detect and may be hard to distinguish using traditional techniques. Novel approaches will be required to solve these problems.
Collapse
Affiliation(s)
- Jason C Crack
- School of Chemistry , University of East Anglia , Norwich, United Kingdom of Great Britain and Northern Ireland , NR4 7TJ ;
| | - Nick E Le Brun
- University of East Anglia, School of Chemistry , University plain , Norwich, United Kingdom of Great Britain and Northern Ireland , NR4 7TJ ;
| |
Collapse
|
25
|
Conformationally Gated Electron Transfer in Nitrogenase. Isolation, Purification, and Characterization of Nitrogenase From Gluconacetobacter diazotrophicus. Methods Enzymol 2017. [PMID: 29746246 DOI: 10.1016/bs.mie.2017.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Nitrogenase is a complex, bacterial enzyme that catalyzes the ATP-dependent reduction of dinitrogen (N2) to ammonia (NH3). In its most prevalent form, it consists of two proteins, the catalytic molybdenum-iron protein (MoFeP) and its specific reductase, the iron protein (FeP). A defining feature of nitrogenase is that electron and proton transfer processes linked to substrate reduction are synchronized by conformational changes driven by ATP-dependent FeP-MoFeP interactions. Yet, despite extensive crystallographic, spectroscopic, and biochemical information on nitrogenase, the structural basis of the ATP-dependent synchronization mechanism is not understood in detail. In this chapter, we summarize some of our efforts toward obtaining such an understanding. Experimental investigations of the structure-function relationships in nitrogenase are challenged by the fact that it cannot be readily expressed heterologously in nondiazotrophic bacteria, and the purification protocols for nitrogenase are only known for a small number of diazotrophic organisms. Here, we present methods for purifying and characterizing nitrogenase from a new model organism, Gluconacetobacter diazotrophicus. We also describe procedures for observing redox-dependent conformational changes in G. diazotrophicus nitrogenase by X-ray crystallography and electron paramagnetic resonance spectroscopy, which have provided new insights into the redox-dependent conformational gating processes in nitrogenase.
Collapse
|
26
|
Structure and electrochemistry of proteins harboring iron-sulfur clusters of different nuclearities. Part I. [4Fe-4S] + [2Fe-2S] iron-sulfur proteins. J Struct Biol 2017; 200:1-19. [DOI: 10.1016/j.jsb.2017.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/25/2017] [Indexed: 01/08/2023]
|
27
|
Shepard EM, Byer AS, Aggarwal P, Betz JN, Scott AG, Shisler KA, Usselman RJ, Eaton GR, Eaton SS, Broderick JB. Electron Spin Relaxation and Biochemical Characterization of the Hydrogenase Maturase HydF: Insights into [2Fe-2S] and [4Fe-4S] Cluster Communication and Hydrogenase Activation. Biochemistry 2017; 56:3234-3247. [PMID: 28525271 PMCID: PMC5490485 DOI: 10.1021/acs.biochem.7b00169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nature utilizes [FeFe]-hydrogenase enzymes to catalyze the interconversion between H2 and protons and electrons. Catalysis occurs at the H-cluster, a carbon monoxide-, cyanide-, and dithiomethylamine-coordinated 2Fe subcluster bridged via a cysteine to a [4Fe-4S] cluster. Biosynthesis of this unique metallocofactor is accomplished by three maturase enzymes denoted HydE, HydF, and HydG. HydE and HydG belong to the radical S-adenosylmethionine superfamily of enzymes and synthesize the nonprotein ligands of the H-cluster. These enzymes interact with HydF, a GTPase that acts as a scaffold or carrier protein during 2Fe subcluster assembly. Prior characterization of HydF demonstrated the protein exists in both dimeric and tetrameric states and coordinates both [4Fe-4S]2+/+ and [2Fe-2S]2+/+ clusters [Shepard, E. M., Byer, A. S., Betz, J. N., Peters, J. W., and Broderick, J. B. (2016) Biochemistry 55, 3514-3527]. Herein, electron paramagnetic resonance (EPR) is utilized to characterize the [2Fe-2S]+ and [4Fe-4S]+ clusters bound to HydF. Examination of spin relaxation times using pulsed EPR in HydF samples exhibiting both [4Fe-4S]+ and [2Fe-2S]+ cluster EPR signals supports a model in which the two cluster types either are bound to widely separated sites on HydF or are not simultaneously bound to a single HydF species. Gel filtration chromatographic analyses of HydF spectroscopic samples strongly suggest the [2Fe-2S]+ and [4Fe-4S]+ clusters are coordinated to the dimeric form of the protein. Lastly, we examined the 2Fe subcluster-loaded form of HydF and showed the dimeric state is responsible for [FeFe]-hydrogenase activation. Together, the results indicate a specific role for the HydF dimer in the H-cluster biosynthesis pathway.
Collapse
Affiliation(s)
- Eric M Shepard
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Amanda S Byer
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Priyanka Aggarwal
- Department of Chemistry and Biochemistry, University of Denver , Denver, Colorado 80208, United States
| | - Jeremiah N Betz
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Anna G Scott
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Krista A Shisler
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Robert J Usselman
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver , Denver, Colorado 80208, United States
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver , Denver, Colorado 80208, United States
| | - Joan B Broderick
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| |
Collapse
|
28
|
Caserta G, Pecqueur L, Adamska-Venkatesh A, Papini C, Roy S, Artero V, Atta M, Reijerse E, Lubitz W, Fontecave M. Structural and functional characterization of the hydrogenase-maturation HydF protein. Nat Chem Biol 2017; 13:779-784. [DOI: 10.1038/nchembio.2385] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 03/06/2017] [Indexed: 11/09/2022]
|
29
|
Crystal structures of the NO sensor NsrR reveal how its iron-sulfur cluster modulates DNA binding. Nat Commun 2017; 8:15052. [PMID: 28425466 PMCID: PMC5411485 DOI: 10.1038/ncomms15052] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/23/2017] [Indexed: 12/17/2022] Open
Abstract
NsrR from Streptomyces coelicolor (Sc) regulates the expression of three genes through the progressive degradation of its [4Fe–4S] cluster on nitric oxide (NO) exposure. We report the 1.95 Å resolution crystal structure of dimeric holo-ScNsrR and show that the cluster is coordinated by the three invariant Cys residues from one monomer and, unexpectedly, Asp8 from the other. A cavity map suggests that NO displaces Asp8 as a cluster ligand and, while D8A and D8C variants remain NO sensitive, DNA binding is affected. A structural comparison of holo-ScNsrR with an apo-IscR-DNA complex shows that the [4Fe–4S] cluster stabilizes a turn between ScNsrR Cys93 and Cys99 properly oriented to interact with the DNA backbone. In addition, an apo ScNsrR structure suggests that Asn97 from this turn, along with Arg12, which forms a salt-bridge with Asp8, are instrumental in modulating the position of the DNA recognition helix region relative to its major groove. NsrR is a bacterial transcriptional regulator that acts as a nitric oxide (NO) sensor. Here, the authors present the crystal structure of NsrR, which reveals an unusual Fe-S cluster coordination and explains how NO exposure leads to the degradation of the cluster.
Collapse
|
30
|
Mass spectrometric identification of intermediates in the O 2-driven [4Fe-4S] to [2Fe-2S] cluster conversion in FNR. Proc Natl Acad Sci U S A 2017; 114:E3215-E3223. [PMID: 28373574 DOI: 10.1073/pnas.1620987114] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The iron-sulfur cluster containing protein Fumarate and Nitrate Reduction (FNR) is the master regulator for the switch between anaerobic and aerobic respiration in Escherichia coli and many other bacteria. The [4Fe-4S] cluster functions as the sensory module, undergoing reaction with O2 that leads to conversion to a [2Fe-2S] form with loss of high-affinity DNA binding. Here, we report studies of the FNR cluster conversion reaction using time-resolved electrospray ionization mass spectrometry. The data provide insight into the reaction, permitting the detection of cluster conversion intermediates and products, including a [3Fe-3S] cluster and persulfide-coordinated [2Fe-2S] clusters [[2Fe-2S](S) n , where n = 1 or 2]. Analysis of kinetic data revealed a branched mechanism in which cluster sulfide oxidation occurs in parallel with cluster conversion and not as a subsequent, secondary reaction to generate [2Fe-2S](S) n species. This methodology shows great potential for broad application to studies of protein cofactor-small molecule interactions.
Collapse
|
31
|
Galardon E, Huguet F, Herrero C, Ricoux R, Artaud I, Padovani D. Reactions of persulfides with the heme cofactor of oxidized myoglobin and microperoxidase 11: reduction or coordination. Dalton Trans 2017; 46:7939-7946. [DOI: 10.1039/c7dt01638g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Persulfides reduce both met- and ferryl-oxidized forms of myoglobin, and coordinate to N-acetylated microperoxidase-11.
Collapse
Affiliation(s)
- Erwan Galardon
- UMR 8601
- LCBPT
- CNRS-Université Paris Descartes
- 75006 Paris
- France
| | - Florian Huguet
- UMR 8601
- LCBPT
- CNRS-Université Paris Descartes
- 75006 Paris
- France
| | - Christian Herrero
- UMR 8182
- ICMMO
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- Université Paris-Sud
- 91405 Orsay Cedex
| | - Rémy Ricoux
- UMR 8182
- ICMMO
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- Université Paris-Sud
- 91405 Orsay Cedex
| | - Isabelle Artaud
- UMR 8601
- LCBPT
- CNRS-Université Paris Descartes
- 75006 Paris
- France
| | | |
Collapse
|
32
|
Holm RH, Lo W. Structural Conversions of Synthetic and Protein-Bound Iron–Sulfur Clusters. Chem Rev 2016; 116:13685-13713. [DOI: 10.1021/acs.chemrev.6b00276] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- R. H. Holm
- Department
of Chemistry and
Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Wayne Lo
- Department
of Chemistry and
Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
33
|
Owens CP, Katz FEH, Carter CH, Oswald VF, Tezcan FA. Tyrosine-Coordinated P-Cluster in G. diazotrophicus Nitrogenase: Evidence for the Importance of O-Based Ligands in Conformationally Gated Electron Transfer. J Am Chem Soc 2016; 138:10124-7. [PMID: 27487256 DOI: 10.1021/jacs.6b06783] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The P-cluster is a unique iron-sulfur center that likely functions as a dynamic electron (e(-)) relay site between the Fe-protein and the catalytic FeMo-cofactor in nitrogenase. The P-cluster has been shown to undergo large conformational changes upon 2-e(-) oxidation which entail the coordination of two of the Fe centers to a Ser side chain and a backbone amide N, respectively. Yet, how and if this 2-e(-) oxidized state (P(OX)) is involved in catalysis by nitrogenase is not well established. Here, we present the crystal structures of reduced and oxidized MoFe-protein (MoFeP) from Gluconacetobacter diazotrophicus (Gd), which natively possesses an Ala residue in the position of the Ser ligand to the P-cluster. While reduced Gd-MoFeP is structurally identical to previously characterized counterparts around the FeMo-cofactor, oxidized Gd-MoFeP features an unusual Tyr coordination to its P-cluster along with ligation by a backbone amide nitrogen. EPR analysis of the oxidized Gd-MoFeP P-cluster confirmed that it is a 2-e(-) oxidized, integer-spin species. Importantly, we have found that the sequence positions corresponding to the Ser and Tyr ligands are almost completely covariant among Group I nitrogenases. These findings strongly support the possibility that the P(OX) state is functionally relevant in nitrogenase catalysis and that a hard, O-based anionic ligand serves to stabilize this state in a switchable fashion.
Collapse
Affiliation(s)
- Cedric P Owens
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0356, United States
| | - Faith E H Katz
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0356, United States
| | - Cole H Carter
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0356, United States
| | - Victoria F Oswald
- Department of Chemistry, University of California , Irvine, 1102 Natural Science II, Irvine, California 92697, United States
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0356, United States
| |
Collapse
|
34
|
Shepard EM, Byer AS, Betz JN, Peters JW, Broderick JB. A Redox Active [2Fe-2S] Cluster on the Hydrogenase Maturase HydF. Biochemistry 2016; 55:3514-27. [PMID: 27232385 DOI: 10.1021/acs.biochem.6b00528] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
[FeFe]-hydrogenases are nature's most prolific hydrogen catalysts, excelling at facilely interconverting H2 and protons. The catalytic core common to all [FeFe]-hydrogenases is a complex metallocofactor, referred to as the H-cluster, which is composed of a standard [4Fe-4S] cluster linked through a bridging thiolate to a 2Fe subcluster harboring dithiomethylamine, carbon monoxide, and cyanide ligands. This 2Fe subcluster is synthesized and inserted into [FeFe]-hydrogenase by three maturase enzymes denoted HydE, HydF, and HydG. HydE and HydG are radical S-adenosylmethionine enzymes and synthesize the nonprotein ligands of the H-cluster. HydF is a GTPase that functions as a scaffold or carrier for 2Fe subcluster production. Herein, we utilize UV-visible, circular dichroism, and electron paramagnetic resonance spectroscopic studies to establish the existence of redox active [4Fe-4S] and [2Fe-2S] clusters bound to HydF. We have used spectroelectrochemical titrations to assign iron-sulfur cluster midpoint potentials, have shown that HydF purifies with a reduced [2Fe-2S] cluster in the absence of exogenous reducing agents, and have tracked iron-sulfur cluster spectroscopic changes with quaternary structural perturbations. Our results provide an important foundation for understanding the maturation process by defining the iron-sulfur cluster content of HydF prior to its interaction with HydE and HydG. We speculate that the [2Fe-2S] cluster of HydF either acts as a placeholder for HydG-derived Fe(CO)2CN species or serves as a scaffold for 2Fe subcluster assembly.
Collapse
Affiliation(s)
- Eric M Shepard
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Amanda S Byer
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Jeremiah N Betz
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - John W Peters
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Joan B Broderick
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| |
Collapse
|
35
|
Hosseinzadeh P, Lu Y. Design and fine-tuning redox potentials of metalloproteins involved in electron transfer in bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:557-581. [PMID: 26301482 PMCID: PMC4761536 DOI: 10.1016/j.bbabio.2015.08.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/20/2015] [Indexed: 12/25/2022]
Abstract
Redox potentials are a major contributor in controlling the electron transfer (ET) rates and thus regulating the ET processes in the bioenergetics. To maximize the efficiency of the ET process, one needs to master the art of tuning the redox potential, especially in metalloproteins, as they represent major classes of ET proteins. In this review, we first describe the importance of tuning the redox potential of ET centers and its role in regulating the ET in bioenergetic processes including photosynthesis and respiration. The main focus of this review is to summarize recent work in designing the ET centers, namely cupredoxins, cytochromes, and iron-sulfur proteins, and examples in design of protein networks involved these ET centers. We then discuss the factors that affect redox potentials of these ET centers including metal ion, the ligands to metal center and interactions beyond the primary ligand, especially non-covalent secondary coordination sphere interactions. We provide examples of strategies to fine-tune the redox potential using both natural and unnatural amino acids and native and nonnative cofactors. Several case studies are used to illustrate recent successes in this area. Outlooks for future endeavors are also provided. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.
Collapse
Affiliation(s)
- Parisa Hosseinzadeh
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews St., Urbana, IL, 61801, USA
| | - Yi Lu
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews St., Urbana, IL, 61801, USA.
| |
Collapse
|
36
|
Rohac R, Amara P, Benjdia A, Martin L, Ruffié P, Favier A, Berteau O, Mouesca JM, Fontecilla-Camps JC, Nicolet Y. Carbon–sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE. Nat Chem 2016; 8:491-500. [DOI: 10.1038/nchem.2490] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 02/25/2016] [Indexed: 11/09/2022]
|
37
|
Suess DLM, Kuchenreuther JM, De La Paz L, Swartz JR, Britt RD. Biosynthesis of the [FeFe] Hydrogenase H Cluster: A Central Role for the Radical SAM Enzyme HydG. Inorg Chem 2016; 55:478-87. [PMID: 26703931 PMCID: PMC4780679 DOI: 10.1021/acs.inorgchem.5b02274] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydrogenase enzymes catalyze the rapid and reversible interconversion of H2 with protons and electrons. The active site of the [FeFe] hydrogenase is the H cluster, which consists of a [4Fe-4S]H subcluster linked to an organometallic [2Fe]H subcluster. Understanding the biosynthesis and catalytic mechanism of this structurally unusual active site will aid in the development of synthetic and biological hydrogenase catalysts for applications in solar fuel generation. The [2Fe]H subcluster is synthesized and inserted by three maturase enzymes-HydE, HydF, and HydG-in a complex process that involves inorganic, organometallic, and organic radical chemistry. HydG is a member of the radical S-adenosyl-l-methionine (SAM) family of enzymes and is thought to play a prominent role in [2Fe]H subcluster biosynthesis by converting inorganic Fe(2+), l-cysteine (Cys), and l-tyrosine (Tyr) into an organometallic [(Cys)Fe(CO)2(CN)](-) intermediate that is eventually incorporated into the [2Fe]H subcluster. In this Forum Article, the mechanism of [2Fe]H subcluster biosynthesis is discussed with a focus on how this key [(Cys)Fe(CO)2(CN)](-) species is formed. Particular attention is given to the initial metallocluster composition of HydG, the modes of substrate binding (Fe(2+), Cys, Tyr, and SAM), the mechanism of SAM-mediated Tyr cleavage to CO and CN(-), and the identification of the final organometallic products of the reaction.
Collapse
Affiliation(s)
- Daniel L. M. Suess
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Jon M. Kuchenreuther
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Liliana De La Paz
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - James R. Swartz
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - R. David Britt
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
38
|
Volbeda A, Darnault C, Renoux O, Nicolet Y, Fontecilla-Camps JC. The crystal structure of the global anaerobic transcriptional regulator FNR explains its extremely fine-tuned monomer-dimer equilibrium. SCIENCE ADVANCES 2015; 1:e1501086. [PMID: 26665177 PMCID: PMC4672761 DOI: 10.1126/sciadv.1501086] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/04/2015] [Indexed: 06/05/2023]
Abstract
The structure of the dimeric holo-fumarate and nitrate reduction regulator (FNR) from Aliivibrio fischeri has been solved at 2.65 Å resolution. FNR globally controls the transition between anaerobic and aerobic respiration in facultative anaerobes through the assembly/degradation of its oxygen-sensitive [4Fe-4S] cluster. In the absence of O2, FNR forms a dimer and specifically binds to DNA, whereas in its presence, the cluster is degraded causing FNR monomerization and DNA dissociation. We have used our crystal structure and the information previously gathered from numerous FNR variants to propose that this process is governed by extremely fine-tuned interactions, mediated by two salt bridges near the amino-terminal cluster-binding domain and an "imperfect" coiled-coil dimer interface. [4Fe-4S] to [2Fe-2S] cluster degradation propagates a conformational signal that indirectly causes monomerization by disrupting the first of these interactions and unleashing the "unzipping" of the FNR dimer in the direction of the carboxyl-terminal DNA binding domain.
Collapse
|
39
|
Bruska MK, Stiebritz MT, Reiher M. Binding of Reactive Oxygen Species at Fe-S Cubane Clusters. Chemistry 2015; 21:19081-9. [PMID: 26585994 DOI: 10.1002/chem.201503008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Indexed: 01/05/2023]
Abstract
Reactive oxygen species (ROS) play an important role in the biochemistry of the cell and occur in degenerative processes as well as in signal transduction. Iron-sulfur proteins are particularly oxygen-sensitive and their inorganic cofactors frequently undergo ROS-induced decomposition reactions. As experimental knowledge about these processes is still incomplete we present here a quantum chemical study of the relative energetics for the binding of the most relevant ROS to [Fe4S4] clusters. We find that cubane clusters with one uncoordinated Fe atom (as found, for instance, in aconitase) bind all oxygen derivatives considered, whereas activation of triplet O2 to singlet O2 is required for binding to valence-saturated iron centers in these clusters. The radicals NO and OH feature the most exothermic binding energies to Fe atoms. Direct sulfoxidation of coordinating cysteine residues is only possible by OH or H2O2 as attacking agents. The thermodynamic picture of ROS binding to iron-sulfur clusters established here can serve as a starting point for studying reactivity-modulating effects of the cluster-embedding protein environment on ROS-induced decomposition of iron-sulfur proteins.
Collapse
Affiliation(s)
- Marta K Bruska
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich (Switzerland)
| | - Martin T Stiebritz
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich (Switzerland)
| | - Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich (Switzerland).
| |
Collapse
|
40
|
Abstract
Proton reduction and H2 oxidation are key elementary reactions for solar fuel production. Hydrogenases interconvert H+ and H2 with remarkable efficiency and have therefore received much attention in this context. For [FeFe]-hydrogenases, catalysis occurs at a unique cofactor called the H-cluster. In this article, we discuss ways in which EPR spectroscopy has elucidated aspects of the bioassembly of the H-cluster, with a focus on four case studies: EPR spectroscopic identification of a radical en route to the CO and CN- ligands of the H-cluster, tracing 57Fe from the maturase HydG into the H-cluster, characterization of the auxiliary Fe-S cluster in HydG, and isotopic labeling of the CN- ligands of HydA for electronic structure studies of its Hox state. Advances in cell-free maturation protocols have enabled several of these mechanistic studies, and understanding H-cluster maturation may in turn provide insights leading to improvements in hydrogenase production for biotechnological applications.
Collapse
Affiliation(s)
- Daniel L. M. Suess
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - R. David Britt
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
41
|
Betz JN, Boswell NW, Fugate CJ, Holliday GL, Akiva E, Scott AG, Babbitt PC, Peters JW, Shepard EM, Broderick JB. [FeFe]-hydrogenase maturation: insights into the role HydE plays in dithiomethylamine biosynthesis. Biochemistry 2015; 54:1807-18. [PMID: 25654171 DOI: 10.1021/bi501205e] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
HydE and HydG are radical S-adenosyl-l-methionine enzymes required for the maturation of [FeFe]-hydrogenase (HydA) and produce the nonprotein organic ligands characteristic of its unique catalytic cluster. The catalytic cluster of HydA (the H-cluster) is a typical [4Fe-4S] cubane bridged to a 2Fe-subcluster that contains two carbon monoxides, three cyanides, and a bridging dithiomethylamine as ligands. While recent studies have shed light on the nature of diatomic ligand biosynthesis by HydG, little information exists on the function of HydE. Herein, we present biochemical, spectroscopic, bioinformatic, and molecular modeling data that together map the active site and provide significant insight into the role of HydE in H-cluster biosynthesis. Electron paramagnetic resonance and UV-visible spectroscopic studies demonstrate that reconstituted HydE binds two [4Fe-4S] clusters and copurifies with S-adenosyl-l-methionine. Incorporation of deuterium from D2O into 5'-deoxyadenosine, the cleavage product of S-adenosyl-l-methionine, coupled with molecular docking experiments suggests that the HydE substrate contains a thiol functional group. This information, along with HydE sequence similarity and genome context networks, has allowed us to redefine the presumed mechanism for HydE away from BioB-like sulfur insertion chemistry; these data collectively suggest that the source of the sulfur atoms in the dithiomethylamine bridge of the H-cluster is likely derived from HydE's thiol containing substrate.
Collapse
Affiliation(s)
- Jeremiah N Betz
- Department of Chemistry & Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Swanson KD, Ratzloff MW, Mulder DW, Artz JH, Ghose S, Hoffman A, White S, Zadvornyy OA, Broderick JB, Bothner B, King PW, Peters JW. [FeFe]-Hydrogenase Oxygen Inactivation Is Initiated at the H Cluster 2Fe Subcluster. J Am Chem Soc 2015; 137:1809-16. [DOI: 10.1021/ja510169s] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kevin D. Swanson
- Department
of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Michael W. Ratzloff
- Biosciences
Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - David W. Mulder
- Biosciences
Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Jacob H. Artz
- Department
of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Shourjo Ghose
- Department
of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Andrew Hoffman
- Department
of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Spencer White
- Department
of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Oleg A. Zadvornyy
- Department
of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Joan B. Broderick
- Department
of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Brian Bothner
- Department
of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Paul W. King
- Biosciences
Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - John W. Peters
- Department
of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
43
|
Byer AS, Shepard EM, Peters JW, Broderick JB. Radical S-adenosyl-L-methionine chemistry in the synthesis of hydrogenase and nitrogenase metal cofactors. J Biol Chem 2014; 290:3987-94. [PMID: 25477518 DOI: 10.1074/jbc.r114.578161] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitrogenase, [FeFe]-hydrogenase, and [Fe]-hydrogenase enzymes perform catalysis at metal cofactors with biologically unusual non-protein ligands. The FeMo cofactor of nitrogenase has a MoFe7S9 cluster with a central carbon, whereas the H-cluster of [FeFe]-hydrogenase contains a 2Fe subcluster coordinated by cyanide and CO ligands as well as dithiomethylamine; the [Fe]-hydrogenase cofactor has CO and guanylylpyridinol ligands at a mononuclear iron site. Intriguingly, radical S-adenosyl-L-methionine enzymes are vital for the assembly of all three of these diverse cofactors. This minireview presents and discusses the current state of knowledge of the radical S-adenosylmethionine enzymes required for synthesis of these remarkable metal cofactors.
Collapse
Affiliation(s)
- Amanda S Byer
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Eric M Shepard
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - John W Peters
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Joan B Broderick
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| |
Collapse
|
44
|
Peters JW, Schut GJ, Boyd ES, Mulder DW, Shepard EM, Broderick JB, King PW, Adams MWW. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1350-69. [PMID: 25461840 DOI: 10.1016/j.bbamcr.2014.11.021] [Citation(s) in RCA: 273] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/10/2014] [Accepted: 11/16/2014] [Indexed: 11/29/2022]
Abstract
The [FeFe]- and [NiFe]-hydrogenases catalyze the formal interconversion between hydrogen and protons and electrons, possess characteristic non-protein ligands at their catalytic sites and thus share common mechanistic features. Despite the similarities between these two types of hydrogenases, they clearly have distinct evolutionary origins and likely emerged from different selective pressures. [FeFe]-hydrogenases are widely distributed in fermentative anaerobic microorganisms and likely evolved under selective pressure to couple hydrogen production to the recycling of electron carriers that accumulate during anaerobic metabolism. In contrast, many [NiFe]-hydrogenases catalyze hydrogen oxidation as part of energy metabolism and were likely key enzymes in early life and arguably represent the predecessors of modern respiratory metabolism. Although the reversible combination of protons and electrons to generate hydrogen gas is the simplest of chemical reactions, the [FeFe]- and [NiFe]-hydrogenases have distinct mechanisms and differ in the fundamental chemistry associated with proton transfer and control of electron flow that also help to define catalytic bias. A unifying feature of these enzymes is that hydrogen activation itself has been restricted to one solution involving diatomic ligands (carbon monoxide and cyanide) bound to an Fe ion. On the other hand, and quite remarkably, the biosynthetic mechanisms to produce these ligands are exclusive to each type of enzyme. Furthermore, these mechanisms represent two independent solutions to the formation of complex bioinorganic active sites for catalyzing the simplest of chemical reactions, reversible hydrogen oxidation. As such, the [FeFe]- and [NiFe]-hydrogenases are arguably the most profound case of convergent evolution. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- John W Peters
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - David W Mulder
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Eric M Shepard
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Joan B Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Paul W King
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
45
|
Crack JC, Green J, Thomson AJ, Brun NEL. Iron-sulfur clusters as biological sensors: the chemistry of reactions with molecular oxygen and nitric oxide. Acc Chem Res 2014; 47:3196-205. [PMID: 25262769 DOI: 10.1021/ar5002507] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Iron-sulfur cluster proteins exhibit a range of physicochemical properties that underpin their functional diversity in biology, which includes roles in electron transfer, catalysis, and gene regulation. Transcriptional regulators that utilize iron-sulfur clusters are a growing group that exploit the redox and coordination properties of the clusters to act as sensors of environmental conditions including O2, oxidative and nitrosative stress, and metabolic nutritional status. To understand the mechanism by which a cluster detects such analytes and then generates modulation of DNA-binding affinity, we have undertaken a combined strategy of in vivo and in vitro studies of a range of regulators. In vitro studies of iron-sulfur cluster proteins are particularly challenging because of the inherent reactivity and fragility of the cluster, often necessitating strict anaerobic conditions for all manipulations. Nevertheless, and as discussed in this Account, significant progress has been made over the past decade in studies of O2-sensing by the fumarate and nitrate reduction (FNR) regulator and, more recently, nitric oxide (NO)-sensing by WhiB-like (Wbl) and FNR proteins. Escherichia coli FNR binds a [4Fe-4S] cluster under anaerobic conditions leading to a DNA-binding dimeric form. Exposure to O2 converts the cluster to a [2Fe-2S] form, leading to protein monomerization and hence loss of DNA binding ability. Spectroscopic and kinetic studies have shown that the conversion proceeds via at least two steps and involves a [3Fe-4S](1+) intermediate. The second step involves the release of two bridging sulfide ions from the cluster that, unusually, are not released into solution but rather undergo oxidation to sulfane (S(0)) subsequently forming cysteine persulfides that then coordinate the [2Fe-2S] cluster. Studies of other [4Fe-4S] cluster proteins that undergo oxidative cluster conversion indicate that persulfide formation and coordination may be more common than previously recognized. This remarkable feature suggested that the original [4Fe-4S] cluster can be restored using persulfide as the source of sulfide ion. We have demonstrated that only iron and a source of electrons are required to promote efficient conversion back from the [2Fe-2S] to the [4Fe-4S] form. We propose this as a novel in vivo repair mechanism that does not require the intervention of an iron-sulfur cluster biogenesis pathway. A number of iron-sulfur regulators have evolved to function as sensors of NO. Although it has long been known that the iron-sulfur clusters of many phylogenetically unrelated proteins are vulnerable to attack by NO, our recent studies of Wbl proteins and FNR have provided new insights into the mechanism of cluster nitrosylation, which overturn the commonly accepted view that the product is solely a mononuclear iron dinitrosyl complex (known as a DNIC). The major reaction is a rapid, multiphase process involving stepwise addition of up to eight NO molecules per [4Fe-4S] cluster. The major iron nitrosyl product is EPR silent and has optical characteristics similar to Roussin's red ester, [Fe2(NO)4(RS)2] (RRE), although a species similar to Roussin's black salt, [Fe4(NO)7(S)3](-) (RBS) cannot be ruled out. A major future challenge will be to clarify the nature of these species.
Collapse
Affiliation(s)
- Jason C. Crack
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Jeffrey Green
- Department
of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| | - Andrew J. Thomson
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Nick E. Le Brun
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| |
Collapse
|
46
|
Ferecatu I, Gonçalves S, Golinelli-Cohen MP, Clémancey M, Martelli A, Riquier S, Guittet E, Latour JM, Puccio H, Drapier JC, Lescop E, Bouton C. The diabetes drug target MitoNEET governs a novel trafficking pathway to rebuild an Fe-S cluster into cytosolic aconitase/iron regulatory protein 1. J Biol Chem 2014; 289:28070-86. [PMID: 25012650 DOI: 10.1074/jbc.m114.548438] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, mitochondrial iron-sulfur cluster (ISC), export and cytosolic iron-sulfur cluster assembly (CIA) machineries carry out biogenesis of iron-sulfur (Fe-S) clusters, which are critical for multiple essential cellular pathways. However, little is known about their export out of mitochondria. Here we show that Fe-S assembly of mitoNEET, the first identified Fe-S protein anchored in the mitochondrial outer membrane, strictly depends on ISC machineries and not on the CIA or CIAPIN1. We identify a dedicated ISC/export pathway in which augmenter of liver regeneration, a mitochondrial Mia40-dependent protein, is specific to mitoNEET maturation. When inserted, the Fe-S cluster confers mitoNEET folding and stability in vitro and in vivo. The holo-form of mitoNEET is resistant to NO and H2O2 and is capable of repairing oxidatively damaged Fe-S of iron regulatory protein 1 (IRP1), a master regulator of cellular iron that has recently been involved in the mitochondrial iron supply. Therefore, our findings point to IRP1 as the missing link to explain the function of mitoNEET in the control of mitochondrial iron homeostasis.
Collapse
Affiliation(s)
- Ioana Ferecatu
- From the Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Sergio Gonçalves
- From the Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Marie-Pierre Golinelli-Cohen
- From the Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France, the Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Martin Clémancey
- the Direction des Sciences du Vivant, Institute of Life Sciences Research and Technologies, Chemistry and Biology of Metals Laboratory, UMR 5249 CEA-Université Grenoble I-CNRS/Equipe de Physicochimie des Métaux en Biologie, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France
| | - Alain Martelli
- the Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), F-67400 Illkirch, France, the INSERM, U596, Illkirch, France, the CNRS, UMR7104, Illkirch, France, the Université de Strasbourg, F-67000 Strasbourg, France, the Collège de France, Chaire de Génétique Humaine, Illkirch, France, and
| | - Sylvie Riquier
- From the Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Eric Guittet
- From the Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Jean-Marc Latour
- the Direction des Sciences du Vivant, Institute of Life Sciences Research and Technologies, Chemistry and Biology of Metals Laboratory, UMR 5249 CEA-Université Grenoble I-CNRS/Equipe de Physicochimie des Métaux en Biologie, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France
| | - Hélène Puccio
- the Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), F-67400 Illkirch, France, the INSERM, U596, Illkirch, France, the CNRS, UMR7104, Illkirch, France, the Université de Strasbourg, F-67000 Strasbourg, France, the Collège de France, Chaire de Génétique Humaine, Illkirch, France, and
| | - Jean-Claude Drapier
- From the Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Ewen Lescop
- From the Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Cécile Bouton
- From the Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France,
| |
Collapse
|
47
|
Shepard EM, Mus F, Betz JN, Byer AS, Duffus BR, Peters JW, Broderick JB. [FeFe]-hydrogenase maturation. Biochemistry 2014; 53:4090-104. [PMID: 24878200 DOI: 10.1021/bi500210x] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hydrogenases are metalloenzymes that catalyze the reversible reduction of protons at unusual metal centers. This Current Topic discusses recent advances in elucidating the steps involved in the biosynthesis of the complex metal cluster at the [FeFe]-hydrogenase (HydA) active site, known as the H-cluster. The H-cluster is composed of a 2Fe subcluster that is anchored within the active site by a bridging cysteine thiolate to a [4Fe-4S] cubane. The 2Fe subcluster contains carbon monoxide, cyanide, and bridging dithiolate ligands. H-cluster biosynthesis is now understood to occur stepwise; standard iron-sulfur cluster assembly machinery builds the [4Fe-4S] cubane of the H-cluster, while three specific maturase enzymes known as HydE, HydF, and HydG assemble the 2Fe subcluster. HydE and HydG are both radical S-adenosylmethionine enzymes that interact with an iron-sulfur cluster binding GTPase scaffold, HydF, during the construction of the 2Fe subcluster moiety. In an unprecedented biochemical reaction, HydG cleaves tyrosine and decomposes the resulting dehydroglycine into carbon monoxide and cyanide ligands. The role of HydE in the biosynthetic pathway remains undefined, although it is hypothesized to be critical for the synthesis of the bridging dithiolate. HydF is the site where the complete 2Fe subcluster is formed and ultimately delivered to the immature hydrogenase protein in the final step of [FeFe]-hydrogenase maturation. This work addresses the roles of and interactions among HydE, HydF, HydG, and HydA in the formation of the mature [FeFe]-hydrogenase.
Collapse
Affiliation(s)
- Eric M Shepard
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | | | | | | | | | | | | |
Collapse
|
48
|
Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev 2014; 114:4366-469. [PMID: 24758379 PMCID: PMC4002152 DOI: 10.1021/cr400479b] [Citation(s) in RCA: 574] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Jing Liu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Saumen Chakraborty
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Parisa Hosseinzadeh
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yang Yu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shiliang Tian
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Igor Petrik
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ambika Bhagi
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
49
|
|
50
|
Couturier J, Touraine B, Briat JF, Gaymard F, Rouhier N. The iron-sulfur cluster assembly machineries in plants: current knowledge and open questions. FRONTIERS IN PLANT SCIENCE 2013; 4:259. [PMID: 23898337 PMCID: PMC3721309 DOI: 10.3389/fpls.2013.00259] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/25/2013] [Indexed: 05/18/2023]
Abstract
Many metabolic pathways and cellular processes occurring in most sub-cellular compartments depend on the functioning of iron-sulfur (Fe-S) proteins, whose cofactors are assembled through dedicated protein machineries. Recent advances have been made in the knowledge of the functions of individual components through a combination of genetic, biochemical and structural approaches, primarily in prokaryotes and non-plant eukaryotes. Whereas most of the components of these machineries are conserved between kingdoms, their complexity is likely increased in plants owing to the presence of additional assembly proteins and to the existence of expanded families for several assembly proteins. This review focuses on the new actors discovered in the past few years, such as glutaredoxin, BOLA and NEET proteins as well as MIP18, MMS19, TAH18, DRE2 for the cytosolic machinery, which are integrated into a model for the plant Fe-S cluster biogenesis systems. It also discusses a few issues currently subjected to an intense debate such as the role of the mitochondrial frataxin and of glutaredoxins, the functional separation between scaffold, carrier and iron-delivery proteins and the crosstalk existing between different organelles.
Collapse
Affiliation(s)
- Jérémy Couturier
- Interactions Arbres/Micro-organismes, Faculté des Sciences, UMR1136 Université de Lorraine-INRAVandoeuvre, France
| | - Brigitte Touraine
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique-INRA-Université Montpellier 2Montpellier, France
| | - Jean-François Briat
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique-INRA-Université Montpellier 2Montpellier, France
| | - Frédéric Gaymard
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique-INRA-Université Montpellier 2Montpellier, France
| | - Nicolas Rouhier
- Interactions Arbres/Micro-organismes, Faculté des Sciences, UMR1136 Université de Lorraine-INRAVandoeuvre, France
- *Correspondence: Nicolas Rouhier, Université de Lorraine, UMR1136 Université de Lorraine-INRA, Interactions Arbres/Micro-organismes, Faculté des Sciences, Bd des aiguillettes, BP 239,54506 Vandoeuvre, France e-mail:
| |
Collapse
|