1
|
Shikanai T. Molecular Genetic Dissection of the Regulatory Network of Proton Motive Force in Chloroplasts. PLANT & CELL PHYSIOLOGY 2024; 65:537-550. [PMID: 38150384 DOI: 10.1093/pcp/pcad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
The proton motive force (pmf) generated across the thylakoid membrane rotates the Fo-ring of ATP synthase in chloroplasts. The pmf comprises two components: membrane potential (∆Ψ) and proton concentration gradient (∆pH). Acidification of the thylakoid lumen resulting from ∆pH downregulates electron transport in the cytochrome b6f complex. This process, known as photosynthetic control, is crucial for protecting photosystem I (PSI) from photodamage in response to fluctuating light. To optimize the balance between efficient photosynthesis and photoprotection, it is necessary to regulate pmf. Cyclic electron transport around PSI and pseudo-cyclic electron transport involving flavodiiron proteins contribute to the modulation of pmf magnitude. By manipulating the ratio between the two components of pmf, it is possible to modify the extent of photosynthetic control without affecting the pmf size. This adjustment can be achieved by regulating the movement of ions (such as K+ and Cl-) across the thylakoid membrane. Since ATP synthase is the primary consumer of pmf in chloroplasts, its activity must be precisely regulated to accommodate other mechanisms involved in pmf optimization. Although fragments of information about each regulatory process have been accumulated, a comprehensive understanding of their interactions is lacking. Here, I summarize current knowledge of the network for pmf regulation, mainly based on genetic studies.
Collapse
Affiliation(s)
- Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
2
|
Yamamoto H, Cheuk A, Shearman J, Nixon PJ, Meier T, Shikanai T. Impact of engineering the ATP synthase rotor ring on photosynthesis in tobacco chloroplasts. PLANT PHYSIOLOGY 2023; 192:1221-1233. [PMID: 36703219 PMCID: PMC10231360 DOI: 10.1093/plphys/kiad043] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 06/01/2023]
Abstract
The chloroplast ATP synthase produces the ATP needed for photosynthesis and plant growth. The trans-membrane flow of protons through the ATP synthase rotates an oligomeric assembly of c subunits, the c-ring. The ion-to-ATP ratio in rotary F1F0-ATP synthases is defined by the number of c-subunits in the rotor c-ring. Engineering the c-ring stoichiometry is, therefore, a possible route to manipulate ATP synthesis by the ATP synthase and hence photosynthetic efficiency in plants. Here, we describe the construction of a tobacco (Nicotiana tabacum) chloroplast atpH (chloroplastic ATP synthase subunit c gene) mutant in which the c-ring stoichiometry was increased from 14 to 15 c-subunits. Although the abundance of the ATP synthase was decreased to 25% of wild-type (WT) levels, the mutant lines grew as well as WT plants and photosynthetic electron transport remained unaffected. To synthesize the necessary ATP for growth, we found that the contribution of the membrane potential to the proton motive force was enhanced to ensure a higher proton flux via the c15-ring without unwanted low pH-induced feedback inhibition of electron transport. Our work opens avenues to manipulate plant ion-to-ATP ratios with potentially beneficial consequences for photosynthesis.
Collapse
Affiliation(s)
- Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Anthony Cheuk
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - Julia Shearman
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - Thomas Meier
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Anand A, Patel A, Chen K, Olson CA, Phaneuf PV, Lamoureux C, Hefner Y, Szubin R, Feist AM, Palsson BO. Laboratory evolution of synthetic electron transport system variants reveals a larger metabolic respiratory system and its plasticity. Nat Commun 2022; 13:3682. [PMID: 35760776 PMCID: PMC9237125 DOI: 10.1038/s41467-022-30877-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/24/2022] [Indexed: 11/09/2022] Open
Abstract
The bacterial respiratory electron transport system (ETS) is branched to allow condition-specific modulation of energy metabolism. There is a detailed understanding of the structural and biochemical features of respiratory enzymes; however, a holistic examination of the system and its plasticity is lacking. Here we generate four strains of Escherichia coli harboring unbranched ETS that pump 1, 2, 3, or 4 proton(s) per electron and characterized them using a combination of synergistic methods (adaptive laboratory evolution, multi-omic analyses, and computation of proteome allocation). We report that: (a) all four ETS variants evolve to a similar optimized growth rate, and (b) the laboratory evolutions generate specific rewiring of major energy-generating pathways, coupled to the ETS, to optimize ATP production capability. We thus define an Aero-Type System (ATS), which is a generalization of the aerobic bioenergetics and is a metabolic systems biology description of respiration and its inherent plasticity. The bacterial respiratory electron transport system (ETS) is branched to allow condition-specific modulation of energy metabolism. Here the authors examine the systems level properties of aerobic electron transport system using adaptive laboratory evolution and multi-omics analyses.
Collapse
Affiliation(s)
- Amitesh Anand
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA. .,Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India.
| | - Arjun Patel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Ke Chen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Connor A Olson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Patrick V Phaneuf
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Cameron Lamoureux
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Ying Hefner
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Kongens, Lyngby, Denmark
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA. .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Kongens, Lyngby, Denmark.
| |
Collapse
|
4
|
Nirody JA, Budin I, Rangamani P. ATP synthase: Evolution, energetics, and membrane interactions. J Gen Physiol 2021; 152:152111. [PMID: 32966553 PMCID: PMC7594442 DOI: 10.1085/jgp.201912475] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
The synthesis of ATP, life’s “universal energy currency,” is the most prevalent chemical reaction in biological systems and is responsible for fueling nearly all cellular processes, from nerve impulse propagation to DNA synthesis. ATP synthases, the family of enzymes that carry out this endless task, are nearly as ubiquitous as the energy-laden molecule they are responsible for making. The F-type ATP synthase (F-ATPase) is found in every domain of life and has facilitated the survival of organisms in a wide range of habitats, ranging from the deep-sea thermal vents to the human intestine. Accordingly, there has been a large amount of work dedicated toward understanding the structural and functional details of ATP synthases in a wide range of species. Less attention, however, has been paid toward integrating these advances in ATP synthase molecular biology within the context of its evolutionary history. In this review, we present an overview of several structural and functional features of the F-type ATPases that vary across taxa and are purported to be adaptive or otherwise evolutionarily significant: ion channel selectivity, rotor ring size and stoichiometry, ATPase dimeric structure and localization in the mitochondrial inner membrane, and interactions with membrane lipids. We emphasize the importance of studying these features within the context of the enzyme’s particular lipid environment. Just as the interactions between an organism and its physical environment shape its evolutionary trajectory, ATPases are impacted by the membranes within which they reside. We argue that a comprehensive understanding of the structure, function, and evolution of membrane proteins—including ATP synthase—requires such an integrative approach.
Collapse
Affiliation(s)
- Jasmine A Nirody
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY.,All Souls College, University of Oxford, Oxford, UK
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA
| |
Collapse
|
5
|
Zubareva VM, Lapashina AS, Shugaeva TE, Litvin AV, Feniouk BA. Rotary Ion-Translocating ATPases/ATP Synthases: Diversity, Similarities, and Differences. BIOCHEMISTRY (MOSCOW) 2021; 85:1613-1630. [PMID: 33705299 DOI: 10.1134/s0006297920120135] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ion-translocating ATPases and ATP synthases (F-, V-, A-type ATPases, and several P-type ATPases and ABC-transporters) catalyze ATP hydrolysis or ATP synthesis coupled with the ion transport across the membrane. F-, V-, and A-ATPases are protein nanomachines that combine transmembrane transport of protons or sodium ions with ATP synthesis/hydrolysis by means of a rotary mechanism. These enzymes are composed of two multisubunit subcomplexes that rotate relative to each other during catalysis. Rotary ATPases phosphorylate/dephosphorylate nucleotides directly, without the generation of phosphorylated protein intermediates. F-type ATPases are found in chloroplasts, mitochondria, most eubacteria, and in few archaea. V-type ATPases are eukaryotic enzymes present in a variety of cellular membranes, including the plasma membrane, vacuoles, late endosomes, and trans-Golgi cisternae. A-type ATPases are found in archaea and some eubacteria. F- and A-ATPases have two main functions: ATP synthesis powered by the proton motive force (pmf) or, in some prokaryotes, sodium-motive force (smf) and generation of the pmf or smf at the expense of ATP hydrolysis. In prokaryotes, both functions may be vitally important, depending on the environment and the presence of other enzymes capable of pmf or smf generation. In eukaryotes, the primary and the most crucial function of F-ATPases is ATP synthesis. Eukaryotic V-ATPases function exclusively as ATP-dependent proton pumps that generate pmf necessary for the transmembrane transport of ions and metabolites and are vitally important for pH regulation. This review describes the diversity of rotary ion-translocating ATPases from different organisms and compares the structural, functional, and regulatory features of these enzymes.
Collapse
Affiliation(s)
- V M Zubareva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A S Lapashina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - T E Shugaeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A V Litvin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - B A Feniouk
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
6
|
Nesci S, Rubattu S. The ATP synthase glycine zipper of the c subunits: From the structural to the functional role in mitochondrial biology of cardiovascular diseases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119075. [PMID: 34111435 DOI: 10.1016/j.bbamcr.2021.119075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/28/2022]
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy.
| | - Speranza Rubattu
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, "Sapienza" University of Rome, Rome 00189, Italy; IRCCS Neuromed, Pozzilli, IS 86077, Italy.
| |
Collapse
|
7
|
Rotor subunits adaptations in ATP synthases from photosynthetic organisms. Biochem Soc Trans 2021; 49:541-550. [PMID: 33890627 PMCID: PMC8106487 DOI: 10.1042/bst20190936] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 11/17/2022]
Abstract
Driven by transmembrane electrochemical ion gradients, F-type ATP synthases are the primary source of the universal energy currency, adenosine triphosphate (ATP), throughout all domains of life. The ATP synthase found in the thylakoid membranes of photosynthetic organisms has some unique features not present in other bacterial or mitochondrial systems. Among these is a larger-than-average transmembrane rotor ring and a redox-regulated switch capable of inhibiting ATP hydrolysis activity in the dark by uniquely adapted rotor subunit modifications. Here, we review recent insights into the structure and mechanism of ATP synthases specifically involved in photosynthesis and explore the cellular physiological consequences of these adaptations at short and long time scales.
Collapse
|
8
|
Kell DB. A protet-based, protonic charge transfer model of energy coupling in oxidative and photosynthetic phosphorylation. Adv Microb Physiol 2021; 78:1-177. [PMID: 34147184 DOI: 10.1016/bs.ampbs.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Textbooks of biochemistry will explain that the otherwise endergonic reactions of ATP synthesis can be driven by the exergonic reactions of respiratory electron transport, and that these two half-reactions are catalyzed by protein complexes embedded in the same, closed membrane. These views are correct. The textbooks also state that, according to the chemiosmotic coupling hypothesis, a (or the) kinetically and thermodynamically competent intermediate linking the two half-reactions is the electrochemical difference of protons that is in equilibrium with that between the two bulk phases that the coupling membrane serves to separate. This gradient consists of a membrane potential term Δψ and a pH gradient term ΔpH, and is known colloquially as the protonmotive force or pmf. Artificial imposition of a pmf can drive phosphorylation, but only if the pmf exceeds some 150-170mV; to achieve in vivo rates the imposed pmf must reach 200mV. The key question then is 'does the pmf generated by electron transport exceed 200mV, or even 170mV?' The possibly surprising answer, from a great many kinds of experiment and sources of evidence, including direct measurements with microelectrodes, indicates it that it does not. Observable pH changes driven by electron transport are real, and they control various processes; however, compensating ion movements restrict the Δψ component to low values. A protet-based model, that I outline here, can account for all the necessary observations, including all of those inconsistent with chemiosmotic coupling, and provides for a variety of testable hypotheses by which it might be refined.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative, Biology, University of Liverpool, Liverpool, United Kingdom; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
9
|
Krah A, Marzinek JK, Bond PJ. Characterizing the Hydration Properties of Proton Binding Sites in the ATP Synthase c-Rings of Bacillus Species. J Phys Chem B 2020; 124:7176-7183. [PMID: 32687713 DOI: 10.1021/acs.jpcb.0c03896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The membrane-embedded domain of ATP synthases contains the c-ring, which translocates ions across the membrane, and its resultant rotation is coupled to ATP synthesis in the extramembranous domain. During rotation, the c-ring becomes accessible on both sides of the lipid bilayer to solvent via channels connected to the other membrane-embedded component, the a subunit, and thereby allows the ion to be released into the solvent environment. In recent times, many experimental structures of c-rings from different species have been solved. In some of these, a water molecule with a proposed "structural role" has been identified within the c-ring ion binding site, but in general, the requirement for high resolution to resolve specific water densities complicates their interpretation. In the present study, we use molecular dynamics (MD) simulations and rigorous free energy calculations to characterize the dynamics and energetics of a water molecule within the ion binding site of the c-ring from Bacillus pseudofirmus OF4, in its wild type (WT) and P51A mutant forms, along with the c-ring from thermophilic Bacillus PS3. Our data suggest that a water molecule stably binds to the P51A mutant, as well as helping to identify a bound water molecule in Bacillus PS3 whose presence was previously overlooked due to the limited resolution of the structural data. Sequence analysis further identifies a novel conserved sequence motif that is likely required to harbor a water molecule for stable ion coordination in the binding site of such proteins.
Collapse
Affiliation(s)
- Alexander Krah
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Jan K Marzinek
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Peter J Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| |
Collapse
|
10
|
Lee JW. Isothermal Environmental Heat Energy Utilization by Transmembrane Electrostatically Localized Protons at the Liquid-Membrane Interface. ACS OMEGA 2020; 5:17385-17395. [PMID: 32715223 PMCID: PMC7377078 DOI: 10.1021/acsomega.0c01768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
This study employing the latest theory on transmembrane electrostatic proton localization has now, for the first time, consistently elucidated a decades-longstanding bioenergetic conundrum in alkalophilic bacteria and more importantly discovered an entirely new feature: isothermal environmental heat utilization by electrostatically localized protons at the liquid-membrane interface. It was surprisingly revealed that the protonic motive force (equivalent to Gibbs free energy) from the isothermal environmental heat energy utilization through the electrostatically localized protons is not constrained by the overall energetics of the redox-driven proton pump system because of the following: (a) the transmembrane electrostatically localized protons are not free to move away from the membrane surface as a protonic capacitor feature; (b) the proton pumps embedded in the cell membrane extend beyond the localized proton layer apparently as an asymmetric property of the biological membrane; and (c) the protonic inlet mouth of the ATP synthase that accepts protons is located within this layer as another natural property of the asymmetric biological membrane. This work has now, for the first time, shown a novel thermotrophic feature where biological systems can isothermally utilize environmental heat energy through transmembrane electrostatically localized protons to help drive ATP synthesis.
Collapse
Affiliation(s)
- James Weifu Lee
- Department of Chemistry and
Biochemistry, Old Dominion University, 4402 Elkhorn Ave, Norfolk, Virginia 23529, United States
| |
Collapse
|
11
|
Emmanuel IA, Olotu FA, Agoni C, Soliman MES. In Silico Repurposing of J147 for Neonatal Encephalopathy Treatment: Exploring Molecular Mechanisms of Mutant Mitochondrial ATP Synthase. Curr Pharm Biotechnol 2020; 21:1551-1566. [PMID: 32598251 DOI: 10.2174/1389201021666200628152246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/25/2020] [Accepted: 05/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neonatal Encephalopathy (NE) is a mitochondrial ATP synthase (mATPase) disease, which results in the death of infants. The case presented here is reportedly caused by complex V deficiency as a result of mutation of Arginine to Cysteine at residue 329 in the mATPase. A recent breakthrough was the discovery of J147, which targets mATPase in the treatment of Alzheimer's disease. Based on the concepts of computational target-based drug design, this study investigated the possibility of employing J147 as a viable candidate in the treatment of NE. OBJECTIVE/METHODS The structural dynamic implications of this drug on the mutated enzyme are yet to be elucidated. Hence, integrative molecular dynamics simulations and thermodynamic calculations were employed to investigate the activity of J147 on the mutated enzyme in comparison to its already established inhibitory activity on the wild-type enzyme. RESULTS A correlated structural trend occurred between the wild-type and mutant systems whereby all the systems exhibited an overall conformational transition. Equal observations in favorable free binding energies further substantiated uniformity in the mobility, and residual fluctuation of the wild-type and mutant systems. The similarity in the binding landscape suggests that J147 could as well modulate mutant mATPase activity in addition to causing structural modifications in the wild-type enzyme. CONCLUSION Findings suggest that J147 can stabilize the mutant protein and restore it to a similar structural state as the wild-type which depicts functionality. These details could be employed in drug design for potential drug resistance cases due to mATPase mutations that may present in the future.
Collapse
Affiliation(s)
- Iwuchukwu A Emmanuel
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Clement Agoni
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| |
Collapse
|
12
|
Wagoner JA, Dill KA. Opposing Pressures of Speed and Efficiency Guide the Evolution of Molecular Machines. Mol Biol Evol 2020; 36:2813-2822. [PMID: 31432071 PMCID: PMC6878954 DOI: 10.1093/molbev/msz190] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Many biomolecular machines need to be both fast and efficient. How has evolution optimized these machines along the tradeoff between speed and efficiency? We explore this question using optimizable dynamical models along coordinates that are plausible evolutionary degrees of freedom. Data on 11 motors and ion pumps are consistent with the hypothesis that evolution seeks an optimal balance of speed and efficiency, where any further small increase in one of these quantities would come at great expense to the other. For FoF1-ATPases in different species, we also find apparent optimization of the number of subunits in the c-ring, which determines the number of protons pumped per ATP synthesized. Interestingly, these ATPases appear to more optimized for efficiency than for speed, which can be rationalized through their key role as energy transducers in biology. The present modeling shows how the dynamical performance properties of biomolecular motors and pumps may have evolved to suit their corresponding biological actions.
Collapse
Affiliation(s)
- Jason A Wagoner
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY
| | - Ken A Dill
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY.,Department of Chemistry, Stony Brook University, Stony Brook, NY.,Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY
| |
Collapse
|
13
|
Davis GA, Kramer DM. Optimization of ATP Synthase c-Rings for Oxygenic Photosynthesis. FRONTIERS IN PLANT SCIENCE 2020; 10:1778. [PMID: 32082344 PMCID: PMC7003800 DOI: 10.3389/fpls.2019.01778] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/20/2019] [Indexed: 05/10/2023]
Abstract
The conversion of sunlight into useable cellular energy occurs via the proton-coupled electron transfer reactions of photosynthesis. Light is absorbed by photosynthetic pigments and transferred to photochemical reaction centers to initiate electron and proton transfer reactions to store energy in a redox gradient and an electrochemical proton gradient (proton motive force, pmf), composed of a concentration gradient (ΔpH) and an electric field (Δψ), which drives the synthesis of ATP through the thylakoid FoF1-ATP synthase. Although ATP synthase structure and function are conserved across biological kingdoms, the number of membrane-embedded ion-binding c subunits varies between organisms, ranging from 8 to 17, theoretically altering the H+/ATP ratio for different ATP synthase complexes, with profound implications for the bioenergetic processes of cellular metabolism. Of the known c-ring stoichiometries, photosynthetic c-rings are among the largest identified stoichiometries, and it has been proposed that decreasing the c-stoichiometry could increase the energy conversion efficiency of photosynthesis. Indeed, there is strong evidence that the high H+/ATP of the chloroplast ATP synthase results in a low ATP/nicotinamide adenine dinucleotide phosphate (NADPH) ratio produced by photosynthetic linear electron flow, requiring secondary processes such as cyclic electron flow to support downstream metabolism. We hypothesize that the larger c subunit stoichiometry observed in photosynthetic ATP synthases was selected for because it allows the thylakoid to maintain pmf in a range where ATP synthesis is supported, but avoids excess Δψ and ΔpH, both of which can lead to production of reactive oxygen species and subsequent photodamage. Numerical kinetic simulations of the energetics of chloroplast photosynthetic reactions with altered c-ring size predicts the energy storage of pmf and its effects on the photochemical reaction centers strongly support this hypothesis, suggesting that, despite the low efficiency and suboptimal ATP/NADPH ratio, a high H+/ATP is favored to avoid photodamage. This has important implications for the evolution and regulation of photosynthesis as well as for synthetic biology efforts to alter photosynthetic efficiency by engineering the ATP synthase.
Collapse
Affiliation(s)
- Geoffry A. Davis
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - David M. Kramer
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
14
|
Abstract
F1Fo ATP synthases produce most of the ATP in the cell. F-type ATP synthases have been investigated for more than 50 years, but a full understanding of their molecular mechanisms has become possible only with the recent structures of complete, functionally competent complexes determined by electron cryo-microscopy (cryo-EM). High-resolution cryo-EM structures offer a wealth of unexpected new insights. The catalytic F1 head rotates with the central γ-subunit for the first part of each ATP-generating power stroke. Joint rotation is enabled by subunit δ/OSCP acting as a flexible hinge between F1 and the peripheral stalk. Subunit a conducts protons to and from the c-ring rotor through two conserved aqueous channels. The channels are separated by ∼6 Å in the hydrophobic core of Fo, resulting in a strong local field that generates torque to drive rotary catalysis in F1. The structure of the chloroplast F1Fo complex explains how ATPase activity is turned off at night by a redox switch. Structures of mitochondrial ATP synthase dimers indicate how they shape the inner membrane cristae. The new cryo-EM structures complete our picture of the ATP synthases and reveal the unique mechanism by which they transform an electrochemical membrane potential into biologically useful chemical energy.
Collapse
Affiliation(s)
- Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt, Germany;
| |
Collapse
|
15
|
Guo H, Suzuki T, Rubinstein JL. Structure of a bacterial ATP synthase. eLife 2019; 8:43128. [PMID: 30724163 PMCID: PMC6377231 DOI: 10.7554/elife.43128] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/02/2019] [Indexed: 01/20/2023] Open
Abstract
ATP synthases produce ATP from ADP and inorganic phosphate with energy from a transmembrane proton motive force. Bacterial ATP synthases have been studied extensively because they are the simplest form of the enzyme and because of the relative ease of genetic manipulation of these complexes. We expressed the Bacillus PS3 ATP synthase in Eschericia coli, purified it, and imaged it by cryo-EM, allowing us to build atomic models of the complex in three rotational states. The position of subunit ε shows how it is able to inhibit ATP hydrolysis while allowing ATP synthesis. The architecture of the membrane region shows how the simple bacterial ATP synthase is able to perform the same core functions as the equivalent, but more complicated, mitochondrial complex. The structures reveal the path of transmembrane proton translocation and provide a model for understanding decades of biochemical analysis interrogating the roles of specific residues in the enzyme.
Collapse
Affiliation(s)
- Hui Guo
- The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Medical Biophysics, The University of Toronto, Toronto, Canada
| | - Toshiharu Suzuki
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.,Department of Molecular Bioscience, Kyoto-Sangyo University, Kyoto, Japan
| | - John L Rubinstein
- The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Medical Biophysics, The University of Toronto, Toronto, Canada.,Department of Biochemistry, The University of Toronto, Toronto, Canada
| |
Collapse
|
16
|
Sielaff H, Yanagisawa S, Frasch WD, Junge W, Börsch M. Structural Asymmetry and Kinetic Limping of Single Rotary F-ATP Synthases. Molecules 2019; 24:E504. [PMID: 30704145 PMCID: PMC6384691 DOI: 10.3390/molecules24030504] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
F-ATP synthases use proton flow through the FO domain to synthesize ATP in the F₁ domain. In Escherichia coli, the enzyme consists of rotor subunits γεc10 and stator subunits (αβ)₃δab₂. Subunits c10 or (αβ)₃ alone are rotationally symmetric. However, symmetry is broken by the b₂ homodimer, which together with subunit δa, forms a single eccentric stalk connecting the membrane embedded FO domain with the soluble F₁ domain, and the central rotating and curved stalk composed of subunit γε. Although each of the three catalytic binding sites in (αβ)₃ catalyzes the same set of partial reactions in the time average, they might not be fully equivalent at any moment, because the structural symmetry is broken by contact with b₂δ in F₁ and with b₂a in FO. We monitored the enzyme's rotary progression during ATP hydrolysis by three single-molecule techniques: fluorescence video-microscopy with attached actin filaments, Förster resonance energy transfer between pairs of fluorescence probes, and a polarization assay using gold nanorods. We found that one dwell in the three-stepped rotary progression lasting longer than the other two by a factor of up to 1.6. This effect of the structural asymmetry is small due to the internal elastic coupling.
Collapse
Affiliation(s)
- Hendrik Sielaff
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, 07743 Jena, Germany.
| | - Seiga Yanagisawa
- School of Life Sciences, Arizona State University, Tempe, Arizona, AZ 85287, USA.
| | - Wayne D Frasch
- School of Life Sciences, Arizona State University, Tempe, Arizona, AZ 85287, USA.
| | - Wolfgang Junge
- Department of Biology & Chemistry, University of Osnabrück, 49076 Osnabrück, Germany.
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, 07743 Jena, Germany.
| |
Collapse
|
17
|
Chadwick GL, Hemp J, Fischer WW, Orphan VJ. Convergent evolution of unusual complex I homologs with increased proton pumping capacity: energetic and ecological implications. THE ISME JOURNAL 2018; 12:2668-2680. [PMID: 29991762 PMCID: PMC6194058 DOI: 10.1038/s41396-018-0210-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/17/2018] [Accepted: 03/20/2018] [Indexed: 01/05/2023]
Abstract
Respiratory complex I is part of a large family of homologous enzymes that carry out the transfer of electrons between soluble cytoplasmic electron carriers and membrane-bound electron carriers. These complexes are vital bioenergetic enzymes that serve as the entry points into electron transport chains for a wide variety of microbial metabolisms, and electron transfer is coupled to proton translocation. The core complex of this enzyme is made up of 11 protein subunits, with three major proton pumping subunits. Here, we document a large number of modified complex I gene cassettes found in genome sequences from diverse cultured bacteria, shotgun metagenomics, and environmentally derived archaeal fosmids all of which encode a fourth proton pumping subunit. The incorporation of this extra subunit into a functional protein complex is supported by large amino acid insertions in the amphipathic helix that runs the length of the protein complex. Phylogenetic analyses reveal that these modified complexes appear to have arisen independently multiple times in a remarkable case of convergent molecular evolution. From an energetic perspective, we hypothesize that this modification on the canonical complex I architecture allows for the translocation of a fifth proton per reaction cycle-the physiological utility of this modified complex is discussed.
Collapse
Affiliation(s)
- Grayson L Chadwick
- Department of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91106, USA.
| | - James Hemp
- Department of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91106, USA
| | - Woodward W Fischer
- Department of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91106, USA
| | - Victoria J Orphan
- Department of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91106, USA.
| |
Collapse
|
18
|
|
19
|
Kumar A, Alam A, Tripathi D, Rani M, Khatoon H, Pandey S, Ehtesham NZ, Hasnain SE. Protein adaptations in extremophiles: An insight into extremophilic connection of mycobacterial proteome. Semin Cell Dev Biol 2018; 84:147-157. [PMID: 29331642 DOI: 10.1016/j.semcdb.2018.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/01/2017] [Accepted: 01/09/2018] [Indexed: 02/02/2023]
Abstract
The biological paradox about how extremophiles persist at extreme ecological conditions throws a fascinating picture of the enormous potential of a single cell to adapt to homeostatic conditions in order to propagate. Unicellular organisms face challenges from both environmental factors and the ecological niche provided by the host tissue. Although the existence of extremophiles and their physiological properties were known for a long time, availability of whole genome sequence has catapulted the study on mechanisms of adaptation and the underlying principles that have enabled these unique organisms to withstand evolutionary and environmental pressures. Comparative genomics has shown that extremophiles possess the unique set of genes and proteins that empower them with biochemical machinery necessary to thrive in extreme environments. The presence of these proteins safeguards the cell against a wide array of extreme conditions such as temperature, pressure, radiations, chemicals, drugs etc. An insight into these adaptive mechanisms in extremophiles may help us to devise strategies to alter the genes and proteins that may have therapeutic potential and commercial value. Here we present an overview of the various adaptations in extremophiles. We also try to explain how mycobacterium channelizes its proteome to survive in stress conditions posed by host immune system.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India
| | - Anwar Alam
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India
| | - Deeksha Tripathi
- Department of Microbiology, Central University of Rajasthan, Bandar Sindri, Ajmer, Rajasthan, India
| | - Mamta Rani
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, New Delhi, India
| | - Hafeeza Khatoon
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India
| | - Saurabh Pandey
- National Institute of Pathology, Safdarjang Hospital Campus, New Delhi, India
| | - Nasreen Z Ehtesham
- National Institute of Pathology, Safdarjang Hospital Campus, New Delhi, India
| | - Seyed E Hasnain
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India; JH-Institute of Molecular Medicine, Hamdard Nagar, New Delhi, India; Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India.
| |
Collapse
|
20
|
Abstract
Mitochondria are the power stations of the eukaryotic cell, using the energy released by the oxidation of glucose and other sugars to produce ATP. Electrons are transferred from NADH, produced in the citric acid cycle in the mitochondrial matrix, to oxygen by a series of large protein complexes in the inner mitochondrial membrane, which create a transmembrane electrochemical gradient by pumping protons across the membrane. The flow of protons back into the matrix via a proton channel in the ATP synthase leads to conformational changes in the nucleotide binding pockets and the formation of ATP. The three proton pumping complexes of the electron transfer chain are NADH-ubiquinone oxidoreductase or complex I, ubiquinone-cytochrome c oxidoreductase or complex III, and cytochrome c oxidase or complex IV. Succinate dehydrogenase or complex II does not pump protons, but contributes reduced ubiquinone. The structures of complex II, III and IV were determined by x-ray crystallography several decades ago, but complex I and ATP synthase have only recently started to reveal their secrets by advances in x-ray crystallography and cryo-electron microscopy. The complexes I, III and IV occur to a certain extent as supercomplexes in the membrane, the so-called respirasomes. Several hypotheses exist about their function. Recent cryo-electron microscopy structures show the architecture of the respirasome with near-atomic detail. ATP synthase occurs as dimers in the inner mitochondrial membrane, which by their curvature are responsible for the folding of the membrane into cristae and thus for the huge increase in available surface that makes mitochondria the efficient energy plants of the eukaryotic cell.
Collapse
Affiliation(s)
- Joana S Sousa
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Edoardo D'Imprima
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
21
|
Schulz S, Wilkes M, Mills DJ, Kühlbrandt W, Meier T. Molecular architecture of the N-type ATPase rotor ring from Burkholderia pseudomallei. EMBO Rep 2017; 18:526-535. [PMID: 28283532 PMCID: PMC5376962 DOI: 10.15252/embr.201643374] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/02/2017] [Accepted: 02/09/2017] [Indexed: 11/09/2022] Open
Abstract
The genome of the highly infectious bacterium Burkholderia pseudomallei harbors an atp operon that encodes an N‐type rotary ATPase, in addition to an operon for a regular F‐type rotary ATPase. The molecular architecture of N‐type ATPases is unknown and their biochemical properties and cellular functions are largely unexplored. We studied the B. pseudomallei N1No‐type ATPase and investigated the structure and ion specificity of its membrane‐embedded c‐ring rotor by single‐particle electron cryo‐microscopy. Of several amphiphilic compounds tested for solubilizing the complex, the choice of the low‐density, low‐CMC detergent LDAO was optimal in terms of map quality and resolution. The cryoEM map of the c‐ring at 6.1 Å resolution reveals a heptadecameric oligomer with a molecular mass of ~141 kDa. Biochemical measurements indicate that the c17 ring is H+ specific, demonstrating that the ATPase is proton‐coupled. The c17 ring stoichiometry results in a very high ion‐to‐ATP ratio of 5.7. We propose that this N‐ATPase is a highly efficient proton pump that helps these melioidosis‐causing bacteria to survive in the hostile, acidic environment of phagosomes.
Collapse
Affiliation(s)
- Sarah Schulz
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Martin Wilkes
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Deryck J Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Thomas Meier
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| |
Collapse
|
22
|
Ito M, Takahashi Y. Nonconventional cation-coupled flagellar motors derived from the alkaliphilic Bacillus and Paenibacillus species. Extremophiles 2016; 21:3-14. [PMID: 27771767 DOI: 10.1007/s00792-016-0886-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/10/2016] [Indexed: 12/21/2022]
Abstract
Prior to 2008, all previously studied conventional bacterial flagellar motors appeared to utilize either H+ or Na+ as coupling ions. Membrane-embedded stator complexes support conversion of energy using transmembrane electrochemical ion gradients. The main H+-coupled stators, known as MotAB, differ from Na+-coupled stators, PomAB of marine bacteria, and MotPS of alkaliphilic Bacillus. However, in 2008, a MotAB-type flagellar motor of alkaliphilic Bacillus clausii KSM-K16 was revealed as an exception with the first dual-function motor. This bacterium was identified as the first bacterium with a single stator-rotor that can utilize both H+ and Na+ for ion-coupling at different pH ranges. Subsequently, another exception, a MotPS-type flagellar motor of alkaliphilic Bacillus alcalophilus AV1934, was reported to utilize Na+ plus K+ and Rb+ as coupling ions for flagellar rotation. In addition, the alkaline-tolerant bacterium Paenibacillus sp. TCA20, which can utilize divalent cations such as Ca2+, Mg2+, and Sr2+, was recently isolated from a hot spring in Japan, which contains a high Ca2+ concentration. These findings show that bacterial flagellar motors isolated from unique environments utilize unexpected coupling ions. This suggests that bacteria that grow in different extreme environments adapt to local conditions and evolve their motility machinery.
Collapse
Affiliation(s)
- Masahiro Ito
- Faculty of Life Sciences, Toyo University, Oura-gun, Gunma, 374-0193, Japan. .,Bio-nano Electronics Research Center, Toyo University, Kawagoe, Saitama, 350-8585, Japan.
| | - Yuka Takahashi
- Bio-nano Electronics Research Center, Toyo University, Kawagoe, Saitama, 350-8585, Japan
| |
Collapse
|
23
|
Cardiolipin binds selectively but transiently to conserved lysine residues in the rotor of metazoan ATP synthases. Proc Natl Acad Sci U S A 2016; 113:8687-92. [PMID: 27382158 PMCID: PMC4978264 DOI: 10.1073/pnas.1608396113] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The anionic lipid cardiolipin is an essential component of active ATP synthases. In metazoans, their rotors contain a ring of eight c-subunits consisting of inner and outer circles of N- and C-terminal α-helices, respectively. The beginning of the C-terminal α-helix contains a strictly conserved and fully trimethylated lysine residue in the lipid head-group region of the membrane. Larger rings of known structure, from c9-c15 in eubacteria and chloroplasts, conserve either a lysine or an arginine residue in the equivalent position. In computer simulations of hydrated membranes containing trimethylated or unmethylated bovine c8-rings and bacterial c10- or c11-rings, the head-groups of cardiolipin molecules became associated selectively with these modified and unmodified lysine residues and with adjacent polar amino acids and with a second conserved lysine on the opposite side of the membrane, whereas phosphatidyl lipids were attracted little to these sites. However, the residence times of cardiolipin molecules with the ring were brief and sufficient for the rotor to turn only a fraction of a degree in the active enzyme. With the demethylated c8-ring and with c10- and c11-rings, the density of bound cardiolipin molecules at this site increased, but residence times were not changed greatly. These highly specific but brief interactions with the rotating c-ring are consistent with functional roles for cardiolipin in stabilizing and lubricating the rotor, and, by interacting with the enzyme at the inlet and exit of the transmembrane proton channel, in participation in proton translocation through the membrane domain of the enzyme.
Collapse
|
24
|
Gerle C. On the structural possibility of pore-forming mitochondrial FoF1 ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:1191-1196. [PMID: 26968896 DOI: 10.1016/j.bbabio.2016.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/23/2016] [Accepted: 03/01/2016] [Indexed: 12/31/2022]
Abstract
The mitochondrial permeability transition is an inner mitochondrial membrane event involving the opening of the permeability transition pore concomitant with a sudden efflux of matrix solutes and breakdown of membrane potential. The mitochondrial F(o)F(1) ATP synthase has been proposed as the molecular identity of the permeability transition pore. The likeliness of potential pore-forming sites in the mitochondrial F(o)F(1) ATP synthase is discussed and a new model, the death finger model, is described. In this model, movement of a p-side density that connects the lipid-plug of the c-ring with the distal membrane bending Fo domain allows reversible opening of the c-ring and structural cross-talk with OSCP and the catalytic (αβ)(3) hexamer. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Christoph Gerle
- Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, Kamigori, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan.
| |
Collapse
|
25
|
Regulation of Aerobic Energy Metabolism in Podospora anserina by Two Paralogous Genes Encoding Structurally Different c-Subunits of ATP Synthase. PLoS Genet 2016; 12:e1006161. [PMID: 27442014 PMCID: PMC4956034 DOI: 10.1371/journal.pgen.1006161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/10/2016] [Indexed: 01/24/2023] Open
Abstract
Most of the ATP in living cells is produced by an F-type ATP synthase. This enzyme uses the energy of a transmembrane electrochemical proton gradient to synthesize ATP from ADP and inorganic phosphate. Proton movements across the membrane domain (FO) of the ATP synthase drive the rotation of a ring of 8–15 c-subunits, which induces conformational changes in the catalytic part (F1) of the enzyme that ultimately promote ATP synthesis. Two paralogous nuclear genes, called Atp9-5 and Atp9-7, encode structurally different c-subunits in the filamentous fungus Podospora anserina. We have in this study identified differences in the expression pattern for the two genes that correlate with the mitotic activity of cells in vegetative mycelia: Atp9-7 is transcriptionally active in non-proliferating (stationary) cells while Atp9-5 is expressed in the cells at the extremity (apex) of filaments that divide and are responsible for mycelium growth. When active, the Atp9-5 gene sustains a much higher rate of c-subunit synthesis than Atp9-7. We further show that the ATP9-7 and ATP9-5 proteins have antagonist effects on the longevity of P. anserina. Finally, we provide evidence that the ATP9-5 protein sustains a higher rate of mitochondrial ATP synthesis and yield in ATP molecules per electron transferred to oxygen than the c-subunit encoded by Atp9-7. These findings reveal that the c-subunit genes play a key role in the modulation of ATP synthase production and activity along the life cycle of P. anserina. Such a degree of sophistication for regulating aerobic energy metabolism has not been described before. In mitochondria, the ATP synthase (also referred to as complex V) catalyzes the late steps of oxidative phosphorylation (OXPHOS), which is a process that provides aerobic eukaryotes with most of their energy requirements by generating adenosine triphosphate (ATP) molecules. While the structure and mechanism of ATP synthase are mostly well established, much remains to be learned about how cells and tissues modulate the production and activity of this enzyme. Herein we report the existence in the filamentous fungus Podospora anserina of a two-pronged energy regulatory mechanism that involves two nuclear genes (Atp9-5 and Atp9-7) that encode structurally different c-subunits of ATP synthase. This system enables a proper production of ATP synthase and optimizes the rate of ATP synthesis in mitochondria along the rather complex life cycle of this fungus.
Collapse
|
26
|
Pandini A, Kleinjung J, Taylor WR, Junge W, Khan S. The Phylogenetic Signature Underlying ATP Synthase c-Ring Compliance. Biophys J 2016; 109:975-87. [PMID: 26331255 PMCID: PMC4564677 DOI: 10.1016/j.bpj.2015.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/20/2015] [Accepted: 07/09/2015] [Indexed: 12/28/2022] Open
Abstract
The proton-driven ATP synthase (FOF1) is comprised of two rotary, stepping motors (FO and F1) coupled by an elastic power transmission. The elastic compliance resides in the rotor module that includes the membrane-embedded FO c-ring. Proton transport by FO is firmly coupled to the rotation of the c-ring relative to other FO subunits (ab2). It drives ATP synthesis. We used a computational method to investigate the contribution of the c-ring to the total elastic compliance. We performed principal component analysis of conformational ensembles built using distance constraints from the bovine mitochondrial c-ring x-ray structure. Angular rotary twist, the dominant ring motion, was estimated to show that the c-ring accounted in part for the measured compliance. Ring rotation was entrained to rotation of the external helix within each hairpin-shaped c-subunit in the ring. Ensembles of monomer and dimers extracted from complete c-rings showed that the coupling between collective ring and the individual subunit motions was independent of the size of the c-ring, which varies between organisms. Molecular determinants were identified by covariance analysis of residue coevolution and structural-alphabet-based local dynamics correlations. The residue coevolution gave a readout of subunit architecture. The dynamic couplings revealed that the hinge for both ring and subunit helix rotations was constructed from the proton-binding site and the adjacent glycine motif (IB-GGGG) in the midmembrane plane. IB-GGGG motifs were linked by long-range couplings across the ring, while intrasubunit couplings connected the motif to the conserved cytoplasmic loop and adjacent segments. The correlation with principal collective motions shows that the couplings underlie both ring rotary and bending motions. Noncontact couplings between IB-GGGG motifs matched the coevolution signal as well as contact couplings. The residue coevolution reflects the physiological importance of the dynamics that may link proton transfer to ring compliance.
Collapse
Affiliation(s)
- Alessandro Pandini
- Department of Computer Science and Synthetic Biology Theme, Brunel University London, Uxbridge, United Kingdom
| | - Jens Kleinjung
- Mathematical Biology, The Francis Crick Institute (formerly the National Institute for Medical Research), London, United Kingdom
| | - Willie R Taylor
- Mathematical Biology, The Francis Crick Institute (formerly the National Institute for Medical Research), London, United Kingdom
| | - Wolfgang Junge
- Department of Biophysics, University of Osnabrück, Osnabrück, Germany
| | - Shahid Khan
- Molecular Biology Consortium, Lawrence Berkeley National Laboratory, Berkeley, California.
| |
Collapse
|
27
|
Nadeau VG, Deber CM. Structural impact of proline mutations in the loop region of an ancestral membrane protein. Biopolymers 2016; 106:37-42. [DOI: 10.1002/bip.22765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 01/24/2023]
Affiliation(s)
- Vincent G. Nadeau
- Program in Molecular Structure & Function; Research Institute, Hospital for Sick Children; Toronto, M5G 1X8 Ontario Canada
- Department of Biochemistry; University of Toronto; Toronto, M5S 1A8 Ontario Canada
| | - Charles M. Deber
- Program in Molecular Structure & Function; Research Institute, Hospital for Sick Children; Toronto, M5G 1X8 Ontario Canada
- Department of Biochemistry; University of Toronto; Toronto, M5S 1A8 Ontario Canada
| |
Collapse
|
28
|
Kühlbrandt W, Davies KM. Rotary ATPases: A New Twist to an Ancient Machine. Trends Biochem Sci 2015; 41:106-116. [PMID: 26671611 DOI: 10.1016/j.tibs.2015.10.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 01/15/2023]
Abstract
Rotary ATPases are energy-converting nanomachines found in the membranes of all living organisms. The mechanism by which proton translocation through the membrane drives ATP synthesis, or how ATP hydrolysis generates a transmembrane proton gradient, has been unresolved for decades because the structure of a critical subunit in the membrane was unknown. Electron cryomicroscopy (cryoEM) studies of two rotary ATPases have now revealed a hairpin of long, horizontal, membrane-intrinsic α-helices in the a-subunit next to the c-ring rotor. The horizontal helices create a pair of aqueous half-channels in the membrane that provide access to the proton-binding sites in the rotor ring. These recent findings help to explain the highly conserved mechanism of ion translocation by rotary ATPases.
Collapse
Affiliation(s)
- Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany.
| | - Karen M Davies
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| |
Collapse
|
29
|
The c-Ring of the F1FO-ATP Synthase: Facts and Perspectives. J Membr Biol 2015; 249:11-21. [PMID: 26621635 DOI: 10.1007/s00232-015-9860-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/19/2015] [Indexed: 10/22/2022]
Abstract
The F1FO-ATP synthase is the only enzyme in nature endowed with bi-functional catalytic mechanism of synthesis and hydrolysis of ATP. The enzyme functions, not only confined to energy transduction, are tied to three intrinsic features of the annular arrangement of c subunits which constitutes the so-called c-ring, the core of the membrane-embedded FO domain: (i) the c-ring constitution is linked to the number of ions (H(+) or Na(+)) channeled across the membrane during the dissipation of the transmembrane electrochemical gradient, which in turn determines the species-specific bioenergetic cost of ATP, the "molecular currency unit" of energy transfer in all living beings; (ii) the c-ring is increasingly involved in the mitochondrial permeability transition, an event linked to cell death and to most mitochondrial dysfunctions; (iii) the c subunit species-specific amino acid sequence and susceptibility to post-translational modifications can address antibacterial drug design according to the model of enzyme inhibitors which target the c subunits. Therefore, the simple c-ring structure not only allows the F1FO-ATP synthase to perform the two opposite tasks of molecular machine of cell life and death, but it also amplifies the enzyme's potential role as a drug target.
Collapse
|
30
|
Structure of ATP synthase from Paracoccus denitrificans determined by X-ray crystallography at 4.0 Å resolution. Proc Natl Acad Sci U S A 2015; 112:13231-6. [PMID: 26460036 PMCID: PMC4629361 DOI: 10.1073/pnas.1517542112] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The structure of the intact ATP synthase from the α-proteobacterium Paracoccus denitrificans, inhibited by its natural regulatory ζ-protein, has been solved by X-ray crystallography at 4.0 Å resolution. The ζ-protein is bound via its N-terminal α-helix in a catalytic interface in the F1 domain. The bacterial F1 domain is attached to the membrane domain by peripheral and central stalks. The δ-subunit component of the peripheral stalk binds to the N-terminal regions of two α-subunits. The stalk extends via two parallel long α-helices, one in each of the related b and b' subunits, down a noncatalytic interface of the F1 domain and interacts in an unspecified way with the a-subunit in the membrane domain. The a-subunit lies close to a ring of 12 c-subunits attached to the central stalk in the F1 domain, and, together, the central stalk and c-ring form the enzyme's rotor. Rotation is driven by the transmembrane proton-motive force, by a mechanism where protons pass through the interface between the a-subunit and c-ring via two half-channels in the a-subunit. These half-channels are probably located in a bundle of four α-helices in the a-subunit that are tilted at ∼30° to the plane of the membrane. Conserved polar residues in the two α-helices closest to the c-ring probably line the proton inlet path to an essential carboxyl group in the c-subunit in the proton uptake site and a proton exit path from the proton release site. The structure has provided deep insights into the workings of this extraordinary molecular machine.
Collapse
|
31
|
Morales-Ríos E, Montgomery MG, Leslie AGW, García-Trejo JJ, Walker JE. Structure of a catalytic dimer of the α- and β-subunits of the F-ATPase from Paracoccus denitrificans at 2.3 Å resolution. Acta Crystallogr F Struct Biol Commun 2015; 71:1309-17. [PMID: 26457523 PMCID: PMC4601596 DOI: 10.1107/s2053230x15016076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/27/2015] [Indexed: 02/02/2023] Open
Abstract
The structures of F-ATPases have predominantly been determined from mitochondrial enzymes, and those of the enzymes in eubacteria have been less studied. Paracoccus denitrificans is a member of the α-proteobacteria and is related to the extinct protomitochondrion that became engulfed by the ancestor of eukaryotic cells. The P. denitrificans F-ATPase is an example of a eubacterial F-ATPase that can carry out ATP synthesis only, whereas many others can catalyse both the synthesis and the hydrolysis of ATP. Inhibition of the ATP hydrolytic activity of the P. denitrificans F-ATPase involves the ζ inhibitor protein, an α-helical protein that binds to the catalytic F1 domain of the enzyme. This domain is a complex of three α-subunits and three β-subunits, and one copy of each of the γ-, δ- and ℇ-subunits. Attempts to crystallize the F1-ζ inhibitor complex yielded crystals of a subcomplex of the catalytic domain containing the α- and β-subunits only. Its structure was determined to 2.3 Å resolution and consists of a heterodimer of one α-subunit and one β-subunit. It has no bound nucleotides, and it corresponds to the `open' or `empty' catalytic interface found in other F-ATPases. The main significance of this structure is that it aids in the determination of the structure of the intact membrane-bound F-ATPase, which has been crystallized.
Collapse
Affiliation(s)
- Edgar Morales-Ríos
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, England
| | - Martin G. Montgomery
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, England
| | - Andrew G. W. Leslie
- The Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, England
| | - José J. García-Trejo
- Departmento de Biología, Facultad Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - John E. Walker
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, England
| |
Collapse
|
32
|
Morales-Rios E, Watt IN, Zhang Q, Ding S, Fearnley IM, Montgomery MG, Wakelam MJO, Walker JE. Purification, characterization and crystallization of the F-ATPase from Paracoccus denitrificans. Open Biol 2015; 5:150119. [PMID: 26423580 PMCID: PMC4593670 DOI: 10.1098/rsob.150119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The structures of F-ATPases have been determined predominantly with mitochondrial enzymes, but hitherto no F-ATPase has been crystallized intact. A high-resolution model of the bovine enzyme built up from separate sub-structures determined by X-ray crystallography contains about 85% of the entire complex, but it lacks a crucial region that provides a transmembrane proton pathway involved in the generation of the rotary mechanism that drives the synthesis of ATP. Here the isolation, characterization and crystallization of an integral F-ATPase complex from the α-proteobacterium Paracoccus denitrificans are described. Unlike many eubacterial F-ATPases, which can both synthesize and hydrolyse ATP, the P. denitrificans enzyme can only carry out the synthetic reaction. The mechanism of inhibition of its ATP hydrolytic activity involves a ζ inhibitor protein, which binds to the catalytic F₁-domain of the enzyme. The complex that has been crystallized, and the crystals themselves, contain the nine core proteins of the complete F-ATPase complex plus the ζ inhibitor protein. The formation of crystals depends upon the presence of bound bacterial cardiolipin and phospholipid molecules; when they were removed, the complex failed to crystallize. The experiments open the way to an atomic structure of an F-ATPase complex.
Collapse
Affiliation(s)
- Edgar Morales-Rios
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Ian N. Watt
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | | | - Shujing Ding
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Ian M. Fearnley
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Martin G. Montgomery
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | | | - John E. Walker
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK,e-mail:
| |
Collapse
|
33
|
Preiss L, Hicks DB, Suzuki S, Meier T, Krulwich TA. Alkaliphilic Bacteria with Impact on Industrial Applications, Concepts of Early Life Forms, and Bioenergetics of ATP Synthesis. Front Bioeng Biotechnol 2015; 3:75. [PMID: 26090360 PMCID: PMC4453477 DOI: 10.3389/fbioe.2015.00075] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/10/2015] [Indexed: 12/28/2022] Open
Abstract
Alkaliphilic bacteria typically grow well at pH 9, with the most extremophilic strains growing up to pH values as high as pH 12–13. Interest in extreme alkaliphiles arises because they are sources of useful, stable enzymes, and the cells themselves can be used for biotechnological and other applications at high pH. In addition, alkaline hydrothermal vents represent an early evolutionary niche for alkaliphiles and novel extreme alkaliphiles have also recently been found in alkaline serpentinizing sites. A third focus of interest in alkaliphiles is the challenge raised by the use of proton-coupled ATP synthases for oxidative phosphorylation by non-fermentative alkaliphiles. This creates a problem with respect to tenets of the chemiosmotic model that remains the core model for the bioenergetics of oxidative phosphorylation. Each of these facets of alkaliphilic bacteria will be discussed with a focus on extremely alkaliphilic Bacillus strains. These alkaliphilic bacteria have provided a cogent experimental system to probe adaptations that enable their growth and oxidative phosphorylation at high pH. Adaptations are clearly needed to enable secreted or partially exposed enzymes or protein complexes to function at the high external pH. Also, alkaliphiles must maintain a cytoplasmic pH that is significantly lower than the pH of the outside medium. This protects cytoplasmic components from an external pH that is alkaline enough to impair their stability or function. However, the pH gradient across the cytoplasmic membrane, with its orientation of more acidic inside than outside, is in the reverse of the productive orientation for bioenergetic work. The reversed gradient reduces the trans-membrane proton-motive force available to energize ATP synthesis. Multiple strategies are hypothesized to be involved in enabling alkaliphiles to circumvent the challenge of a low bulk proton-motive force energizing proton-coupled ATP synthesis at high pH.
Collapse
Affiliation(s)
- Laura Preiss
- Department of Structural Biology, Max Planck Institute of Biophysics , Frankfurt , Germany
| | - David B Hicks
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Shino Suzuki
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology , Nankoku , Japan ; Microbial and Environmental Genomics, J. Craig Venter Institutes , La Jolla, CA , USA
| | - Thomas Meier
- Department of Structural Biology, Max Planck Institute of Biophysics , Frankfurt , Germany
| | - Terry Ann Krulwich
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| |
Collapse
|
34
|
Abstract
Oxygenic photosynthesis is the principal converter of sunlight into chemical energy. Cyanobacteria and plants provide aerobic life with oxygen, food, fuel, fibers, and platform chemicals. Four multisubunit membrane proteins are involved: photosystem I (PSI), photosystem II (PSII), cytochrome b6f (cyt b6f), and ATP synthase (FOF1). ATP synthase is likewise a key enzyme of cell respiration. Over three billion years, the basic machinery of oxygenic photosynthesis and respiration has been perfected to minimize wasteful reactions. The proton-driven ATP synthase is embedded in a proton tight-coupling membrane. It is composed of two rotary motors/generators, FO and F1, which do not slip against each other. The proton-driven FO and the ATP-synthesizing F1 are coupled via elastic torque transmission. Elastic transmission decouples the two motors in kinetic detail but keeps them perfectly coupled in thermodynamic equilibrium and (time-averaged) under steady turnover. Elastic transmission enables operation with different gear ratios in different organisms.
Collapse
Affiliation(s)
- Wolfgang Junge
- Department of Biophysics, Universität Osnabrück, DE-49069 Osnabrück, Germany;
| | | |
Collapse
|
35
|
Bosshart PD, Engel A, Fotiadis D. High-resolution atomic force microscopy imaging of rhodopsin in rod outer segment disk membranes. Methods Mol Biol 2015; 1271:189-203. [PMID: 25697525 DOI: 10.1007/978-1-4939-2330-4_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Atomic force microscopy (AFM) is a powerful imaging technique that allows recording topographical information of membrane proteins under near-physiological conditions. Remarkable results have been obtained on membrane proteins that were reconstituted into lipid bilayers. High-resolution AFM imaging of native disk membranes from vertebrate rod outer segments has unveiled the higher-order oligomeric state of the G protein-coupled receptor rhodopsin, which is highly expressed in disk membranes. Based on AFM imaging, it has been demonstrated that rhodopsin assembles in rows of dimers and paracrystals and that the rhodopsin dimer is the fundamental building block of higher-order structures.
Collapse
Affiliation(s)
- Patrick D Bosshart
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, Bern, CH-3012, Switzerland
| | | | | |
Collapse
|
36
|
Matthies D, Zhou W, Klyszejko AL, Anselmi C, Yildiz Ö, Brandt K, Müller V, Faraldo-Gómez JD, Meier T. High-resolution structure and mechanism of an F/V-hybrid rotor ring in a Na⁺-coupled ATP synthase. Nat Commun 2014; 5:5286. [PMID: 25381992 PMCID: PMC4228694 DOI: 10.1038/ncomms6286] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 09/16/2014] [Indexed: 01/03/2023] Open
Abstract
All rotary ATPases catalyse the interconversion of ATP and ADP-Pi through a mechanism that is coupled to the transmembrane flow of H(+) or Na(+). Physiologically, however, F/A-type enzymes specialize in ATP synthesis driven by downhill ion diffusion, while eukaryotic V-type ATPases function as ion pumps. To begin to rationalize the molecular basis for this functional differentiation, we solved the crystal structure of the Na(+)-driven membrane rotor of the Acetobacterium woodii ATP synthase, at 2.1 Å resolution. Unlike known structures, this rotor ring is a 9:1 heteromer of F- and V-type c-subunits and therefore features a hybrid configuration of ion-binding sites along its circumference. Molecular and kinetic simulations are used to dissect the mechanisms of Na(+) recognition and rotation of this c-ring, and to explain the functional implications of the V-type c-subunit. These structural and mechanistic insights indicate an evolutionary path between synthases and pumps involving adaptations in the rotor ring.
Collapse
Affiliation(s)
- Doreen Matthies
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Wenchang Zhou
- Theoretical Molecular Biophysics Section, National Heart, Lung and Blood Institute, National Institutes of Health, Building 5635FL, Suite T-800, Bethesda, Maryland 20892, USA
| | - Adriana L Klyszejko
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Claudio Anselmi
- Theoretical Molecular Biophysics Section, National Heart, Lung and Blood Institute, National Institutes of Health, Building 5635FL, Suite T-800, Bethesda, Maryland 20892, USA
| | - Özkan Yildiz
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Karsten Brandt
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - José D Faraldo-Gómez
- 1] Theoretical Molecular Biophysics Section, National Heart, Lung and Blood Institute, National Institutes of Health, Building 5635FL, Suite T-800, Bethesda, Maryland 20892, USA [2] Cluster of Excellence Macromolecular Complexes, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Thomas Meier
- 1] Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany [2] Cluster of Excellence Macromolecular Complexes, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| |
Collapse
|
37
|
Physiological and genomic features of highly alkaliphilic hydrogen-utilizing Betaproteobacteria from a continental serpentinizing site. Nat Commun 2014; 5:3900. [PMID: 24845058 PMCID: PMC4050266 DOI: 10.1038/ncomms4900] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/16/2014] [Indexed: 12/15/2022] Open
Abstract
Serpentinization, or the aqueous alteration of ultramafic rocks, results in challenging environments for life in continental sites due to the combination of extremely high pH, low salinity and lack of obvious electron acceptors and carbon sources. Nevertheless, certain Betaproteobacteria have been frequently observed in such environments. Here we describe physiological and genomic features of three related Betaproteobacterial strains isolated from highly alkaline (pH 11.6) serpentinizing springs at The Cedars, California. All three strains are obligate alkaliphiles with an optimum for growth at pH 11 and are capable of autotrophic growth with hydrogen, calcium carbonate and oxygen. The three strains exhibit differences, however, regarding the utilization of organic carbon and electron acceptors. Their global distribution and physiological, genomic and transcriptomic characteristics indicate that the strains are adapted to the alkaline and calcium-rich environments represented by the terrestrial serpentinizing ecosystems. We propose placing these strains in a new genus ‘Serpentinomonas’. Microbes can dwell in highly alkaline environments in the absence of obvious food sources. Here, the authors describe physiological and genomic features of a group of bacteria that live on hydrogen, calcium carbonate and oxygen at a very high pH.
Collapse
|
38
|
Preiss L, Langer JD, Hicks DB, Liu J, Yildiz O, Krulwich TA, Meier T. The c-ring ion binding site of the ATP synthase from Bacillus pseudofirmus OF4 is adapted to alkaliphilic lifestyle. Mol Microbiol 2014; 92:973-84. [PMID: 24707994 DOI: 10.1111/mmi.12605] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2014] [Indexed: 11/30/2022]
Abstract
In the c-ring rotor of ATP synthases ions are shuttled across the membrane during ATP synthesis by a unique rotary mechanism. We investigated characteristics of the c-ring from the alkaliphile Bacillus pseudofirmus OF4 with respect to evolutionary adaptations to operate with protons at high environmental pH. The X-ray structures of the wild-type c13 ring at pH 9.0 and a 'neutralophile-like' mutant (P51A) at pH 4.4, at 2.4 and 2.8 Å resolution, respectively, reveal a dependency of the conformation and protonation state of the proton-binding glutamate (E(54) ) on environmental hydrophobicity. Faster labelling kinetics with the inhibitor dicyclohexylcarbodiimide (DCCD) demonstrate a greater flexibility of E(54) in the mutant due to reduced water occupancy within the H(+) binding site. A second 'neutralophile-like' mutant (V21N) shows reduced growth at high pH, which is explained by restricted conformational freedom of the mutant's E(54) carboxylate. The study directly connects subtle structural adaptations of the c-ring ion binding site to in vivo effects of alkaliphile cell physiology.
Collapse
Affiliation(s)
- Laura Preiss
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Silverstein TP. An exploration of how the thermodynamic efficiency of bioenergetic membrane systems varies with c-subunit stoichiometry of F₁F₀ ATP synthases. J Bioenerg Biomembr 2014; 46:229-41. [PMID: 24706236 DOI: 10.1007/s10863-014-9547-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/24/2014] [Indexed: 10/25/2022]
Abstract
Recently the F0 portion of the bovine mitochondrial F1F0-ATP synthase was shown to contain eight 'c' subunits (n = 8). This surprised many in the field, as previously, the only other mitochondrial F0 (for yeast) was shown to have ten 'c' subunits. The metabolic implications of 'c' subunit copy number explored in this paper lead to several surprising conclusions: (1) Aerobically respiring E. coli (n = 10) and animal mitochondria (n = 8) both have very high F1F0 thermodynamic efficiencies of ≈90% under typical conditions, whereas efficiency is only ≈65% for chloroplasts (n = 14). Reasons for this difference, including the importance of transmembrane potential (∆Ψ) as a rotational catalyst, as opposed to an energy source, are discussed. (2) Maximum theoretical P/O ratios in animal mitochondria (n = 8) are calculated to be 2.73 ATP/NADH and 1.64 ATP/FADH2, yielding 34.5 ATP/glucose (assuming NADH import via the malate/aspartate shuttle). The experimentally measured values of 2.44 (±0.15), 1.47 (±0.13), and 31.3 (±1.5), respectively, are only about 10% lower, suggesting very little energy depletion via transmembrane proton leakage. (3) Finally, the thermodynamic efficiency of oxidative phosphorylation is not lower than that of substrate level phosphorylation, as previously believed. The overall thermodynamic efficiencies of oxidative phosphorylation, glycolysis, and the citric acid cycle are ≈80% in all three processes.
Collapse
|
40
|
Balakrishna AM, Seelert H, Marx SH, Dencher NA, Grüber G. Crystallographic structure of the turbine C-ring from spinach chloroplast F-ATP synthase. Biosci Rep 2014; 34:e00102. [PMID: 27919036 PMCID: PMC3971453 DOI: 10.1042/bsr20130114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 11/27/2022] Open
Abstract
In eukaryotic and prokaryotic cells, F-ATP synthases provide energy through the synthesis of ATP. The chloroplast F-ATP synthase (CF1FO-ATP synthase) of plants is integrated into the thylakoid membrane via its FO-domain subunits a, b, b' and c Subunit c with a stoichiometry of 14 and subunit a form the gate for H+-pumping, enabling the coupling of electrochemical energy with ATP synthesis in the F1 sector.Here we report the crystallization and structure determination of the c14-ring of subunit c of the CF1FO-ATP synthase from spinach chloroplasts. The crystals belonged to space group C2, with unit-cell parameters a=144.420, b=99.295, c=123.51 Å, and β=104.34° and diffracted to 4.5 Å resolution. Each c-ring contains 14 monomers in the asymmetric unit. The length of the c-ring is 60.32 Å, with an outer ring diameter 52.30 Å and an inner ring width of 40 Å.
Collapse
Affiliation(s)
- Asha Manikkoth Balakrishna
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Holger Seelert
- Physikalische Biochemie, Fachbereich Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str.4, D-64287 Darmstadt, Germany
| | - Sven-Hendric Marx
- Physikalische Biochemie, Fachbereich Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str.4, D-64287 Darmstadt, Germany
| | - Norbert A Dencher
- Physikalische Biochemie, Fachbereich Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str.4, D-64287 Darmstadt, Germany
| | - Gerhard Grüber
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| |
Collapse
|
41
|
Stewart AG, Laming EM, Sobti M, Stock D. Rotary ATPases--dynamic molecular machines. Curr Opin Struct Biol 2013; 25:40-8. [PMID: 24878343 DOI: 10.1016/j.sbi.2013.11.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 11/20/2013] [Accepted: 11/26/2013] [Indexed: 01/14/2023]
Abstract
Recent work has provided the detailed overall architecture and subunit composition of three subtypes of rotary ATPases. Composite models of F-type, V-type and A-type ATPases have been constructed by fitting high-resolution X-ray structures of individual components into electron microscopy derived envelopes of the intact enzymes. Electron cryo-tomography has provided new insights into the supra-molecular arrangement of eukaryotic ATP synthases within mitochondria. An inherent flexibility in rotary ATPases observed by different techniques suggests greater dynamics during operation than previously envisioned. The concerted movement of subunits within the complex might provide means of regulation and information transfer between distant parts of rotary ATPases thereby fine tuning these molecular machines to their cellular environment, while optimizing their efficiency.
Collapse
Affiliation(s)
- Alastair G Stewart
- The Victor Chang Cardiac Research Institute, Sydney, NSW, Australia; The University of New South Wales, Sydney, NSW, Australia.
| | - Elise M Laming
- The Victor Chang Cardiac Research Institute, Sydney, NSW, Australia; The University of New South Wales, Sydney, NSW, Australia
| | - Meghna Sobti
- The Victor Chang Cardiac Research Institute, Sydney, NSW, Australia; The University of New South Wales, Sydney, NSW, Australia
| | - Daniela Stock
- The Victor Chang Cardiac Research Institute, Sydney, NSW, Australia; The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
42
|
Liu J, Ryabichko S, Bogdanov M, Fackelmayer OJ, Dowhan W, Krulwich TA. Cardiolipin is dispensable for oxidative phosphorylation and non-fermentative growth of alkaliphilic Bacillus pseudofirmus OF4. J Biol Chem 2013; 289:2960-71. [PMID: 24338478 DOI: 10.1074/jbc.m113.536193] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cardiolipin (CL), a membrane phospholipid in bacteria and mitochondria, has been hypothesized to facilitate movement of protons on the outer surface of membranes in support of respiration-dependent ATP synthesis, oxidative phosphorylation (OXPHOS). If so, the high levels of membrane CL found in alkaliphilic bacteria, such as Bacillus pseudofirmus OF4, might facilitate its robust OXPHOS at pH 10.5, where the bulk protonmotive (PMF) force is low. To address the role of CL in Bacillus pseudofirmus OF4, we studied strains in which genes (cls) potentially encoding a CL synthase (CLs) were deleted: three single (ΔclsA, ΔclsB, and ΔclsC), one double (ΔclsA/B), and one triple (ΔclsA/B/C) mutant. Two-dimensional thin layer chromatography analyses of lipid extracts from (32)P-labeled strains showed that the wild-type CL content was 15% of total phospholipids at pH 10.5 versus 3% at pH 7.5 during log phase. The % CL was higher (28-33%) at both pH values during stationary phase. The clsA gene plays a major role in CL biosynthesis as no detectable CL was found in ΔclsA-containing mutants, whereas the CL precursor phosphatidylglycerol was elevated. The ΔclsB mutant exhibited no significant reduction in CL, but clsB expression was up-regulated and appeared to support growth at pH 7.5. In the absence of detectable CL, the alkaliphile showed no significant deficits in non-fermentative growth, respiration-dependent ATP synthesis, or salt tolerance. Minor deficits in respiration and ATP synthase assembly were noted in individual mutants. In long term survival experiments, significant growth defects were found in ΔclsA strains and the ΔclsC strain at pH 10.5.
Collapse
Affiliation(s)
- Jun Liu
- From the Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | | | | | | | | | | |
Collapse
|
43
|
Genome Sequence of the Extreme Obligate Alkaliphile Bacillus marmarensis Strain DSM 21297. GENOME ANNOUNCEMENTS 2013; 1:1/6/e00967-13. [PMID: 24285666 PMCID: PMC3869328 DOI: 10.1128/genomea.00967-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacillus marmarensis strain DSM 21297 is an extreme obligate alkaliphile able to grow in medium up to pH 12.5. A whole-shotgun strategy and de novo assembly led to the generation of a 4-Mbp genome of this strain. The genome features alkaliphilic adaptations and pathways for n-butanol and poly(3-hydroxybutyrate) synthesis.
Collapse
|
44
|
Schulz S, Iglesias-Cans M, Krah A, Yildiz Ö, Leone V, Matthies D, Cook GM, Faraldo-Gómez JD, Meier T. A new type of Na(+)-driven ATP synthase membrane rotor with a two-carboxylate ion-coupling motif. PLoS Biol 2013; 11:e1001596. [PMID: 23824040 PMCID: PMC3692424 DOI: 10.1371/journal.pbio.1001596] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/16/2013] [Indexed: 11/18/2022] Open
Abstract
The anaerobic bacterium Fusobacterium nucleatum uses glutamate decarboxylation to generate a transmembrane gradient of Na⁺. Here, we demonstrate that this ion-motive force is directly coupled to ATP synthesis, via an F₁F₀-ATP synthase with a novel Na⁺ recognition motif, shared by other human pathogens. Molecular modeling and free-energy simulations of the rotary element of the enzyme, the c-ring, indicate Na⁺ specificity in physiological settings. Consistently, activity measurements showed Na⁺ stimulation of the enzyme, either membrane-embedded or isolated, and ATP synthesis was sensitive to the Na⁺ ionophore monensin. Furthermore, Na⁺ has a protective effect against inhibitors targeting the ion-binding sites, both in the complete ATP synthase and the isolated c-ring. Definitive evidence of Na⁺ coupling is provided by two identical crystal structures of the c₁₁ ring, solved by X-ray crystallography at 2.2 and 2.6 Å resolution, at pH 5.3 and 8.7, respectively. Na⁺ ions occupy all binding sites, each coordinated by four amino acids and a water molecule. Intriguingly, two carboxylates instead of one mediate ion binding. Simulations and experiments demonstrate that this motif implies that a proton is concurrently bound to all sites, although Na⁺ alone drives the rotary mechanism. The structure thus reveals a new mode of ion coupling in ATP synthases and provides a basis for drug-design efforts against this opportunistic pathogen.
Collapse
Affiliation(s)
- Sarah Schulz
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Marina Iglesias-Cans
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Alexander Krah
- Theoretical Molecular Biophysics Group, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Özkan Yildiz
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Vanessa Leone
- Theoretical Molecular Biophysics Group, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Doreen Matthies
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Gregory M. Cook
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - José D. Faraldo-Gómez
- Theoretical Molecular Biophysics Group, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Cluster of Excellence “Macromolecular Complexes,” Goethe University of Frankfurt, Frankfurt am Main, Germany
- * E-mail: (JDF-G); (TM)
| | - Thomas Meier
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Cluster of Excellence “Macromolecular Complexes,” Goethe University of Frankfurt, Frankfurt am Main, Germany
- * E-mail: (JDF-G); (TM)
| |
Collapse
|