1
|
García-Rodríguez N, Domínguez-García I, Domínguez-Pérez MD, Huertas P. EXO1 and DNA2-mediated ssDNA gap expansion is essential for ATR activation and to maintain viability in BRCA1-deficient cells. Nucleic Acids Res 2024; 52:6376-6391. [PMID: 38721777 PMCID: PMC11194085 DOI: 10.1093/nar/gkae317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/25/2024] [Accepted: 05/02/2024] [Indexed: 06/25/2024] Open
Abstract
DNA replication faces challenges from DNA lesions originated from endogenous or exogenous sources of stress, leading to the accumulation of single-stranded DNA (ssDNA) that triggers the activation of the ATR checkpoint response. To complete genome replication in the presence of damaged DNA, cells employ DNA damage tolerance mechanisms that operate not only at stalled replication forks but also at ssDNA gaps originated by repriming of DNA synthesis downstream of lesions. Here, we demonstrate that human cells accumulate post-replicative ssDNA gaps following replicative stress induction. These gaps, initiated by PrimPol repriming and expanded by the long-range resection factors EXO1 and DNA2, constitute the principal origin of the ssDNA signal responsible for ATR activation upon replication stress, in contrast to stalled forks. Strikingly, the loss of EXO1 or DNA2 results in synthetic lethality when combined with BRCA1 deficiency, but not BRCA2. This phenomenon aligns with the observation that BRCA1 alone contributes to the expansion of ssDNA gaps. Remarkably, BRCA1-deficient cells become addicted to the overexpression of EXO1, DNA2 or BLM. This dependence on long-range resection unveils a new vulnerability of BRCA1-mutant tumors, shedding light on potential therapeutic targets for these cancers.
Collapse
Affiliation(s)
- Néstor García-Rodríguez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | - Iria Domínguez-García
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | - María del Carmen Domínguez-Pérez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | - Pablo Huertas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
2
|
Ding X, Singh P, Schimenti K, Tran TN, Fragoza R, Hardy J, Orwig KE, Olszewska M, Kurpisz MK, Yatsenko AN, Conrad DF, Yu H, Schimenti JC. In vivo versus in silico assessment of potentially pathogenic missense variants in human reproductive genes. Proc Natl Acad Sci U S A 2023; 120:e2219925120. [PMID: 37459509 PMCID: PMC10372637 DOI: 10.1073/pnas.2219925120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/25/2023] [Indexed: 07/20/2023] Open
Abstract
Infertility is a heterogeneous condition, with genetic causes thought to underlie a substantial fraction of cases. Genome sequencing is becoming increasingly important for genetic diagnosis of diseases including idiopathic infertility; however, most rare or minor alleles identified in patients are variants of uncertain significance (VUS). Interpreting the functional impacts of VUS is challenging but profoundly important for clinical management and genetic counseling. To determine the consequences of these variants in key fertility genes, we functionally evaluated 11 missense variants in the genes ANKRD31, BRDT, DMC1, EXO1, FKBP6, MCM9, M1AP, MEI1, MSH4 and SEPT12 by generating genome-edited mouse models. Nine variants were classified as deleterious by most functional prediction algorithms, and two disrupted a protein-protein interaction (PPI) in the yeast two hybrid (Y2H) assay. Though these genes are essential for normal meiosis or spermiogenesis in mice, only one variant, observed in the MCM9 gene of a male infertility patient, compromised fertility or gametogenesis in the mouse models. To explore the disconnect between predictions and outcomes, we compared pathogenicity calls of missense variants made by ten widely used algorithms to 1) those annotated in ClinVar and 2) those evaluated in mice. All the algorithms performed poorly in terms of predicting the effects of human missense variants modeled in mice. These studies emphasize caution in the genetic diagnoses of infertile patients based primarily on pathogenicity prediction algorithms and emphasize the need for alternative and efficient in vitro or in vivo functional validation models for more effective and accurate VUS description to either pathogenic or benign categories.
Collapse
Affiliation(s)
- Xinbao Ding
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Priti Singh
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Kerry Schimenti
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Tina N. Tran
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Robert Fragoza
- Department of Computational Biology, Cornell University, Ithaca, NY14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
| | - Jimmaline Hardy
- School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA15213
| | - Kyle E. Orwig
- School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA15213
| | - Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan60-479, Poland
| | - Maciej K. Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan60-479, Poland
| | - Alexander N. Yatsenko
- School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA15213
| | - Donald F. Conrad
- Oregon Health & Science University, Division of Genetics, Oregon National Primate Research Center, Beaverton, OR97006
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, Ithaca, NY14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
| | - John C. Schimenti
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| |
Collapse
|
3
|
A CRISPR-Cas9 screen identifies EXO1 as a formaldehyde resistance gene. Nat Commun 2023; 14:381. [PMID: 36693839 PMCID: PMC9873647 DOI: 10.1038/s41467-023-35802-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023] Open
Abstract
Fanconi Anemia (FA) is a rare, genome instability-associated disease characterized by a deficiency in repairing DNA crosslinks, which are known to perturb several cellular processes, including DNA transcription, replication, and repair. Formaldehyde, a by-product of metabolism, is thought to drive FA by generating DNA interstrand crosslinks (ICLs) and DNA-protein crosslinks (DPCs). However, the impact of formaldehyde on global cellular pathways has not been investigated thoroughly. Herein, using a pangenomic CRISPR-Cas9 screen, we identify EXO1 as a critical regulator of formaldehyde-induced DNA lesions. We show that EXO1 knockout cell lines exhibit formaldehyde sensitivity leading to the accumulation of replicative stress, DNA double-strand breaks, and quadriradial chromosomes, a typical feature of FA. After formaldehyde exposure, EXO1 is recruited to chromatin, protects DNA replication forks from degradation, and functions in parallel with the FA pathway to promote cell survival. In vitro, EXO1-mediated exonuclease activity is proficient in removing DPCs. Collectively, we show that EXO1 limits replication stress and DNA damage to counteract formaldehyde-induced genome instability.
Collapse
|
4
|
Palmer N, Talib SZA, Goh CMF, Biswas K, Sharan SK, Kaldis P. Identification PMS1 and PMS2 as potential meiotic substrates of CDK2 activity. PLoS One 2023; 18:e0283590. [PMID: 36952545 PMCID: PMC10035876 DOI: 10.1371/journal.pone.0283590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/11/2023] [Indexed: 03/25/2023] Open
Abstract
Cyclin dependent-kinase 2 (CDK2) plays important functions during the mitotic cell cycle and also facilitates several key events during germ cell development. The majority of CDK2's known meiotic functions occur during prophase of the first meiotic division. Here, CDK2 is involved in the regulation of meiotic transcription, the pairing of homologous chromosomes, and the maturation of meiotic crossover sites. Despite that some of the CDK2 substrates are known, few of them display functions in meiosis. Here, we investigate potential meiotic CDK2 substrates using in silico and in vitro approaches. We find that CDK2 phosphorylates PMS2 at Thr337, PMS1 at Thr331, and MLH1 in vitro. Phosphorylation of PMS2 affects its interaction with MLH1 to some degree. In testis extracts from mice lacking Cdk2, there are changes in expression of PMS2, MSH2, and HEI10, which may be reflective of the loss of CDK2 phosphorylation. Our work has uncovered a few CDK2 substrates with meiotic functions, which will have to be verified in vivo. A better understanding of the CDK2 substrates will help us to gain deeper insight into the functions of this universal kinase.
Collapse
Affiliation(s)
- Nathan Palmer
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Republic of Singapore
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - S Zakiah A Talib
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Republic of Singapore
- Department Biologie II, Biozentrum der LMU München, Zell- und Entwicklungsbiologie, Planegg-Martinsried, Germany
| | - Christine M F Goh
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Republic of Singapore
| | - Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States of America
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States of America
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Republic of Singapore
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Malmö, Sweden
- Lund University Diabetes Centre, Lund University, Clinical Research Centre (CRC), Malmö, Sweden
| |
Collapse
|
5
|
Shi Q, Yao XY, Wang HY, Li YJ, Zhang XX, Sun C. Breast cancer-associated SNP rs72755295 is a cis-regulatory variation for human EXO1. Genet Mol Biol 2022; 45:e20210420. [PMID: 36255267 PMCID: PMC9631386 DOI: 10.1590/1678-4685-gmb-2021-0420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 08/07/2022] [Indexed: 11/04/2022] Open
Abstract
Breast cancer is the most common malignant tumor in women. A previous genome-wide association study reports that rs72755295, a SNP locating at intron of EXO1 (exonuclease 1), is associated with breast cancer. Due to the complete linkage disequilibrium between rs72755295 and rs4149909, a nonsynonymous mutation for EXO1, rs4149909 is supposed to be the causal SNP. Since EXO1 is overexpressed in breast carcinoma samples, we hypothesized that the genetic variations in this locus might confer breast cancer risk by regulating EXO1 expression. To substantiate this, a functional genomics study was performed. The dual luciferase assay indicated that G of rs72755295 presents significantly higher relative enhancer activity than A, thus verifying that this SNP can influence gene expression in breast cell. Through chromosome conformation capture it was disclosed that the enhancer containing rs72755295 can interact with the EXO1 promoter. RNA-seq analysis indicated that EXO1 expression is dependent on the rs72755295 genotype. By chromatin immunoprecipitation, the transcription factor PAX6 (paired box 6) was recognized to bind the region spanning rs72755295. In electrophoretic mobility shift assay, G of rs72755295 displays obviously higher binding affinity with nuclear protein than A. Our results indicated that rs72755295 is a cis-regulatory variation for EXO1 and might confer breast cancer risk besides rs4149909.
Collapse
Affiliation(s)
- Qiang Shi
- Shaanxi Normal University, College of Life Sciences, Xi'an, Shaanxi, P.R. China
| | - Xing-Yuan Yao
- Shaanxi Normal University, College of Life Sciences, Xi'an, Shaanxi, P.R. China
| | - Hong-Yan Wang
- Shaanxi Normal University, College of Life Sciences, Xi'an, Shaanxi, P.R. China
| | - Ya-Jie Li
- Shaanxi Normal University, College of Life Sciences, Xi'an, Shaanxi, P.R. China
| | - Xin-Xin Zhang
- Shaanxi Normal University, College of Life Sciences, Xi'an, Shaanxi, P.R. China
| | - Chang Sun
- Shaanxi Normal University, College of Life Sciences, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
6
|
Wang S, Lee K, Gray S, Zhang Y, Tang C, Morrish R, Tosti E, van Oers J, Amin MR, Cohen P, MacCarthy T, Roa S, Scharff M, Edelmann W, Chahwan R. Role of EXO1 nuclease activity in genome maintenance, the immune response and tumor suppression in Exo1D173A mice. Nucleic Acids Res 2022; 50:8093-8106. [PMID: 35849338 PMCID: PMC9371890 DOI: 10.1093/nar/gkac616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 05/30/2022] [Accepted: 06/30/2022] [Indexed: 11/14/2022] Open
Abstract
DNA damage response pathways rely extensively on nuclease activity to process DNA intermediates. Exonuclease 1 (EXO1) is a pleiotropic evolutionary conserved DNA exonuclease involved in various DNA repair pathways, replication, antibody diversification, and meiosis. But, whether EXO1 facilitates these DNA metabolic processes through its enzymatic or scaffolding functions remains unclear. Here, we dissect the contribution of EXO1 enzymatic versus scaffolding activity by comparing Exo1DA/DA mice expressing a proven nuclease-dead mutant form of EXO1 to entirely EXO1-deficient Exo1-/- and EXO1 wild type Exo1+/+ mice. We show that Exo1DA/DA and Exo1-/- mice are compromised in canonical DNA repair processing, suggesting that the EXO1 enzymatic role is important for error-free DNA mismatch and double-strand break repair pathways. However, in non-canonical repair pathways, EXO1 appears to have a more nuanced function. Next-generation sequencing of heavy chain V region in B cells showed the mutation spectra of Exo1DA/DA mice to be intermediate between Exo1+/+ and Exo1-/- mice, suggesting that both catalytic and scaffolding roles of EXO1 are important for somatic hypermutation. Similarly, while overall class switch recombination in Exo1DA/DA and Exo1-/- mice was comparably defective, switch junction analysis suggests that EXO1 might fulfill an additional scaffolding function downstream of class switching. In contrast to Exo1-/- mice that are infertile, meiosis progressed normally in Exo1DA/DA and Exo1+/+ cohorts, indicating that a structural but not the nuclease function of EXO1 is critical for meiosis. However, both Exo1DA/DA and Exo1-/- mice displayed similar mortality and cancer predisposition profiles. Taken together, these data demonstrate that EXO1 has both scaffolding and enzymatic functions in distinct DNA repair processes and suggest a more composite and intricate role for EXO1 in DNA metabolic processes and disease.
Collapse
Affiliation(s)
- Shanzhi Wang
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, NY 10461, USA
- Current position: Department of Chemistry, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Kyeryoung Lee
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, NY 10461, USA
| | - Stephen Gray
- Department of Biomedical Sciences, Cornell University, NY 14853, USA
- Current position: School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Yongwei Zhang
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, NY 10461, USA
| | - Catherine Tang
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Rikke B Morrish
- Current position: School of Physics and Astronomy, University of Exeter, Exeter EX4 4QD, UK
| | - Elena Tosti
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, NY 10461, USA
| | - Johanna van Oers
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, NY 10461, USA
| | - Mohammad Ruhul Amin
- Department of Computer and Information Science, Fordham University, Bronx, NY, USA
| | - Paula E Cohen
- Department of Biomedical Sciences, Cornell University, NY 14853, USA
| | - Thomas MacCarthy
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Sergio Roa
- Department of Biochemistry and Genetics, University of Navarra, 31008Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Matthew D Scharff
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, NY 10461, USA
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, NY 10461, USA
| | - Richard Chahwan
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
7
|
Manils J, Marruecos L, Soler C. Exonucleases: Degrading DNA to Deal with Genome Damage, Cell Death, Inflammation and Cancer. Cells 2022; 11:2157. [PMID: 35883600 PMCID: PMC9316158 DOI: 10.3390/cells11142157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023] Open
Abstract
Although DNA degradation might seem an unwanted event, it is essential in many cellular processes that are key to maintaining genomic stability and cell and organism homeostasis. The capacity to cut out nucleotides one at a time from the end of a DNA chain is present in enzymes called exonucleases. Exonuclease activity might come from enzymes with multiple other functions or specialized enzymes only dedicated to this function. Exonucleases are involved in central pathways of cell biology such as DNA replication, repair, and death, as well as tuning the immune response. Of note, malfunctioning of these enzymes is associated with immune disorders and cancer. In this review, we will dissect the impact of DNA degradation on the DNA damage response and its links with inflammation and cancer.
Collapse
Affiliation(s)
- Joan Manils
- Serra Húnter Programme, Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Spain;
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d’Investigació Biomèdica de Bellvitge—IDIBELL, 08907 L’Hospitalet de Llobregat, Spain
| | - Laura Marruecos
- Breast Cancer Laboratory, Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
| | - Concepció Soler
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d’Investigació Biomèdica de Bellvitge—IDIBELL, 08907 L’Hospitalet de Llobregat, Spain
- Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, 08007 Barcelona, Spain
| |
Collapse
|
8
|
Schubert N, Schumann T, Daum E, Flade K, Ge Y, Hagedorn L, Edelmann W, Müller L, Schmitz M, Kuut G, Hornung V, Behrendt R, Roers A. Genome Replication Is Associated With Release of Immunogenic DNA Waste. Front Immunol 2022; 13:880413. [PMID: 35634291 PMCID: PMC9130835 DOI: 10.3389/fimmu.2022.880413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/05/2022] [Indexed: 01/04/2023] Open
Abstract
Innate DNA sensors detect foreign and endogenous DNA to induce responses to infection and cellular stress or damage. Inappropriate activation by self-DNA triggers severe autoinflammatory conditions, including Aicardi-Goutières syndrome (AGS) that can be caused by defects of the cytosolic DNase 3’repair exonuclease 1 (TREX1). TREX1 loss-of-function alleles are also associated with systemic lupus erythematosus (SLE). Chronic activation of innate antiviral immunity in TREX1-deficient cells depends on the DNA sensor cGAS, implying that accumulating TREX1 DNA substrates cause the inflammatory pathology. Retrotransposon-derived cDNAs were shown to activate cGAS in TREX1-deficient neuronal cells. We addressed other endogenous sources of cGAS ligands in cells lacking TREX1. We find that induced loss of TREX1 in primary cells induces a rapid IFN response that requires ongoing proliferation. The inflammatory phenotype of Trex1-/- mice was partially rescued by additional knock out of exonuclease 1, a multifunctional enzyme providing 5’ flap endonuclease activity for Okazaki fragment processing and postreplicative ribonucleotide excision repair. Our data imply genome replication as a source of DNA waste with pathogenic potential that is efficiently degraded by TREX1.
Collapse
Affiliation(s)
- Nadja Schubert
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Tina Schumann
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Elena Daum
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Karolin Flade
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Yan Ge
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Lara Hagedorn
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Luise Müller
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Marc Schmitz
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gunnar Kuut
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Rayk Behrendt
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany.,Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Axel Roers
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany.,Institute for Immunology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
9
|
Guervilly JH, Blin M, Laureti L, Baudelet E, Audebert S, Gaillard PH. SLX4 dampens MutSα-dependent mismatch repair. Nucleic Acids Res 2022; 50:2667-2680. [PMID: 35166826 PMCID: PMC8934664 DOI: 10.1093/nar/gkac075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
The tumour suppressor SLX4 plays multiple roles in the maintenance of genome stability, acting as a scaffold for structure-specific endonucleases and other DNA repair proteins. It directly interacts with the mismatch repair (MMR) protein MSH2 but the significance of this interaction remained unknown until recent findings showing that MutSβ (MSH2-MSH3) stimulates in vitro the SLX4-dependent Holliday junction resolvase activity. Here, we characterize the mode of interaction between SLX4 and MSH2, which relies on an MSH2-interacting peptide (SHIP box) that drives interaction of SLX4 with both MutSβ and MutSα (MSH2-MSH6). While we show that this MSH2 binding domain is dispensable for the well-established role of SLX4 in interstrand crosslink repair, we find that it mediates inhibition of MutSα-dependent MMR by SLX4, unravelling an unanticipated function of SLX4.
Collapse
Affiliation(s)
- Jean-Hugues Guervilly
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Marion Blin
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Luisa Laureti
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Emilie Baudelet
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Stéphane Audebert
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Pierre-Henri Gaillard
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
10
|
da Silva RB, Bertoldo WDR, Naves LL, de Vito FB, Damasceno JD, Tosi LRO, Machado CR, Pedrosa AL. Specific Human ATR and ATM Inhibitors Modulate Single Strand DNA Formation in Leishmania major Exposed to Oxidative Agent. Front Cell Infect Microbiol 2022; 11:802613. [PMID: 35059327 PMCID: PMC8763966 DOI: 10.3389/fcimb.2021.802613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/02/2021] [Indexed: 12/03/2022] Open
Abstract
Leishmania parasites are the causative agents of a group of neglected tropical diseases known as leishmaniasis. The molecular mechanisms employed by these parasites to adapt to the adverse conditions found in their hosts are not yet completely understood. DNA repair pathways can be used by Leishmania to enable survival in the interior of macrophages, where the parasite is constantly exposed to oxygen reactive species. In higher eukaryotes, DNA repair pathways are coordinated by the central protein kinases ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR). The enzyme Exonuclease-1 (EXO1) plays important roles in DNA replication, repair, and recombination, and it can be regulated by ATM- and ATR-mediated signaling pathways. In this study, the DNA damage response pathways in promastigote forms of L. major were investigated using bioinformatics tools, exposure of lineages to oxidizing agents and radiation damage, treatment of cells with ATM and ATR inhibitors, and flow cytometry analysis. We demonstrated high structural and important residue conservation for the catalytic activity of the putative LmjEXO1. The overexpression of putative LmjEXO1 made L. major cells more susceptible to genotoxic damage, most likely due to the nuclease activity of this enzyme and the occurrence of hyper-resection of DNA strands. These cells could be rescued by the addition of caffeine or a selective ATM inhibitor. In contrast, ATR-specific inhibition made the control cells more susceptible to oxidative damage in an LmjEXO1 overexpression-like manner. We demonstrated that ATR-specific inhibition results in the formation of extended single-stranded DNA, most likely due to EXO1 nucleasic activity. Antagonistically, ATM inhibition prevented single-strand DNA formation, which could explain the survival phenotype of lineages overexpressing LmjEXO1. These results suggest that an ATM homolog in Leishmania could act to promote end resection by putative LmjEXO1, and an ATR homologue could prevent hyper-resection, ensuring adequate repair of the parasite DNA.
Collapse
Affiliation(s)
- Raíssa Bernardes da Silva
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Willian Dos Reis Bertoldo
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil.,Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucila Langoni Naves
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Fernanda Bernadelli de Vito
- Departamento de Clínica Médica, Instituto de Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Jeziel Dener Damasceno
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Luiz Ricardo Orsini Tosi
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - André Luiz Pedrosa
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| |
Collapse
|
11
|
Ghieh F, Barbotin AL, Swierkowski-Blanchard N, Leroy C, Fortemps J, Gerault C, Hue C, Mambu Mambueni H, Jaillard S, Albert M, Bailly M, Izard V, Molina-Gomes D, Marcelli F, Prasivoravong J, Serazin V, Dieudonne MN, Delcroix M, Garchon HJ, Louboutin A, Mandon-Pepin B, Ferlicot S, Vialard F. OUP accepted manuscript. Hum Reprod 2022; 37:1334-1350. [PMID: 35413094 PMCID: PMC9156845 DOI: 10.1093/humrep/deac057] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/07/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- F Ghieh
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- École Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
| | - A L Barbotin
- Institut de Biologie de la Reproduction-Spermiologie-CECOS, Hôpital Jeanne de Flandre, Centre Hospitalier et Universitaire, Lille, France
| | - N Swierkowski-Blanchard
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- École Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
- Département de Gynécologie Obstétrique, CHI de Poissy/Saint-Germain-en-Laye, Poissy, France
| | - C Leroy
- Institut de Biologie de la Reproduction-Spermiologie-CECOS, Hôpital Jeanne de Flandre, Centre Hospitalier et Universitaire, Lille, France
| | - J Fortemps
- Service d’Anatomie Pathologique, CHI de Poissy/Saint-Germain-en-Laye, Saint-Germain-en-Laye, France
| | - C Gerault
- Département de Génétique, Laboratoire de Biologie Médicale, CHI de Poissy/Saint-Germain-en-Laye, Poissy, France
| | - C Hue
- Department of Biotechnology and Health, UVSQ, Université Paris-Saclay, Inserm UMR 1173, Montigny-le-Bretonneux, France
| | - H Mambu Mambueni
- Department of Biotechnology and Health, UVSQ, Université Paris-Saclay, Inserm UMR 1173, Montigny-le-Bretonneux, France
| | - S Jaillard
- Service de Cytogénétique, CHU Rennes, Rennes, France
- INSERM, EHESP, IRSET—UMR_S 1085, Université Rennes 1, Rennes, France
| | - M Albert
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- École Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
| | - M Bailly
- Département de Gynécologie Obstétrique, CHI de Poissy/Saint-Germain-en-Laye, Poissy, France
| | - V Izard
- Service d’Urologie, AP-HP, Université Paris-Saclay, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - D Molina-Gomes
- Département de Génétique, Laboratoire de Biologie Médicale, CHI de Poissy/Saint-Germain-en-Laye, Poissy, France
| | - F Marcelli
- Institut de Biologie de la Reproduction-Spermiologie-CECOS, Hôpital Jeanne de Flandre, Centre Hospitalier et Universitaire, Lille, France
| | - J Prasivoravong
- Institut de Biologie de la Reproduction-Spermiologie-CECOS, Hôpital Jeanne de Flandre, Centre Hospitalier et Universitaire, Lille, France
| | - V Serazin
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- École Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
- Département de Génétique, Laboratoire de Biologie Médicale, CHI de Poissy/Saint-Germain-en-Laye, Poissy, France
| | - M N Dieudonne
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- École Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
| | - M Delcroix
- Département de Génétique, Laboratoire de Biologie Médicale, CHI de Poissy/Saint-Germain-en-Laye, Poissy, France
| | - H J Garchon
- Department of Biotechnology and Health, UVSQ, Université Paris-Saclay, Inserm UMR 1173, Montigny-le-Bretonneux, France
| | - A Louboutin
- Service d’Anatomie Pathologique, CHI de Poissy/Saint-Germain-en-Laye, Saint-Germain-en-Laye, France
| | - B Mandon-Pepin
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- École Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
| | - S Ferlicot
- Service d’Anatomie Pathologique, AP-HP, Université Paris-Saclay, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - F Vialard
- Correspondence address. Tel: +33-139-274-700; E-mail:
| |
Collapse
|
12
|
Sun X, Bai J, Xu J, Xi X, Gu M, Zhu C, Xue H, Chen C, Dong J. Multiple DSB Resection Activities Redundantly Promote Alternative End Joining-Mediated Class Switch Recombination. Front Cell Dev Biol 2021; 9:767624. [PMID: 34926456 PMCID: PMC8671047 DOI: 10.3389/fcell.2021.767624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/25/2021] [Indexed: 01/13/2023] Open
Abstract
Alternative end joining (A-EJ) catalyzes substantial level of antibody class switch recombination (CSR) in B cells deficient for classical non-homologous end joining, featuring increased switch (S) region DSB resection and junctional microhomology (MH). While resection has been suggested to initiate A-EJ in model DSB repair systems using engineered endonucleases, the contribution of resection factors to A-EJ-mediated CSR remains unclear. In this study, we systematically dissected the requirement for individual DSB resection factors in A-EJ-mediated class switching with a cell-based assay system and high-throughput sequencing. We show that while CtIP and Mre11 both are mildly required for CSR in WT cells, they play more critical roles in mediating A-EJ CSR, which depend on the exonuclease activity of Mre11. While DNA2 and the helicase/HRDC domain of BLM are required for A-EJ by mediating long S region DSB resection, in contrast, Exo1's resection-related function does not play any obvious roles for class switching in either c-NHEJ or A-EJ cells, or mediated in an AID-independent manner by joining of Cas9 breaks. Furthermore, ATM and its kinase activity functions at least in part independent of CtIP/Mre11 to mediate A-EJ switching in Lig4-deficient cells. In stark contrast to Lig4 deficiency, 53BP1-deficient cells do not depend on ATM/Mre11/CtIP for residual joining. We discuss the roles for each resection factor in A-EJ-mediated CSR and suggest that the extent of requirements for resection is context dependent.
Collapse
Affiliation(s)
- Xikui Sun
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jingning Bai
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jiejie Xu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Xiaoli Xi
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingyu Gu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Chengming Zhu
- Research Center of the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hongman Xue
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Chun Chen
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Junchao Dong
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
13
|
Deshmukh AL, Caron MC, Mohiuddin M, Lanni S, Panigrahi GB, Khan M, Engchuan W, Shum N, Faruqui A, Wang P, Yuen RKC, Nakamori M, Nakatani K, Masson JY, Pearson CE. FAN1 exo- not endo-nuclease pausing on disease-associated slipped-DNA repeats: A mechanism of repeat instability. Cell Rep 2021; 37:110078. [PMID: 34879276 DOI: 10.1016/j.celrep.2021.110078] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/02/2021] [Accepted: 11/09/2021] [Indexed: 12/19/2022] Open
Abstract
Ongoing inchworm-like CAG and CGG repeat expansions in brains, arising by aberrant processing of slipped DNAs, may drive Huntington's disease, fragile X syndrome, and autism. FAN1 nuclease modifies hyper-expansion rates by unknown means. We show that FAN1, through iterative cycles, binds, dimerizes, and cleaves slipped DNAs, yielding striking exo-nuclease pauses along slip-outs: 5'-C↓A↓GC↓A↓G-3' and 5'-C↓T↓G↓C↓T↓G-3'. CAG excision is slower than CTG and requires intra-strand A·A and T·T mismatches. Fully paired hairpins arrested excision, whereas disease-delaying CAA interruptions further slowed excision. Endo-nucleolytic cleavage is insensitive to slip-outs. Rare FAN1 variants are found in individuals with autism with CGG/CCG expansions, and CGG/CCG slip-outs show exo-nuclease pauses. The slip-out-specific ligand, naphthyridine-azaquinolone, which induces contractions of expanded repeats in vivo, requires FAN1 for its effect, and protects slip-outs from FAN1 exo-, but not endo-, nucleolytic digestion. FAN1's inchworm pausing of slip-out excision rates is well suited to modify inchworm expansion rates, which modify disease onset and progression.
Collapse
Affiliation(s)
- Amit Laxmikant Deshmukh
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Marie-Christine Caron
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, QC G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec City, QC G1R 3S3, Canada
| | - Mohiuddin Mohiuddin
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Stella Lanni
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Gagan B Panigrahi
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Mahreen Khan
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Program of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Worrawat Engchuan
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Natalie Shum
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Program of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Aisha Faruqui
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Program of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Peixiang Wang
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Ryan K C Yuen
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Program of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, the Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, QC G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec City, QC G1R 3S3, Canada
| | - Christopher E Pearson
- Program of Genetics & Genome Biology, The Hospital for Sick Children, PGCRL, Toronto, Canada, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Program of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
14
|
Yan S, Gao S, Zhou P. Multi-functions of exonuclease 1 in DNA damage response and cancer susceptibility. RADIATION MEDICINE AND PROTECTION 2021. [DOI: 10.1016/j.radmp.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
15
|
Sanchez A, Reginato G, Cejka P. Crossover or non-crossover outcomes: tailored processing of homologous recombination intermediates. Curr Opin Genet Dev 2021; 71:39-47. [PMID: 34293660 DOI: 10.1016/j.gde.2021.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022]
Abstract
DNA breaks may arise accidentally in vegetative cells or in a programmed manner in meiosis. The usage of a DNA template makes homologous recombination potentially error-free, however, recombination is not always accurate. Cells possess a remarkable capacity to tailor processing of recombination intermediates to fulfill a particular need. Vegetatively growing cells aim to maintain genome stability and therefore repair accidental breaks largely accurately, using sister chromatids as templates, into mostly non-crossovers products. Recombination in meiotic cells is instead more likely to employ homologous chromosomes as templates and result in crossovers to allow proper chromosome segregation and promote genetic diversity. Here we review models explaining the processing of recombination intermediates in vegetative and meiotic cells and its regulation, with a focus on MLH1-MLH3-dependent crossing-over during meiotic recombination.
Collapse
Affiliation(s)
- Aurore Sanchez
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Giordano Reginato
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland.
| |
Collapse
|
16
|
Liu J, Zhang J. Elevated EXO1 expression is associated with breast carcinogenesis and poor prognosis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:135. [PMID: 33569437 PMCID: PMC7867906 DOI: 10.21037/atm-20-7922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Breast cancer is the most common cancer and leading cause of cancer mortality in women worldwide. Exonuclease 1 (EXO1), a protein with 5' to 3' exonuclease and RNase H activity, could be involved in mismatch repair and recombination. This study aims to investigate the prognostic value of EXO1 in breast cancer and explore the association between EXO1 expression and breast carcinogenesis. Methods The data of 1,215 breast cancer susceptibility gene (BRCA) samples were obtained from The Cancer Genome Atlas (TCGA). Real-time quantitative polymerase chain reaction (RT-qPCR) further verified the elevated mRNA expression level of EXO1 in human BRCA cells MDA-MB231 compared with that in human breast epithelial cells MCF-10A. EXO1 copy number was proved to be correlated with its expression level. Besides, Kaplan-Meier analysis, differentially expressed genes and function enrichment analysis were performed. Results Analysis of data from The Cancer Genome Atlas (TCGA) revealed that the EXO1 expression level in breast cancer tissues was significantly increased. Real-time quantitative polymerase chain reaction (RT-qPCR) supported the elevated mRNA expression level of EXO1 in human breast cancer cells MDA-MB231 compared with that in human breast epithelial cells MCF-10A. EXO1 copy number was shown to be correlated with its expression level. Kaplan-Meier analysis showed that elevated EXO1 was an indicator of poor breast cancer prognosis. Furthermore, differentially expressed genes and function enrichment analysis indicated that the cell cycle pathway and cardiac muscle contraction pathway were activated and inhibited respectively in breast cancer samples with high EXO1 expression. Conclusions Therefore, this study shows that elevated EXO1 expression is associated with carcinogenesis and poor prognosis in breast cancer, and might be a biomarker for breast cancer treatment.
Collapse
Affiliation(s)
- Jingjing Liu
- 3rd Department of Breast Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy of Ministry of Education, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Jin Zhang
- 3rd Department of Breast Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy of Ministry of Education, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
17
|
Exo1 recruits Cdc5 polo kinase to MutLγ to ensure efficient meiotic crossover formation. Proc Natl Acad Sci U S A 2020; 117:30577-30588. [PMID: 33199619 DOI: 10.1073/pnas.2013012117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Crossovers generated during the repair of programmed meiotic double-strand breaks must be tightly regulated to promote accurate homolog segregation without deleterious outcomes, such as aneuploidy. The Mlh1-Mlh3 (MutLγ) endonuclease complex is critical for crossover resolution, which involves mechanistically unclear interplay between MutLγ and Exo1 and polo kinase Cdc5. Using budding yeast to gain temporal and genetic traction on crossover regulation, we find that MutLγ constitutively interacts with Exo1. Upon commitment to crossover repair, MutLγ-Exo1 associate with recombination intermediates, followed by direct Cdc5 recruitment that triggers MutLγ crossover activity. We propose that Exo1 serves as a central coordinator in this molecular interplay, providing a defined order of interaction that prevents deleterious, premature activation of crossovers. MutLγ associates at a lower frequency near centromeres, indicating that spatial regulation across chromosomal regions reduces risky crossover events. Our data elucidate the temporal and spatial control surrounding a constitutive, potentially harmful, nuclease. We also reveal a critical, noncatalytic role for Exo1, through noncanonical interaction with polo kinase. These mechanisms regulating meiotic crossovers may be conserved across species.
Collapse
|
18
|
PCNA activates the MutLγ endonuclease to promote meiotic crossing over. Nature 2020; 586:623-627. [PMID: 32814343 PMCID: PMC8284803 DOI: 10.1038/s41586-020-2645-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/05/2020] [Indexed: 12/22/2022]
Abstract
During meiosis, crossover recombination connects homologous chromosomes to direct their accurate segregation1. Defective crossing over causes infertility, miscarriage and congenital disease. Each pair of chromosomes attains at least one crossover via the formation and biased resolution of recombination intermediates known as double Holliday junctions2,3. A central principle of crossover resolution is that the two Holliday junctions are resolved in opposite planes by targeting nuclease incisions to specific DNA strands4. The endonuclease activity of the MutLγ complex has been implicated in the resolution of crossovers5-10, but the mechanisms that activate and direct strand-specific cleavage remain unknown. Here we show that the sliding clamp PCNA is important for crossover-biased resolution. In vitro assays with human enzymes show that PCNA and its loader RFC are sufficient to activate the MutLγ endonuclease. MutLγ is further stimulated by a co-dependent activity of the pro-crossover factors EXO1 and MutSγ, the latter of which binds Holliday junctions11. MutLγ also binds various branched DNAs, including Holliday junctions, but does not show canonical resolvase activity, implying that the endonuclease incises adjacent to junction branch points to achieve resolution. In vivo, RFC facilitates MutLγ-dependent crossing over in budding yeast. Furthermore, PCNA localizes to prospective crossover sites along synapsed chromosomes. These data highlight similarities between crossover resolution and the initiation steps of DNA mismatch repair12,13 and evoke a novel model for crossover-specific resolution of double Holliday junctions during meiosis.
Collapse
|
19
|
Yang G, Dong K, Zhang Z, Zhang E, Liang B, Chen X, Huang Z. EXO1 Plays a Carcinogenic Role in Hepatocellular Carcinoma and is related to the regulation of FOXP3. J Cancer 2020; 11:4917-4932. [PMID: 32626539 PMCID: PMC7330697 DOI: 10.7150/jca.40673] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 05/29/2020] [Indexed: 12/21/2022] Open
Abstract
Exonuclease 1 (EXO1), a member of the RAD2 nuclease family, was first described as possessing 5' to 3' nuclease activity and 5' structure-specific endonuclease activity. Here, we show that EXO1 is significantly upregulated in HCC tumor tissues and that high EXO1 expression is significantly correlated with liver cirrhosis. We further demonstrate that EXO1 knockdown decreases proliferation and colony forming abilities of HCC cells in vitro and tumorigenicity in vivo, as well as decreases migration and invasive capabilities of HCC cells. Alternatively, EXO1 overexpression significantly increases the proliferation, colony forming ability, and migration and invasive capabilities of HCC cells in vitro. Additionally, we truncated a region upstream of the transcription start site (TSS) of EXO1 and used the region with the strongest transcriptional activity to predict that the transcription factor FOXP3 can bind to the EXO1 promoter. Bioinformatics analysis found that FOXP3 was positively correlated with EXO1 and luciferase reporter assays and RT-PCR confirmed that FOXP3 could enhance the transcriptional activity of EXO1. CCK-8 assays showed that depletion of FOXP3 further reduces cell proliferation ability after knocking down of EXO1 in vitro. Taken together, our findings indicate that EXO1 acts as an oncogene in HCC and its expression level is related to FOXP3 activity.
Collapse
Affiliation(s)
- Guang Yang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Keshuai Dong
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital, Wuhan University, Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Zunyi Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Erlei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binyong Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Human Exonuclease 1 (EXO1) Regulatory Functions in DNA Replication with Putative Roles in Cancer. Int J Mol Sci 2018; 20:ijms20010074. [PMID: 30585186 PMCID: PMC6337416 DOI: 10.3390/ijms20010074] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022] Open
Abstract
Human exonuclease 1 (EXO1), a 5'→3' exonuclease, contributes to the regulation of the cell cycle checkpoints, replication fork maintenance, and post replicative DNA repair pathways. These processes are required for the resolution of stalled or blocked DNA replication that can lead to replication stress and potential collapse of the replication fork. Failure to restart the DNA replication process can result in double-strand breaks, cell-cycle arrest, cell death, or cellular transformation. In this review, we summarize the involvement of EXO1 in the replication, DNA repair pathways, cell cycle checkpoints, and the link between EXO1 and cancer.
Collapse
|
21
|
MutLγ promotes repeat expansion in a Fragile X mouse model while EXO1 is protective. PLoS Genet 2018; 14:e1007719. [PMID: 30312299 PMCID: PMC6200270 DOI: 10.1371/journal.pgen.1007719] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/24/2018] [Accepted: 09/26/2018] [Indexed: 12/19/2022] Open
Abstract
The Fragile X-related disorders (FXDs) are Repeat Expansion Diseases resulting from an expansion of a CGG-repeat tract at the 5’ end of the FMR1 gene. The mechanism responsible for this unusual mutation is not fully understood. We have previously shown that mismatch repair (MMR) complexes, MSH2/MSH3 (MutSβ) and MSH2/MSH6 (MutSα), together with Polβ, a DNA polymerase important for base excision repair (BER), are important for expansions in a mouse model of these disorders. Here we show that MLH1/MLH3 (MutLγ), a protein complex that can act downstream of MutSβ in MMR, is also required for all germ line and somatic expansions. However, exonuclease I (EXO1), which acts downstream of MutL proteins in MMR, is not required. In fact, a null mutation in Exo1 results in more extensive germ line and somatic expansions than is seen in Exo1+/+ animals. Furthermore, mice homozygous for a point mutation (D173A) in Exo1 that eliminates its nuclease activity but retains its native conformation, shows a level of expansion that is intermediate between Exo1+/+and Exo1-/- animals. Thus, our data suggests that expansion of the FX repeat in this mouse model occurs via a MutLγ-dependent, EXO1-independent pathway, with EXO1 protecting against expansion both in a nuclease-dependent and a nuclease-independent manner. Our data thus have implications for the expansion mechanism and add to our understanding of the genetic factors that may be modifiers of expansion risk in humans. The Fragile X-related disorders arise from expansion of a tandem repeat or microsatellite consisting of CGG-repeat units. The expansion mutation is not well understood, but our previous data suggests that MutSα and MutSβ, mismatch repair (MMR) proteins that normally protect the genome against microsatellite instability, are actually responsible for these mutations in a knockin mouse model of these disorders. In this manuscript we describe the role in expansion of two proteins that act downstream of the MutS proteins in MMR, MutLγ and EXO1. Our data suggests that expansion occurs via a MutLγ-dependent, EXO1-independent pathway, with EXO1 playing both a nuclease-dependent and a nuclease-independent role in preventing expansions.
Collapse
|
22
|
Sheppard EC, Morrish RB, Dillon MJ, Leyland R, Chahwan R. Epigenomic Modifications Mediating Antibody Maturation. Front Immunol 2018. [PMID: 29535729 PMCID: PMC5834911 DOI: 10.3389/fimmu.2018.00355] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epigenetic modifications, such as histone modifications, DNA methylation status, and non-coding RNAs (ncRNA), all contribute to antibody maturation during somatic hypermutation (SHM) and class-switch recombination (CSR). Histone modifications alter the chromatin landscape and, together with DNA primary and tertiary structures, they help recruit Activation-Induced Cytidine Deaminase (AID) to the immunoglobulin (Ig) locus. AID is a potent DNA mutator, which catalyzes cytosine-to-uracil deamination on single-stranded DNA to create U:G mismatches. It has been shown that alternate chromatin modifications, in concert with ncRNAs and potentially DNA methylation, regulate AID recruitment and stabilize DNA repair factors. We, hereby, assess the combination of these distinct modifications and discuss how they contribute to initiating differential DNA repair pathways at the Ig locus, which ultimately leads to enhanced antibody–antigen binding affinity (SHM) or antibody isotype switching (CSR). We will also highlight how misregulation of epigenomic regulation during DNA repair can compromise antibody development and lead to a number of immunological syndromes and cancer.
Collapse
Affiliation(s)
- Emily C Sheppard
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | | | - Michael J Dillon
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | | | - Richard Chahwan
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
23
|
Liu D, Frederiksen JH, Liberti SE, Lützen A, Keijzers G, Pena-Diaz J, Rasmussen LJ. Human DNA polymerase delta double-mutant D316A;E318A interferes with DNA mismatch repair in vitro. Nucleic Acids Res 2017; 45:9427-9440. [PMID: 28934474 PMCID: PMC5766205 DOI: 10.1093/nar/gkx611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 07/05/2017] [Indexed: 12/11/2022] Open
Abstract
DNA mismatch repair (MMR) is a highly-conserved DNA repair mechanism, whose primary role is to remove DNA replication errors preventing them from manifesting as mutations, thereby increasing the overall genome stability. Defects in MMR are associated with increased cancer risk in humans and other organisms. Here, we characterize the interaction between MMR and a proofreading-deficient allele of the human replicative DNA polymerase delta, PolδD316A;E318A, which has a higher capacity for strand displacement DNA synthesis than wild type Polδ. Human cell lines overexpressing PolδD316A;E318A display a mild mutator phenotype, while nuclear extracts of these cells exhibit reduced MMR activity in vitro, and these defects are complemented by overexpression or addition of exogenous human Exonuclease 1 (EXO1). By contrast, another proofreading-deficient mutant, PolδD515V, which has a weaker strand displacement activity, does not decrease the MMR activity as significantly as PolδD316A;E318A. In addition, PolδD515V does not increase the mutation frequency in MMR-proficient cells. Based on our findings, we propose that the proofreading activity restricts the strand displacement activity of Polδ in MMR. This contributes to maintain the nicks required for EXO1 entry, and in this manner ensures the dominance of the EXO1-dependent MMR pathway.
Collapse
Affiliation(s)
- Dekang Liu
- Center for Healthy Aging, University of Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Jane H Frederiksen
- Center for Healthy Aging, University of Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Sascha E Liberti
- Center for Healthy Aging, University of Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Anne Lützen
- Department of Science, Systems and Models, Roskilde University, Denmark
| | - Guido Keijzers
- Center for Healthy Aging, University of Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Javier Pena-Diaz
- Center for Healthy Aging, University of Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Lene Juel Rasmussen
- Center for Healthy Aging, University of Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| |
Collapse
|
24
|
Chen CC, Avdievich E, Zhang Y, Zhang Y, Wei K, Lee K, Edelmann W, Jasin M, LaRocque JR. EXO1 suppresses double-strand break induced homologous recombination between diverged sequences in mammalian cells. DNA Repair (Amst) 2017; 57:98-106. [PMID: 28711786 DOI: 10.1016/j.dnarep.2017.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 11/17/2022]
Abstract
DNA double-strand breaks (DSBs) can be repaired through several mechanisms, including homologous recombination (HR). While HR between identical sequences is robust in mammalian cells, HR between diverged sequences is suppressed by DNA mismatch-repair (MMR) components such as MSH2. Exonuclease I (EXO1) interacts with the MMR machinery and has been proposed to act downstream of the mismatch recognition proteins in mismatch correction. EXO1 has also been shown to participate in extensive DSB end resection, an initial step in the HR pathway. To assess the contribution of EXO1 to HR in mammalian cells, DSB-inducible reporters were introduced into Exo1-/- mouse embryonic stem cells, including a novel GFP reporter containing several silent polymorphisms to monitor HR between diverged sequences. Compared to HR between identical sequences which was not clearly affected, HR between diverged sequences was substantially increased in Exo1-/- cells although to a lesser extent than seen in Msh2-/- cells. Thus, like canonical MMR proteins, EXO1 can restrain aberrant HR events between diverged sequence elements in the genome.
Collapse
Affiliation(s)
- Chun-Chin Chen
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY, 10065, USA
| | - Elena Avdievich
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, 10461, USA
| | - Yongwei Zhang
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, 10461, USA
| | - Yu Zhang
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Kaichun Wei
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, 10461, USA
| | - Kyeryoung Lee
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, 10461, USA
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, 10461, USA.
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA.
| | - Jeannine R LaRocque
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA; Department of Human Science, Georgetown University Medical Center, 3700 Reservoir Rd. NW, Washington, D.C., 20057, USA.
| |
Collapse
|
25
|
Li R, Gu J, Heymach JV, Shu X, Zhao L, Han B, Ye Y, Roth J, Wu X. Hypoxia pathway genetic variants predict survival of non-small-cell lung cancer patients receiving platinum-based chemotherapy. Carcinogenesis 2017; 38:419-424. [PMID: 28186269 DOI: 10.1093/carcin/bgx014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 02/03/2017] [Indexed: 12/19/2022] Open
Abstract
Hypoxia is a hallmark of solid tumors and has been implicated in the development of advanced disease and poor clinical outcome. In this multi-stage study, we aimed to assess whether genetic variations in hypoxia pathway genes might affect overall survival (OS) in patients with advanced-stage non-small cell lung cancer (NSCLC). We genotyped 598 potentially functional and tagging single nucleotide polymorphisms (SNPs) in 42 genes of the hypoxia pathway in 602 advanced stage NSCLC patients who received platinum-based chemotherapy or chemoradiation (discovery phase). Significant SNPs were validated in an additional 278 advanced stage patients (validation phase). Cox proportional hazard regression analysis was used to evaluate the association of each SNP with OS. Results showed in chemotherapy only group the median survival time (MST) of NSCLC patients with RPA1: rs2270412 AA+GA genotype versus GG genotype was 10.5 versus 12.7 month [P = 0.004, hazard ratio (HR) = 1.42, 95% CI: 1.16-1.74, combined set]. The MST of patients with EXO1: rs9350 GA+AA genotype versus GG genotypes was 13.2 months versus 11.5 months (P = 0.009, HR = 0.70, 95% CI: 0.56-0.87, combined set). Patients harboring two unfavorable genotypes had a 2.02-fold increased risk of death (P = 3.16E-6) and chemoradiation would improve survival for them (HR = 0.75, 95% CI: 0.51-1.10, P = 0.27, combined set). The MST for patients with 0, 1, and 2 unfavorable genotypes was 13.2, 12.7 and 8.9 months, respectively (P = 0.0002, combined set). In summary, two variants in RPA1 and EXO1 were associated with poor survival in NSCLC patients treated by platinum-based chemotherapy. Adding radiotherapy could improve survival in patients harboring these risk genotypes.
Collapse
Affiliation(s)
- Rong Li
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China.,Department of Epidemiology
| | | | - John V Heymach
- Department of Thoracic/Head and Neck Med Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Lina Zhao
- Department of Epidemiology.,The Fourth Military Medical University, XiAn 710032, China and
| | - Baohui Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | | | - Jack Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
26
|
Methot S, Di Noia J. Molecular Mechanisms of Somatic Hypermutation and Class Switch Recombination. Adv Immunol 2017; 133:37-87. [DOI: 10.1016/bs.ai.2016.11.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
27
|
Prasad R, Poltoratsky V, Hou EW, Wilson SH. Rev1 is a base excision repair enzyme with 5'-deoxyribose phosphate lyase activity. Nucleic Acids Res 2016; 44:10824-10833. [PMID: 27683219 PMCID: PMC5159550 DOI: 10.1093/nar/gkw869] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/16/2016] [Accepted: 09/21/2016] [Indexed: 12/28/2022] Open
Abstract
Rev1 is a member of the Y-family of DNA polymerases and is known for its deoxycytidyl transferase activity that incorporates dCMP into DNA and its ability to function as a scaffold factor for other Y-family polymerases in translesion bypass events. Rev1 also is involved in mutagenic processes during somatic hypermutation of immunoglobulin genes. In light of the mutation pattern consistent with dCMP insertion observed earlier in mouse fibroblast cells treated with a base excision repair-inducing agent, we questioned whether Rev1 could also be involved in base excision repair (BER). Here, we uncovered a weak 5′-deoxyribose phosphate (5′-dRP) lyase activity in mouse Rev1 and demonstrated the enzyme can mediate BER in vitro. The full-length Rev1 protein and its catalytic core domain are similar in their ability to support BER in vitro. The dRP lyase activity in both of these proteins was confirmed by NaBH4 reduction of the Schiff base intermediate and kinetics studies. Limited proteolysis, mass spectrometry and deletion analysis localized the dRP lyase active site to the C-terminal segment of Rev1's catalytic core domain. These results suggest that Rev1 could serve as a backup polymerase in BER and could potentially contribute to AID-initiated antibody diversification through this activity.
Collapse
Affiliation(s)
- Rajendra Prasad
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F3-01, Research Triangle Park, NC 27709, USA
| | - Vladimir Poltoratsky
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F3-01, Research Triangle Park, NC 27709, USA
| | - Esther W Hou
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F3-01, Research Triangle Park, NC 27709, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F3-01, Research Triangle Park, NC 27709, USA
| |
Collapse
|
28
|
Keijzers G, Liu D, Rasmussen LJ. Exonuclease 1 and its versatile roles in DNA repair. Crit Rev Biochem Mol Biol 2016; 51:440-451. [PMID: 27494243 DOI: 10.1080/10409238.2016.1215407] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Exonuclease 1 (EXO1) is a multifunctional 5' → 3' exonuclease and a DNA structure-specific DNA endonuclease. EXO1 plays roles in DNA replication, DNA mismatch repair (MMR) and DNA double-stranded break repair (DSBR) in lower and higher eukaryotes and contributes to meiosis, immunoglobulin maturation, and micro-mediated end-joining in higher eukaryotes. In human cells, EXO1 is also thought to play a role in telomere maintenance. Mutations in the human EXO1 gene correlate with increased susceptibility to some cancers. This review summarizes recent studies on the enzymatic functions and biological roles of EXO1, its possible protective role against cancer and aging, and regulation of EXO1 by posttranslational modification.
Collapse
Affiliation(s)
- Guido Keijzers
- a Department of Cellular and Molecular Medicine , Center for Healthy Aging, University of Copenhagen , Copenhagen , Denmark
| | - Dekang Liu
- a Department of Cellular and Molecular Medicine , Center for Healthy Aging, University of Copenhagen , Copenhagen , Denmark
| | - Lene Juel Rasmussen
- a Department of Cellular and Molecular Medicine , Center for Healthy Aging, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
29
|
Takeda S, Hoa NN, Sasanuma H. The role of the Mre11-Rad50-Nbs1 complex in double-strand break repair-facts and myths. JOURNAL OF RADIATION RESEARCH 2016; 57 Suppl 1:i25-i32. [PMID: 27311583 PMCID: PMC4990115 DOI: 10.1093/jrr/rrw034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/16/2016] [Accepted: 02/23/2016] [Indexed: 06/06/2023]
Abstract
Homologous recombination (HR) initiates double-strand break (DSB) repair by digesting 5'-termini at DSBs, the biochemical reaction called DSB resection, during which DSBs are processed by nucleases to generate 3' single-strand DNA. Rad51 recombinase polymerizes along resected DNA, and the resulting Rad51-DNA complex undergoes homology search. Although DSB resection by the Mre11 nuclease plays a critical role in HR in Saccharomyces cerevisiae, it remains elusive whether DSB resection by Mre11 significantly contributes to HR-dependent DSB repair in mammalian cells. Depletion of Mre11 decreases the efficiency of DSB resection only by 2- to 3-fold in mammalian cells. We show that although Mre11 is required for efficient HR-dependent repair of ionizing-radiation-induced DSBs, Mre11 is largely dispensable for DSB resection in both chicken DT40 and human TK6 B cell lines. Moreover, a 2- to 3-fold decrease in DSB resection has virtually no impact on the efficiency of HR. Thus, although a large number of researchers have reported the vital role of Mre11-mediated DSB resection in HR, the role may not explain the very severe defect in HR in Mre11-deficient cells, including their lethality. We here show experimental evidence for the additional roles of Mre11 in (i) elimination of chemical adducts from DSB ends for subsequent DSB repair, and (ii) maintaining HR intermediates for their proper resolution.
Collapse
Affiliation(s)
- Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Nguyen Ngoc Hoa
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
30
|
Paudyal SC, You Z. Sharpening the ends for repair: mechanisms and regulation of DNA resection. Acta Biochim Biophys Sin (Shanghai) 2016; 48:647-57. [PMID: 27174871 DOI: 10.1093/abbs/gmw043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/12/2016] [Indexed: 12/23/2022] Open
Abstract
DNA end resection is a key process in the cellular response to DNA double-strand break damage that is essential for genome maintenance and cell survival. Resection involves selective processing of 5' ends of broken DNA to generate ssDNA overhangs, which in turn control both DNA repair and checkpoint signaling. DNA resection is the first step in homologous recombination-mediated repair and a prerequisite for the activation of the ataxia telangiectasia mutated and Rad3-related (ATR)-dependent checkpoint that coordinates repair with cell cycle progression and other cellular processes. Resection occurs in a cell cycle-dependent manner and is regulated by multiple factors to ensure an optimal amount of ssDNA required for proper repair and genome stability. Here, we review the latest findings on the molecular mechanisms and regulation of the DNA end resection process and their implications for cancer formation and treatment.
Collapse
Affiliation(s)
- Sharad C Paudyal
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
31
|
End-processing nucleases and phosphodiesterases: An elite supporting cast for the non-homologous end joining pathway of DNA double-strand break repair. DNA Repair (Amst) 2016; 43:57-68. [PMID: 27262532 DOI: 10.1016/j.dnarep.2016.05.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 11/20/2022]
Abstract
Nonhomologous end joining (NHEJ) is an error-prone DNA double-strand break repair pathway that is active throughout the cell cycle. A substantial fraction of NHEJ repair events show deletions and, less often, insertions in the repair joints, suggesting an end-processing step comprising the removal of mismatched or damaged nucleotides by nucleases and other phosphodiesterases, as well as subsequent strand extension by polymerases. A wide range of nucleases, including Artemis, Metnase, APLF, Mre11, CtIP, APE1, APE2 and WRN, are biochemically competent to carry out such double-strand break end processing, and have been implicated in NHEJ by at least circumstantial evidence. Several additional DNA end-specific phosphodiesterases, including TDP1, TDP2 and aprataxin are available to resolve various non-nucleotide moieties at DSB ends. This review summarizes the biochemical specificities of these enzymes and the evidence for their participation in the NHEJ pathway.
Collapse
|
32
|
Li Z, Pearlman AH, Hsieh P. DNA mismatch repair and the DNA damage response. DNA Repair (Amst) 2016; 38:94-101. [PMID: 26704428 PMCID: PMC4740233 DOI: 10.1016/j.dnarep.2015.11.019] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/17/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022]
Abstract
This review discusses the role of DNA mismatch repair (MMR) in the DNA damage response (DDR) that triggers cell cycle arrest and, in some cases, apoptosis. Although the focus is on findings from mammalian cells, much has been learned from studies in other organisms including bacteria and yeast [1,2]. MMR promotes a DDR mediated by a key signaling kinase, ATM and Rad3-related (ATR), in response to various types of DNA damage including some encountered in widely used chemotherapy regimes. An introduction to the DDR mediated by ATR reveals its immense complexity and highlights the many biological and mechanistic questions that remain. Recent findings and future directions are highlighted.
Collapse
Affiliation(s)
- Zhongdao Li
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 5 Rm. 324, 5 Memorial Dr. MSC 0538, Bethesda, MD 20892-0538, USA
| | - Alexander H Pearlman
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 5 Rm. 324, 5 Memorial Dr. MSC 0538, Bethesda, MD 20892-0538, USA
| | - Peggy Hsieh
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 5 Rm. 324, 5 Memorial Dr. MSC 0538, Bethesda, MD 20892-0538, USA.
| |
Collapse
|
33
|
Zanotti KJ, Gearhart PJ. Antibody diversification caused by disrupted mismatch repair and promiscuous DNA polymerases. DNA Repair (Amst) 2016; 38:110-116. [PMID: 26719140 PMCID: PMC4740194 DOI: 10.1016/j.dnarep.2015.11.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/30/2015] [Indexed: 10/25/2022]
Abstract
The enzyme activation-induced deaminase (AID) targets the immunoglobulin loci in activated B cells and creates DNA mutations in the antigen-binding variable region and DNA breaks in the switch region through processes known, respectively, as somatic hypermutation and class switch recombination. AID deaminates cytosine to uracil in DNA to create a U:G mismatch. During somatic hypermutation, the MutSα complex binds to the mismatch, and the error-prone DNA polymerase η generates mutations at A and T bases. During class switch recombination, both MutSα and MutLα complexes bind to the mismatch, resulting in double-strand break formation and end-joining. This review is centered on the mechanisms of how the MMR pathway is commandeered by B cells to generate antibody diversity.
Collapse
Affiliation(s)
- Kimberly J Zanotti
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
34
|
Variation analysis of EXO1 gene in Chinese patients with premature ovarian failure. Reprod Biomed Online 2016; 32:329-33. [PMID: 26774993 DOI: 10.1016/j.rbmo.2015.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 12/01/2015] [Accepted: 12/10/2015] [Indexed: 11/22/2022]
Abstract
Exonuclease 1 (EXO1) is required for both DNA repair and meiosis. Inactivation of EXO1 gene in mice leads to infertility. This study aimed to investigate whether variants in the EXO1 gene contribute to human premature ovarian failure (POF). The coding region of EXO1 was sequenced in 186 Han Chinese patients with non-syndromic POF. No plausible mutation was detected. The results suggest that mutations in the coding region of EXO1 may not be responsible for POF in Han Chinese women.
Collapse
|
35
|
Hoa NN, Akagawa R, Yamasaki T, Hirota K, Sasa K, Natsume T, Kobayashi J, Sakuma T, Yamamoto T, Komatsu K, Kanemaki MT, Pommier Y, Takeda S, Sasanuma H. Relative contribution of four nucleases, CtIP, Dna2, Exo1 and Mre11, to the initial step of DNA double-strand break repair by homologous recombination in both the chicken DT40 and human TK6 cell lines. Genes Cells 2015; 20:1059-76. [PMID: 26525166 DOI: 10.1111/gtc.12310] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/27/2015] [Indexed: 01/26/2023]
Abstract
Homologous recombination (HR) is initiated by double-strand break (DSB) resection, during which DSBs are processed by nucleases to generate 3' single-strand DNA. DSB resection is initiated by CtIP and Mre11 followed by long-range resection by Dna2 and Exo1 in Saccharomyces cerevisiae. To analyze the relative contribution of four nucleases, CtIP, Mre11, Dna2 and Exo1, to DSB resection, we disrupted genes encoding these nucleases in chicken DT40 cells. CtIP and Dna2 are required for DSB resection, whereas Exo1 is dispensable even in the absence of Dna2, which observation agrees with no developmental defect in Exo1-deficient mice. Despite the critical role of Mre11 in DSB resection in S. cerevisiae, loss of Mre11 only modestly impairs DSB resection in DT40 cells. To further test the role of CtIP and Mre11 in other species, we conditionally disrupted CtIP and MRE11 genes in the human TK6 B cell line. As with DT40 cells, CtIP contributes to DSB resection considerably more significantly than Mre11 in TK6 cells. Considering the critical role of Mre11 in HR, this study suggests that Mre11 is involved in a mechanism other than DSB resection. In summary, CtIP and Dna2 are sufficient for DSB resection to ensure efficient DSB repair by HR.
Collapse
Affiliation(s)
- Nguyen Ngoc Hoa
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Remi Akagawa
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tomomi Yamasaki
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kouji Hirota
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kentaro Sasa
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Toyoaki Natsume
- Centre for Frontier Research, National Institute of Genetics, ROIS, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Junya Kobayashi
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | - Kenshi Komatsu
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masato T Kanemaki
- Centre for Frontier Research, National Institute of Genetics, ROIS, Yata 1111, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, SOKENDAI, Yata 1111, Mishima, Shizuoka, 411-8540, Japan.,JST, PREST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
36
|
Haney SL, Hlady RA, Opavska J, Klinkebiel D, Pirruccello SJ, Dutta S, Datta K, Simpson MA, Wu L, Opavsky R. Methylation-independent repression of Dnmt3b contributes to oncogenic activity of Dnmt3a in mouse MYC-induced T-cell lymphomagenesis. Oncogene 2015; 34:5436-5446. [PMID: 25639876 PMCID: PMC4533871 DOI: 10.1038/onc.2014.472] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/28/2014] [Accepted: 11/25/2014] [Indexed: 12/16/2022]
Abstract
DNA methyltransferase 3A (DNMT3A) catalyzes cytosine methylation of mammalian genomic DNA. In addition to myeloid malignancies, mutations in DNMT3A have been recently reported in T-cell lymphoma and leukemia, implying a possible involvement in the pathogenesis of human diseases. However, the role of Dnmt3a in T-cell transformation in vivo is poorly understood. Here we analyzed the functional consequences of Dnmt3a inactivation in a mouse model of MYC-induced T-cell lymphomagenesis (MTCL). Loss of Dnmt3a delayed tumorigenesis by suppressing cellular proliferation during disease progression. Gene expression profiling and pathway analysis identified upregulation of 17 putative tumor suppressor genes, including DNA methyltransferase Dnmt3b, in Dnmt3a-deficient lymphomas as molecular events potentially responsible for the delayed lymphomagenesis in Dnmt3a(Δ/Δ) mice. Interestingly, promoter and gene body methylation of these genes was not substantially changed between control and Dnmt3a-deficient lymphomas, suggesting that Dnmt3a may inhibit their expression in a methylation-independent manner. Re-expression of both wild type and catalytically inactive Dnmt3a in Dnmt3a(Δ/Δ) lymphoma cells in vitro inhibited Dnmt3b expression, indicating that Dnmt3b upregulation may be directly repressed by Dnmt3a. Importantly, genetic inactivation of Dnmt3b accelerated lymphomagenesis in Dnmt3a(Δ/Δ) mice, demonstrating that upregulation of Dnmt3b is a relevant molecular change in Dnmt3a-deficient lymphomas that inhibits disease progression. Collectively, our data demonstrate an unexpected oncogenic role for Dnmt3a in MTCL through methylation-independent repression of Dnmt3b and possibly other tumor suppressor genes.
Collapse
Affiliation(s)
- Staci L. Haney
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ryan A. Hlady
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jana Opavska
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - David Klinkebiel
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Samuel J. Pirruccello
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Melanie A. Simpson
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska, USA
| | - Lizhao Wu
- Department of Microbiology and Molecular Genetics, Rutgers New Jersey Medical School-Cancer Center, Newark, NJ, USA
| | - Rene Opavsky
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Center for Lymphoma and Leukemia Research, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
37
|
Lukaszewicz A, Shodhan A, Loidl J. Exo1 and Mre11 execute meiotic DSB end resection in the protist Tetrahymena. DNA Repair (Amst) 2015; 35:137-43. [PMID: 26519827 DOI: 10.1016/j.dnarep.2015.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/26/2015] [Accepted: 08/26/2015] [Indexed: 01/09/2023]
Abstract
The resection of 5'-DNA ends at a double-strand break (DSB) is an essential step in recombinational repair, as it exposes 3' single-stranded DNA (ssDNA) tails for interaction with a repair template. In mitosis, Exo1 and Sgs1 have a conserved function in the formation of long ssDNA tails, whereas this step in the processing of programmed meiotic DSBs is less well-characterized across model organisms. In budding yeast, which has been most intensely studied in this respect, Exo1 is a major meiotic nuclease. In addition, it exerts a nuclease-independent function later in meiosis in the conversion of DNA joint molecules into ZMM-dependent crossovers. In order to gain insight into the diverse meiotic roles of Exo1, we investigated the effect of Exo1 deletion in the ciliated protist Tetrahymena. We found that Exo1 together with Mre11, but without the help of Sgs1, promotes meiotic DSB end resection. Resection is completely eliminated only if both Mre11 and Exo1 are missing. This is consistent with the yeast model where Mre11 promotes resection in the 3'-5' direction and Exo1 in the opposite 5'-3' direction. However, while the endonuclease activity of Mre11 is essential to create an entry site for exonucleases and hence to start resection in budding yeast, Tetrahymena Exo1 is able to create single-stranded DNA in the absence of Mre11. Excluding a possible contribution of the Mre11 cofactor Sae2 (Com1) as an autonomous endonuclease, we conclude that there exists another unknown nuclease that initiates DSB processing in Tetrahymena. Consistent with the absence of the ZMM crossover pathway in Tetrahymena, crossover formation is independent of Exo1.
Collapse
Affiliation(s)
- Agnieszka Lukaszewicz
- Department of Chromosome Biology, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Anura Shodhan
- Department of Chromosome Biology, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Josef Loidl
- Department of Chromosome Biology, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria.
| |
Collapse
|
38
|
Traver S, Coulombe P, Peiffer I, Hutchins J, Kitzmann M, Latreille D, Méchali M. MCM9 Is Required for Mammalian DNA Mismatch Repair. Mol Cell 2015; 59:831-9. [DOI: 10.1016/j.molcel.2015.07.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/23/2015] [Accepted: 07/15/2015] [Indexed: 10/23/2022]
|
39
|
Rein K, Yanez DA, Terré B, Palenzuela L, Aivio S, Wei K, Edelmann W, Stark JM, Stracker TH. EXO1 is critical for embryogenesis and the DNA damage response in mice with a hypomorphic Nbs1 allele. Nucleic Acids Res 2015; 43:7371-87. [PMID: 26160886 PMCID: PMC4551929 DOI: 10.1093/nar/gkv691] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/25/2015] [Indexed: 12/15/2022] Open
Abstract
The maintenance of genome stability is critical for the suppression of diverse human pathologies that include developmental disorders, premature aging, infertility and predisposition to cancer. The DNA damage response (DDR) orchestrates the appropriate cellular responses following the detection of lesions to prevent genomic instability. The MRE11 complex is a sensor of DNA double strand breaks (DSBs) and plays key roles in multiple aspects of the DDR, including DNA end resection that is critical for signaling and DNA repair. The MRE11 complex has been shown to function both upstream and in concert with the 5′-3′ exonuclease EXO1 in DNA resection, but it remains unclear to what extent EXO1 influences DSB responses independently of the MRE11 complex. Here we examine the genetic relationship of the MRE11 complex and EXO1 during mammalian development and in response to DNA damage. Deletion of Exo1 in mice expressing a hypomorphic allele of Nbs1 leads to severe developmental impairment, embryonic death and chromosomal instability. While EXO1 plays a minimal role in normal cells, its loss strongly influences DNA replication, DNA repair, checkpoint signaling and damage sensitivity in NBS1 hypomorphic cells. Collectively, our results establish a key role for EXO1 in modulating the severity of hypomorphic MRE11 complex mutations.
Collapse
Affiliation(s)
- Katrin Rein
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona 08028, Spain
| | - Diana A Yanez
- Department of Radiation Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Berta Terré
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona 08028, Spain
| | - Lluís Palenzuela
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona 08028, Spain
| | - Suvi Aivio
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona 08028, Spain
| | - Kaichun Wei
- Albert Einstein College of Medicine, Department of Cell Biology, Bronx, NY 10461, USA
| | - Winfried Edelmann
- Albert Einstein College of Medicine, Department of Cell Biology, Bronx, NY 10461, USA
| | - Jeremy M Stark
- Department of Radiation Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona 08028, Spain
| |
Collapse
|
40
|
Chen X, Kim IK, Honaker Y, Paudyal SC, Koh WK, Sparks M, Li S, Piwnica-Worms H, Ellenberger T, You Z. 14-3-3 proteins restrain the Exo1 nuclease to prevent overresection. J Biol Chem 2015; 290:12300-12. [PMID: 25833945 PMCID: PMC4424361 DOI: 10.1074/jbc.m115.644005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/31/2015] [Indexed: 11/06/2022] Open
Abstract
The DNA end resection process dictates the cellular response to DNA double strand break damage and is essential for genome maintenance. Although insufficient DNA resection hinders homology-directed repair and ATR (ataxia telangiectasia and Rad3 related)-dependent checkpoint activation, overresection produces excessive single-stranded DNA that could lead to genomic instability. However, the mechanisms controlling DNA end resection are poorly understood. Here we show that the major resection nuclease Exo1 is regulated both positively and negatively by protein-protein interactions to ensure a proper level of DNA resection. We have shown previously that the sliding DNA clamp proliferating cell nuclear antigen (PCNA) associates with the C-terminal domain of Exo1 and promotes Exo1 damage association and DNA resection. In this report, we show that 14-3-3 proteins interact with a central region of Exo1 and negatively regulate Exo1 damage recruitment and subsequent resection. 14-3-3s limit Exo1 damage association, at least in part, by suppressing its association with PCNA. Disruption of the Exo1 interaction with 14-3-3 proteins results in elevated sensitivity of cells to DNA damage. Unlike Exo1, the Dna2 resection pathway is apparently not regulated by PCNA and 14-3-3s. Our results provide critical insights into the mechanism and regulation of the DNA end resection process and may have implications for cancer treatment.
Collapse
Affiliation(s)
- Xiaoqing Chen
- From the Departments of Cell Biology and Physiology and
| | - In-Kwon Kim
- Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110 and
| | - Yuchi Honaker
- From the Departments of Cell Biology and Physiology and
| | | | - Won Kyun Koh
- From the Departments of Cell Biology and Physiology and
| | | | - Shan Li
- From the Departments of Cell Biology and Physiology and
| | - Helen Piwnica-Worms
- From the Departments of Cell Biology and Physiology and the Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77230
| | - Tom Ellenberger
- Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110 and
| | | |
Collapse
|
41
|
Human exonuclease 1 (EXO1) activity characterization and its function on flap structures. Biosci Rep 2015; 35:BSR20150058. [PMID: 26182368 PMCID: PMC4613700 DOI: 10.1042/bsr20150058] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/24/2015] [Indexed: 11/26/2022] Open
Abstract
We report biochemical characterization of human full-length EXO1 including thermodynamic stability and flap activity on DNA flap structures. Our results reveal novel mechanistic insights into the processing of flap structures and a possible role of EXO1 in strand displacement. Human exonuclease 1 (EXO1) is involved in multiple DNA metabolism processes, including DNA repair and replication. Most of the fundamental roles of EXO1 have been described in yeast. Here, we report a biochemical characterization of human full-length EXO1. Prior to assay EXO1 on different DNA flap structures, we determined factors essential for the thermodynamic stability of EXO1. We show that enzymatic activity and stability of EXO1 on DNA is modulated by temperature. By characterization of EXO1 flap activity using various DNA flap substrates, we show that EXO1 has a strong capacity for degrading double stranded DNA and has a modest endonuclease or 5′ flap activity. Furthermore, we report novel mechanistic insights into the processing of flap structures, showing that EXO1 preferentially cleaves one nucleotide inwards in a double stranded region of a forked and nicked DNA flap substrates, suggesting a possible role of EXO1 in strand displacement.
Collapse
|
42
|
Stavnezer J, Schrader CE. IgH chain class switch recombination: mechanism and regulation. THE JOURNAL OF IMMUNOLOGY 2015; 193:5370-8. [PMID: 25411432 DOI: 10.4049/jimmunol.1401849] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
IgH class switching occurs rapidly after activation of mature naive B cells, resulting in a switch from expression of IgM and IgD to expression of IgG, IgE, or IgA; this switch improves the ability of Abs to remove the pathogen that induces the humoral immune response. Class switching occurs by a deletional recombination between two switch regions, each of which is associated with a H chain constant region gene. Class switch recombination (CSR) is instigated by activation-induced cytidine deaminase, which converts cytosines in switch regions to uracils. The uracils are subsequently removed by two DNA-repair pathways, resulting in mutations, single-strand DNA breaks, and the double-strand breaks required for CSR. We discuss several aspects of CSR, including how CSR is induced, CSR in B cell progenitors, the roles of transcription and chromosomal looping in CSR, and the roles of certain DNA-repair enzymes in CSR.
Collapse
Affiliation(s)
- Janet Stavnezer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605
| | - Carol E Schrader
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
43
|
Subramanian VV, Hochwagen A. The meiotic checkpoint network: step-by-step through meiotic prophase. Cold Spring Harb Perspect Biol 2014; 6:a016675. [PMID: 25274702 DOI: 10.1101/cshperspect.a016675] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The generation of haploid gametes by meiosis is a highly conserved process for sexually reproducing organisms that, in almost all cases, involves the extensive breakage of chromosomes. These chromosome breaks occur during meiotic prophase and are essential for meiotic recombination as well as the subsequent segregation of homologous chromosomes. However, their formation and repair must be carefully monitored and choreographed with nuclear dynamics and the cell division program to avoid the creation of aberrant chromosomes and defective gametes. It is becoming increasingly clear that an intricate checkpoint-signaling network related to the canonical DNA damage response is deeply interwoven with the meiotic program and preserves order during meiotic prophase. This meiotic checkpoint network (MCN) creates a wide range of dependent relationships controlling chromosome movement, chromosome pairing, chromatin structure, and double-strand break (DSB) repair. In this review, we summarize our current understanding of the MCN. We discuss commonalities and differences in different experimental systems, with a particular emphasis on the emerging design principles that control and limit cross talk between signals to ultimately ensure the faithful inheritance of chromosomes by the next generation.
Collapse
Affiliation(s)
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, New York 10003
| |
Collapse
|
44
|
Desai A, Qing Y, Gerson SL. Exonuclease 1 is a critical mediator of survival during DNA double strand break repair in nonquiescent hematopoietic stem and progenitor cells. Stem Cells 2014; 32:582-93. [PMID: 24420907 DOI: 10.1002/stem.1596] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/11/2013] [Accepted: 09/28/2013] [Indexed: 12/13/2022]
Abstract
Hematopoietic stem cell (HSC) populations require DNA repair pathways to maintain their long-term survival and reconstitution capabilities, but mediators of these processes are still being elucidated. Exonuclease 1 (Exo1) participates in homologous recombination (HR) and Exo1 loss results in impaired 5' HR end resection. We use cultured Exo1(mut) fibroblasts and bone marrow to demonstrate that loss of Exo1 function results in defective HR in cycling cells. Conversely, in Exo1(mut) mice HR is not required for maintenance of quiescent HSCs at steady state, confirming the steady state HSC reliance on nonhomologous end joining (NHEJ). Exo1(mut) mice sustained serial repopulation, displayed no defect in competitive repopulation or niche occupancy, and exhibited no increased sensitivity to whole body ionizing radiation. However, when Exo1(mut) HSCs were pushed into cell cycle in vivo with 5-fluorouracil or poly IC, the hematopoietic population became hypersensitive to IR, resulting in HSC defects and animal death. We propose Exo1-mediated HR is dispensable for stem cell function in quiescent HSC, whereas it is essential to HSC response to DNA damage processing after cell cycle entry, and its loss is not compensated by intact NHEJ. In HSCs, the maintenance of stem cell function after DNA damage is dependent on the DNA repair capacity, segregated by active versus quiescent points in cell cycle.
Collapse
Affiliation(s)
- Amar Desai
- Department of Pharmacology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, USA; Division of Hematology/Oncology, National Center for Regenerative Medicine, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, USA; Case Comprehensive Cancer Center, Seidman Cancer Center, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | | | | |
Collapse
|
45
|
Desai A, Gerson S. Exo1 independent DNA mismatch repair involves multiple compensatory nucleases. DNA Repair (Amst) 2014; 21:55-64. [PMID: 25037770 PMCID: PMC5944346 DOI: 10.1016/j.dnarep.2014.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 05/07/2014] [Accepted: 06/11/2014] [Indexed: 11/18/2022]
Abstract
Functional DNA mismatch repair (MMR) is essential for maintaining the fidelity of DNA replication and genetic stability. In hematopoiesis, loss of MMR results in methylating agent resistance and a hematopoietic stem cell (HSC) repopulation defect. Additionally MMR failure is associated with a variety of human malignancies, notably Lynch syndrome. We focus on the 5'→3' exonuclease Exo1, the primary enzyme excising the nicked strand during MMR, preceding polymerase synthesis. We found that nuclease dead Exo1 mutant cells are sensitive to the O6-methylguanine alkylating agent temozolomide when given with the MGMT inactivator, O6benzylguanine (BG). Additionally we used an MMR reporter plasmid to verify that Exo1(mut) MEFs were able to repair G:T base mismatches in vitro. We showed that unlike other MMR deficient mouse models, Exo1(mut) mouse HSC did not gain a competitive survival advantage post temozolomide/BG treatment in vivo. To determine potential nucleases implicated in MMR in the absence of Exo1 nuclease activity, but in the presence of the inactive protein, we performed gene expression analyses of several mammalian nucleases in WT and Exo1(mut) MEFs before and after temozolomide treatment and identified upregulation of Artemis, Fan1, and Mre11. Partial shRNA mediated silencing of each of these in Exo1(mut) cells resulted in decreased MMR capacity and increased resistance to temozolomide/BG. We propose that nuclease function is required for fully functional MMR, but a portfolio of nucleases is able to compensate for loss of Exo1 nuclease activity to maintain proficiency.
Collapse
Affiliation(s)
- Amar Desai
- Department of Pharmacology, University Hospitals Seidman Cancer Center and Case Western Reserve University, United States; Division of Hematology/Oncology, Center of Stem Cell and Regenerative Medicine, University Hospitals Seidman Cancer Center and Case Western Reserve University, United States
| | - Stanton Gerson
- Department of Pharmacology, University Hospitals Seidman Cancer Center and Case Western Reserve University, United States; Division of Hematology/Oncology, Center of Stem Cell and Regenerative Medicine, University Hospitals Seidman Cancer Center and Case Western Reserve University, United States; Case Comprehensive Cancer Center, University Hospitals Seidman Cancer Center and Case Western Reserve University, United States.
| |
Collapse
|
46
|
Differential expression of APE1 and APE2 in germinal centers promotes error-prone repair and A:T mutations during somatic hypermutation. Proc Natl Acad Sci U S A 2014; 111:9217-22. [PMID: 24927551 DOI: 10.1073/pnas.1405590111] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Somatic hypermutation (SHM) of antibody variable region genes is initiated in germinal center B cells during an immune response by activation-induced cytidine deaminase (AID), which converts cytosines to uracils. During accurate repair in nonmutating cells, uracil is excised by uracil DNA glycosylase (UNG), leaving abasic sites that are incised by AP endonuclease (APE) to create single-strand breaks, and the correct nucleotide is reinserted by DNA polymerase β. During SHM, for unknown reasons, repair is error prone. There are two APE homologs in mammals and, surprisingly, APE1, in contrast to its high expression in both resting and in vitro-activated splenic B cells, is expressed at very low levels in mouse germinal center B cells where SHM occurs, and APE1 haploinsufficiency has very little effect on SHM. In contrast, the less efficient homolog, APE2, is highly expressed and contributes not only to the frequency of mutations, but also to the generation of mutations at A:T base pair (bp), insertions, and deletions. In the absence of both UNG and APE2, mutations at A:T bp are dramatically reduced. Single-strand breaks generated by APE2 could provide entry points for exonuclease recruited by the mismatch repair proteins Msh2-Msh6, and the known association of APE2 with proliferating cell nuclear antigen could recruit translesion polymerases to create mutations at AID-induced lesions and also at A:T bp. Our data provide new insight into error-prone repair of AID-induced lesions, which we propose is facilitated by down-regulation of APE1 and up-regulation of APE2 expression in germinal center B cells.
Collapse
|
47
|
Shao H, Baitinger C, Soderblom EJ, Burdett V, Modrich P. Hydrolytic function of Exo1 in mammalian mismatch repair. Nucleic Acids Res 2014; 42:7104-12. [PMID: 24829455 PMCID: PMC4066806 DOI: 10.1093/nar/gku420] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genetic and biochemical studies have previously implicated exonuclease 1 (Exo1) in yeast and mammalian mismatch repair, with results suggesting that function of the protein in the reaction depends on both its hydrolytic activity and its ability to interact with other components of the repair system. However, recent analysis of an Exo1-E109K knockin mouse has concluded that Exo1 function in mammalian mismatch repair is restricted to a structural role, a conclusion based on a prior report that N-terminal His-tagged Exo1-E109K is hydrolytically defective. Because Glu-109 is distant from the nuclease hydrolytic center, we have compared the activity of untagged full-length Exo1-E109K with that of wild type Exo1 and the hydrolytically defective active site mutant Exo1-D173A. We show that the activity of Exo1-E109K is comparable to that of wild type enzyme in a conventional exonuclease assay and that in contrast to a D173A active site mutant, Exo1-E109K is fully functional in mismatch-provoked excision and repair. We conclude that the catalytic function of Exo1 is required for its participation in mismatch repair. We also consider the other phenotypes of the Exo1-E109K mouse in the context of Exo1 hydrolytic function.
Collapse
Affiliation(s)
- Hongbing Shao
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Celia Baitinger
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Erik J Soderblom
- Proteomics Core Facility, Duke University Medical Center, Durham, NC 27710, USA
| | - Vickers Burdett
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Paul Modrich
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
48
|
Bregenhorn S, Jiricny J. Biochemical characterization of a cancer-associated E109K missense variant of human exonuclease 1. Nucleic Acids Res 2014; 42:7096-103. [PMID: 24829445 PMCID: PMC4066805 DOI: 10.1093/nar/gku419] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations in the mismatch repair (MMR) genes MSH2, MSH6, MLH1 and PMS2 are associated with Lynch Syndrome (LS), a familial predisposition to early-onset cancer of the colon and other organs. Because not all LS families carry mutations in these four genes, the search for cancer-associated mutations was extended to genes encoding other members of the mismatch repairosome. This effort identified mutations in EXO1, which encodes the sole exonuclease implicated in MMR. One of these mutations, E109K, was reported to abrogate the catalytic activity of the enzyme, yet, in the crystal structure of the EXO1/DNA complex, this glutamate is far away from both DNA and the catalytic site of the enzyme. In an attempt to elucidate the reason underlying the putative loss of function of this variant, we expressed it in Escherichia coli, and tested its activity in a series of biochemical assays. We now report that, contrary to earlier reports, and unlike the catalytic site mutant D173A, the EXO1 E109K variant resembled the wild-type (wt) enzyme on all tested substrates. In the light of our findings, we attempt here to reinterpret the results of the phenotypic characterization of a knock-in mouse carrying the E109K mutation and cells derived from it.
Collapse
Affiliation(s)
- Stephanie Bregenhorn
- Institute of Molecular Cancer Research of the University of Zurich and the ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Josef Jiricny
- Institute of Molecular Cancer Research of the University of Zurich and the ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
49
|
Guo H, Sun F, Huang W, Liu Z, Zhang S, Zhou Q, Liang C. The effect of rhG-CSF on spleen transcriptome in mouse leukopenia model induced by cyclophosphamide. Immunopharmacol Immunotoxicol 2014; 36:114-23. [PMID: 24611752 DOI: 10.3109/08923973.2013.869696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
CONTEXT RhG-CSF significantly elevates the otherwise reduced numbers of leukocytes following chemotherapy. However, prior work has predominantly focused on the effect of rhG-CSF on the hematopoietic system, and few studies have focused on the immune system. OBJECTIVE We aimed to investigate the effect of rhG-CSF on the immune system transcriptome in a mouse leukopenia model that was induced by cyclophosphamide. MATERIALS AND METHODS A cyclophosphamide leukopenia model was established in C57BL/6 mice, which were randomly divided into a normal control group (CK), a cyclophosphamide model group (CY) and a rhG-CSF treatment group (rhG-CSF). After 3 d of rhG-CSF treatment, a mouse gene expression microarray enabled evaluation of changes in the transcriptome in the mouse spleen. RESULTS About 3552 differentially expressed genes occurred among the three experimental groups, of which 74.9% (2659) concentrated on three gene expression patterns. Gene ontology and pathway analysis of 2659 differential genes showed that early in treatment when leukocyte counts remained low, rhG-CSF recovered the transcription of genes that were related to DNA damage repair and metabolism of nucleotides and amino acids. By contrast, rhG-CSF inhibited the transcription of genes involved in transendothelial migration and endocytosis, and dampened the transcription of genes associated with cell proliferation as compared with the CY group. CONCLUSIONS Our study suggests that rhG-CSF recovered metabolism in immune cells, suppressed in vivo immune defense, and attenuated immune cell proliferation in a cyclophosphamide induced leukopenia model. Use of gene expression microarrays can macroscopically and systematically inform the mechanism of rhG-CSF on immune cells.
Collapse
Affiliation(s)
- He Guo
- Department of Cytobiology, Institute of Frontier Medical Sciences, Jilin University , Changchun , China
| | | | | | | | | | | | | |
Collapse
|
50
|
Lindsey-Boltz LA, Kemp MG, Reardon JT, DeRocco V, Iyer RR, Modrich P, Sancar A. Coupling of human DNA excision repair and the DNA damage checkpoint in a defined in vitro system. J Biol Chem 2014; 289:5074-82. [PMID: 24403078 DOI: 10.1074/jbc.m113.542787] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA repair and DNA damage checkpoints work in concert to help maintain genomic integrity. In vivo data suggest that these two global responses to DNA damage are coupled. It has been proposed that the canonical 30 nucleotide single-stranded DNA gap generated by nucleotide excision repair is the signal that activates the ATR-mediated DNA damage checkpoint response and that the signal is enhanced by gap enlargement by EXO1 (exonuclease 1) 5' to 3' exonuclease activity. Here we have used purified core nucleotide excision repair factors (RPA, XPA, XPC, TFIIH, XPG, and XPF-ERCC1), core DNA damage checkpoint proteins (ATR-ATRIP, TopBP1, RPA), and DNA damaged by a UV-mimetic agent to analyze the basic steps of DNA damage checkpoint response in a biochemically defined system. We find that checkpoint signaling as measured by phosphorylation of target proteins by the ATR kinase requires enlargement of the excision gap generated by the excision repair system by the 5' to 3' exonuclease activity of EXO1. We conclude that, in addition to damaged DNA, RPA, XPA, XPC, TFIIH, XPG, XPF-ERCC1, ATR-ATRIP, TopBP1, and EXO1 constitute the minimum essential set of factors for ATR-mediated DNA damage checkpoint response.
Collapse
Affiliation(s)
- Laura A Lindsey-Boltz
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and
| | | | | | | | | | | | | |
Collapse
|