1
|
Hong HR, Prince CR, Tetreault DD, Wu L, Feaga HA. YfmR is a translation factor that prevents ribosome stalling and cell death in the absence of EF-P. Proc Natl Acad Sci U S A 2024; 121:e2314437121. [PMID: 38349882 PMCID: PMC10895253 DOI: 10.1073/pnas.2314437121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
Protein synthesis is performed by the ribosome and a host of highly conserved elongation factors. Elongation factor P (EF-P) prevents ribosome stalling at difficult-to-translate sequences, such as polyproline tracts. In bacteria, phenotypes associated with efp deletion range from modest to lethal, suggesting that some species encode an additional translation factor that has similar function to EF-P. Here we identify YfmR as a translation factor that is essential in the absence of EF-P in Bacillus subtilis. YfmR is an ABCF ATPase that is closely related to both Uup and EttA, ABCFs that bind the ribosomal E-site and are conserved in more than 50% of bacterial genomes. We show that YfmR associates with actively translating ribosomes and that depleting YfmR from Δefp cells causes severe ribosome stalling at a polyproline tract in vivo. YfmR depletion from Δefp cells was lethal and caused reduced levels of actively translating ribosomes. Our results therefore identify YfmR as an important translation factor that is essential in B. subtilis in the absence of EF-P.
Collapse
Affiliation(s)
- Hye-Rim Hong
- Department of Microbiology, Cornell University, Ithaca, NY14853
| | | | | | - Letian Wu
- Department of Microbiology, Cornell University, Ithaca, NY14853
| | | |
Collapse
|
2
|
Kazan R, Bourgeois G, Lazennec-Schurdevin C, Coureux PD, Mechulam Y, Schmitt E. Structural insights into the evolution of late steps of translation initiation in the three domains of life. Biochimie 2024; 217:31-41. [PMID: 36773835 DOI: 10.1016/j.biochi.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
In eukaryotes and in archaea late steps of translation initiation involve the two initiation factors e/aIF5B and e/aIF1A. These two factors are also orthologous to the bacterial IF2 and IF1 proteins, respectively. Recent cryo-EM studies showed how e/aIF5B and e/aIF1A cooperate on the small ribosomal subunit to favor the binding of the large ribosomal subunit and the formation of a ribosome competent for elongation. In this review, pioneering studies and recent biochemical and structural results providing new insights into the role of a/eIF5B in archaea and eukaryotes will be presented. Recent structures will also be compared to orthologous bacterial initiation complexes to highlight domain-specific features and the evolution of initiation mechanisms.
Collapse
Affiliation(s)
- Ramy Kazan
- Laboratoire de Biologie Structurale de la Cellule, BIOC, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Gabrielle Bourgeois
- Laboratoire de Biologie Structurale de la Cellule, BIOC, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Christine Lazennec-Schurdevin
- Laboratoire de Biologie Structurale de la Cellule, BIOC, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Pierre-Damien Coureux
- Laboratoire de Biologie Structurale de la Cellule, BIOC, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule, BIOC, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Emmanuelle Schmitt
- Laboratoire de Biologie Structurale de la Cellule, BIOC, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France.
| |
Collapse
|
3
|
Zafar H, Hassan AH, Demo G. Translation machinery captured in motion. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1792. [PMID: 37132456 DOI: 10.1002/wrna.1792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/14/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023]
Abstract
Translation accuracy is one of the most critical factors for protein synthesis. It is regulated by the ribosome and its dynamic behavior, along with translation factors that direct ribosome rearrangements to make translation a uniform process. Earlier structural studies of the ribosome complex with arrested translation factors laid the foundation for an understanding of ribosome dynamics and the translation process as such. Recent technological advances in time-resolved and ensemble cryo-EM have made it possible to study translation in real time at high resolution. These methods provided a detailed view of translation in bacteria for all three phases: initiation, elongation, and termination. In this review, we focus on translation factors (in some cases GTP activation) and their ability to monitor and respond to ribosome organization to enable efficient and accurate translation. This article is categorized under: Translation > Ribosome Structure/Function Translation > Mechanisms.
Collapse
Affiliation(s)
- Hassan Zafar
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ahmed H Hassan
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Gabriel Demo
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
4
|
Remes C, Khawaja A, Pearce SF, Dinan AM, Gopalakrishna S, Cipullo M, Kyriakidis V, Zhang J, Dopico XC, Yukhnovets O, Atanassov I, Firth AE, Cooperman B, Rorbach J. Translation initiation of leaderless and polycistronic transcripts in mammalian mitochondria. Nucleic Acids Res 2023; 51:891-907. [PMID: 36629253 PMCID: PMC9881170 DOI: 10.1093/nar/gkac1233] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/11/2022] [Accepted: 12/09/2022] [Indexed: 01/12/2023] Open
Abstract
The synthesis of mitochondrial OXPHOS complexes is central to cellular metabolism, yet many molecular details of mitochondrial translation remain elusive. It has been commonly held view that translation initiation in human mitochondria proceeded in a manner similar to bacterial systems, with the mitoribosomal small subunit bound to the initiation factors, mtIF2 and mtIF3, along with initiator tRNA and an mRNA. However, unlike in bacteria, most human mitochondrial mRNAs lack 5' leader sequences that can mediate small subunit binding, raising the question of how leaderless mRNAs are recognized by mitoribosomes. By using novel in vitro mitochondrial translation initiation assays, alongside biochemical and genetic characterization of cellular knockouts of mitochondrial translation factors, we describe unique features of translation initiation in human mitochondria. We show that in vitro, leaderless mRNA transcripts can be loaded directly onto assembled 55S mitoribosomes, but not onto the mitoribosomal small subunit (28S), in a manner that requires initiator fMet-tRNAMet binding. In addition, we demonstrate that in human cells and in vitro, mtIF3 activity is not required for translation of leaderless mitochondrial transcripts but is essential for translation of ATP6 in the case of the bicistronic ATP8/ATP6 transcript. Furthermore, we show that mtIF2 is indispensable for mitochondrial protein synthesis. Our results demonstrate an important evolutionary divergence of the mitochondrial translation system and further our fundamental understanding of a process central to eukaryotic metabolism.
Collapse
Affiliation(s)
- Cristina Remes
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anas Khawaja
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Stockholm 17165, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Sarah F Pearce
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Stockholm 17165, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Adam M Dinan
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Shreekara Gopalakrishna
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Stockholm 17165, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Miriam Cipullo
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Stockholm 17165, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Vasileios Kyriakidis
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Stockholm 17165, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Jingdian Zhang
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Stockholm 17165, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Xaquin Castro Dopico
- Department of Microbiology, Tumor & Cell Biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Olessya Yukhnovets
- RWTH Aachen, I. Physikalisches Institut (IA), Aachen, Germany
- Forschungszentrum Jülich, Institute of Complex Systems ICS-5, Jülich, Germany
| | - Ilian Atanassov
- Proteomics Core Facility, Max-Planck-Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Andrew E Firth
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Barry Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joanna Rorbach
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Stockholm 17165, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
- STIAS: Stellenbosch Institute for Advanced Study at Stellenbosch University, Marais Rd, Stellenbosch 7600, South Africa
| |
Collapse
|
5
|
Fer E, McGrath KM, Guy L, Hockenberry AJ, Kaçar B. Early divergence of translation initiation and elongation factors. Protein Sci 2022; 31:e4393. [PMID: 36250475 PMCID: PMC9601768 DOI: 10.1002/pro.4393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022]
Abstract
Protein translation is a foundational attribute of all living cells. The translation function carried out by the ribosome critically depends on an assortment of protein interaction partners, collectively referred to as the translation machinery. Various studies suggest that the diversification of the translation machinery occurred prior to the last universal common ancestor, yet it is unclear whether the predecessors of the extant translation machinery factors were functionally distinct from their modern counterparts. Here we reconstructed the shared ancestral trajectory and subsequent evolution of essential translation factor GTPases, elongation factor EF-Tu (aEF-1A/eEF-1A), and initiation factor IF2 (aIF5B/eIF5B). Based upon their similar functions and structural homologies, it has been proposed that EF-Tu and IF2 emerged from an ancient common ancestor. We generated the phylogenetic tree of IF2 and EF-Tu proteins and reconstructed ancestral sequences corresponding to the deepest nodes in their shared evolutionary history, including the last common IF2 and EF-Tu ancestor. By identifying the residue and domain substitutions, as well as structural changes along the phylogenetic history, we developed an evolutionary scenario for the origins, divergence and functional refinement of EF-Tu and IF2 proteins. Our analyses suggest that the common ancestor of IF2 and EF-Tu was an IF2-like GTPase protein. Given the central importance of the translation machinery to all cellular life, its earliest evolutionary constraints and trajectories are key to characterizing the universal constraints and capabilities of cellular evolution.
Collapse
Affiliation(s)
- Evrim Fer
- Department of BacteriologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Microbiology Doctoral Training ProgramUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- NASA Center for Early Life and EvolutionUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Kaitlyn M. McGrath
- Department of BacteriologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- NASA Center for Early Life and EvolutionUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Molecular and Cellular BiologyUniversity of ArizonaTucsonArizonaUSA
| | - Lionel Guy
- Department of Medical Biochemistry and Microbiology, Science for Life LaboratoryUppsala UniversityUppsalaSweden
| | - Adam J. Hockenberry
- Department of Integrative BiologyThe University of Texas at AustinAustinTexasUSA
| | - Betül Kaçar
- Department of BacteriologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- NASA Center for Early Life and EvolutionUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
6
|
Karamycheva S, Wolf YI, Persi E, Koonin EV, Makarova KS. Analysis of lineage-specific protein family variability in prokaryotes combined with evolutionary reconstructions. Biol Direct 2022; 17:22. [PMID: 36042479 PMCID: PMC9425974 DOI: 10.1186/s13062-022-00337-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/13/2022] [Indexed: 12/24/2022] Open
Abstract
Background Evolutionary rate is a key characteristic of gene families that is linked to the functional importance of the respective genes as well as specific biological functions of the proteins they encode. Accurate estimation of evolutionary rates is a challenging task that requires precise phylogenetic analysis. Here we present an easy to estimate protein family level measure of sequence variability based on alignment column homogeneity in multiple alignments of protein sequences from Clade-Specific Clusters of Orthologous Genes (csCOGs). Results We report genome-wide estimates of variability for 8 diverse groups of bacteria and archaea and investigate the connection between variability and various genomic and biological features. The variability estimates are based on homogeneity distributions across amino acid sequence alignments and can be obtained for multiple groups of genomes at minimal computational expense. About half of the variance in variability values can be explained by the analyzed features, with the greatest contribution coming from the extent of gene paralogy in the given csCOG. The correlation between variability and paralogy appears to originate, primarily, not from gene duplication, but from acquisition of distant paralogs and xenologs, introducing sequence variants that are more divergent than those that could have evolved in situ during the lifetime of the given group of organisms. Both high-variability and low-variability csCOGs were identified in all functional categories, but as expected, proteins encoded by integrated mobile elements as well as proteins involved in defense functions and cell motility are, on average, more variable than proteins with housekeeping functions. Additionally, using linear discriminant analysis, we found that variability and fraction of genomes carrying a given gene are the two variables that provide the best prediction of gene essentiality as compared to the results of transposon mutagenesis in Sulfolobus islandicus. Conclusions Variability, a measure of sequence diversity within an alignment relative to the overall diversity within a group of organisms, offers a convenient proxy for evolutionary rate estimates and is informative with respect to prediction of functional properties of proteins. In particular, variability is a strong predictor of gene essentiality for the respective organisms and indicative of sub- or neofunctionalization of paralogs. Supplementary Information The online version contains supplementary material available at 10.1186/s13062-022-00337-7.
Collapse
Affiliation(s)
- Svetlana Karamycheva
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA
| | - Erez Persi
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA.
| |
Collapse
|
7
|
Kazan R, Bourgeois G, Lazennec-Schurdevin C, Larquet E, Mechulam Y, Coureux PD, Schmitt E. Role of aIF5B in archaeal translation initiation. Nucleic Acids Res 2022; 50:6532-6548. [PMID: 35694843 PMCID: PMC9226500 DOI: 10.1093/nar/gkac490] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 01/22/2023] Open
Abstract
In eukaryotes and in archaea late steps of translation initiation involve the two initiation factors e/aIF5B and e/aIF1A. In eukaryotes, the role of eIF5B in ribosomal subunit joining is established and structural data showing eIF5B bound to the full ribosome were obtained. To achieve its function, eIF5B collaborates with eIF1A. However, structural data illustrating how these two factors interact on the small ribosomal subunit have long been awaited. The role of the archaeal counterparts, aIF5B and aIF1A, remains to be extensively addressed. Here, we study the late steps of Pyrococcus abyssi translation initiation. Using in vitro reconstituted initiation complexes and light scattering, we show that aIF5B bound to GTP accelerates subunit joining without the need for GTP hydrolysis. We report the crystallographic structures of aIF5B bound to GDP and GTP and analyze domain movements associated to these two nucleotide states. Finally, we present the cryo-EM structure of an initiation complex containing 30S bound to mRNA, Met-tRNAiMet, aIF5B and aIF1A at 2.7 Å resolution. Structural data shows how archaeal 5B and 1A factors cooperate to induce a conformation of the initiator tRNA favorable to subunit joining. Archaeal and eukaryotic features of late steps of translation initiation are discussed.
Collapse
Affiliation(s)
- Ramy Kazan
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Gabrielle Bourgeois
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Christine Lazennec-Schurdevin
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Eric Larquet
- Laboratoire de Physique de la Matière Condensée, PMC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Pierre-Damien Coureux
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Emmanuelle Schmitt
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| |
Collapse
|
8
|
Basu RS, Sherman MB, Gagnon MG. Compact IF2 allows initiator tRNA accommodation into the P site and gates the ribosome to elongation. Nat Commun 2022; 13:3388. [PMID: 35697706 PMCID: PMC9192638 DOI: 10.1038/s41467-022-31129-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/02/2022] [Indexed: 11/09/2022] Open
Abstract
During translation initiation, initiation factor 2 (IF2) holds initiator transfer RNA (fMet-tRNAifMet) in a specific orientation in the peptidyl (P) site of the ribosome. Upon subunit joining IF2 hydrolyzes GTP and, concomitant with inorganic phosphate (Pi) release, changes conformation facilitating fMet-tRNAifMet accommodation into the P site and transition of the 70 S ribosome initiation complex (70S-IC) to an elongation-competent ribosome. The mechanism by which IF2 separates from initiator tRNA at the end of translation initiation remains elusive. Here, we report cryo-electron microscopy (cryo-EM) structures of the 70S-IC from Pseudomonas aeruginosa bound to compact IF2-GDP and initiator tRNA. Relative to GTP-bound IF2, rotation of the switch 2 α-helix in the G-domain bound to GDP unlocks a cascade of large-domain movements in IF2 that propagate to the distal tRNA-binding domain C2. The C2-domain relocates 35 angstroms away from tRNA, explaining how IF2 makes way for fMet-tRNAifMet accommodation into the P site. Our findings provide the basis by which IF2 gates the ribosome to the elongation phase.
Collapse
Affiliation(s)
- Ritwika S Basu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Michael B Sherman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Matthieu G Gagnon
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
9
|
Translation initiation site of mRNA is selected through dynamic interaction with the ribosome. Proc Natl Acad Sci U S A 2022; 119:e2118099119. [PMID: 35605125 DOI: 10.1073/pnas.2118099119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceRibosomes translate the genetic codes of messenger RNA (mRNA) to make proteins. Translation must begin at the correct initiation site; otherwise, abnormal proteins will be produced. Here, we show that a short ribosome-specific sequence in the upstream followed by an unstructured downstream sequence is a favorable initiation site. Those mRNAs lacking either of these two characteristics do not associate tightly with the ribosome. Initiator transfer RNA (tRNA) and initiation factors facilitate the binding. However, when the downstream site forms structures, initiation factor 3 triggers the dissociation of the accommodated initiator tRNA and the subsequent disassembly of the ribosome-mRNA complex. Thus, initiation factors help the ribosome distinguish unfavorable structured sequences that may not act as the mRNA translation initiation site.
Collapse
|
10
|
Iizuka R, Yamazaki H, Uemura S. Zero-mode waveguides and nanopore-based sequencing technologies accelerate single-molecule studies. Biophys Physicobiol 2022; 19:e190032. [DOI: 10.2142/biophysico.bppb-v19.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/26/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Ryo Iizuka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | - Hirohito Yamazaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | - Sotaro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| |
Collapse
|
11
|
Tomsic J, Caserta E, Pon CL, Gualerzi CO. Weakening the IF2-fMet-tRNA Interaction Suppresses the Lethal Phenotype Caused by GTPase Inactivation. Int J Mol Sci 2021; 22:ijms222413238. [PMID: 34948034 PMCID: PMC8709274 DOI: 10.3390/ijms222413238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 01/12/2023] Open
Abstract
Substitution of the conserved Histidine 448 present in one of the three consensus elements characterizing the guanosine nucleotide binding domain (IF2 G2) of Escherichia coli translation initiation factor IF2 resulted in impaired ribosome-dependent GTPase activity which prevented IF2 dissociation from the ribosome, caused a severe protein synthesis inhibition, and yielded a dominant lethal phenotype. A reduced IF2 affinity for the ribosome was previously shown to suppress this lethality. Here, we demonstrate that also a reduced IF2 affinity for fMet-tRNA can suppress this dominant lethal phenotype and allows IF2 to support faithful translation in the complete absence of GTP hydrolysis. These results strengthen the premise that the conformational changes of ribosome, IF2, and fMet-tRNA occurring during the late stages of translation initiation are thermally driven and that the energy generated by IF2-dependent GTP hydrolysis is not required for successful translation initiation and that the dissociation of the interaction between IF2 C2 and the acceptor end of fMet-tRNA, which represents the last tie anchoring the factor to the ribosome before the formation of an elongation-competent 70S complex, is rate limiting for both the adjustment of fMet-tRNA in a productive P site and the IF2 release from the ribosome.
Collapse
Affiliation(s)
- Jerneja Tomsic
- Laboratory of Genetics, Department of Bioscience and Biotechnology, University of Camerino, 62032 Camerino, Italy; (J.T.); (E.C.); (C.L.P.)
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Enrico Caserta
- Laboratory of Genetics, Department of Bioscience and Biotechnology, University of Camerino, 62032 Camerino, Italy; (J.T.); (E.C.); (C.L.P.)
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Cynthia L. Pon
- Laboratory of Genetics, Department of Bioscience and Biotechnology, University of Camerino, 62032 Camerino, Italy; (J.T.); (E.C.); (C.L.P.)
| | - Claudio O. Gualerzi
- Laboratory of Genetics, Department of Bioscience and Biotechnology, University of Camerino, 62032 Camerino, Italy; (J.T.); (E.C.); (C.L.P.)
- Correspondence: ; Tel.: +39-3391602957
| |
Collapse
|
12
|
Khawaja A, Itoh Y, Remes C, Spåhr H, Yukhnovets O, Höfig H, Amunts A, Rorbach J. Distinct pre-initiation steps in human mitochondrial translation. Nat Commun 2020; 11:2932. [PMID: 32522994 PMCID: PMC7287080 DOI: 10.1038/s41467-020-16503-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/07/2020] [Indexed: 11/08/2022] Open
Abstract
Translation initiation in human mitochondria relies upon specialized mitoribosomes and initiation factors, mtIF2 and mtIF3, which have diverged from their bacterial counterparts. Here we report two distinct mitochondrial pre-initiation assembly steps involving those factors. Single-particle cryo-EM revealed that in the first step, interactions between mitochondria-specific protein mS37 and mtIF3 keep the small mitoribosomal subunit in a conformation favorable for a subsequent accommodation of mtIF2 in the second step. Combination with fluorescence cross-correlation spectroscopy analyses suggests that mtIF3 promotes complex assembly without mRNA or initiator tRNA binding, where exclusion is achieved by the N-terminal and C-terminal domains of mtIF3. Finally, the association of large mitoribosomal subunit is required for initiator tRNA and leaderless mRNA recruitment to form a stable initiation complex. These data reveal fundamental aspects of mammalian protein synthesis that are specific to mitochondria.
Collapse
Affiliation(s)
- Anas Khawaja
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Biomedicum, 171 65, Solna, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Yuzuru Itoh
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Biomedicum, 171 65, Solna, Sweden
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
| | - Cristina Remes
- Department of Mitochondrial Biology, Max-Planck-Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931, Cologne, Germany
| | - Henrik Spåhr
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Biomedicum, 171 65, Solna, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
- Department of Mitochondrial Biology, Max-Planck-Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931, Cologne, Germany
| | - Olessya Yukhnovets
- RWTH Aachen, I. Physikalisches Institut (IA), Aachen, Germany
- Forschungszentrum Jülich, Institute of Complex Systems ICS-5, Jülich, Germany
| | - Henning Höfig
- RWTH Aachen, I. Physikalisches Institut (IA), Aachen, Germany
- Forschungszentrum Jülich, Institute of Complex Systems ICS-5, Jülich, Germany
| | - Alexey Amunts
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Biomedicum, 171 65, Solna, Sweden.
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden.
| | - Joanna Rorbach
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Biomedicum, 171 65, Solna, Sweden.
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
13
|
Sharma H, Anand B. Ribosome assembly defects subvert initiation Factor3 mediated scrutiny of bona fide start signal. Nucleic Acids Res 2020; 47:11368-11386. [PMID: 31586395 PMCID: PMC6868393 DOI: 10.1093/nar/gkz825] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/17/2019] [Accepted: 10/03/2019] [Indexed: 12/02/2022] Open
Abstract
In bacteria, the assembly factors tightly orchestrate the maturation of ribosomes whose competency for protein synthesis is validated by translation machinery at various stages of translation cycle. However, what transpires to the quality control measures when the ribosomes are produced with assembly defects remains enigmatic. In Escherichia coli, we show that 30S ribosomes that harbour assembly defects due to the lack of assembly factors such as RbfA and KsgA display suboptimal initiation codon recognition and bypass the critical codon–anticodon proofreading steps during translation initiation. These premature ribosomes on entering the translation cycle compromise the fidelity of decoding that gives rise to errors during initiation and elongation. We show that the assembly defects compromise the binding of initiation factor 3 (IF3), which in turn appears to license the rapid transition of 30S (pre) initiation complex to 70S initiation complex by tempering the validation of codon–anticodon interaction during translation initiation. This suggests that the premature ribosomes harbouring the assembly defects subvert the IF3 mediated proofreading of cognate initiation codon to enter the translation cycle.
Collapse
Affiliation(s)
- Himanshu Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - B Anand
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
14
|
Tomsic J, Smorlesi A, Caserta E, Giuliodori AM, Pon CL, Gualerzi CO. Disparate Phenotypes Resulting from Mutations of a Single Histidine in Switch II of Geobacillus stearothermophilus Translation Initiation Factor IF2. Int J Mol Sci 2020; 21:ijms21030735. [PMID: 31979156 PMCID: PMC7037019 DOI: 10.3390/ijms21030735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 11/16/2022] Open
Abstract
The conserved Histidine 301 in switch II of Geobacillus stearothermophilus IF2 G2 domain was substituted with Ser, Gln, Arg, Leu and Tyr to generate mutants displaying different phenotypes. Overexpression of IF2H301S, IF2H301L and IF2H301Y in cells expressing wtIF2, unlike IF2H301Q and IF2H301R, caused a dominant lethal phenotype, inhibiting in vivo translation and drastically reducing cell viability. All mutants bound GTP but, except for IF2H301Q, were inactive in ribosome-dependent GTPase for different reasons. All mutants promoted 30S initiation complex (30S IC) formation with wild type (wt) efficiency but upon 30S IC association with the 50S subunit, the fMet-tRNA reacted with puromycin to different extents depending upon the IF2 mutant present in the complex (wtIF2 ≥ to IF2H301Q > IF2H301R >>> IF2H301S, IF2H301L and IF2H301Y) whereas only fMet-tRNA 30S-bound with IF2H301Q retained some ability to form initiation dipeptide fMet-Phe. Unlike wtIF2, all mutants, regardless of their ability to hydrolyze GTP, displayed higher affinity for the ribosome and failed to dissociate from the ribosomes upon 50S docking to 30S IC. We conclude that different amino acids substitutions of His301 cause different structural alterations of the factor, resulting in disparate phenotypes with no direct correlation existing between GTPase inactivation and IF2 failure to dissociate from ribosomes.
Collapse
|
15
|
Abstract
The large ribosomal subunit has a distinct feature, the stalk, extending outside the ribosome. In bacteria it is called the L12 stalk. The base of the stalk is protein uL10 to which two or three dimers of proteins bL12 bind. In archea and eukarya P1 and P2 proteins constitute the stalk. All these extending proteins, that have a high degree of flexibility due to a hinge between their N- and C-terminal parts, are essential for proper functionalization of some of the translation factors. The role of the stalk proteins has remained enigmatic for decades but is gradually approaching an understanding. In this review we summarise the knowhow about the structure and function of the ribosomal stalk till date starting from the early phase of ribosome research.
Collapse
|
16
|
Johansen JS, Kavaliauskas D, Pfeil SH, Blaise M, Cooperman BS, Goldman YE, Thirup SS, Knudsen CR. E. coli elongation factor Tu bound to a GTP analogue displays an open conformation equivalent to the GDP-bound form. Nucleic Acids Res 2019; 46:8641-8650. [PMID: 30107565 PMCID: PMC6144822 DOI: 10.1093/nar/gky697] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 08/07/2018] [Indexed: 11/12/2022] Open
Abstract
According to the traditional view, GTPases act as molecular switches, which cycle between distinct ‘on’ and ‘off’ conformations bound to GTP and GDP, respectively. Translation elongation factor EF-Tu is a GTPase essential for prokaryotic protein synthesis. In its GTP-bound form, EF-Tu delivers aminoacylated tRNAs to the ribosome as a ternary complex. GTP hydrolysis is thought to cause the release of EF-Tu from aminoacyl-tRNA and the ribosome due to a dramatic conformational change following Pi release. Here, the crystal structure of Escherichia coli EF-Tu in complex with a non-hydrolysable GTP analogue (GDPNP) has been determined. Remarkably, the overall conformation of EF-Tu·GDPNP displays the classical, open GDP-bound conformation. This is in accordance with an emerging view that the identity of the bound guanine nucleotide is not ‘locking’ the GTPase in a fixed conformation. Using a single-molecule approach, the conformational dynamics of various ligand-bound forms of EF-Tu were probed in solution by fluorescence resonance energy transfer. The results suggest that EF-Tu, free in solution, may sample a wider set of conformations than the structurally well-defined GTP- and GDP-forms known from previous X-ray crystallographic studies. Only upon binding, as a ternary complex, to the mRNA-programmed ribosome, is the well-known, closed GTP-bound conformation, observed.
Collapse
Affiliation(s)
- Jesper S Johansen
- Department of Molecular Biology & Genetics, University of Aarhus, Gustav Wieds Vej 10 C, DK-8000 Aarhus C, Denmark
| | - Darius Kavaliauskas
- Department of Molecular Biology & Genetics, University of Aarhus, Gustav Wieds Vej 10 C, DK-8000 Aarhus C, Denmark
| | - Shawn H Pfeil
- Department of Physics, West Chester University, West Chester, PA 19383, USA
| | - Mickaël Blaise
- Department of Molecular Biology & Genetics, University of Aarhus, Gustav Wieds Vej 10 C, DK-8000 Aarhus C, Denmark
| | - Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yale E Goldman
- Pennsylvania Muscle Institute, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Søren S Thirup
- Department of Molecular Biology & Genetics, University of Aarhus, Gustav Wieds Vej 10 C, DK-8000 Aarhus C, Denmark
| | - Charlotte R Knudsen
- Department of Molecular Biology & Genetics, University of Aarhus, Gustav Wieds Vej 10 C, DK-8000 Aarhus C, Denmark
| |
Collapse
|
17
|
Kaledhonkar S, Fu Z, Caban K, Li W, Chen B, Sun M, Gonzalez RL, Frank J. Late steps in bacterial translation initiation visualized using time-resolved cryo-EM. Nature 2019; 570:400-404. [PMID: 31108498 PMCID: PMC7060745 DOI: 10.1038/s41586-019-1249-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 05/08/2019] [Indexed: 12/02/2022]
Abstract
The initiation of bacterial translation involves the tightly regulated joining of the 50S ribosomal subunit to an initiator transfer RNA (fMet-tRNAfMet)-containing 30S ribosomal initiation complex to form a 70S initiation complex, which subsequently matures into a 70S elongation-competent complex. Rapid and accurate formation of the 70S initiation complex is promoted by initiation factors, which must dissociate from the 30S initiation complex before the resulting 70S elongation-competent complex can begin the elongation of translation1. Although comparisons of the structures of the 30S2-5 and 70S4,6-8 initiation complexes have revealed that the ribosome, initiation factors and fMet-tRNAfMet can acquire different conformations in these complexes, the timing of conformational changes during formation of the 70S initiation complex, the structures of any intermediates formed during these rearrangements, and the contributions that these dynamics might make to the mechanism and regulation of initiation remain unknown. Moreover, the absence of a structure of the 70S elongation-competent complex formed via an initiation-factor-catalysed reaction has precluded an understanding of the rearrangements to the ribosome, initiation factors and fMet-tRNAfMet that occur during maturation of a 70S initiation complex into a 70S elongation-competent complex. Here, using time-resolved cryogenic electron microscopy9, we report the near-atomic-resolution view of how a time-ordered series of conformational changes drive and regulate subunit joining, initiation factor dissociation and fMet-tRNAfMet positioning during formation of the 70S elongation-competent complex. Our results demonstrate the power of time-resolved cryogenic electron microscopy to determine how a time-ordered series of conformational changes contribute to the mechanism and regulation of one of the most fundamental processes in biology.
Collapse
MESH Headings
- Cryoelectron Microscopy
- Escherichia coli/chemistry
- Escherichia coli/metabolism
- Escherichia coli/ultrastructure
- Peptide Chain Elongation, Translational
- Peptide Chain Initiation, Translational
- Protein Conformation
- Ribosome Subunits, Large, Bacterial/metabolism
- Ribosome Subunits, Large, Bacterial/ultrastructure
- Ribosome Subunits, Small, Bacterial/metabolism
- Ribosome Subunits, Small, Bacterial/ultrastructure
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- Time Factors
Collapse
Affiliation(s)
- Sandip Kaledhonkar
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA
| | - Ziao Fu
- Integrated Program in Cellular, Molecular and Biophysical Studies, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Kelvin Caban
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Wen Li
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA
| | - Bo Chen
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA
| | - Ming Sun
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, New York, NY, USA.
| | - Joachim Frank
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA.
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
18
|
Zanotti G, Cendron L. Structural Aspects of Helicobacter pylori Antibiotic Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:227-241. [PMID: 31016632 DOI: 10.1007/5584_2019_368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Resistance to antibiotics of Helicobacter pylori infections is growing rapidly together with the need for more potent antimicrobials or novel strategies to recover the efficacy of the existing ones. Despite the main mechanisms according to which H. pylori acquires resistance are common to other microbial infections affecting humans, H. pylori has its own peculiarities, mostly due to the unique conditions experienced by the bacterium in the gastric niche. Possibly the most used of the antibiotics for H. pylori are those molecules that bind to the ribosome or to the DNA and RNA machinery, and in doing so they interfere with protein synthesis. Another important class is represented by molecules that binds to some enzyme essential for the bacterium survival, as in the case of enzymes involved in the bacterial wall biosynthesis. The mechanism used by the bacterium to fight antibiotics can be grouped in three classes: (i) mutations of some key residues in the protein that binds the inhibitor, (ii) regulation of the efflux systems or of the membrane permeability in order to reduce the uptake of the antibiotic, and (iii) other more complex indirect effects. Interestingly, the production of enzymes that degrade the antibiotics (as in the case of β-lactamases in many other bacteria) has not been clearly detected in H. pylori. The structural aspects of resistance players have not been object of extensive studies yet and the structure of very few H. pylori proteins involved in the resistance mechanisms are determined till now. Models of the proteins that play key roles in reducing antimicrobials susceptibility and their implications will be discussed in this chapter.
Collapse
Affiliation(s)
- Giuseppe Zanotti
- Department of Biomedical Sciences, University of Padua, Padua, Italy.
| | - Laura Cendron
- Department of Biology, University of Padua, Padua, Italy
| |
Collapse
|
19
|
Kim E, Kim JH, Seo K, Hong KY, An SWA, Kwon J, Lee SJV, Jang SK. eIF2A, an initiator tRNA carrier refractory to eIF2α kinases, functions synergistically with eIF5B. Cell Mol Life Sci 2018; 75:4287-4300. [PMID: 30019215 PMCID: PMC6208778 DOI: 10.1007/s00018-018-2870-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/26/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022]
Abstract
The initiator tRNA (Met-tRNA i Met ) at the P site of the small ribosomal subunit plays an important role in the recognition of an mRNA start codon. In bacteria, the initiator tRNA carrier, IF2, facilitates the positioning of Met-tRNA i Met on the small ribosomal subunit. Eukarya contain the Met-tRNA i Met carrier, eIF2 (unrelated to IF2), whose carrier activity is inhibited under stress conditions by the phosphorylation of its α-subunit by stress-activated eIF2α kinases. The stress-resistant initiator tRNA carrier, eIF2A, was recently uncovered and shown to load Met-tRNA i Met on the 40S ribosomal subunit associated with a stress-resistant mRNA under stress conditions. Here, we report that eIF2A interacts and functionally cooperates with eIF5B (a homolog of IF2), and we describe the functional domains of eIF2A that are required for its binding of Met-tRNA i Met , eIF5B, and a stress-resistant mRNA. The results indicate that the eukaryotic eIF5B-eIF2A complex functionally mimics the bacterial IF2 containing ribosome-, GTP-, and initiator tRNA-binding domains in a single polypeptide.
Collapse
Affiliation(s)
- Eunah Kim
- PBC, Department of Life Sciences, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Joon Hyun Kim
- PBC, Department of Life Sciences, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Keunhee Seo
- PBC, Department of Life Sciences, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Ka Young Hong
- PBC, Department of Life Sciences, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Seon Woo A An
- PBC, Department of Life Sciences, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Junyoung Kwon
- PBC, Department of Life Sciences, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Seung-Jae V Lee
- PBC, Department of Life Sciences, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Sung Key Jang
- PBC, Department of Life Sciences, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea.
| |
Collapse
|
20
|
Complementary charge-based interaction between the ribosomal-stalk protein L7/12 and IF2 is the key to rapid subunit association. Proc Natl Acad Sci U S A 2018; 115:4649-4654. [PMID: 29686090 DOI: 10.1073/pnas.1802001115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The interaction between the ribosomal-stalk protein L7/12 (L12) and initiation factor 2 (IF2) is essential for rapid subunit association, but the underlying mechanism is unknown. Here, we have characterized the L12-IF2 interaction on Escherichia coli ribosomes using site-directed mutagenesis, fast kinetics, and molecular dynamics (MD) simulations. Fifteen individual point mutations were introduced into the C-terminal domain of L12 (L12-CTD) at helices 4 and 5, which constitute the common interaction site for translational GTPases. In parallel, 15 point mutations were also introduced into IF2 between the G4 and G5 motifs, which we hypothesized as the potential L12 interaction sites. The L12 and IF2 mutants were tested in ribosomal subunit association assay in a stopped-flow instrument. Those amino acids that caused defective subunit association upon substitution were identified as the molecular determinants of L12-IF2 interaction. Further, MD simulations of IF2 docked onto the L12-CTD pinpointed the exact interacting partners-all of which were positively charged on L12 and negatively charged on IF2, connected by salt bridges. Lastly, we tested two pairs of charge-reversed mutants of L12 and IF2, which significantly restored the yield and the rate of formation of the 70S initiation complex. We conclude that complementary charge-based interaction between L12-CTD and IF2 is the key for fast subunit association. Considering the homology of the G domain, similar mechanisms may apply for L12 interactions with other translational GTPases.
Collapse
|
21
|
Caban K, Pavlov M, Ehrenberg M, Gonzalez RL. A conformational switch in initiation factor 2 controls the fidelity of translation initiation in bacteria. Nat Commun 2017; 8:1475. [PMID: 29133802 PMCID: PMC5684235 DOI: 10.1038/s41467-017-01492-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 09/21/2017] [Indexed: 11/09/2022] Open
Abstract
Initiation factor (IF) 2 controls the fidelity of translation initiation by selectively increasing the rate of 50S ribosomal subunit joining to 30S initiation complexes (ICs) that carry an N-formyl-methionyl-tRNA (fMet-tRNAfMet). Previous studies suggest that rapid 50S subunit joining involves a GTP- and fMet-tRNAfMet-dependent "activation" of IF2, but a lack of data on the structure and conformational dynamics of 30S IC-bound IF2 has precluded a mechanistic understanding of this process. Here, using an IF2-tRNA single-molecule fluorescence resonance energy transfer signal, we directly observe the conformational switch that is associated with IF2 activation within 30S ICs that lack IF3. Based on these results, we propose a model of IF2 activation that reveals how GTP, fMet-tRNAfMet, and specific structural elements of IF2 drive and regulate this conformational switch. Notably, we find that domain III of IF2 plays a pivotal, allosteric, role in IF2 activation, suggesting that this domain can be targeted for the development of novel antibiotics.
Collapse
Affiliation(s)
- Kelvin Caban
- Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY, 10027, USA
| | - Michael Pavlov
- Department of Cell and Molecular Biology, BMC, Uppsala University, Husargatan 3, Uppsala, 751 24, Sweden
| | - Måns Ehrenberg
- Department of Cell and Molecular Biology, BMC, Uppsala University, Husargatan 3, Uppsala, 751 24, Sweden
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY, 10027, USA.
| |
Collapse
|
22
|
López-Alonso JP, Fabbretti A, Kaminishi T, Iturrioz I, Brandi L, Gil-Carton D, Gualerzi CO, Fucini P, Connell SR. Structure of a 30S pre-initiation complex stalled by GE81112 reveals structural parallels in bacterial and eukaryotic protein synthesis initiation pathways. Nucleic Acids Res 2017; 45:2179-2187. [PMID: 27986852 PMCID: PMC5389724 DOI: 10.1093/nar/gkw1251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/13/2016] [Indexed: 12/28/2022] Open
Abstract
In bacteria, the start site and the reading frame of the messenger RNA are selected by the small ribosomal subunit (30S) when the start codon, typically an AUG, is decoded in the P-site by the initiator tRNA in a process guided and controlled by three initiation factors. This process can be efficiently inhibited by GE81112, a natural tetrapeptide antibiotic that is highly specific toward bacteria. Here GE81112 was used to stabilize the 30S pre-initiation complex and obtain its structure by cryo-electron microscopy. The results obtained reveal the occurrence of changes in both the ribosome conformation and initiator tRNA position that may play a critical role in controlling translational fidelity. Furthermore, the structure highlights similarities with the early steps of initiation in eukaryotes suggesting that shared structural features guide initiation in all kingdoms of life.
Collapse
Affiliation(s)
- Jorge P López-Alonso
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Attilio Fabbretti
- Laboratory of Genetics, University of Camerino, 62032 Camerino, Italy
| | - Tatsuya Kaminishi
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Idoia Iturrioz
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Letizia Brandi
- Laboratory of Genetics, University of Camerino, 62032 Camerino, Italy
| | - David Gil-Carton
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain
| | | | - Paola Fucini
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain.,IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Sean R Connell
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain.,IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
23
|
Kroesen VM, Gröschel MI, Martinson N, Zumla A, Maeurer M, van der Werf TS, Vilaplana C. Non-Steroidal Anti-inflammatory Drugs As Host-Directed Therapy for Tuberculosis: A Systematic Review. Front Immunol 2017; 8:772. [PMID: 28713389 PMCID: PMC5492311 DOI: 10.3389/fimmu.2017.00772] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/19/2017] [Indexed: 01/10/2023] Open
Abstract
Lengthy, antimicrobial therapy targeting the pathogen is the mainstay of conventional tuberculosis treatment, complicated by emerging drug resistances. Host-directed therapies, including non-steroidal anti-inflammatory drugs (NSAIDs), in contrast, target host factors to mitigate disease severity. In the present Systematic Review, we investigate whether NSAIDs display any effects as therapy of TB and discuss possible mechanisms of action of NSAIDs as adjunctive therapy of TB. Ten studies, seven preclinical studies in mice and three clinical trials, were included and systematically reviewed. Our results point toward a beneficial effect of NSAIDs as adjunct to current TB therapy regimens, mediated by decreased lung pathology balancing host-immune reaction. The determination of the best timing for their administration in order to obtain the potential beneficial effects needs further investigation. Even if the preclinical evidence requires clinical evaluation, NSAIDs might represent a potential safe, simple, and cheap improvement in therapy of TB.
Collapse
Affiliation(s)
- Vera M Kroesen
- Carl-von-Ossietzky University Oldenburg, Oldenburg, Germany.,Experimental Tuberculosis Unit (UTE), Fundació Institut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Catalonia, Spain
| | - Matthias I Gröschel
- Department of Pulmonary Diseases & Tuberculosis and Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherland.,Department of Infectious Diseases, University Medical Center Groningen, University of Groningen, Groningen, Netherland
| | - Neil Martinson
- Perinatal HIV Research Unit, University of Witwatersrand, Johannesburg, South Africa
| | - Alimuddin Zumla
- Division of Infection and Immunity, University College London (UCL), London, United Kingdom.,National Institute of Health Research's Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, United Kingdom.,Department of Microbiology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Markus Maeurer
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tjip S van der Werf
- Department of Pulmonary Diseases & Tuberculosis and Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherland.,Department of Infectious Diseases, University Medical Center Groningen, University of Groningen, Groningen, Netherland
| | - Cristina Vilaplana
- Experimental Tuberculosis Unit (UTE), Fundació Institut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
24
|
Carlson MA, Haddad BG, Weis AJ, Blackwood CS, Shelton CD, Wuerth ME, Walter JD, Spiegel PC. Ribosomal protein L7/L12 is required for GTPase translation factors EF-G, RF3, and IF2 to bind in their GTP state to 70S ribosomes. FEBS J 2017; 284:1631-1643. [PMID: 28342293 DOI: 10.1111/febs.14067] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/06/2017] [Accepted: 03/22/2017] [Indexed: 12/01/2022]
Abstract
Ribosomal protein L7/L12 is associated with translation initiation, elongation, and termination by the 70S ribosome. The guanosine 5' triphosphate hydrolase (GTPase) activity of elongation factor G (EF-G) requires the presence of L7/L12, which is critical for ribosomal translocation. Here, we have developed new methods for the complete depletion of L7/L12 from Escherichia coli 70S ribosomes to analyze the effect of L7/L12 on the activities of the GTPase factors EF-G, RF3, IF2, and LepA. Upon removal of L7/L12 from ribosomes, the GTPase activities of EF-G, RF3, and IF2 decreased to basal levels, while the activity of LepA decreased marginally. Upon reconstitution of ribosomes with recombinant L12, the GTPase activities of all GTPases returned to full activity. Moreover, ribosome binding assays indicated that EF-G, RF3, and IF2 require L7/L12 for stable binding in the GTP state, and LepA retained > 50% binding. Lastly, an EF-G∆G' truncation mutant possessed ribosome-dependent GTPase activity, which was insensitive to L7/L12. Our results indicate that L7/L12 is required for stable binding of ribosome-dependent GTPases that harbor direct interactions to the L7/L12 C-terminal domains, either through a G' domain (EF-G, RF3) or a unique N-terminal domain (IF2). Furthermore, we hypothesize this interaction is concomitant with counterclockwise ribosomal intersubunit rotation, which is required for translocation, initiation, and post-termination.
Collapse
Affiliation(s)
- Markus A Carlson
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Bassam G Haddad
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Amanda J Weis
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Colby S Blackwood
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | | | - Michelle E Wuerth
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Justin D Walter
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Paul Clint Spiegel
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| |
Collapse
|
25
|
Hussain T, Llácer JL, Wimberly BT, Kieft JS, Ramakrishnan V. Large-Scale Movements of IF3 and tRNA during Bacterial Translation Initiation. Cell 2016; 167:133-144.e13. [PMID: 27662086 PMCID: PMC5037330 DOI: 10.1016/j.cell.2016.08.074] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/04/2016] [Accepted: 08/23/2016] [Indexed: 11/19/2022]
Abstract
In bacterial translational initiation, three initiation factors (IFs 1–3) enable the selection of initiator tRNA and the start codon in the P site of the 30S ribosomal subunit. Here, we report 11 single-particle cryo-electron microscopy (cryoEM) reconstructions of the complex of bacterial 30S subunit with initiator tRNA, mRNA, and IFs 1–3, representing different steps along the initiation pathway. IF1 provides key anchoring points for IF2 and IF3, thereby enhancing their activities. IF2 positions a domain in an extended conformation appropriate for capturing the formylmethionyl moiety charged on tRNA. IF3 and tRNA undergo large conformational changes to facilitate the accommodation of the formylmethionyl-tRNA (fMet-tRNAfMet) into the P site for start codon recognition. Structures of the 30S ribosomal subunit with initiation factors, tRNA and mRNA IF3 helps to position the correct start codon in the P site before binding of tRNA Large-scale conformational changes of IF3 and tRNA are observed IF3 movements facilitate the accommodation of initiator tRNA in P site
Collapse
Affiliation(s)
| | - Jose L Llácer
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Brian T Wimberly
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA; RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
26
|
Orlov I, Myasnikov AG, Andronov L, Natchiar SK, Khatter H, Beinsteiner B, Ménétret JF, Hazemann I, Mohideen K, Tazibt K, Tabaroni R, Kratzat H, Djabeur N, Bruxelles T, Raivoniaina F, Pompeo LD, Torchy M, Billas I, Urzhumtsev A, Klaholz BP. The integrative role of cryo electron microscopy in molecular and cellular structural biology. Biol Cell 2016; 109:81-93. [PMID: 27730650 DOI: 10.1111/boc.201600042] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 01/10/2023]
Abstract
After gradually moving away from preparation methods prone to artefacts such as plastic embedding and negative staining for cell sections and single particles, the field of cryo electron microscopy (cryo-EM) is now heading off at unprecedented speed towards high-resolution analysis of biological objects of various sizes. This 'revolution in resolution' is happening largely thanks to new developments of new-generation cameras used for recording the images in the cryo electron microscope which have much increased sensitivity being based on complementary metal oxide semiconductor devices. Combined with advanced image processing and 3D reconstruction, the cryo-EM analysis of nucleoprotein complexes can provide unprecedented insights at molecular and atomic levels and address regulatory mechanisms in the cell. These advances reinforce the integrative role of cryo-EM in synergy with other methods such as X-ray crystallography, fluorescence imaging or focussed-ion beam milling as exemplified here by some recent studies from our laboratory on ribosomes, viruses, chromatin and nuclear receptors. Such multi-scale and multi-resolution approaches allow integrating molecular and cellular levels when applied to purified or in situ macromolecular complexes, thus illustrating the trend of the field towards cellular structural biology.
Collapse
Affiliation(s)
- Igor Orlov
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Alexander G Myasnikov
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Leonid Andronov
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - S Kundhavai Natchiar
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Heena Khatter
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Brice Beinsteiner
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Jean-François Ménétret
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Isabelle Hazemann
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Kareem Mohideen
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Karima Tazibt
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Rachel Tabaroni
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Hanna Kratzat
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Nadia Djabeur
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Tatiana Bruxelles
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Finaritra Raivoniaina
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Lorenza di Pompeo
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Morgan Torchy
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Isabelle Billas
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Alexandre Urzhumtsev
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Bruno P Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| |
Collapse
|
27
|
Pancsa R, Tompa P. Essential functions linked with structural disorder in organisms of minimal genome. Biol Direct 2016; 11:45. [PMID: 27608806 PMCID: PMC5016991 DOI: 10.1186/s13062-016-0149-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/03/2016] [Indexed: 12/13/2022] Open
Abstract
Abstract Intrinsically disordered regions (IDRs) of proteins fulfill important regulatory roles in most organisms. However, the proteins of certain endosymbiont and intracellular pathogenic bacteria with extremely reduced genomes contain disproportionately small amounts of IDRs, consisting almost entirely of folded domains. As their genomes co-evolving with their hosts have been reduced in unrelated lineages, the proteomes of these bacteria represent independently evolved minimal protein sets. We systematically analyzed structural disorder in a representative set of such minimal organisms to see which types of functionally relevant longer IDRs are invariably retained in them. We found that a few characteristic functions are consistently linked with conformational disorder: ribosomal proteins, key components of the protein production machinery, a central coordinator of DNA metabolism and certain housekeeping chaperones seem to strictly rely on structural disorder even in genome-reduced organisms. We propose that these functions correspond to the most essential and probably also the most ancient ones fulfilled by structural disorder in cellular organisms. Reviewers This article was reviewed by Michael Gromiha, Zoltan Gaspari and Sandor Pongor. Electronic supplementary material The online version of this article (doi:10.1186/s13062-016-0149-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rita Pancsa
- Structural Biology Research Center (SBRC), Flanders Institute for Biotechnology (VIB), Vrije Universiteit Brussel (VUB), 1050 Pleinlaan 2, Brussels, Belgium
| | - Peter Tompa
- Structural Biology Research Center (SBRC), Flanders Institute for Biotechnology (VIB), Vrije Universiteit Brussel (VUB), 1050 Pleinlaan 2, Brussels, Belgium. .,Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Magyar Tudósok körútja 2., Budapest, Hungary.
| |
Collapse
|
28
|
Arenz S, Wilson DN. Bacterial Protein Synthesis as a Target for Antibiotic Inhibition. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a025361. [PMID: 27481773 DOI: 10.1101/cshperspect.a025361] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein synthesis occurs on macromolecular machines, called ribosomes. Bacterial ribosomes and the translational machinery represent one of the major targets for antibiotics in the cell. Therefore, structural and biochemical investigations into ribosome-targeting antibiotics provide not only insight into the mechanism of action and resistance of antibiotics, but also insight into the fundamental process of protein synthesis. This review summarizes the recent advances in our understanding of protein synthesis, particularly with respect to X-ray and cryoelectron microscopy (cryo-EM) structures of ribosome complexes, and highlights the different steps of translation that are targeted by the diverse array of known antibiotics. Such findings will be important for the ongoing development of novel and improved antimicrobial agents to combat the rapid emergence of multidrug resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Stefan Arenz
- Center for Integrated Protein Science Munich (CiPSM), University of Munich, 81377 Munich, Germany
| | - Daniel N Wilson
- Center for Integrated Protein Science Munich (CiPSM), University of Munich, 81377 Munich, Germany Gene Center and Department for Biochemistry, University of Munich, 81377 Munich, Germany
| |
Collapse
|
29
|
Dongre R, Folkers GE, Gualerzi CO, Boelens R, Wienk H. A model for the interaction of the G3-subdomain of Geobacillus stearothermophilus IF2 with the 30S ribosomal subunit. Protein Sci 2016; 25:1722-33. [PMID: 27364543 DOI: 10.1002/pro.2977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 11/10/2022]
Abstract
Bacterial translation initiation factor IF2 complexed with GTP binds to the 30S ribosomal subunit, promotes ribosomal binding of fMet-tRNA, and favors the joining of the small and large ribosomal subunits yielding a 70S initiation complex ready to enter the translation elongation phase. Within the IF2 molecule subdomain G3, which is believed to play an important role in the IF2-30S interaction, is positioned between the GTP-binding G2 and the fMet-tRNA binding C-terminal subdomains. In this study the solution structure of subdomain G3 of Geobacillus stearothermophilus IF2 has been elucidated. G3 forms a core structure consisting of two β-sheets with each four anti-parallel strands, followed by a C-terminal α-helix. In line with its role as linker between G3 and subdomain C1, this helix has no well-defined orientation but is endowed with a dynamic nature. The structure of the G3 core is that of a typical OB-fold module, similar to that of the corresponding subdomain of Thermus thermophilus IF2, and to that of other known RNA-binding modules such as IF2-C2, IF1 and subdomains II of elongation factors EF-Tu and EF-G. Structural comparisons have resulted in a model that describes the interaction between IF2-G3 and the 30S ribosomal subunit.
Collapse
Affiliation(s)
- Ramachandra Dongre
- Department of Chemistry, NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | - Gert E Folkers
- Department of Chemistry, NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | - Claudio O Gualerzi
- Laboratory of Genetics, Department of Biosciences and Biotechnology, University of Camerino, Italy
| | - Rolf Boelens
- Department of Chemistry, NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | - Hans Wienk
- Department of Chemistry, NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| |
Collapse
|
30
|
Structures of the orthosomycin antibiotics avilamycin and evernimicin in complex with the bacterial 70S ribosome. Proc Natl Acad Sci U S A 2016; 113:7527-32. [PMID: 27330110 DOI: 10.1073/pnas.1604790113] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ribosome is one of the major targets for therapeutic antibiotics; however, the rise in multidrug resistance is a growing threat to the utility of our current arsenal. The orthosomycin antibiotics evernimicin (EVN) and avilamycin (AVI) target the ribosome and do not display cross-resistance with any other classes of antibiotics, suggesting that they bind to a unique site on the ribosome and may therefore represent an avenue for development of new antimicrobial agents. Here we present cryo-EM structures of EVN and AVI in complex with the Escherichia coli ribosome at 3.6- to 3.9-Å resolution. The structures reveal that EVN and AVI bind to a single site on the large subunit that is distinct from other known antibiotic binding sites on the ribosome. Both antibiotics adopt an extended conformation spanning the minor grooves of helices 89 and 91 of the 23S rRNA and interacting with arginine residues of ribosomal protein L16. This binding site overlaps with the elbow region of A-site bound tRNA. Consistent with this finding, single-molecule FRET (smFRET) experiments show that both antibiotics interfere with late steps in the accommodation process, wherein aminoacyl-tRNA enters the peptidyltransferase center of the large ribosomal subunit. These data provide a structural and mechanistic rationale for how these antibiotics inhibit the elongation phase of protein synthesis.
Collapse
|
31
|
Nag N, Lin KY, Edmonds KA, Yu J, Nadkarni D, Marintcheva B, Marintchev A. eIF1A/eIF5B interaction network and its functions in translation initiation complex assembly and remodeling. Nucleic Acids Res 2016; 44:7441-56. [PMID: 27325746 PMCID: PMC5009744 DOI: 10.1093/nar/gkw552] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 06/07/2016] [Indexed: 11/12/2022] Open
Abstract
Eukaryotic translation initiation is a highly regulated process involving multiple steps, from 43S pre-initiation complex (PIC) assembly, to ribosomal subunit joining. Subunit joining is controlled by the G-protein eukaryotic translation initiation factor 5B (eIF5B). Another protein, eIF1A, is involved in virtually all steps, including subunit joining. The intrinsically disordered eIF1A C-terminal tail (eIF1A-CTT) binds to eIF5B Domain-4 (eIF5B-D4). The ribosomal complex undergoes conformational rearrangements at every step of translation initiation; however, the underlying molecular mechanisms are poorly understood. Here we report three novel interactions involving eIF5B and eIF1A: (i) a second binding interface between eIF5B and eIF1A; (ii) a dynamic intramolecular interaction in eIF1A between the folded domain and eIF1A-CTT; and (iii) an intramolecular interaction between eIF5B-D3 and -D4. The intramolecular interactions within eIF1A and eIF5B interfere with one or both eIF5B/eIF1A contact interfaces, but are disrupted on the ribosome at different stages of translation initiation. Therefore, our results indicate that the interactions between eIF1A and eIF5B are being continuously rearranged during translation initiation. We present a model how the dynamic eIF1A/eIF5B interaction network can promote remodeling of the translation initiation complexes, and the roles in the process played by intrinsically disordered protein segments.
Collapse
Affiliation(s)
- Nabanita Nag
- Boston University School of Medicine, Department of Physiology and Biophysics, Boston, MA 02118, USA
| | - Kai Ying Lin
- Boston University School of Medicine, Department of Physiology and Biophysics, Boston, MA 02118, USA
| | | | - Jielin Yu
- Boston University School of Medicine, Department of Physiology and Biophysics, Boston, MA 02118, USA
| | - Devika Nadkarni
- Boston University School of Medicine, Department of Physiology and Biophysics, Boston, MA 02118, USA
| | - Boriana Marintcheva
- Bridgewater State University, Department of Biological Sciences, Bridgewater, MA 02325, USA
| | - Assen Marintchev
- Boston University School of Medicine, Department of Physiology and Biophysics, Boston, MA 02118, USA
| |
Collapse
|
32
|
Maitra A, Bates S, Shaik M, Evangelopoulos D, Abubakar I, McHugh TD, Lipman M, Bhakta S. Repurposing drugs for treatment of tuberculosis: a role for non-steroidal anti-inflammatory drugs. Br Med Bull 2016; 118:138-48. [PMID: 27151954 PMCID: PMC5127427 DOI: 10.1093/bmb/ldw019] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2016] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The number of cases of drug-resistant Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), has risen rapidly in recent years. This has led to the resurgence in repurposing existing drugs, such as non-steroidal anti-inflammatory drugs (NSAIDs), for anti-TB treatment. SOURCES OF DATA Evidence from novel drug screening in vitro, in vivo, pharmacokinetic/pharmacodynamics analyses and clinical trials has been used for the preparation of this systematic review of the potential of NSAIDs for use as an adjunct in new TB chemotherapies. AREAS OF AGREEMENT Certain NSAIDs have demonstrated inhibitory properties towards actively replicating, dormant and drug-resistant clinical isolates of M. tuberculosis cells. AREAS OF CONTROVERSY NSAIDs are a diverse class of drugs, which have reported off-target activities, and their endogenous antimicrobial mechanism(s) of action is still unclear. GROWING POINTS It is essential that clinical trials of NSAIDs continue, in order to assess their suitability for addition to the current TB treatment regimen. Repurposing molecules such as NSAIDs is a vital, low-risk strategy to combat the trend of rapidly increasing antibiotic resistance.
Collapse
Affiliation(s)
- Arundhati Maitra
- Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Sadé Bates
- Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Monisha Shaik
- Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | | | - Ibrahim Abubakar
- Medical Research Council Clinical Trials Unit at University College London, London, UK
| | - Timothy D McHugh
- Centre for Clinical Microbiology, University College London, London NW3 2PF, UK
| | - Marc Lipman
- Royal Free London NHS Foundation Trust, and University College London, London, UK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
33
|
Sprink T, Ramrath DJF, Yamamoto H, Yamamoto K, Loerke J, Ismer J, Hildebrand PW, Scheerer P, Bürger J, Mielke T, Spahn CMT. Structures of ribosome-bound initiation factor 2 reveal the mechanism of subunit association. SCIENCE ADVANCES 2016; 2:e1501502. [PMID: 26973877 PMCID: PMC4783127 DOI: 10.1126/sciadv.1501502] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/12/2016] [Indexed: 05/30/2023]
Abstract
Throughout the four phases of protein biosynthesis-initiation, elongation, termination, and recycling-the ribosome is controlled and regulated by at least one specified translational guanosine triphosphatase (trGTPase). Although the structural basis for trGTPase interaction with the ribosome has been solved for the last three steps of translation, the high-resolution structure for the key initiation trGTPase, initiation factor 2 (IF2), complexed with the ribosome, remains elusive. We determine the structure of IF2 complexed with a nonhydrolyzable guanosine triphosphate analog and initiator fMet-tRNAi (Met) in the context of the Escherichia coli ribosome to 3.7-Å resolution using cryo-electron microscopy. The structural analysis reveals previously unseen intrinsic conformational modes of the 70S initiation complex, establishing the mutual interplay of IF2 and initator transfer RNA (tRNA) with the ribsosome and providing the structural foundation for a mechanistic understanding of the final steps of translation initiation.
Collapse
Affiliation(s)
- Thiemo Sprink
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - David J F Ramrath
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Hiroshi Yamamoto
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Kaori Yamamoto
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Justus Loerke
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jochen Ismer
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Peter W Hildebrand
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Patrick Scheerer
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jörg Bürger
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.; UltraStrukturNetzwerk, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | - Thorsten Mielke
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.; UltraStrukturNetzwerk, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
34
|
Initiation factor 2 stabilizes the ribosome in a semirotated conformation. Proc Natl Acad Sci U S A 2015; 112:15874-9. [PMID: 26668356 DOI: 10.1073/pnas.1520337112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intersubunit rotation and movement of the L1 stalk, a mobile domain of the large ribosomal subunit, have been shown to accompany the elongation cycle of translation. The initiation phase of protein synthesis is crucial for translational control of gene expression; however, in contrast to elongation, little is known about the conformational rearrangements of the ribosome during initiation. Bacterial initiation factors (IFs) 1, 2, and 3 mediate the binding of initiator tRNA and mRNA to the small ribosomal subunit to form the initiation complex, which subsequently associates with the large subunit by a poorly understood mechanism. Here, we use single-molecule FRET to monitor intersubunit rotation and the inward/outward movement of the L1 stalk of the large ribosomal subunit during the subunit-joining step of translation initiation. We show that, on subunit association, the ribosome adopts a distinct conformation in which the ribosomal subunits are in a semirotated orientation and the L1 stalk is positioned in a half-closed state. The formation of the semirotated intermediate requires the presence of an aminoacylated initiator, fMet-tRNA(fMet), and IF2 in the GTP-bound state. GTP hydrolysis by IF2 induces opening of the L1 stalk and the transition to the nonrotated conformation of the ribosome. Our results suggest that positioning subunits in a semirotated orientation facilitates subunit association and support a model in which L1 stalk movement is coupled to intersubunit rotation and/or IF2 binding.
Collapse
|
35
|
Goyal A, Belardinelli R, Maracci C, Milón P, Rodnina MV. Directional transition from initiation to elongation in bacterial translation. Nucleic Acids Res 2015; 43:10700-12. [PMID: 26338773 PMCID: PMC4678851 DOI: 10.1093/nar/gkv869] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/18/2015] [Indexed: 01/21/2023] Open
Abstract
The transition of the 30S initiation complex (IC) to the translating 70S ribosome after 50S subunit joining provides an important checkpoint for mRNA selection during translation in bacteria. Here, we study the timing and control of reactions that occur during 70S IC formation by rapid kinetic techniques, using a toolbox of fluorescence-labeled translation components. We present a kinetic model based on global fitting of time courses obtained with eight different reporters at increasing concentrations of 50S subunits. IF1 and IF3 together affect the kinetics of subunit joining, but do not alter the elemental rates of subsequent steps of 70S IC maturation. After 50S subunit joining, IF2-dependent reactions take place independent of the presence of IF1 or IF3. GTP hydrolysis triggers the efficient dissociation of fMet-tRNA(fMet) from IF2 and promotes the dissociation of IF2 and IF1 from the 70S IC, but does not affect IF3. The presence of non-hydrolyzable GTP analogs shifts the equilibrium towards a stable 70S-mRNA-IF1-IF2-fMet-tRNA(fMet) complex. Our kinetic analysis reveals the molecular choreography of the late stages in translation initiation.
Collapse
Affiliation(s)
- Akanksha Goyal
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Riccardo Belardinelli
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Pohl Milón
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
36
|
Gualerzi CO, Pon CL. Initiation of mRNA translation in bacteria: structural and dynamic aspects. Cell Mol Life Sci 2015; 72:4341-67. [PMID: 26259514 PMCID: PMC4611024 DOI: 10.1007/s00018-015-2010-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 01/12/2023]
Abstract
Initiation of mRNA translation is a major checkpoint for regulating level and fidelity of protein synthesis. Being rate limiting in protein synthesis, translation initiation also represents the target of many post-transcriptional mechanisms regulating gene expression. The process begins with the formation of an unstable 30S pre-initiation complex (30S pre-IC) containing initiation factors (IFs) IF1, IF2 and IF3, the translation initiation region of an mRNA and initiator fMet-tRNA whose codon and anticodon pair in the P-site following a first-order rearrangement of the 30S pre-IC produces a locked 30S initiation complex (30SIC); this is docked by the 50S subunit to form a 70S complex that, following several conformational changes, positional readjustments of its ligands and ejection of the IFs, becomes a 70S initiation complex productive in initiation dipeptide formation. The first EF-G-dependent translocation marks the beginning of the elongation phase of translation. Here, we review structural, mechanistic and dynamical aspects of this process.
Collapse
MESH Headings
- Bacteria/genetics
- Bacteria/metabolism
- Binding Sites/genetics
- Codon, Initiator/genetics
- Codon, Initiator/metabolism
- Models, Genetic
- Nucleic Acid Conformation
- Peptide Initiation Factors/genetics
- Peptide Initiation Factors/metabolism
- Protein Biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/genetics
- RNA, Transfer, Met/metabolism
- Ribosomes/metabolism
Collapse
Affiliation(s)
| | - Cynthia L Pon
- Laboratory of Genetics, University of Camerino, 62032, Camerino, Italy.
| |
Collapse
|
37
|
Beinsteiner B, Michalon J, Klaholz BP. IBiSS, a versatile and interactive tool for integrated sequence and 3D structure analysis of large macromolecular complexes. Bioinformatics 2015; 31:3339-44. [DOI: 10.1093/bioinformatics/btv347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 05/30/2015] [Indexed: 11/13/2022] Open
|
38
|
Duval M, Simonetti A, Caldelari I, Marzi S. Multiple ways to regulate translation initiation in bacteria: Mechanisms, regulatory circuits, dynamics. Biochimie 2015; 114:18-29. [PMID: 25792421 DOI: 10.1016/j.biochi.2015.03.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/08/2015] [Indexed: 11/15/2022]
Abstract
To adapt their metabolism rapidly and constantly in response to environmental variations, bacteria often target the translation initiation process, during which the ribosome assembles on the mRNA. Here, we review different mechanisms of regulation mediated by cis-acting elements, sRNAs and proteins, showing, when possible, their intimate connection with the translational apparatus. Indeed the ribosome itself could play a direct role in several regulatory mechanisms. Different features of the regulatory signals (sequences, structures and their positions on the mRNA) are contributing to the large variety of regulatory mechanisms. Ribosome heterogeneity, variation of individual cells responses and the spatial and temporal organization of the translation process add more layers of complexity. This hampers to define manageable set of rules for bacterial translation initiation control.
Collapse
Affiliation(s)
- Mélodie Duval
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, F-67084 Strasbourg, France
| | - Angelita Simonetti
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, F-67084 Strasbourg, France
| | - Isabelle Caldelari
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, F-67084 Strasbourg, France
| | - Stefano Marzi
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, F-67084 Strasbourg, France
| |
Collapse
|
39
|
Klaholz BP. Structure Sorting of Multiple Macromolecular States in Heterogeneous Cryo-EM Samples by 3D Multivariate Statistical Analysis. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ojs.2015.57081] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Zheng A, Yu J, Yamamoto R, Ose T, Tanaka I, Yao M. X-ray structures of eIF5B and the eIF5B-eIF1A complex: the conformational flexibility of eIF5B is restricted on the ribosome by interaction with eIF1A. ACTA ACUST UNITED AC 2014; 70:3090-8. [PMID: 25478828 DOI: 10.1107/s1399004714021476] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 09/29/2014] [Indexed: 11/11/2022]
Abstract
eIF5B and eIF1A are two translation-initiation factors that are universally conserved among all kingdoms. They show a unique interaction in eukaryotes which is important for ribosomal subunit joining. Here, the structures of two isolated forms of yeast eIF5B and of the eIF5B-eIF1A complex (eIF1A and eIF5B do not contain the respective N-terminal domains) are reported. The eIF5B-eIF1A structure shows that the C-terminal tail of eIF1A binds to eIF5B domain IV, while the core domain of eIF1A is invisible in the electron-density map. Although the individual domains in all structures of eIF5B or archaeal IF5B (aIF5B) are similar, their domain arrangements are significantly different, indicating high structural flexibility, which is advantageous for conformational change during ribosomal subunit joining. Based on these structures, models of eIF5B, eIF1A and tRNAi(Met) on the 80S ribosome were built. The models suggest that the interaction between the eIF1A C-terminal tail and eIF5B helps tRNAi(Met) to bind to eIF5B domain IV, thus preventing tRNAi(Met) dissociation, stabilizing the interface for subunit joining and providing a checkpoint for correct ribosome assembly.
Collapse
Affiliation(s)
- Aiping Zheng
- Graduate School of Life Sciences, Hokkaido University, Kita 10 Nishi 8 Kita-Ku, Sapporo, Hokkaido 060-0810, Japan
| | - Jian Yu
- Graduate School of Life Sciences, Hokkaido University, Kita 10 Nishi 8 Kita-Ku, Sapporo, Hokkaido 060-0810, Japan
| | - Reo Yamamoto
- Graduate School of Life Sciences, Hokkaido University, Kita 10 Nishi 8 Kita-Ku, Sapporo, Hokkaido 060-0810, Japan
| | - Toyoyuki Ose
- Graduate School of Life Sciences, Hokkaido University, Kita 10 Nishi 8 Kita-Ku, Sapporo, Hokkaido 060-0810, Japan
| | - Isao Tanaka
- Graduate School of Life Sciences, Hokkaido University, Kita 10 Nishi 8 Kita-Ku, Sapporo, Hokkaido 060-0810, Japan
| | - Min Yao
- Graduate School of Life Sciences, Hokkaido University, Kita 10 Nishi 8 Kita-Ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
41
|
Myasnikov AG, Afonina ZA, Ménétret JF, Shirokov VA, Spirin AS, Klaholz BP. The molecular structure of the left-handed supra-molecular helix of eukaryotic polyribosomes. Nat Commun 2014; 5:5294. [PMID: 25376914 DOI: 10.1038/ncomms6294] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/17/2014] [Indexed: 01/07/2023] Open
Abstract
During protein synthesis, several ribosomes bind to a single messenger RNA (mRNA) forming large macromolecular assemblies called polyribosomes. Here we report the detailed molecular structure of a 100 MDa eukaryotic poly-ribosome complex derived from cryo electron tomography, sub-tomogram averaging and pseudo-atomic modelling by crystal structure fitting. The structure allowed the visualization of the three functional parts of the polysome assembly, the central core region that forms a rather compact left-handed supra-molecular helix, and the more open regions that harbour the initiation and termination sites at either ends. The helical region forms a continuous mRNA channel where the mRNA strand bridges neighbouring exit and entry sites of the ribosomes and prevents mRNA looping between ribosomes. This structure provides unprecedented insights into protein- and RNA-mediated inter-ribosome contacts that involve conserved sites through 40S subunits and long protruding RNA expansion segments, suggesting a role in stabilizing the overall polyribosomal assembly.
Collapse
Affiliation(s)
- Alexander G Myasnikov
- 1] Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, BP 10142, 67404 Illkirch, France [2] Centre National de la Recherche Scientifique (CNRS) UMR 7104, 67404 Illkirch, France [3] Institut National de la Santé et de la Recherche Médicale (INSERM), 67404 Illkirch, France [4] Université de Strasbourg, 67400 Strasbourg, France
| | - Zhanna A Afonina
- Institute of Protein Research, Russian Academy of Sciences, 142290 Moscow, Russia
| | - Jean-François Ménétret
- 1] Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, BP 10142, 67404 Illkirch, France [2] Centre National de la Recherche Scientifique (CNRS) UMR 7104, 67404 Illkirch, France [3] Institut National de la Santé et de la Recherche Médicale (INSERM), 67404 Illkirch, France [4] Université de Strasbourg, 67400 Strasbourg, France
| | - Vladimir A Shirokov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Moscow, Russia
| | - Alexander S Spirin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Moscow, Russia
| | - Bruno P Klaholz
- 1] Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, BP 10142, 67404 Illkirch, France [2] Centre National de la Recherche Scientifique (CNRS) UMR 7104, 67404 Illkirch, France [3] Institut National de la Santé et de la Recherche Médicale (INSERM), 67404 Illkirch, France [4] Université de Strasbourg, 67400 Strasbourg, France
| |
Collapse
|
42
|
MacDougall DD, Gonzalez RL. Translation initiation factor 3 regulates switching between different modes of ribosomal subunit joining. J Mol Biol 2014; 427:1801-18. [PMID: 25308340 DOI: 10.1016/j.jmb.2014.09.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 11/30/2022]
Abstract
Ribosomal subunit joining is a key checkpoint in the bacterial translation initiation pathway during which initiation factors (IFs) regulate association of the 30S initiation complex (IC) with the 50S subunit to control formation of a 70S IC that can enter into the elongation stage of protein synthesis. The GTP-bound form of IF2 accelerates subunit joining, whereas IF3 antagonizes subunit joining and plays a prominent role in maintaining translation initiation fidelity. The molecular mechanisms through which IF2 and IF3 collaborate to regulate the efficiency of 70S IC formation, including how they affect the dynamics of subunit joining, remain poorly defined. Here, we use single-molecule fluorescence resonance energy transfer to monitor the interactions between IF2 and the GTPase-associated center (GAC) of the 50S subunit during real-time subunit joining reactions in the absence and presence of IF3. In the presence of IF3, IF2-mediated subunit joining becomes reversible, and subunit joining events cluster into two distinct classes corresponding to formation of shorter- and longer-lifetime 70S ICs. Inclusion of IF3 within the 30S IC was also found to alter the conformation of IF2 relative to the GAC, suggesting that IF3's regulatory effects may stem in part from allosteric modulation of IF2-GAC interactions. The results are consistent with a model in which IF3 can exert control over the efficiency of subunit joining by modulating the conformation of the 30S IC, which in turn influences the formation of stabilizing intersubunit contacts and thus the reaction's degree of reversibility.
Collapse
Affiliation(s)
- Daniel D MacDougall
- Columbia University Department of Chemistry, 3000 Broadway, New York, NY 10027, USA
| | - Ruben L Gonzalez
- Columbia University Department of Chemistry, 3000 Broadway, New York, NY 10027, USA.
| |
Collapse
|
43
|
Furusawa H, Tsuyuki Y, Takahashi S, Okahata Y. In situ monitoring of structural changes during formation of 30S translation initiation complex by energy dissipation measurement using 27-MHz quartz-crystal microbalance. Anal Chem 2014; 86:5406-15. [PMID: 24794712 DOI: 10.1021/ac500487b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribosome is a bionanomachine that facilitates an orderly translation process during protein synthesis in living cells. Real-time monitoring of conformational changes in ribosomal subunits in aqueous solution is important to understand the regulatory mechanism of protein synthesis, because conformational changes in ribosome in E. coli have been predicted to operate the switch from translation initiation to an elongation process during translation. We performed an energy dissipation measurement by using a quartz-crystal microbalance-admittance (QCM-A) technique for in situ monitoring of conformational changes in pre-30S translation initiation complex in response to the binding of fMet-tRNA(fMet) in aqueous solution. The addition of fMet-tRNA(fMet) caused changes in the physical property (increased dehydration and elasticity) in 30S ribosomal subunit in the presence of mRNA and IF2/guanosine 5'-triphosphate (GTP) on the QCM plate. Furthermore, two sequential changes triggered by the addition of fMet-tRNA(fMet) were observed in 30S ribosomal subunit bound to mRNA in the presence of IF2/GTP and IF3. These observations suggest that the structural changes in 30S ribosomal subunit caused by the binding of fMet-tRNA(fMet) with IF2/GTP in the presence of IF3 could act as a switch to regulate the orderly processing in the construction of translation initiation complex, because the structural distinction can be a guidepost in the process for the relevant biomolecules.
Collapse
Affiliation(s)
- Hiroyuki Furusawa
- Innovative Flex Course for Frontier Organic Material Systems (iFront), Yamagata University , 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | | | | | | |
Collapse
|
44
|
Initiation factor 2 crystal structure reveals a different domain organization from eukaryotic initiation factor 5B and mechanism among translational GTPases. Proc Natl Acad Sci U S A 2013; 110:15662-7. [PMID: 24029018 DOI: 10.1073/pnas.1309360110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The initiation of protein synthesis uses initiation factor 2 (IF2) in prokaryotes and a related protein named eukaryotic initiation factor 5B (eIF5B) in eukaryotes. IF2 is a GTPase that positions the initiator tRNA on the 30S ribosomal initiation complex and stimulates its assembly to the 50S ribosomal subunit to make the 70S ribosome. The 3.1-Å resolution X-ray crystal structures of the full-length Thermus thermophilus apo IF2 and its complex with GDP presented here exhibit two different conformations (all of its domains except C2 domain are visible). Unlike all other translational GTPases, IF2 does not have an effecter domain that stably contacts the switch II region of the GTPase domain. The domain organization of IF2 is inconsistent with the "articulated lever" mechanism of communication between the GTPase and initiator tRNA binding domains that has been proposed for eIF5B. Previous cryo-electron microscopy reconstructions, NMR experiments, and this structure show that IF2 transitions from being flexible in solution to an extended conformation when interacting with ribosomal complexes.
Collapse
|