1
|
Bu L, Ma X, Ji A, Geng K, Feng H, Li L, Zhang A, Cheng Z. Development of a novel 18F-labeled small molecule probe for PET imaging of mesenchymal epithelial transition receptor expression. Eur J Nucl Med Mol Imaging 2024; 51:656-668. [PMID: 37940685 DOI: 10.1007/s00259-023-06495-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Abstract
The mesenchymal epithelial transition factor (c-Met) is frequently overexpressed in numerous cancers and has served as a validated anticancer target. Inter- and intra-tumor heterogeneity of c-Met, however, challenges the use of anti-MET therapies, highlighting an urgent need to develop an alternative tool for visualizing whole-body c-Met expression quantitatively and noninvasively. Here we firstly reported an 18F labeled, small-molecule quinine compound-based PET probe, 1-(4-(5-amino-7-(trifluoromethyl) quinolin-3-yl) piperazin-1-yl)-2-(fluoro-[18F]) propan-1-one, herein referred as [18F]-AZC. METHODS [18F]-AZC was synthesized via a one-step substitution reaction and characterized by radiochemistry methods. [18F]-AZC specificity and affinity toward c-Met were assessed by cell uptake assay, with or without cold compound [19F]-AZC or commercial c-Met inhibitor blocking. MicroPET/CT imaging and biodistribution studies were conducted in subcutaneous murine xenografts of glioma. Additionally, [18F]-AZC was then further evaluated in orthotopic glioma xenografts, by microPET/CT imaging accompanied with MRI and autoradiography for co-registration of the tumor. Immunofluorescence staining was also carried out to qualitatively evaluate the c-Met expression in tumor tissue, co-localizes with H&E staining. RESULTS This probe shows easy radiosynthesis, high stability in vitro and in vivo, high targeting affinity, and favorable lipophilicity and brain transport coefficient. [18F]-AZC demonstrates excellent tumor imaging properties in vivo and can delineate c-Met positive glioma specifically at 1 h after intravenous injection of the probe. Moreover, favorable correlation was observed between the [18F]-AZC accumulation and the amount of c-Met expression in tumor. CONCLUSION This novel imaging probe could be applied as a valuable tool for management of anti-c-Met therapies in patients in the future.
Collapse
Affiliation(s)
- Lihong Bu
- PET-CT/MRI Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, Stanford, CA, 94305-5484, USA
| | - Xiaowei Ma
- PET-CT Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Aiyan Ji
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Pharmacy, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Kaijun Geng
- National Key Laboratory of Innovative Immunotherapy, Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongyan Feng
- PET-CT/MRI Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Li
- PET-CT/MRI Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ao Zhang
- National Key Laboratory of Innovative Immunotherapy, Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, Stanford, CA, 94305-5484, USA.
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201203, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai rim Advanced Research Institute for Drug Discovery, Yantai, 264117, Shandong, China.
| |
Collapse
|
2
|
Neill T, Xie C, Iozzo RV. Decorin evokes reversible mitochondrial depolarization in carcinoma and vascular endothelial cells. Am J Physiol Cell Physiol 2022; 323:C1355-C1373. [PMID: 36036446 PMCID: PMC9602711 DOI: 10.1152/ajpcell.00325.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022]
Abstract
Decorin, a small leucine-rich proteoglycan with multiple biological functions, is known to evoke autophagy and mitophagy in both endothelial and cancer cells. Here, we investigated the effects of soluble decorin on mitochondrial homeostasis using live cell imaging and ex vivo angiogenic assays. We discovered that decorin triggers mitochondrial depolarization in triple-negative breast carcinoma, HeLa, and endothelial cells. This bioactivity was mediated by the protein core in a time- and dose-dependent manner and was specific for decorin insofar as biglycan, the closest homolog, failed to trigger depolarization. Mechanistically, we found that the bioactivity of decorin to promote depolarization required the MET receptor and its tyrosine kinase. Moreover, two mitochondrial interacting proteins, mitostatin and mitofusin 2, were essential for downstream decorin effects. Finally, we found that decorin relied on the canonical mitochondrial permeability transition pore to trigger tumor cell mitochondrial depolarization. Collectively, our study implicates decorin as a soluble outside-in regulator of mitochondrial dynamics.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Christopher Xie
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
3
|
Grundy M, Narendran A. The hepatocyte growth factor/mesenchymal epithelial transition factor axis in high-risk pediatric solid tumors and the anti-tumor activity of targeted therapeutic agents. Front Pediatr 2022; 10:910268. [PMID: 36034555 PMCID: PMC9399617 DOI: 10.3389/fped.2022.910268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/15/2022] [Indexed: 01/04/2023] Open
Abstract
Clinical trials completed in the last two decades have contributed significantly to the improved overall survival of children with cancer. In spite of these advancements, disease relapse still remains a significant cause of death in this patient population. Often, increasing the intensity of current protocols is not feasible because of cumulative toxicity and development of drug resistance. Therefore, the identification and clinical validation of novel targets in high-risk and refractory childhood malignancies are essential to develop effective new generation treatment protocols. A number of recent studies have shown that the hepatocyte growth factor (HGF) and its receptor Mesenchymal epithelial transition factor (c-MET) influence the growth, survival, angiogenesis, and metastasis of cancer cells. Therefore, the c-MET receptor tyrosine kinase and HGF have been identified as potential targets for cancer therapeutics and recent years have seen a race to synthesize molecules to block their expression and function. In this review we aim to summarize the literature that explores the potential and biological rationale for targeting the HGF/c-MET pathway in common and high-risk pediatric solid tumors. We also discuss selected recent and ongoing clinical trials with these agents in relapsed pediatric tumors that may provide applicable future treatments for these patients.
Collapse
Affiliation(s)
- Megan Grundy
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Aru Narendran
- POETIC Laboratory for Preclinical and Drug Discovery Studies, Division of Pediatric Oncology, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
4
|
Design, synthesis and biological evaluation of novel N-sulfonylamidine-based derivatives as c-Met inhibitors via Cu-catalyzed three-component reaction. Eur J Med Chem 2020; 200:112470. [PMID: 32505087 DOI: 10.1016/j.ejmech.2020.112470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 12/28/2022]
Abstract
In our continuing efforts to develop novel c-Met inhibitors as potential anticancer candidates, a series of new N-sulfonylamidine derivatives were designed, synthesized via Cu-catalyzed multicomponent reaction (MCR) as the key step, and evaluated for their in vitro biological activities against c-Met kinase and four cancer cell lines (A549, HT-29, MKN-45 and MDA-MB-231). Most of the target compounds showed moderate to significant potency at both the enzyme-based and cell-based assay and possessed selectivity for A549 and HT-29 cancer cell lines. The preliminary SAR studies demonstrated that compound 26af (c-Met IC50 = 2.89 nM) was the most promising compound compared with the positive foretinib, which exhibited the remarkable antiproliferative activities, with IC50 values ranging from 0.28 to 0.72 μM. Mechanistic studies of 26af showed the anticancer activity was closely related to the blocking phosphorylation of c-Met, leading to cell cycle arresting at G2/M phase and apoptosis of A549 cells by a concentration-dependent manner. The promising compound 26af was further identified as a relatively selective inhibitor of c-Met kinase, which also possessed an acceptable safety profile and favorable pharmacokinetic properties in BALB/c mouse. The favorable drug-likeness of 26af suggested that N-sulfonylamidines may be used as a promising scaffold for antitumor drug development. Additionally, the docking study and molecular dynamics simulations of 26af revealed a common mode of interaction with the binding site of c-Met. These positive results indicated that compound 26af is a potential anti-cancer candidate for clinical trials, and deserves further development as a selective c-Met inhibitor.
Collapse
|
5
|
Lupu L, Wiegand P, Hüttmann N, Rawer S, Kleinekofort W, Shugureva I, Kichkailo AS, Tomilin FN, Lazarev A, Berezovski MV, Przybylski M. Molecular Epitope Determination of Aptamer Complexes of the Multidomain Protein C-Met by Proteolytic Affinity-Mass Spectrometry. ChemMedChem 2020; 15:363-369. [PMID: 31825565 DOI: 10.1002/cmdc.201900489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/29/2019] [Indexed: 12/21/2022]
Abstract
C-Met protein is a glycosylated receptor tyrosine kinase of the hepatocyte growth factor (HGF), composed of an α and a β chain. Upon ligand binding, C-Met transmits intracellular signals by a unique multi-substrate docking site. C-Met can be aberrantly activated leading to tumorigenesis and other diseases, and has been recognized as a biomarker in cancer diagnosis. C-Met aptamers have been recently considered a useful tool for detection of cancer biomarkers. Herein we report a molecular interaction study of human C-Met expressed in kidney cells with two DNA aptamers of 60 and 64 bases (CLN0003 and CLN0004), obtained using the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) procedure. Epitope peptides of aptamer-C-Met complexes were identified by proteolytic affinity-mass spectrometry in combination with SPR biosensor analysis (PROTEX-SPR-MS), using high-pressure proteolysis for efficient digestion. High affinities (KD , 80-510 nM) were determined for aptamer-C-Met complexes, with two-step binding suggested by kinetic analysis. A linear epitope, C-Met (381-393) was identified for CLN0004, while the CLN0003 aptamer revealed an assembled epitope comprised of two peptide sequences, C-Met (524-543) and C-Met (557-568). Structure modeling of C-Met-aptamers were consistent with the identified epitopes. Specificities and affinities were ascertained by SPR analysis of the synthetic epitope peptides. The high affinities of aptamers to C-Met, and the specific epitopes revealed render them of high interest for cellular diagnostic studies.
Collapse
Affiliation(s)
- Loredana Lupu
- Steinbeis Centre for Biopolymer Analysis and Biomedical Mass Spectrometry, Marktstraße 29, 65428, Rüsselsheim am Main, Germany
| | - Pascal Wiegand
- Steinbeis Centre for Biopolymer Analysis and Biomedical Mass Spectrometry, Marktstraße 29, 65428, Rüsselsheim am Main, Germany
| | - Nico Hüttmann
- Steinbeis Centre for Biopolymer Analysis and Biomedical Mass Spectrometry, Marktstraße 29, 65428, Rüsselsheim am Main, Germany.,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Stephan Rawer
- Steinbeis Centre for Biopolymer Analysis and Biomedical Mass Spectrometry, Marktstraße 29, 65428, Rüsselsheim am Main, Germany
| | - Wolfgang Kleinekofort
- Steinbeis Centre for Biopolymer Analysis and Biomedical Mass Spectrometry, Marktstraße 29, 65428, Rüsselsheim am Main, Germany.,Dept. of Engineering Sciences, Rhein Main University, 65428, Rüsselsheim am Main, Germany
| | - Irina Shugureva
- Siberian Federal University, Krasnoyarsk, 66041, Russia.,Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science", Laboratory for Digital Controlled Drugs and Theranostics, Krasnoyarsk, 660036, Russia
| | - Anna S Kichkailo
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science", Laboratory for Digital Controlled Drugs and Theranostics, Krasnoyarsk, 660036, Russia
| | - Felix N Tomilin
- Kirensky Institute of Physics, Russian Academy of Sciences Siberian Branch, Krasnoyarsk, 660036, Russia.,Siberian Federal University, Krasnoyarsk, 66041, Russia
| | - Alexander Lazarev
- Pressure Biosciences Inc., 14 Norfolk Ave., South Easton, MA, 02375, USA
| | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Michael Przybylski
- Steinbeis Centre for Biopolymer Analysis and Biomedical Mass Spectrometry, Marktstraße 29, 65428, Rüsselsheim am Main, Germany
| |
Collapse
|
6
|
Xia GS, Li SH, Zhou W. Isoquercitrin, ingredients in Tetrastigma hemsleyanum Diels et Gilg, inhibits hepatocyte growth factor/scatter factor-induced tumor cell migration and invasion. Cell Adh Migr 2018; 12:464-471. [PMID: 29741444 DOI: 10.1080/19336918.2018.1473664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aberrant activation of hepatocyte growth factor/scatter factor (HGF/SF) and its receptor, Met, is involved in the development and progression of many human cancers. In the screening assay of extracts from the root tuber of Tetrastigma hemsleyanum Diels et Gilg, isoquercitrin inhibited HGF/SF-Met signaling as indicated by its inhibitory activity on HGF/SF-induced cell scattering. Further analysis revealed that isoquercitrin specifically inhibited HGF/SF-induced tyrosine phosphorylation of Met. We also found that isoquercitrin decreased HGF-induced migration and invasion by parental or HGF/SF-transfected bladder carcinoma cell line NBT-II cells. Furthermore, isoquercitrin inhibited HGF/SF-induced epithelial mesenchymal transition in vitro and the invasion/metastasis of HGF/SF-transfected NBT-II cells in vivo. Our data suggest the possible use of isoquercitrin in human cancers associated with dysregulated HGF/SF-Met signaling.
Collapse
Affiliation(s)
- Geng-Shou Xia
- a Department of Ecology , Lishui University , Lishui , Zhejiang , China
| | - Shu-Hong Li
- b Department of Medicine and Health , Lishui University , Lishui , Zhejiang , China
| | - Wu Zhou
- b Department of Medicine and Health , Lishui University , Lishui , Zhejiang , China
| |
Collapse
|
7
|
The multiple paths towards MET receptor addiction in cancer. Oncogene 2018; 37:3200-3215. [PMID: 29551767 DOI: 10.1038/s41388-018-0185-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 12/14/2022]
Abstract
Targeted therapies against receptor tyrosine kinases (RTKs) are currently used with success on a small proportion of patients displaying clear oncogene activation. Lung cancers with a mutated EGFR provide a good illustration. The efficacy of targeted treatments relies on oncogene addiction, a situation in which the growth or survival of the cancer cells depends on a single deregulated oncogene. MET, a member of the RTK family, is a promising target because it displays many deregulations in a broad panel of cancers. Although clinical trials having evaluated MET inhibitors in large populations have yielded disappointing results, many recent case reports suggest that MET inhibition may be effective in a subset of patients with unambiguous MET activation and thus, most probably, oncogene addiction. Interestingly, preclinical studies have revealed a particularity of MET addiction: it can arise through several mechanisms, and the mechanism involved can differ according to the cancer type. The present review describes the different mechanisms of MET addiction and their consequences for diagnosis and therapeutic strategies. Although in each cancer type MET addiction affects a restricted number of patients, pooling of these patients across all cancer types yields a targetable population liable to benefit from addiction-targeting therapies.
Collapse
|
8
|
Bahrami A, Shahidsales S, Khazaei M, Ghayour-Mobarhan M, Maftouh M, Hassanian SM, Avan A. C-Met as a potential target for the treatment of gastrointestinal cancer: Current status and future perspectives. J Cell Physiol 2017; 232:2657-2673. [PMID: 28075018 DOI: 10.1002/jcp.25794] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 01/05/2025]
Abstract
Aberrant activation of the HGF/c-Met signalling pathways is shown to be related with cell proliferation, progression, metastasis, and worse prognosis in several tumor types, including gastrointestinal cancers, suggesting its value as a stimulating-target for cancer-therapy. Several approaches have been developed for targeting HGF and/or c-Met, and one of them, crizotinib (dual c-Met/ALK inhibitor), is recently been approved by FDA for lung-cancers with ALK-rearrangement. The main aim of current review is to give an overview on the role of c-Met/HGF pathway in gastrointestinal cancer, in preclinical and clinical trials. Although several important matters is still remained to be elucidated on the molecular pathways underlying the antitumor effects of this therapy in gastrointestinal-cancers. Further investigations are warranted to recognize the main determinants of the activity of c-Met inhibitors, for parallel targeting signalling pathway associated/activated via MET/HGF pathway or in response to the cell resistance to anti-c-Met agents. Additionally, identification of patients that might benefit from therapy could help to increase the selectivity and efficacy of the therapy.
Collapse
Affiliation(s)
- Afsane Bahrami
- Molecular Medicine Group, Department of Modern Sciences and Technology, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soodabeh Shahidsales
- Cancer Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Neurogenic Inflammatory Research Center and Department of Physiology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Maftouh
- Metabolic syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Price EW, Carnazza KE, Carlin SD, Cho A, Edwards KJ, Sevak KK, Glaser JM, de Stanchina E, Janjigian YY, Lewis JS. 89Zr-DFO-AMG102 Immuno-PET to Determine Local Hepatocyte Growth Factor Protein Levels in Tumors for Enhanced Patient Selection. J Nucl Med 2017; 58:1386-1394. [PMID: 28280216 DOI: 10.2967/jnumed.116.187310] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/15/2017] [Indexed: 11/16/2022] Open
Abstract
The hepatocyte growth factor (HGF) binding antibody rilotumumab (AMG102) was modified for use as a 89Zr-based immuno-PET imaging agent to noninvasively determine the local levels of HGF protein in tumors. Because recent clinical trials of HGF-targeting therapies have been largely unsuccessful in several different cancers (e.g., gastric, brain, lung), we have synthesized and validated 89Zr-DFO-AMG102 as a companion diagnostic for improved identification and selection of patients having high local levels of HGF in tumors. To date, patient selection has not been performed using the local levels of HGF protein in tumors. Methods: The chelator p-SCN-Bn-DFO was conjugated to AMG102, radiolabeling with 89Zr was performed in high radiochemical yields and purity (>99%), and binding affinity of the modified antibody was confirmed using an enzyme-linked immunosorbent assay (ELISA)-type binding assay. PET imaging, biodistribution, autoradiography and immunohistochemistry, and ex vivo HGF ELISA experiments were performed on murine xenografts of U87MG (HGF-positive, MET-positive) and MKN45 (HGF-negative, MET-positive) and 4 patient-derived xenografts (MET-positive, HGF unknown). Results: Tumor uptake of 89Zr-DFO-AMG102 at 120 h after injection in U87MG xenografts (HGF-positive) was high (36.8 ± 7.8 percentage injected dose per gram [%ID/g]), whereas uptake in MKN45 xenografts (HGF-negative) was 5.0 ± 1.3 %ID/g and a control of nonspecific human IgG 89Zr-DFO-IgG in U87MG tumors was 11.5 ± 3.3 %ID/g, demonstrating selective uptake in HGF-positive tumors. Similar experiments performed in 4 different gastric cancer patient-derived xenograft models showed low uptake of 89Zr-DFO-AMG102 (∼4-7 %ID/g), which corresponded with low HGF levels in these tumors (ex vivo ELISA). Autoradiography, immunohistochemical staining, and HGF ELISA assays confirmed that elevated levels of HGF protein were present only in U87MG tumors and that 89Zr-DFO-AMG102 uptake was closely correlated with HGF protein levels in tumors. Conclusion: The new immuno-PET imaging agent 89Zr-DFO-AMG102 was successfully synthesized, radiolabeled, and validated in vitro and in vivo to selectively accumulate in tumors with high local levels of HGF protein. These results suggest that 89Zr-DFO-AMG102 would be a valuable companion diagnostic tool for the noninvasive selection of patients with elevated local concentrations of HGF in tumors for planning any HGF-targeted therapy, with the potential to improve clinical outcomes.
Collapse
Affiliation(s)
- Eric W Price
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kathryn E Carnazza
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sean D Carlin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew Cho
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kimberly J Edwards
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kuntal K Sevak
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jonathan M Glaser
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yelena Y Janjigian
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York .,Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
10
|
Chen HY, Chen YM, Wu J, Yang FC, Lv Z, Qian YG, Zheng SS. Effects of HGF gene polymorphisms and protein expression on transhepatic arterial chemotherapeutic embolism efficacy and prognosis in patients with primary liver cancer. Onco Targets Ther 2017; 10:803-810. [PMID: 28243116 PMCID: PMC5315352 DOI: 10.2147/ott.s115035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Objective To investigate the correlations of two hepatocyte growth factor (HGF) gene polymorphisms (rs5745652 and rs2074725) and their protein expression levels with the efficacy of transhepatic arterial chemotherapeutic embolism (TACE) and prognosis in patients with primary liver cancer (PLC). Methods From March 2011 to June 2012, 109 PLC patients (the case group) who chose TACE as primary treatment and 80 healthy people (the control group) who had undergone physical examination in The First Affiliated Hospital, Zhejiang University were selected during the same period. Gene polymorphisms of HGF rs5745652 and HGF rs2074725 were detected. Serum HGF level, treating efficacy, survival quality, and 3-year survival rate for PLC patients who received TACE were observed. Results There were significant differences in genotype and allele frequencies of HGF rs5745652 and HGF rs2074725, between the case and control groups (all P<0.05). Compared with CT+TT genotype of HGF rs5745652, patients carrying CC genotype had lower serum HGF levels, higher efficacy, better survival quality, and prolonged 3-year survival rate (all P<0.05). In rs2074725, patients carrying CA+AA genotype had lower serum HGF levels, higher efficacy, better survival quality, and prolonged 3-year survival rate compared with patients carrying rs2074725 CC genotype (all P<0.05). Gene polymorphisms of HGF rs5745652 and HGF rs2074725, tumor size, and Barcelona Clinic Liver Cancer stage were independent prognostic factors for PLC (P<0.05). Conclusion Our results indicated that HGF gene polymorphisms affect TACE efficacy and survival quality of PLC patients. Patients with HGF CC genotype of rs5745652 and CA+AA genotype of rs2074725 had decreased HGF level, better curative effect, high survival quality, and a good prognosis after TACE treatment.
Collapse
Affiliation(s)
- Hai-Yong Chen
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases
| | - Yao-Min Chen
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jian Wu
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases
| | - Fu-Chun Yang
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases
| | - Zhen Lv
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases
| | - Yi-Gang Qian
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases
| | - Shu-Sen Zheng
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases
| |
Collapse
|
11
|
Xu D, Wan A, Peng L, Chen Y, He Y, Yang J, Jin J. Production of human mutant biologically active hepatocyte growth factor in Chinese hamster ovary cells. Prep Biochem Biotechnol 2017; 47:489-495. [DOI: 10.1080/10826068.2016.1275010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Dongsheng Xu
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Aini Wan
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Lin Peng
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Yun Chen
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Yang He
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianfeng Yang
- Cyrus Tang Hematology Center and Ministry of Education Engineering Center of Hematological Disease, Soochow University, Suzhou, China
| | - Jian Jin
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Chan JSK, Tan MJ, Sng MK, Teo Z, Phua T, Choo CC, Li L, Zhu P, Tan NS. Cancer-associated fibroblasts enact field cancerization by promoting extratumoral oxidative stress. Cell Death Dis 2017; 8:e2562. [PMID: 28102840 PMCID: PMC5386391 DOI: 10.1038/cddis.2016.492] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 12/24/2022]
Abstract
Histological inspection of visually normal tissue adjacent to neoplastic lesions often reveals multiple foci of cellular abnormalities. This suggests the presence of a regional carcinogenic signal that spreads oncogenic transformation and field cancerization. We observed an abundance of mutagenic reactive oxygen species in the stroma of cryosectioned patient tumor biopsies, indicative of extratumoral oxidative stress. Diffusible hydrogen peroxide (H2O2) was elevated in the conditioned medium of cultured skin epithelia at various stages of oncogenic transformation, and H2O2 production increased with greater tumor-forming and metastatic capacity of the studied cell lines. Explanted cancer-associated fibroblasts (CAFs) also had higher levels of H2O2 secretion compared with normal fibroblasts (FIBs). These results suggest that extracellular H2O2 acts as a field effect carcinogen. Indeed, H2O2-treated keratinocytes displayed decreased phosphatase and tensin homolog (PTEN) and increased Src activities because of oxidative modification. Furthermore, treating FIBs with CAF-conditioned medium or exogenous H2O2 resulted in the acquisition of an oxidative, CAF-like state. In vivo, the proliferative potential and invasiveness of composite tumor xenografts comprising cancerous or non-tumor-forming epithelia with CAFs and FIBs could be attenuated by the presence of catalase. Importantly, we showed that oxidatively transformed FIBs isolated from composite tumor xenografts retained their ability to promote tumor growth and aggressiveness when adoptively transferred into new xenografts. Higher H2O2 production by CAFs was contingent on impaired TGFβ signaling leading to the suppression of the antioxidant enzyme glutathione peroxidase 1 (GPX1). Finally, we detected a reduction in Smad3, TAK1 and TGFβRII expression in a cohort of 197 clinical squamous cell carcinoma (SCC) CAFs, suggesting that impaired stromal TGFβ signaling may be a clinical feature of SCC. Our study indicated that CAFs and cancer cells engage redox signaling circuitries and mitogenic signaling to reinforce their reciprocal relationship, suggesting that future anticancer approaches should simultaneously target ligand receptor and redox-mediated pathways.
Collapse
Affiliation(s)
- Jeremy Soon Kiat Chan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | - Ming Jie Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | - Ming Keat Sng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | - Ziqiang Teo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | - Terri Phua
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobelsväg 16, StockholmSweden
| | - Chee Chong Choo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | - Liang Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | - Pengcheng Zhu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore.,Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Singapore.,KK Women's and Children Hospital, 100 Bukit Timah Road, Singapore
| |
Collapse
|
13
|
Xu D, Wan A, Zhang J, Peng L, Chen Y, He Y, Yang J, Jin J. Inhibition of the ubiquitin ligase activity improves the production of biologically active fusion protein HSA-HGF in Chinese hamster ovary cells. Bioengineered 2016; 8:256-264. [PMID: 27753513 DOI: 10.1080/21655979.2016.1227898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Hepatocyte growth factor (HGF) is a potent multi-functional protein that stimulates proliferation, survival, motility, scattering and differentiation during growth and development, and has been considered to be a potential therapeutic agent for the treatment of a number of intractable diseases. The aim of this study was to enhance the expression of recombinant fusion protein HSA-HGF (R494E) in CHO cells by inhibiting the intracellular ubiquitin ligase activity. The high stable expression sub-clones with different signal peptides were selected by western blot (WB) analysis and used for suspension culture. We found that the expression of fusion protein HSA-HGF (R494E) on day 3 achieved 50 mg/L during the 8 day culture process, a large number of fusion proteins were intracellular degradated by ubiquitination pathway during day 4 to day 8. Furthermore, ubiquitin ligase inhibitor, thalidomide, was added in culture process, and resulted in efficient and stable secretion of HSA-HGF (R494E) in CHO cells. According to biological activity assays, HSA-HGF (R494E) possessed various biological activities similar to native HGF. In conclusion, innhibition of intracellular ubiquitin ligase activity was successfully improve the expression of biologically active fusion protein HSA-HGF (R494E) in CHO cells. Our data may be beneficial to enhance the production of other therapeutic proteins in fed-batch culture.
Collapse
Affiliation(s)
- Dongsheng Xu
- a The Key Laboratory of Industrial Biotechnology, Ministry of Education , School of Biotechnology, Jiangnan University , Wuxi , China.,b Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences , Jiangnan University , Wuxi , China
| | - Aini Wan
- a The Key Laboratory of Industrial Biotechnology, Ministry of Education , School of Biotechnology, Jiangnan University , Wuxi , China.,b Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences , Jiangnan University , Wuxi , China
| | - Jingjing Zhang
- b Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences , Jiangnan University , Wuxi , China
| | - Lin Peng
- a The Key Laboratory of Industrial Biotechnology, Ministry of Education , School of Biotechnology, Jiangnan University , Wuxi , China
| | - Yun Chen
- b Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences , Jiangnan University , Wuxi , China
| | - Yang He
- c Jiangsu Institute of Hematology , the First Affiliated Hospital of Soochow University , Suzhou , China
| | - Jianfeng Yang
- d Cyrus Tang Hematology Center and Ministry of Education Engineering Center of Hematological Disease , Soochow University , Suzhou , China
| | - Jian Jin
- b Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences , Jiangnan University , Wuxi , China
| |
Collapse
|
14
|
Zhang B, Li H, Yin C, Sun X, Zheng S, Zhang C, Shi L, Liu Y, Lu S. Dock1 promotes the mesenchymal transition of glioma and is modulated by MiR‐31. Neuropathol Appl Neurobiol 2016; 43:419-432. [PMID: 26946516 DOI: 10.1111/nan.12321] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 02/25/2016] [Accepted: 03/04/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Baogang Zhang
- Department of Pathology Weifang Medical University Weifang China
| | - Hongli Li
- Medicine Research Center Weifang Medical University Weifang China
| | - Chonggao Yin
- College of Nursing Weifang Medical University Weifang China
| | - Xuemei Sun
- Department of Pathology Weifang Medical University Weifang China
| | - Shuxian Zheng
- Department of Pathology Weifang Medical University Weifang China
| | - Changjie Zhang
- Department of Pathology Weifang Medical University Weifang China
| | - Lihong Shi
- Department of Pharmacology Weifang Medical University Weifang China
| | - Yuqing Liu
- Department of Pathology Weifang Medical University Weifang China
| | - Shijun Lu
- Department of Pathology Weifang Medical University Weifang China
| |
Collapse
|
15
|
Lee JS, Oh E, Yoo JY, Choi KS, Yoon MJ, Yun CO. Adenovirus expressing dual c-Met-specific shRNA exhibits potent antitumor effect through autophagic cell death accompanied by senescence-like phenotypes in glioblastoma cells. Oncotarget 2016; 6:4051-65. [PMID: 25726528 PMCID: PMC4414172 DOI: 10.18632/oncotarget.3018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/30/2014] [Indexed: 12/12/2022] Open
Abstract
c-Met, a cognate receptor tyrosine kinase of hepatocyte growth factor, is overexpressed and/or mutated in number of tumors. Therefore, abrogation of c-Met signaling may serve as potential therapeutic targets. In this study, we generated Ads expressing single shRNA specific to c-Met (shMet) (dl/shMet4 and dl/shMet5) or dual shRNAs specific to c-Met (dl/shMet4+5); and examined the therapeutic potential of these newly engineered Ads in targeting c-Met, and delineated their mechanism of action in vitro and in vivo. Ads expressing shMet induced knock-down in c-Met, and phenotypically resulted in autophagy-like features including appearance of membranousvacuoles, formation of acidic vesicular organelles, and cleavage and recruitment of microtubule-associated protein1 light chain 3 to autophagosomes. Ads expressing shMet also suppressed Akt phosphorylation and increased number of senescence-related gene products including SM22, TGase II, and PAI-1. These changes resulted in inhibition of cell proliferation and G2/M arrest of U343 cells. In vivo, intratumoral injection with dl/shMet4+5 resulted in a significant reduction of tumor growth with corresponding increasing overall survival. Histopathological analysis of these treated tumors revealed that Atg5 was highly up-regulated, indicating the therapeutic induction of autophagy. In sum, these results reveal that autophagic cell death induced by shMet-expressing Ads provide a novel strategy for targeting c-Met-expressing tumors through non-apoptotic mechanism of cell death.
Collapse
Affiliation(s)
- Jung-Sun Lee
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea
| | - Eonju Oh
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Ji Young Yoo
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea
| | - Kyeong Sook Choi
- Department of Molecular Science & Technology, Institute for Medical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Mi Jin Yoon
- Department of Molecular Science & Technology, Institute for Medical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| |
Collapse
|
16
|
MET Expression in Primary and Metastatic Clear Cell Renal Cell Carcinoma: Implications of Correlative Biomarker Assessment to MET Pathway Inhibitors. BIOMED RESEARCH INTERNATIONAL 2015; 2015:192406. [PMID: 26448928 PMCID: PMC4584049 DOI: 10.1155/2015/192406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/08/2015] [Indexed: 02/07/2023]
Abstract
Aims. Inhibitors of the MET pathway hold promise in the treatment for metastatic kidney cancer. Assessment of predictive biomarkers may be necessary for appropriate patient selection. Understanding MET expression in metastases and the correlation to the primary site is important, as distant tissue is not always available. Methods and Results. MET immunofluorescence was performed using automated quantitative analysis and a tissue microarray containing matched nephrectomy and distant metastatic sites from 34 patients with clear cell renal cell carcinoma. Correlations between MET expressions in matched primary and metastatic sites and the extent of heterogeneity were calculated. The mean expression of MET was not significantly different between primary tumors when compared to metastases (P = 0.1). MET expression weakly correlated between primary and matched metastatic sites (R = 0.5) and a number of cases exhibited very high levels of discordance between these tumors. Heterogeneity within nephrectomy specimens compared to the paired metastatic tissues was not significantly different (P = 0.39). Conclusions. We found that MET expression is not significantly different in primary tumors than metastatic sites and only weakly correlates between matched sites. Moderate concordance of MET expression and significant expression heterogeneity may be a barrier to the development of predictive biomarkers using MET targeting agents.
Collapse
|
17
|
Yu Y, Chen Y, Ding G, Wang M, Wu H, Xu L, Rui X, Zhang Z. A novel rabbit anti-hepatocyte growth factor monoclonal neutralizing antibody inhibits tumor growth in prostate cancer cells and mouse xenografts. Biochem Biophys Res Commun 2015; 464:154-60. [PMID: 26093299 DOI: 10.1016/j.bbrc.2015.06.107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/15/2015] [Indexed: 01/14/2023]
Abstract
The hepatocyte growth factor and its receptor c-Met are correlated with castration-resistance in prostate cancer. Although HGF has been considered as an attractive target for therapeutic antibodies, the lack of cross-reactivity of monoclonal antibodies with human/mouse HGFs is a major obstacle in preclinical developments. We generated a panel of anti-HGF RabMAbs either blocking HGF/c-Met interaction or inhibiting c-Met phosphorylation. We selected one RabMAb with mouse cross-reactivity and demonstrated that it blocked HGF-stimulated downstream activation in PC-3 and DU145 cells. Anti-HGF RabMAb inhibited not only the growth of PC-3 cells but also HGF-dependent proliferation in HUVECs. We further demonstrated the efficacy and potency of the anti-HGF RabMAb in tumor xenograft mice models. Through these in vitro and in vivo experiments, we explored a novel therapeutic antibody for advanced prostate cancer.
Collapse
Affiliation(s)
- Yanlan Yu
- Department of Urology, Sir Run-Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yicheng Chen
- Department of Urology, Sir Run-Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guoqing Ding
- Department of Urology, Sir Run-Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Mingchao Wang
- Department of Urology, Sir Run-Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Haiyang Wu
- Department of Urology, Sir Run-Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liwei Xu
- Department of Urology, Sir Run-Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xuefang Rui
- Department of Urology, Sir Run-Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhigen Zhang
- Department of Urology, Sir Run-Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
18
|
c-Met targeting in advanced gastric cancer: An open challenge. Cancer Lett 2015; 365:30-6. [PMID: 26049023 DOI: 10.1016/j.canlet.2015.05.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 05/21/2015] [Accepted: 05/23/2015] [Indexed: 12/14/2022]
Abstract
Despite significant improvements in systemic chemotherapy over the last two decades, the prognosis of patients with advanced gastric and gastroesophageal junction adenocarcinoma (GC) remains poor. Because of molecular heterogeneity, it is essential to classify tumors based on the underlying oncogenic pathways and to develop targeted therapies acting on individual tumors. High-quality research and advances in technology have contributed to the elucidation of molecular pathways underlying disease progression and have stimulated many clinical studies testing target therapies in an advanced disease setting. In particular, strong preclinical evidence for the aberrant activation of the HGF/c-Met signaling pathways in GC cancers exists. This review will cover the c-Met pathway, the mechanisms of c-Met activation and the different strategies of its inhibition. Next, we will focus on the current state of the art in the clinical evaluation of c-Met-targeted therapies and the description of ongoing randomized trials with the idea that in this disease, high quality translational research to identify and validate biomarkers is a priority task.
Collapse
|
19
|
Flexibility and small pockets at protein-protein interfaces: New insights into druggability. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 119:2-9. [PMID: 25662442 PMCID: PMC4726663 DOI: 10.1016/j.pbiomolbio.2015.01.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/06/2015] [Accepted: 01/28/2015] [Indexed: 01/04/2023]
Abstract
The transient assembly of multiprotein complexes mediates many aspects of cell regulation and signalling in living organisms. Modulation of the formation of these complexes through targeting protein-protein interfaces can offer greater selectivity than the inhibition of protein kinases, proteases or other post-translational regulatory enzymes using substrate, co-factor or transition state mimetics. However, capitalising on protein-protein interaction interfaces as drug targets has been hindered by the nature of interfaces that tend to offer binding sites lacking the well-defined large cavities of classical drug targets. In this review we posit that interfaces formed by concerted folding and binding (disorder-to-order transitions on binding) of one partner and other examples of interfaces where a protein partner is bound through a continuous epitope from a surface-exposed helix, flexible loop or chain extension may be more tractable for the development of "orthosteric", competitive chemical modulators; these interfaces tend to offer small-volume but deep pockets and/or larger grooves that may be bound tightly by small chemical entities. We discuss examples of such protein-protein interaction interfaces for which successful chemical modulators are being developed.
Collapse
|
20
|
Exposure-response analysis of rilotumumab in gastric cancer: the role of tumour MET expression. Br J Cancer 2015; 112:429-37. [PMID: 25584489 PMCID: PMC4453660 DOI: 10.1038/bjc.2014.649] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/17/2014] [Accepted: 12/08/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Rilotumumab, an investigational, monoclonal antibody, inhibits MET-mediated signalling. In a randomized phase 2 trial of rilotumumab±epirubicin/cisplatin/capecitabine in gastric or oesophagogastric junction cancer, patients receiving rilotumumab showed a trend towards improved survival, especially in MET-positive patients, but no clear dose-response relationship was observed. Exposure-response and biomarker analyses were used for dose selection and to differentiate patient subpopulations that may benefit most from treatment. Here, we analyse rilotumumab exposure-survival and exposure-safety and the impact of MET expression on these relationships. METHODS Individual rilotumumab exposure parameters were generated using population pharmacokinetic modelling. Relationships among rilotumumab dose (7.5 and 15 mg kg(-1)), exposure, and clinical outcomes (progression-free survival (PFS) and overall survival (OS)) were evaluated with Cox regression models and Kaplan-Meier plots. MET status and other baseline covariates were evaluated in subgroup and multivariate analyses. Treatment-emergent adverse events were summarised by exposure. RESULTS Among MET-positive patients, higher rilotumumab exposure, vs placebo and low exposure, was associated with improved median PFS (80% CI: 7.0 (5.7-9.7) vs 4.4 (2.9-4.9) and 5.5 (4.2-6.8) months) and OS (13.4 (10.6-18.6) vs 5.7 (4.7-10.2) and 8.1 (6.9-11.1) months) without increased toxicity. No rilotumumab benefit was seen among MET-negative patients. CONCLUSIONS Rilotumumab had an exposure-dependent treatment effect in patients with MET-positive gastric or oesophagogastric junction cancer.
Collapse
|
21
|
Radiation therapy for glioma stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 853:85-110. [PMID: 25895709 DOI: 10.1007/978-3-319-16537-0_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Radiation therapy is the most effective adjuvant treatment modality for virtually all patients with high-grade glioma. Its ability to improve patient survival has been recognized for decades. Cancer stem cells provide new insights into how tumor biology is affected by radiation and the role that this cell population can play in disease recurrence. Glioma stem cells possess a variety of intracellular mechanisms to resist and even flourish in spite of radiation, and their proliferation and maintenance appear tied to supportive stimuli from the tumor microenvironment. This chapter reviews the basis for our current use of radiation to treat high-grade gliomas, and addresses this model in the context of therapeutically resistant stem cells. We discuss the available evidence highlighting current clinical efforts to improve radiosensitivity, and newer targets worthy of further development.
Collapse
|
22
|
Zhou S, Liao H, Liu M, Feng G, Fu B, Li R, Cheng M, Zhao Y, Gong P. Discovery andw biological evaluation of novel 6,7-disubstituted-4-(2-fluorophenoxy)quinoline derivatives possessing 1,2,3-triazole-4-carboxamide moiety as c-Met kinase inhibitors. Bioorg Med Chem 2014; 22:6438-52. [DOI: 10.1016/j.bmc.2014.09.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 10/24/2022]
|
23
|
Lee JK, Joo KM, Lee J, Yoon Y, Nam DH. Targeting the epithelial to mesenchymal transition in glioblastoma: the emerging role of MET signaling. Onco Targets Ther 2014; 7:1933-44. [PMID: 25364264 PMCID: PMC4211615 DOI: 10.2147/ott.s36582] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common human primary brain malignancy and has a dismal prognosis. Aggressive treatments using maximal surgical resection, radiotherapy, and temozolomide result in median survival of only 14.6 months in patients with GBM. Numerous clinical approaches using small molecule inhibitors have shown disappointing results because of the genetic heterogeneity of GBM. The epithelial to mesenchymal transition (EMT) is a crucial biological process occurring in the early development stages of many species. However, cancer cells often obtain the ability to invade and metastasize through the EMT, which triggers the scattering of cells. The hepatocyte growth factor (HGF)/MET signaling pathway is indicative of the EMT during both embryogenesis and the invasive growth of tumors, because HGF potently induces mesenchymal transition in epithelial-driven cells. Activation of MET signaling or co-overexpression of HGF and MET frequently represents aggressive growth and poor prognosis of various cancers, including GBM. Thus, efforts to treat cancers by inhibiting MET signaling using neutralizing antibodies or small molecule inhibitors have progressed during the last decade. In this review, we discuss HGF/MET signaling in the development of diseases, including cancers, as well as updates on MET inhibition therapy.
Collapse
Affiliation(s)
- Jin-Ku Lee
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea ; Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyeung Min Joo
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeongwu Lee
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yeup Yoon
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea ; Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Sylvester PW. Targeting met mediated epithelial-mesenchymal transition in the treatment of breast cancer. Clin Transl Med 2014; 3:30. [PMID: 26932375 PMCID: PMC4883993 DOI: 10.1186/s40169-014-0030-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/19/2014] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal epithelial transition factor receptor (Met) is a receptor tyrosine kinase that plays a critical role in promoting cancer cell malignant progression. Met is activated by its ligand hepatocyte growth factor (HGF). HGF-dependent Met activation plays an important role in stimulating epithelial-mesenchymal transition (EMT) in tumor cells, resulting in increased tumor cell proliferation, survival, motility, angiogenesis, invasion, and metastasis. The HGF/Met axis has thus attracted great interest as a potential target in the development of novel cancer therapies. In an effort to suppress tumor cell malignant progression, efforts have been made to develop agents capable of inhibiting inhibit Met-induced EMT, including specific Met tyrosine kinase inhibitors, HGF antagonists that interfere with HGF binding to Met, and antibodies that prevent Met activation and/or dimerization. Tocotrienols, a subgroup within the vitamin E family of compounds, display potent anticancer activity that results, at least in part, from inhibition of HGF-dependent Met activation and signaling. The present review will provide a brief summary of the increasing importance of the HGF/Met axis as an attractive target for cancer chemotherapy and the role of tocotrienols in suppressing Met activation, signaling and HGF-induced EMT in breast cancer cells. Evidence provided suggests that γ-tocotrienol therapy may afford significant benefit in the treatment of breast cancers characterized by Met dysregulation.
Collapse
Affiliation(s)
- Paul W Sylvester
- School of Pharmacy, University of Louisiana at Monroe, 700 University Avenue, Monroe, 71209-0470, LA, USA.
| |
Collapse
|
25
|
Gacche RN, Meshram RJ. Angiogenic factors as potential drug target: Efficacy and limitations of anti-angiogenic therapy. Biochim Biophys Acta Rev Cancer 2014; 1846:161-79. [DOI: 10.1016/j.bbcan.2014.05.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/05/2014] [Accepted: 05/07/2014] [Indexed: 12/17/2022]
|
26
|
Iveson T, Donehower RC, Davidenko I, Tjulandin S, Deptala A, Harrison M, Nirni S, Lakshmaiah K, Thomas A, Jiang Y, Zhu M, Tang R, Anderson A, Dubey S, Oliner KS, Loh E. Rilotumumab in combination with epirubicin, cisplatin, and capecitabine as first-line treatment for gastric or oesophagogastric junction adenocarcinoma: an open-label, dose de-escalation phase 1b study and a double-blind, randomised phase 2 study. Lancet Oncol 2014; 15:1007-18. [PMID: 24965569 DOI: 10.1016/s1470-2045(14)70023-3] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dysregulation of the hepatocyte growth factor (HGF)/MET pathway promotes tumour growth and metastasis. Rilotumumab is a fully human, monoclonal antibody that neutralises HGF. We aimed to assess the safety, efficacy, biomarkers, and pharmacokinetics of rilotumumab combined with epirubicin, cisplatin, and capecitabine (ECX) in patients with advanced gastric or oesophagogastric junction cancer. METHODS We recruited patients (≥18 years old) with unresectable locally advanced or metastatic gastric or oesophagogastric junction adenocarcinoma, an Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1, who had not received previous systemic therapy, from 43 sites worldwide. Phase 1b was an open-label, dose de-escalation study to identify a safe dose of rilotumumab (initial dose 15 mg/kg intravenously on day 1) plus ECX (epirubicin 50 mg/m(2) intravenously on day 1, cisplatin 60 mg/m(2) intravenously on day 1, capecitabine 625 mg/m(2) twice a day orally on days 1-21, respectively), administered every 3 weeks. The phase 1b primary endpoint was the incidence of dose-limiting toxicities in all phase 1b patients who received at least one dose of rilotumumab and completed the dose-limiting toxicity assessment window (first cycle of therapy). Phase 2 was a double-blind study that randomly assigned patients (1:1:1) using an interactive voice response system to receive rilotumumab 15 mg/kg, rilotumumab 7·5 mg/kg, or placebo, plus ECX (doses as above), stratified by ECOG performance status and disease extent. The phase 2 primary endpoint was progression-free survival (PFS), analysed by intention to treat. The study is registered with ClinicalTrials.gov, number NCT00719550. FINDINGS Seven of the nine patients enrolled in the phase 1b study received at least one dose of rilotumumab 15 mg/kg, only two of whom had three dose-limiting toxicities: palmar-plantar erythrodysesthesia, cerebral ischaemia, and deep-vein thrombosis. In phase 2, 121 patients were randomly assigned (40 to rilotumumab 15 mg/kg; 42 to rilotumumab 7·5 mg/kg; 39 to placebo). Median PFS was 5·1 months (95% CI 2·9-7·0) in the rilotumumab 15 mg/kg group, 6·8 months (4·5-7·5) in the rilotumumab 7·5 mg/kg group, 5·7 months (4·5-7·0) in both rilotumumab groups combined, and 4·2 months (2·9-4·9) in the placebo group. The hazard ratio for PFS events compared with placebo was 0·69 (80% CI 0·49-0·97; p=0·164) for rilotumumab 15 mg/kg, 0·53 (80% CI 0·38-0·73; p=0·009) for rilotumumab 7·5 mg/kg, and 0·60 (80% CI 0·45-0·79; p=0·016) for combined rilotumumab. Any grade adverse events more common in the combined rilotumumab group than in the placebo group included haematological adverse events (neutropenia in 44 [54%] of 81 patients vs 13 [33%] of 39 patients; anaemia in 32 [40%] vs 11 [28%]; and thrombocytopenia in nine [11%] vs none), peripheral oedema (22 [27%] vs three [8%]), and venous thromboembolism (16 [20%] vs five [13%]). Grade 3-4 adverse events more common with rilotumumab included neutropenia (36 [44%] vs 11 [28%]) and venous thromboembolism (16 [20%] vs four [10%]). Serious adverse events were balanced between groups except for anaemia, which occurred more frequently in the combined rilotumumab group (ten [12%] vs none). INTERPRETATION Rilotumumab plus ECX had no unexpected safety signals and showed greater activity than placebo plus ECX. A phase 3 study of the combination in MET-positive gastric and oesophagogastric junction cancer is in progress. FUNDING Amgen Inc.
Collapse
Affiliation(s)
| | | | - Irina Davidenko
- State Institution of Public Health "Regional Clinical Oncology Dispensary", Krasnodar, Russia
| | | | - Andrzej Deptala
- Central Clinical Hospital MSW, Warsaw Medical University, Warsaw, Poland
| | | | - Somanath Nirni
- Indo-American Cancer Institute and Research Centre, Hyderabad, India
| | | | | | | | - Min Zhu
- Amgen Inc, Thousand Oaks, CA, USA
| | - Rui Tang
- Amgen Inc, Thousand Oaks, CA, USA
| | | | | | | | - Elwyn Loh
- Amgen Inc, South San Francisco, CA, USA
| |
Collapse
|
27
|
Vigna E, Comoglio PM. Targeting the oncogenic Met receptor by antibodies and gene therapy. Oncogene 2014; 34:1883-9. [PMID: 24882574 DOI: 10.1038/onc.2014.142] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 12/31/2022]
Abstract
The receptor for hepatocyte growth factor (HGF), a tyrosine kinase encoded by the Met oncogene, has a crucial role in cancer growth, invasion and metastasis. It is a validated therapeutic target for 'personalized' treatment of a number of malignancies. Therapeutic tools prompting selective, robust and highly effective Met inhibition potentially represent a major step in the battle against cancer. Antibodies targeting either Met or its ligand HGF, although challenging, demonstrate to be endowed with promising features. Here we briefly review and discuss the state of the art in the field.
Collapse
Affiliation(s)
- E Vigna
- University of Torino, Department of Oncology, and Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| | - P M Comoglio
- University of Torino, Department of Oncology, and Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| |
Collapse
|
28
|
Wong JS, Warbrick E, Vojtesk B, Hill J, Lane DP. Anti-c-Met antibodies recognising a temperature sensitive epitope, inhibit cell growth. Oncotarget 2014; 4:1019-36. [PMID: 23859937 PMCID: PMC3759663 DOI: 10.18632/oncotarget.1075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
c-Met is a tyrosine receptor kinase which is activated by its ligand, the hepatocyte growth factor. Activation of c-Met leads to a wide spectrum of biological activities such as motility, angiogenesis, morphogenesis, cell survival and cell regeneration. c-Met is abnormally activated in many tumour types. Aberrant c-Met activation was found to induce tumour development, tumour cell migration and invasion, and the worst and final step in cancer progression, metastasis. In addition, c-Met activation in cells was also shown to confer resistance to apoptosis induced by UV damage or chemotherapeutic drugs. This study describes the development of monoclonal antibodies against c-Met as therapeutic molecules in cancer treatment/diagnostics. A panel of c-Met monoclonal antibodies was developed and characterised by epitope mapping, Western blotting, immunoprecipitation, agonist/antagonist effect in cell scatter assays and for their ability to recognise native c-Met by flow cytometry. We refer to these antibodies as Specifically Engaging Extracellular c-Met (seeMet). seeMet 2 and 13 bound strongly to native c-Met in flow cytometry and reduced SNU-5 cell growth. Interestingly, seeMet 2 binding was strongly reduced at 4oC when compared to 37oC. Detail mapping of the seeMet 2 epitope indicated a cryptic binding site hidden within the c-Met α-chain.
Collapse
Affiliation(s)
- Julin S Wong
- p53 Laboratory, 8A Biomedical Grove, Immunos #06-06, Singapore, Singapore
| | | | | | | | | |
Collapse
|
29
|
Abstract
BACKGROUND Gastric cancer is the second most common cause of cancer-related deaths worldwide. There are large geographic variations in the incidence of these tumors, with 60% occurring in East Asia. For patients with resectable disease, surgery and perioperative treatment can be effective. For patients with advanced gastric cancer, chemotherapy regimens result in a median survival of 9-11 months. In general, the prognosis for advanced disease is poor and 5-year overall survival rates are around 15%. Combination therapies yield better survival rates, albeit with increased toxicity. Therefore, more effective and less toxic treatment regimens are needed. SUMMARY The molecular aberrations that characterize the different subgroups of gastric cancer have been used as therapeutic targets. However, the heterogeneity and complexity of gastric cancers is a major challenge for the development of effective targeted therapies. This review examines the main molecular targets in the treatment of gastric cancer, namely the vascular endothelial growth factor (VEGF), human epidermal growth factor receptor 2 (HER2), hepatocyte growth factor (HGF)/c-Met, epidermal growth factor receptor (EGFR) and phosphoinositide 3-kinase (PI3K)/Akt pathways. KEY MESSAGE The molecular aberrations characteristic of gastric cancer are being explored for the development of targeted therapies, including the VEGF, HER2, HGF/c-Met, EGFR and PI3K/Akt signaling pathways. PRACTICAL IMPLICATIONS Trastuzumab, an antibody which targets HER2, is the first approved targeted therapy for the treatment of gastric cancer. However, trastuzumab is only effective in HER2-positive tumors (about 10-20% of all gastric cancers). Ramucirumab, which targets the VEGF receptor 2, has yielded benefits with respect to overall survival in a phase III trial and is an effective treatment for advanced gastric cancer with approval in second-line treatment. Apatinib and rilotumumab are another two promising new agents currently under development.
Collapse
Affiliation(s)
- Nadine Schulte
- Department of Medicine II, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | |
Collapse
|
30
|
Met degradation by SAIT301, a Met monoclonal antibody, reduces the invasion and migration of nasopharyngeal cancer cells via inhibition of EGR-1 expression. Cell Death Dis 2014; 5:e1159. [PMID: 24722284 PMCID: PMC5424102 DOI: 10.1038/cddis.2014.119] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 11/09/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a common malignant tumor with high invasive and metastatic potential. The hepatocyte growth factor (HGF)-Met signaling pathway has a critical role in mediating the invasive growth of many different types of cancer, including head and neck squamous cell carcinoma. HGF also stimulates NPC cell growth and invasion in the cell line model. In this study, we determined the inhibitory effect of Met, using a Met-targeting monoclonal antibody (SAIT301), on the invasive and growth potential of NPC cell lines. Met inhibition by SAIT301 resulted in highly significant inhibition of cell migration and invasion in both the HONE1 and HNE1 cell lines. In addition, we also found that co-treatment of SAIT301 and HGF decreased the anchorage-independent growth induced by HGF in HNE1 cell lines. After SAIT301 treatment, Met, together with its downstream signaling proteins, showed downregulation of p-Met and p-ERK, but not p-AKT, in both HONE1 and HNE1 cell lines. Interestingly, we found that HGF treatment of NPC cell lines induced early growth response protein (EGR-1) expression, which is involved in cell migration and invasion. In addition, co-treatment with SAIT301 and HGF inhibited the HGF-induced expression of EGR-1. Next, knockdown of EGR-1 using small-interfering RNA inhibited HGF-induced cell invasion in NPC cell lines, suggesting that the expression level of EGR-1 is important in HGF-induced cell invasion of NPC cells. Therefore, the results support that SAIT301 inhibited Met activation as well as the downstream EGR-1 expression and could have therapeutic potential in NPC. Taken together, we suggest that Met is an anticancer therapeutic target for NPC that warrants further investigation and clinical trials and SAIT301 may be a promising tool for NPC therapy.
Collapse
|
31
|
Salgia R, Patel P, Bothos J, Yu W, Eppler S, Hegde P, Bai S, Kaur S, Nijem I, Catenacci DVT, Peterson A, Ratain MJ, Polite B, Mehnert JM, Moss RA. Phase I dose-escalation study of onartuzumab as a single agent and in combination with bevacizumab in patients with advanced solid malignancies. Clin Cancer Res 2014; 20:1666-75. [PMID: 24493831 DOI: 10.1158/1078-0432.ccr-13-2070] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE This first-in-human study evaluated the safety, immunogenicity, pharmacokinetics, and antitumor activity of onartuzumab, a monovalent antibody against the receptor tyrosine kinase MET. EXPERIMENTAL DESIGN This 3+3 dose-escalation study comprised three stages: (i) phase Ia dose escalation of onartuzumab at doses of 1, 4, 10, 20, and 30 mg/kg intravenously every 3 weeks; (ii) phase Ia cohort expansion at the recommended phase II dose (RP2D) of 15 mg/kg; and (iii) phase Ib dose escalation of onartuzumab at 10 and 15 mg/kg in combination with bevacizumab (15 mg/kg intravenously every 3 weeks). Serum samples were collected for evaluation of pharmacokinetics, potential pharmacodynamic markers, and antitherapeutic antibodies. RESULTS Thirty-four patients with solid tumors were treated in phase Ia and 9 in phase Ib. Onartuzumab was generally well tolerated at all dose levels evaluated; the maximum tolerated dose was not reached. The most frequent drug-related adverse events included fatigue, peripheral edema, nausea, and hypoalbuminemia. In the phase Ib cohort, onartuzumab at the RP2D was combined with bevacizumab and no dose-limiting toxicities were seen. Onartuzumab showed linear pharmacokinetics in the dose range from 4 to 30 mg/kg. The half-life was approximately 8 to 12 days. There were no apparent pharmacokinetic interactions between onartuzumab and bevacizumab, and antitherapeutic antibodies did not seem to affect the safety or pharmacokinetics of onartuzumab. A patient with gastric carcinoma in the 20-mg/kg dose cohort achieved a durable complete response for nearly 2 years. CONCLUSIONS Onartuzumab was generally well tolerated as a single agent and in combination with bevacizumab in patients with solid tumors.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/pharmacokinetics
- Bevacizumab
- Female
- Humans
- Male
- Maximum Tolerated Dose
- Middle Aged
- Neoplasms/drug therapy
Collapse
Affiliation(s)
- Ravi Salgia
- Authors' Affiliations: Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois; Genentech, Inc., South San Francisco, California; and Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sundaram S, Freemerman AJ, Johnson AR, Milner JJ, McNaughton KK, Galanko JA, Bendt KM, Darr DB, Perou CM, Troester MA, Makowski L. Role of HGF in obesity-associated tumorigenesis: C3(1)-TAg mice as a model for human basal-like breast cancer. Breast Cancer Res Treat 2013; 142:489-503. [PMID: 24218051 DOI: 10.1007/s10549-013-2741-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/16/2013] [Indexed: 11/29/2022]
Abstract
Obesity is associated with basal-like breast cancer (BBC), an aggressive breast cancer subtype. The objective of this study was to determine whether obesity promotes BBC onset in adulthood and to evaluate the role of stromal-epithelial interactions in obesity-associated tumorigenesis. We hypothesized that hepatocyte growth factor (HGF) plays a promoting role in BBC, which express the HGF receptor, c-Met. In C3(1)-T(Ag) mice, a murine model of BBC, we demonstrated that obesity leads to a significant increase in HGF secretion and an associated decrease in tumor latency. By immunohistochemical analysis, normal mammary gland exhibited obesity-induced HGF, c-Met and phospho-c-Met, indicating that the activation of the cascade was obesity-driven. HGF secretion was also increased from primary mammary fibroblasts isolated from normal mammary glands and tumors of obese mice compared to lean. These results demonstrate that obesity-induced elevation of HGF expression is a stable phenotype, maintained after several passages, and after removal of dietary stimulation. Conditioned media from primary tumor fibroblasts from obese mice drove tumor cell proliferation. In co-culture, neutralization of secreted HGF blunted tumor cell migration, further linking obesity-mediated HGF-dependent effects to in vitro measures of tumor aggressiveness. In sum, these results demonstrate that HGF/c-Met plays an important role in obesity-associated carcinogenesis. Understanding the effects of obesity on risk and progression is important given that epidemiologic studies imply a portion of BBC could be eliminated by reducing obesity.
Collapse
Affiliation(s)
- Sneha Sundaram
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, CB 7461, 2203 McGavran Greenberg Hall, Chapel Hill, NC, 27599-7461, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
An update in the use of antibodies to treat glioblastoma multiforme. Autoimmune Dis 2013; 2013:716813. [PMID: 24294521 PMCID: PMC3835613 DOI: 10.1155/2013/716813] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/09/2013] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma is a deadly brain disease and modest improvement in survival has been made. At initial diagnosis, treatment consists of maximum safe surgical resection, followed by temozolomide and chemoirradiation or adjuvant temozolomide alone. However, these treatments do not improve the prognosis and survival of patients. New treatment strategies are being sought according to the biology of tumors. The epidermal growth factor receptor has been considered as the hallmark in glioma tumors; thereby, some antibodies have been designed to bind to this receptor and block the downstream signaling pathways. Also, it is known that vascularization plays an important role in supplying new vessels to the tumor; therefore, new therapy has been guided to inhibit angiogenic growth factors in order to limit tumor growth. An innovative strategy in the treatment of glial tumors is the use of toxins produced by bacteria, which may be coupled to specific carrier-ligands and used for tumoral targeting. These carrier-ligands provide tumor-selective properties by the recognition of a cell-surface receptor on the tumor cells and promote their binding of the toxin-carrier complex prior to entry into the cell. Here, we reviewed some strategies to improve the management and treatment of glioblastoma and focused on the use of antibodies.
Collapse
|
34
|
Understanding the impact of 2D and 3D fibroblast cultures on in vitro breast cancer models. PLoS One 2013; 8:e76373. [PMID: 24124550 PMCID: PMC3790689 DOI: 10.1371/journal.pone.0076373] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 08/26/2013] [Indexed: 12/21/2022] Open
Abstract
The utilization of 3D, physiologically relevant in vitro cancer models to investigate complex interactions between tumor and stroma has been increasing. Prior work has generally focused on the cancer cells and, the role of fibroblast culture conditions on tumor-stromal cell interactions is still largely unknown. Here, we focus on the stroma by comparing functional behaviors of human mammary fibroblasts (HMFs) cultured in 2D and 3D and their effects on the invasive progression of breast cancer cells (MCF10DCIS.com). We identified increased levels of several paracrine factors from HMFs cultured in 3D conditions that drive the invasive transition. Using a microscale co-culture model with improved compartmentalization and sensitivity, we demonstrated that HMFs cultured in 3D intensify the promotion of the invasive progression through the HGF/c-Met interaction. This study highlights the importance of the 3D stromal microenvironment in the development of multiple cell type in vitro cancer models.
Collapse
|
35
|
Graveel CR, Tolbert D, Vande Woude GF. MET: a critical player in tumorigenesis and therapeutic target. Cold Spring Harb Perspect Biol 2013; 5:a009209. [PMID: 23818496 PMCID: PMC3685898 DOI: 10.1101/cshperspect.a009209] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Since its discovery more than 25 years ago, numerous studies have established that the MET receptor is unique among tyrosine kinases. Signaling through MET is necessary for normal development and for the progression of a wide range of human cancers. MET activation has been shown to drive numerous signaling pathways; however, it is not clear how MET signaling mediates diverse cellular responses such as motility, invasion, growth, and angiogenesis. Great strides have been made in understanding the pleotropic aspects of MET signaling using three-dimensional molecular structures, cell culture systems, human tumors, and animal models. These combined approaches have driven the development of MET-targeted therapeutics that have shown promising results in the clinic. Here we examine the unique features of MET and hepatocyte growth factor/scatter factor (HGF/SF) structure and signaling, mutational activation, genetic mouse models of MET and HGF/SF, and MET-targeted therapeutics.
Collapse
Affiliation(s)
- Carrie R Graveel
- Molecular Oncology, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | | | | |
Collapse
|
36
|
Discovery of novel 4-(2-fluorophenoxy)quinoline derivatives bearing 4-oxo-1,4-dihydrocinnoline-3-carboxamide moiety as c-Met kinase inhibitors. Bioorg Med Chem 2013; 21:2843-55. [PMID: 23628470 DOI: 10.1016/j.bmc.2013.04.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/01/2013] [Accepted: 04/04/2013] [Indexed: 12/24/2022]
Abstract
A series of novel 4-(2-fluorophenoxy)quinoline derivatives containing 4-oxo-1,4-dihydrocinnoline-3-carboxamide moiety were designed, synthesized and evaluated for their in vitro biological activities against c-Met kinase and six typical cancer cell lines (A549, H460, HT-29, MKN-45, U87MG and SMMC-7721). All the prepared compounds showed moderate to excellent antiproliferative activity, and the analysis of their structure-activity relationships indicated that 2-chloro or 2-trifluoromethyl substituted phenyl group on the 1-position of cinnoline ring was more favorable for antitumor activity. In this study, a promising compound 33, with a c-Met IC50 value of 0.59 nM, was identified as a multitargeted receptor tyrosine kinase inhibitor.
Collapse
|
37
|
Rivera M, Sukhdeo K, Yu J. Ionizing radiation in glioblastoma initiating cells. Front Oncol 2013; 3:74. [PMID: 23579692 PMCID: PMC3619126 DOI: 10.3389/fonc.2013.00074] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 03/23/2013] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults with a median survival of 12-15 months with treatment consisting of surgical resection followed by ionizing radiation (IR) and chemotherapy. Even aggressive treatment is often palliative due to near universal recurrence. Therapeutic resistance has been linked to a subpopulation of GBM cells with stem cell-like properties termed GBM initiating cells (GICs). Recent efforts have focused on elucidating resistance mechanisms activated in GICs in response to IR. Among these, GICs preferentially activate the DNA damage response (DDR) to result in a faster rate of double-strand break (DSB) repair induced by IR as compared to the bulk tumor cells. IR also activates NOTCH and the hepatic growth factor (HGF) receptor, c-MET, signaling cascades that play critical roles in promoting proliferation, invasion, and resistance to apoptosis. These pathways are preferentially activated in GICs and represent targets for pharmacologic intervention. While IR provides the benefit of improved survival, it paradoxically promotes selection of more malignant cellular phenotypes of GBM. As reviewed here, finding effective combinations of radiation and molecular inhibitors to target GICs and non-GICs is essential for the development of more effective therapies.
Collapse
Affiliation(s)
- Maricruz Rivera
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic Cleveland, OH, USA ; Department of Molecular Medicine, Lerner College of Medicine of Case Western Reserve University Cleveland Clinic, Cleveland, OH, USA
| | | | | |
Collapse
|
38
|
Mizuno S, Nakamura T. HGF-MET cascade, a key target for inhibiting cancer metastasis: the impact of NK4 discovery on cancer biology and therapeutics. Int J Mol Sci 2013; 14:888-919. [PMID: 23296269 PMCID: PMC3565297 DOI: 10.3390/ijms14010888] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/06/2012] [Accepted: 12/10/2012] [Indexed: 01/14/2023] Open
Abstract
Hepatocyte growth factor (HGF) was discovered in 1984 as a mitogen of rat hepatocytes in a primary culture system. In the mid-1980s, MET was identified as an oncogenic mutant protein that induces malignant phenotypes in a human cell line. In the early 1990s, wild-type MET was shown to be a functional receptor of HGF. Indeed, HGF exerts multiple functions, such as proliferation, morphogenesis and anti-apoptosis, in various cells via MET tyrosine kinase phosphorylation. During the past 20 years, we have accumulated evidence that HGF is an essential conductor for embryogenesis and tissue regeneration in various types of organs. Furthermore, we found in the mid-1990s that stroma-derived HGF is a major contributor to cancer invasion at least in vitro. Based on this background, we prepared NK4 as an antagonist of HGF: NK4 inhibits HGF-mediated MET tyrosine phosphorylation by competing with HGF for binding to MET. In vivo, NK4 treatments produced the anti-tumor outcomes in mice bearing distinct types of malignant cancers, associated with the loss in MET activation. There are now numerous reports showing that HGF-antagonists and MET-inhibitors are logical for inhibiting tumor growth and metastasis. Additionally, NK4 exerts anti-angiogenic effects, partly through perlecan-dependent cascades. This paper focuses on the chronology and significance of HGF-antagonisms in anti-tumor researches, with an interest in NK4 discovery. Tumor HGF–MET axis is now critical for drug resistance and cancer stem cell maintenance. Thus, oncologists cannot ignore this cascade for the future success of anti-metastatic therapy.
Collapse
Affiliation(s)
- Shinya Mizuno
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2-B7 Yamadaoka, Suita 565-0871, Japan; E-Mail:
| | - Toshikazu Nakamura
- Division for Regenerative Drug Discovery, Center for Advanced Science and Innovation, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +81-6-6879-4130
| |
Collapse
|
39
|
Liu Z, Feng Z, Zhu X, Xu W, Zhu J, Zhang X, Fan Z, Ji G. Construction, expression, and characterization of an anti-tumor immunotoxin containing the human anti-c-Met single-chain antibody and PE38KDEL. Immunol Lett 2013; 149:30-40. [PMID: 23026237 DOI: 10.1016/j.imlet.2012.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 09/18/2012] [Accepted: 09/18/2012] [Indexed: 12/11/2022]
Abstract
Recombinant immunotoxins consisting of small antibody fragments fused to cytotoxic moieties are being evaluated for use in prospective antibody-targeted cancer therapies. A receptor tyrosine kinase known as c-Met is overexpressed in a vast range of human malignancies, making it an ideal target for antibody-mediated delivery of numerous cytotoxic agents. A single Fab molecule capable of binding to human c-Met with high affinity and specificity was previously identified using antibody phage-display technology. In order to develop a molecule to increase both the cytotoxicity and anti-tumor activity of the anti-c-Met molecule, a recombinant immunotoxin anti-c-Met/PE38KDEL was constructed and expressed by fusing the human anti-c-Met single-chain variable fragment (ScFv) with a modified Pseudomonas exotoxin A (PE38KDEL). Purified anti-c-Met/PE38KDEL was demonstrated to specifically bind to cells of c-Met-positive human hepatoma cell lines, causing a proliferation defect by inducing caspase-3/8-mediated apoptosis, as observed by in vitro assays. Furthermore, anti-c-Met/PE38KDEL administration was shown to inhibit the growth of hepatocellular carcinoma xenografts in vivo through suppression of Ki-67 expression and enhancement of tumor cell apoptosis rates. Cumulatively, the current findings demonstrate the successful construction of a recombinant immunotoxin capable of accurately targeting c-Met-positive human hepatoma cell lines both in vitro and in vivo, providing a novel compound with potential for applications as an alternative therapy for c-Met-positive cancer management.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Oh YM, Song YJ, Lee SB, Jeong Y, Kim B, Kim GW, Kim KE, Lee JM, Cho MY, Choi J, Nam DH, Song PH, Cheong KH, Kim KA. A new anti-c-Met antibody selected by a mechanism-based dual-screening method: therapeutic potential in cancer. Mol Cells 2012; 34:523-9. [PMID: 23180291 PMCID: PMC3887825 DOI: 10.1007/s10059-012-0194-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/11/2012] [Accepted: 10/17/2012] [Indexed: 10/27/2022] Open
Abstract
c-Met, the high affinity receptor for hepatocyte growth factor (HGF), is one of the most frequently activated tyrosine kinases in many human cancers and a target for cancer therapy. However, inhibitory targeting of c-Met with antibodies has proven difficult, because most antibodies have intrinsic agonist activity. Therefore, the strategy for reducing the agonism is critical for successful development of cancer therapies based on anti-c-Met antibodies. Here we developed a mechanism-based assay method for rapid screening of anti-c-Met antibodies, involving the determination of Akt phosphorylation and c-Met degradation for agonism and efficacy, respectively. Using the method, we identified an antibody, F46, that binds to human c-Met with high affinity (Kd = 2.56 nM) and specificity, and induces the degradation of c-Met in multiple cancer cells (including MKN45, a gastric cancer cell line) with minimal activation of c-Met signaling. F46 induced c-Met internalization in both HGF-dependent and HGF-independent cells, suggesting that the degradation of c-Met results from antibody-mediated receptor internalization. Furthermore, F46 competed with HGF for binding to c-Met, resulting in the inhibition of both HGF-mediated invasion and angiogenesis. Consistently, F46 inhibited the proliferation of MKN45 cells, in which c-Met is constitutively activated in an HGF-independent manner. Xenograft analysis revealed that F46 markedly inhibits the growth of subcutaneously implanted gastric and lung tumors. These results indicate that F46, identified by a novel mechanism-based assay, induces c-Met degradation with minimal agonism, implicating a potential role of F46 in therapy of human cancers.
Collapse
Affiliation(s)
- Young Mi Oh
- Therapeutic Antibody Group, Samsung Advanced Institute of Technology, Yongin 446-712,
Korea
| | - Yun-Jeong Song
- Therapeutic Antibody Group, Samsung Advanced Institute of Technology, Yongin 446-712,
Korea
| | - Saet Byoul Lee
- Therapeutic Antibody Group, Samsung Advanced Institute of Technology, Yongin 446-712,
Korea
| | - Yunju Jeong
- Therapeutic Antibody Group, Samsung Advanced Institute of Technology, Yongin 446-712,
Korea
| | - Bogyou Kim
- Therapeutic Antibody Group, Samsung Advanced Institute of Technology, Yongin 446-712,
Korea
| | - Geun Woong Kim
- Therapeutic Antibody Group, Samsung Advanced Institute of Technology, Yongin 446-712,
Korea
| | - Kyung Eun Kim
- Therapeutic Antibody Group, Samsung Advanced Institute of Technology, Yongin 446-712,
Korea
| | - Ji Min Lee
- Therapeutic Antibody Group, Samsung Advanced Institute of Technology, Yongin 446-712,
Korea
| | - Mi-Young Cho
- Therapeutic Antibody Group, Samsung Advanced Institute of Technology, Yongin 446-712,
Korea
| | - Jaehyun Choi
- Therapeutic Antibody Group, Samsung Advanced Institute of Technology, Yongin 446-712,
Korea
| | | | - Paul H Song
- Therapeutic Antibody Group, Samsung Advanced Institute of Technology, Yongin 446-712,
Korea
| | - Kwang Ho Cheong
- Therapeutic Antibody Group, Samsung Advanced Institute of Technology, Yongin 446-712,
Korea
| | - Kyung-Ah Kim
- Therapeutic Antibody Group, Samsung Advanced Institute of Technology, Yongin 446-712,
Korea
| |
Collapse
|
41
|
Ryan CJ, Rosenthal M, Ng S, Alumkal J, Picus J, Gravis G, Fizazi K, Forget F, Machiels JP, Srinivas S, Zhu M, Tang R, Oliner KS, Jiang Y, Loh E, Dubey S, Gerritsen WR. Targeted MET inhibition in castration-resistant prostate cancer: a randomized phase II study and biomarker analysis with rilotumumab plus mitoxantrone and prednisone. Clin Cancer Res 2012; 19:215-24. [PMID: 23136195 DOI: 10.1158/1078-0432.ccr-12-2605] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate the efficacy, safety, biomarkers, and pharmacokinetics of rilotumumab, a fully human, monoclonal antibody against hepatocyte growth factor (HGF)/scatter factor, combined with mitoxantrone and prednisone (MP) in patients with castration-resistant prostate cancer (CRPC). EXPERIMENTAL DESIGN This double-blinded phase II study randomized (1:1:1) patients with progressive, taxane-refractory CRPC to receive MP (12 mg/m(2) i.v. day 1, 5 mg twice a day orally days 1-21, respectively) plus 15 mg/kg rilotumumab, 7.5 mg/kg rilotumumab, or placebo (i.v. day 1) every 3 weeks. The primary endpoint was overall survival (OS). RESULTS One hundred and forty-four patients were randomized. Median OS was 12.2 versus 11.1 months [HR, 1.10; 80% confidence interval (CI), 0.82-1.48] in the combined rilotumumab versus control arms. Median progression-free survival was 3.0 versus 2.9 months (HR, 1.02; 80% CI, 0.79-1.31). Treatment appeared well tolerated with peripheral edema (24% vs. 8%) being more common with rilotumumab. A trend toward unfavorable OS was observed in patients with high tumor MET expression regardless of treatment. Soluble MET levels increased in all treatment arms. Total HGF levels increased in the rilotumumab arms. Rilotumumab showed linear pharmacokinetics when co-administered with MP. CONCLUSIONS Rilotumumab plus MP had manageable toxicities and showed no efficacy improvements in this estimation study. High tumor MET expression may identify patients with CRPC with poorer prognosis.
Collapse
Affiliation(s)
- Charles J Ryan
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Michaud NR, Jani JP, Hillerman S, Tsaparikos KE, Barbacci-Tobin EG, Knauth E, Putz H, Campbell M, Karam GA, Chrunyk B, Gebhard DF, Green LL, Xu JJ, Dunn MC, Coskran TM, Lapointe JM, Cohen BD, Coleman KG, Bedian V, Vincent P, Kajiji S, Steyn SJ, Borzillo GV, Los G. Biochemical and pharmacological characterization of human c-Met neutralizing monoclonal antibody CE-355621. MAbs 2012; 4:710-23. [PMID: 23007574 DOI: 10.4161/mabs.22160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The c-Met proto-oncogene is a multifunctional receptor tyrosine kinase that is stimulated by its ligand, hepatocyte growth factor (HGF), to induce cell growth, motility and morphogenesis. Dysregulation of c-Met function, through mutational activation or overexpression, has been observed in many types of cancer and is thought to contribute to tumor growth and metastasis by affecting mitogenesis, invasion, and angiogenesis. We identified human monoclonal antibodies that bind to the extracellular domain of c-Met and inhibit tumor growth by interfering with ligand-dependent c-Met activation. We identified antibodies representing four independent epitope classes that inhibited both ligand binding and ligand-dependent activation of c-Met in A549 cells. In cells, the antibodies antagonized c-Met function by blocking receptor activation and by subsequently inducing downregulation of the receptor, translating to phenotypic effects in soft agar growth and tubular morphogenesis assays. Further characterization of the antibodies in vivo revealed significant inhibition of c-Met activity (≥ 80% lasting for 72-96 h) in excised tumors corresponded to tumor growth inhibition in multiple xenograft tumor models. Several of the antibodies identified inhibited the growth of tumors engineered to overexpress human HGF and human c-Met (S114 NIH 3T3) when grown subcutaneously in athymic mice. Furthermore, lead candidate antibody CE-355621 inhibited the growth of U87MG human glioblastoma and GTL-16 gastric xenografts by up to 98%. The findings support published pre-clinical and clinical data indicating that targeting c-Met with human monoclonal antibodies is a promising therapeutic approach for the treatment of cancer.
Collapse
Affiliation(s)
- Neil R Michaud
- Pfizer Global Research and Development, Groton, CT, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sharma N, Adjei AA. In the clinic: ongoing clinical trials evaluating c-MET-inhibiting drugs. Ther Adv Med Oncol 2012; 3:S37-50. [PMID: 22128287 DOI: 10.1177/1758834011423403] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The c-MET (mesenchymal-epithelial transition factor) pathway is dysregulated in many human cancers and promotes tumor growth, invasion and dissemination. The c-MET receptor tyrosine kinase can be activated via gene mutation, gene amplification, protein overexpression and/or a ligand-dependent autocrine/paracrine loop. Abnormalities in c-MET signaling have been reported to correlate with poor clinical outcomes and drug resistance in patients with cancer. Significant progress has been made in advancement of c-MET pathway inhibitors through to clinical trials. A robust pipeline of high-quality inhibitors targeting different aspects of c-MET activation is currently being explored in phase I, II and III clinical trials across multiple tumor types. Preliminary data demonstrate promising clinical activity with these agents, along with an acceptable toxicity profile. In this manuscript, the pharmacological profile of drugs targeting the c-MET pathway and available data from ongoing clinical trials of these drugs are discussed.
Collapse
Affiliation(s)
- Neelesh Sharma
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | |
Collapse
|
44
|
Corn PG. The tumor microenvironment in prostate cancer: elucidating molecular pathways for therapy development. Cancer Manag Res 2012; 4:183-93. [PMID: 22904640 PMCID: PMC3421469 DOI: 10.2147/cmar.s32839] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mechanisms leading to the development of virulent prostate cancer are not confined to the cancer epithelial cell, but also involve the tumor microenvironment. Multiple signaling pathways exist between epithelial cells, stromal cells, and the extracellular matrix to support tumor progression from the primary site to regional lymph nodes and distant metastases. Prostate cancers preferentially metastasize to the skeleton, prompting considerable research effort into understanding the unique interaction between prostate cancer epithelial cells and the bone microenvironment. This effort has led to the discovery that signaling pathways involved in normal prostate and bone development become dysregulated in cancer. These pathways stimulate excessive cell growth and neovascularization, impart more invasive properties to epithelial cells, weaken antitumor immune surveillance, and promote the emergence of castrate-resistant disease. An improved understanding of the complex relationship between cancer epithelial cells and the organ-specific microenvironments with which they interact has created a powerful opportunity to develop novel therapies.
Collapse
Affiliation(s)
- Paul G Corn
- Department of Genitourinary Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
45
|
Bode CM, Boezio AA, Albrecht BK, Bellon SF, Berry L, Broome MA, Choquette D, Dussault I, Lewis RT, Lin MHJ, Rex K, Whittington DA, Yang Y, Harmange JC. Discovery and optimization of a potent and selective triazolopyridinone series of c-Met inhibitors. Bioorg Med Chem Lett 2012; 22:4089-93. [DOI: 10.1016/j.bmcl.2012.04.072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
|
46
|
Greenall SA, Gherardi E, Liu Z, Donoghue JF, Vitali AA, Li Q, Murphy R, Iamele L, Scott AM, Johns TG. Non-agonistic bivalent antibodies that promote c-MET degradation and inhibit tumor growth and others specific for tumor related c-MET. PLoS One 2012; 7:e34658. [PMID: 22511956 PMCID: PMC3325269 DOI: 10.1371/journal.pone.0034658] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 03/06/2012] [Indexed: 11/18/2022] Open
Abstract
The c-MET receptor has a function in many human cancers and is a proven therapeutic target. Generating antagonistic or therapeutic monoclonal antibodies (mAbs) targeting c-MET has been difficult because bivalent, intact anti-Met antibodies frequently display agonistic activity, necessitating the use of monovalent antibody fragments for therapy. By using a novel strategy that included immunizing with cells expressing c-MET, we obtained a range of mAbs. These c-MET mAbs were tested for binding specificity and anti-tumor activity using a range of cell-based techniques and in silico modeling. The LMH 80 antibody bound an epitope, contained in the small cysteine-rich domain of c-MET (amino acids 519–561), that was preferentially exposed on the c-MET precursor. Since the c-MET precursor is only expressed on the surface of cancer cells and not normal cells, this antibody is potentially tumor specific. An interesting subset of our antibodies displayed profound activities on c-MET internalization and degradation. LMH 87, an antibody binding the loop connecting strands 3d and 4a of the 7-bladed β-propeller domain of c-MET, displayed no intrinsic agonistic activity but promoted receptor internalization and degradation. LMH 87 inhibited HGF/SF-induced migration of SK-OV-3 ovarian carcinoma cells, the proliferation of A549 lung cancer cells and the growth of human U87MG glioma cells in a mouse xenograft model. These results indicate that c-MET antibodies targeting epitopes controlling receptor internalization and degradation provide new ways of controlling c-MET expression and activity and may enable the therapeutic targeting of c-MET by intact, bivalent antibodies.
Collapse
Affiliation(s)
- Sameer A. Greenall
- Oncogenic Signaling Laboratory, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | | | - Zhanqi Liu
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research, Heidelberg, Victoria, Australia
| | - Jacqueline F. Donoghue
- Oncogenic Signaling Laboratory, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Angela A. Vitali
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research, Heidelberg, Victoria, Australia
| | - Qian Li
- Oncogenic Signaling Laboratory, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Roger Murphy
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research, Heidelberg, Victoria, Australia
| | - Luisa Iamele
- Medical Research Council Centre, Cambridge, United Kingdom
| | - Andrew M. Scott
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research, Heidelberg, Victoria, Australia
| | - Terrance G. Johns
- Oncogenic Signaling Laboratory, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
47
|
Design, synthesis and molecular docking studies of some novel spiro[indoline-3, 4′-piperidine]-2-ones as potential c-Met inhibitors. Eur J Med Chem 2012; 50:370-5. [DOI: 10.1016/j.ejmech.2012.02.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/06/2012] [Accepted: 02/06/2012] [Indexed: 11/22/2022]
|
48
|
Sun R, Zhang Q, Guo L, Chen MY, Sun Y, Cao B, Sun J. HGF stimulates proliferation through the HGF/c-Met pathway in nasopharyngeal carcinoma cells. Oncol Lett 2012; 3:1124-1128. [PMID: 22783404 DOI: 10.3892/ol.2012.613] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/16/2012] [Indexed: 01/05/2023] Open
Abstract
Hepatocyte growth factor (HGF) and its receptor c-Met are important in the development and homeostasis of a variety of human malignancies. However, the role of the HGF/c-Met signaling pathway in nasopharyngeal carcinoma (NPC) has not been clearly elucidated. This study examined the effect of HGF/c-Met on proliferation and migration in several NPC cell lines. RT-PCR was used to detect the HGF gene in CNE-1, CNE-2, HK-1, HONE-1 and SUNE-1 NPC cells. However, HGF gene expression was not detected in any of these cells. Using immunoblotting analysis, the Met25 protein was identified in HONE-1, HK-1 and CNE-1 cells. Results from fluorescence-activated cell sorting (FACS) analysis revealed that anti-Met25 mAb specifically bound Met-expressing HONE-1, HK-1 and CNE-1 cells. It was further demonstrated that exogenous HGF was able to stimulate the proliferation of HONE-1 and HK-1 cells and the healing of scrape wounds in HONE-1 NPC cells. Our results reveal the potential therapeutic applications of combination therapy with antibodies targeting HGF in NPC patients.
Collapse
Affiliation(s)
- Rui Sun
- State Key Laboratory of Oncology in Southern China
| | | | | | | | | | | | | |
Collapse
|
49
|
Ye L, Tian Y, Li Z, Zhang J, Wu S. Design and Synthesis of Some Novel 2,3,4,5-Tetrahydro-1H-pyrido[4,3-b]indoles as Potential c-Met Inhibitors. Helv Chim Acta 2012. [DOI: 10.1002/hlca.201100226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Vosjan MJWD, Vercammen J, Kolkman JA, Stigter-van Walsum M, Revets H, van Dongen GAMS. Nanobodies targeting the hepatocyte growth factor: potential new drugs for molecular cancer therapy. Mol Cancer Ther 2012; 11:1017-25. [PMID: 22319202 DOI: 10.1158/1535-7163.mct-11-0891] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hepatocyte growth factor (HGF) and its receptor c-Met are associated with increased aggressiveness of tumors and poor prognostic outcome of patients with cancer. Here, we report the development and characterization of therapeutic anti-HGF (αHGF)-Nanobodies and their potential for positron emission tomographic (PET) imaging to assess HGF expression in vivo. Two αHGF-Nanobodies designated 1E2 and 6E10 were identified, characterized, and molecularly fused to an albumin-binding Nanobody unit (Alb8) to obtain serum half-life extension. The resulting Nanobody formats were radiolabeled with the positron emitter zirconium-89 ((89)Zr, t(1/2;) = 78 hours), administered to nude mice bearing U87 MG glioblastoma xenografts, and their biodistribution was assessed. In addition, their therapeutic effect was evaluated in the same animal model at doses of 10, 30, or 100 μg per mouse. The (89)Zr-Nanobodies showed similar biodistribution with selective tumor targeting. For example, 1E2-Alb8 showed decreased blood levels of 12.6%ID/g ± 0.6%ID/g, 7.2%ID/g ± 1.0%ID/g, 3.4%ID/g ± 0.3%ID/g, and 0.3%ID/g ± 0.1%ID/g at 1, 2, 3, and 7 days after injection, whereas tumor uptake levels remained relatively stable at these time points: 7.8%ID/g ± 1.1%ID/g, 8.9%ID/g ± 1.0%ID/g, 8.7%ID/g ± 1.5%ID/g, and 7.2%ID/g ±1.6%ID/g. Uptake in normal tissues was lower than in tumor, except for kidneys. In a therapy study, all Nanobody-treated mice showed tumor growth delay compared with the control saline group. In the 100-μg group, four of six mice were cured after treatment with 1E2-Alb8 and 73 days follow-up, and three of six mice when treated with 6E10-Alb8. These results provide evidence that Nanobodies 1E2-Alb8 and 6E10-Alb8 have potential for therapy and PET imaging of HGF-expressing tumors.
Collapse
Affiliation(s)
- Maria J W D Vosjan
- Department of Otolaryngology/Head and Neck Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|