1
|
Lao J, Tan H, Wu Y, Ding T, Liu X, Sun L, Chen X, Zhu C, Kang Y, Chen YH, Tang C, Wang F, Liu Y. Cerebrospinal Fluid Nitric Oxide Synthase is a Potential Mediator Between Cigarette Smoke Exposure and Sleep Disorders. Nat Sci Sleep 2024; 16:897-906. [PMID: 38974692 PMCID: PMC11225998 DOI: 10.2147/nss.s458294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Objective Cigarette smoking and low peripheral nitric oxide synthase (NOS) levels are strongly associated with sleep disorders. However, whether cerebrospinal fluid (CSF) NOS relates to sleep disorders and whether CSF NOS mediates the relationship between cigarette smoking and sleep disorders is unclear. Methods We measured CSF levels of total NOS (tNOS) and its isoforms (inducible NOS [iNOS] and constitutive NOS [cNOS]) in 191 Chinese male subjects. We applied the Pittsburgh Sleep Quality Index (PSQI). Results The PSQI scores of active smokers were significantly higher than those of non-smokers, while CSF tNOS, iNOS, and cNOS were significantly lower (all p < 0.001). CSF tNOS, iNOS, and cNOS were negatively associated with PSQI scores in the general population (all p < 0.001). Mediation analysis suggested that CSF tNOS, iNOS, and cNOS mediate the relationship between smoking and PSQI scores, and the indirect effect accounted for 78.93%, 66.29%, and 81.65% of the total effect, respectively. Conclusion Cigarette smoking is associated with sleep disorders. Active smokers had significantly lower CSF levels of tNOS, iNOS, and cNOS. Furthermore, tNOS, iNOS, and cNOS mediate the relationship between cigarette smoking and sleep quality. This study provides insights into how cigarette smoke affects sleep disorders.
Collapse
Affiliation(s)
- Jiaying Lao
- Department of Neurosurgery, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, People’s Republic of China
- School of Mental Health, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Hang Tan
- Department of neurosurgery, Hangzhou Mingzhou Brain Rehabilitation Hospital, Hangzhou, People’s Republic of China
| | - Yuyu Wu
- School of Mental Health, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Ting Ding
- Department of Infectious Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, People’s Republic of China
| | - Xinqian Liu
- Department of Neurosurgery, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, People’s Republic of China
| | - Lanrong Sun
- School of Mental Health, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xiyi Chen
- School of Mental Health, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Chongrong Zhu
- School of Mental Health, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Yiming Kang
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Huhhot, People’s Republic of China
| | - Yu-Hsin Chen
- School of Mental Health, Wenzhou Medical University, Wenzhou, People’s Republic of China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Chonghui Tang
- Department of Neurosurgery, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, People’s Republic of China
| | - Fan Wang
- Beijing Hui−Long−Guan Hospital, Peking University, Beijing, People’s Republic of China
| | - Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou, People’s Republic of China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, People’s Republic of China
| |
Collapse
|
2
|
Hogan K, Paul S, Lin G, Fuerte-Stone J, Sokurenko EV, Thomas WE. Effect of Gravity on Bacterial Adhesion to Heterogeneous Surfaces. Pathogens 2023; 12:941. [PMID: 37513788 PMCID: PMC10383686 DOI: 10.3390/pathogens12070941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Bacterial adhesion is the first step in the formation of surface biofilms. The number of bacteria that bind to a surface from the solution depends on how many bacteria can reach the surface (bacterial transport) and the strength of interactions between bacterial adhesins and surface receptors (adhesivity). By using microfluidic channels and video microscopy as well as computational simulations, we investigated how the interplay between bacterial transport and adhesivity affects the number of the common human pathogen Escherichia coli that bind to heterogeneous surfaces with different receptor densities. We determined that gravitational sedimentation causes bacteria to concentrate at the lower surface over time as fluid moves over a non-adhesive region, so bacteria preferentially adhere to adhesive regions on the lower, inflow-proximal areas that are downstream of non-adhesive regions within the entered compartments. Also, initial bacterial attachment to an adhesive region of a heterogeneous lower surface may be inhibited by shear due to mass transport effects alone rather than shear forces per se, because higher shear washes out the sedimented bacteria. We also provide a conceptual framework and theory that predict the impact of sedimentation on adhesion between and within adhesive regions in flow, where bacteria would likely bind both in vitro and in vivo, and how to normalize the bacterial binding level under experimental set-ups based on the flow compartment configuration.
Collapse
Affiliation(s)
- Kayla Hogan
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Sai Paul
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Guanyou Lin
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jay Fuerte-Stone
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Evgeni V Sokurenko
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Wendy E Thomas
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Sokurenko EV, Tchesnokova V, Interlandi G, Klevit R, Thomas WE. Neutralizing antibodies against allosteric proteins: insights from a bacterial adhesin. J Mol Biol 2022; 434:167717. [DOI: 10.1016/j.jmb.2022.167717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/15/2022]
|
4
|
Hasanzadeh S, Habibi M, Shokrgozar MA, Ahangari Cohan R, Ahmadi K, Asadi Karam MR, Bouzari S. In silico analysis and in vivo assessment of a novel epitope-based vaccine candidate against uropathogenic Escherichia coli. Sci Rep 2020; 10:16258. [PMID: 33004862 PMCID: PMC7530722 DOI: 10.1038/s41598-020-73179-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 09/10/2020] [Indexed: 12/20/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) are common pathogens in urinary tract infections (UTIs), which show resistance to antibiotics. Therefore, there is a need for a vaccine to reduce susceptibility to the infection. In the present study, bioinformatics approaches were employed to predict the best B and T-cell epitopes of UPEC virulence proteins to develop a multiepitope vaccine candidate against UPEC. Then, the efficacy of the candidate was studied with and without Freund adjuvant. Using bioinformatics methods, 3 epitope-rich domains of IutA and FimH antigens were selected to construct the fusion. Molecular docking and Molecular dynamics (MD) simulation were employed to investigate in silico interaction between designed vaccine and Toll-like receptor 4 (TLR4). Our results showed that the levels of IgG and IgA antibodies were improved in the serum and mucosal samples of the vaccinated mice, and the IgG responses were maintained for at least 6 months. The fusion protein was also able to enhance the level of cytokines IFN.γ (Th1), IL.4 (Th2), and IL.17. In challenge experiments, all vaccine combinations showed high potency in the protection of the urinary tract even after 6 months post first injection. The present study indicates that the designed candidate is able to evoke strong protective responses which warrant further studies.
Collapse
Affiliation(s)
- Sara Hasanzadeh
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
5
|
Krammer EM, de Ruyck J, Roos G, Bouckaert J, Lensink MF. Targeting Dynamical Binding Processes in the Design of Non-Antibiotic Anti-Adhesives by Molecular Simulation-The Example of FimH. Molecules 2018; 23:E1641. [PMID: 29976867 PMCID: PMC6099838 DOI: 10.3390/molecules23071641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022] Open
Abstract
Located at the tip of type I fimbria of Escherichia coli, the bacterial adhesin FimH is responsible for the attachment of the bacteria to the (human) host by specifically binding to highly-mannosylated glycoproteins located on the exterior of the host cell wall. Adhesion represents a necessary early step in bacterial infection and specific inhibition of this process represents a valuable alternative pathway to antibiotic treatments, as such anti-adhesive drugs are non-intrusive and are therefore unlikely to induce bacterial resistance. The currently available anti-adhesives with the highest affinities for FimH still feature affinities in the nanomolar range. A prerequisite to develop higher-affinity FimH inhibitors is a molecular understanding of the FimH-inhibitor complex formation. The latest insights in the formation process are achieved by combining several molecular simulation and traditional experimental techniques. This review summarizes how molecular simulation contributed to the current knowledge of the molecular function of FimH and the importance of dynamics in the inhibitor binding process, and highlights the importance of the incorporation of dynamical aspects in (future) drug-design studies.
Collapse
Affiliation(s)
- Eva-Maria Krammer
- Unite de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille, 50 Avenue de Halley, 59658 Villeneuve d'Ascq, France.
| | - Jerome de Ruyck
- Unite de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille, 50 Avenue de Halley, 59658 Villeneuve d'Ascq, France.
| | - Goedele Roos
- Unite de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille, 50 Avenue de Halley, 59658 Villeneuve d'Ascq, France.
| | - Julie Bouckaert
- Unite de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille, 50 Avenue de Halley, 59658 Villeneuve d'Ascq, France.
| | - Marc F Lensink
- Unite de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille, 50 Avenue de Halley, 59658 Villeneuve d'Ascq, France.
| |
Collapse
|
6
|
Rabbani S, Fiege B, Eris D, Silbermann M, Jakob RP, Navarra G, Maier T, Ernst B. Conformational switch of the bacterial adhesin FimH in the absence of the regulatory domain: Engineering a minimalistic allosteric system. J Biol Chem 2018; 293:1835-1849. [PMID: 29180452 PMCID: PMC5798311 DOI: 10.1074/jbc.m117.802942] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/23/2017] [Indexed: 11/06/2022] Open
Abstract
For many biological processes such as ligand binding, enzymatic catalysis, or protein folding, allosteric regulation of protein conformation and dynamics is fundamentally important. One example is the bacterial adhesin FimH, where the C-terminal pilin domain exerts negative allosteric control over binding of the N-terminal lectin domain to mannosylated ligands on host cells. When the lectin and pilin domains are separated under shear stress, the FimH-ligand interaction switches in a so-called catch-bond mechanism from the low- to high-affinity state. So far, it has been assumed that the pilin domain is essential for the allosteric propagation within the lectin domain that would otherwise be conformationally rigid. To test this hypothesis, we generated mutants of the isolated FimH lectin domain and characterized their thermodynamic, kinetic, and structural properties using isothermal titration calorimetry, surface plasmon resonance, nuclear magnetic resonance, and X-ray techniques. Intriguingly, some of the mutants mimicked the conformational and kinetic behaviors of the full-length protein and, even in absence of the pilin domain, conducted the cross-talk between allosteric sites and the mannoside-binding pocket. Thus, these mutants represent a minimalistic allosteric system of FimH, useful for further mechanistic studies and antagonist design.
Collapse
Affiliation(s)
- Said Rabbani
- From the Department of Pharmaceutical Sciences, Pharmacenter of the University of Basel, Klingelbergstrasse 50 and
| | - Brigitte Fiege
- From the Department of Pharmaceutical Sciences, Pharmacenter of the University of Basel, Klingelbergstrasse 50 and
| | - Deniz Eris
- From the Department of Pharmaceutical Sciences, Pharmacenter of the University of Basel, Klingelbergstrasse 50 and
| | - Marleen Silbermann
- From the Department of Pharmaceutical Sciences, Pharmacenter of the University of Basel, Klingelbergstrasse 50 and
| | - Roman Peter Jakob
- the Department Biozentrum, Focal Area Structural Biology, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Giulio Navarra
- From the Department of Pharmaceutical Sciences, Pharmacenter of the University of Basel, Klingelbergstrasse 50 and
| | - Timm Maier
- the Department Biozentrum, Focal Area Structural Biology, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Beat Ernst
- From the Department of Pharmaceutical Sciences, Pharmacenter of the University of Basel, Klingelbergstrasse 50 and
| |
Collapse
|
7
|
Feenstra T, Thøgersen MS, Wieser E, Peschel A, Ball MJ, Brandes R, Satchell SC, Stockner T, Aarestrup FM, Rees AJ, Kain R. Adhesion of Escherichia coli under flow conditions reveals potential novel effects of FimH mutations. Eur J Clin Microbiol Infect Dis 2016; 36:467-478. [PMID: 27816993 PMCID: PMC5309269 DOI: 10.1007/s10096-016-2820-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/16/2016] [Indexed: 12/29/2022]
Abstract
FimH-mediated adhesion of Escherichia coli to bladder epithelium is a prerequisite for urinary tract infections. FimH is also essential for blood-borne bacterial dissemination, but the mechanisms are poorly understood. The purpose of this study was to assess the influence of different FimH mutations on bacterial adhesion using a novel adhesion assay, which models the physiological flow conditions bacteria are exposed to. We introduced 12 different point mutations in the mannose binding pocket of FimH in an E. coli strain expressing type 1 fimbriae only (MSC95-FimH). We compared the bacterial adhesion of each mutant across several commonly used adhesion assays, including agglutination of yeast, adhesion to mono- and tri-mannosylated substrates, and static adhesion to bladder epithelial and endothelial cells. We performed a comparison of these assays to a novel method that we developed to study bacterial adhesion to mammalian cells under flow conditions. We showed that E. coli MSC95-FimH adheres more efficiently to microvascular endothelium than to bladder epithelium, and that only endothelium supports adhesion at physiological shear stress. The results confirmed that mannose binding pocket mutations abrogated adhesion. We demonstrated that FimH residues E50 and T53 are crucial for adhesion under flow conditions. The coating of endothelial cells on biochips and modelling of physiological flow conditions enabled us to identify FimH residues crucial for adhesion. These results provide novel insights into screening methods to determine the effect of FimH mutants and potentially FimH antagonists.
Collapse
Affiliation(s)
- T Feenstra
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - M S Thøgersen
- National Food Institute, Research Group for Genomic Epidemiology, Technical University of Denmark, Søltofts Plads 221, 2800, Kongens Lyngby, Denmark.,Department of Biotechnology and Biomedicine, Bacterial Ecophysiology and Biotechnology Group, Technical University of Denmark, Matematiktorvet 301, 2800, Kongens Lyngby, Denmark
| | - E Wieser
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - A Peschel
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - M J Ball
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.,Department of Nephrology, Ipswich Hospital, Heath Road, Ipswich, IP4 5PD, UK
| | - R Brandes
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - S C Satchell
- Academic Renal Unit, University of Bristol, Southmead Hospital, Bristol, UK
| | - T Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Währingerstrasse 13A, 1090, Vienna, Austria
| | - F M Aarestrup
- National Food Institute, Research Group for Genomic Epidemiology, Technical University of Denmark, Søltofts Plads 221, 2800, Kongens Lyngby, Denmark
| | - A J Rees
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - R Kain
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
8
|
Immunogenicity of a prototype enterotoxigenic Escherichia coli adhesin vaccine in mice and nonhuman primates. Vaccine 2016; 34:284-291. [DOI: 10.1016/j.vaccine.2015.11.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/06/2015] [Accepted: 11/06/2015] [Indexed: 11/20/2022]
|
9
|
Kisiela DI, Avagyan H, Friend D, Jalan A, Gupta S, Interlandi G, Liu Y, Tchesnokova V, Rodriguez VB, Sumida JP, Strong RK, Wu XR, Thomas WE, Sokurenko EV. Inhibition and Reversal of Microbial Attachment by an Antibody with Parasteric Activity against the FimH Adhesin of Uropathogenic E. coli. PLoS Pathog 2015; 11:e1004857. [PMID: 25974133 PMCID: PMC4431754 DOI: 10.1371/journal.ppat.1004857] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 04/06/2015] [Indexed: 11/18/2022] Open
Abstract
Attachment proteins from the surface of eukaryotic cells, bacteria and viruses are critical receptors in cell adhesion or signaling and are primary targets for the development of vaccines and therapeutic antibodies. It is proposed that the ligand-binding pocket in receptor proteins can shift between inactive and active conformations with weak and strong ligand-binding capability, respectively. Here, using monoclonal antibodies against a vaccine target protein - fimbrial adhesin FimH of uropathogenic Escherichia coli, we demonstrate that unusually strong receptor inhibition can be achieved by antibody that binds within the binding pocket and displaces the ligand in a non-competitive way. The non-competitive antibody binds to a loop that interacts with the ligand in the active conformation of the pocket but is shifted away from ligand in the inactive conformation. We refer to this as a parasteric inhibition, where the inhibitor binds adjacent to the ligand in the binding pocket. We showed that the receptor-blocking mechanism of parasteric antibody differs from that of orthosteric inhibition, where the inhibitor replaces the ligand or allosteric inhibition where the inhibitor binds at a site distant from the ligand, and is very potent in blocking bacterial adhesion, dissolving surface-adherent biofilms and protecting mice from urinary bladder infection. A common approach in the development of selective inhibitors for ligand-receptor interactions is targeting the receptor binding site with the expectation that inhibitors will sterically interfere with ligand binding and thus block receptor function via a competitive (orthosteric) mechanism. However, using monoclonal antibodies specific for the mannose-binding Escherichia coli adhesin, FimH, we demonstrate that the binding site epitopes allow for non-competitive inhibition that is more effective than orthosteric blocking. FimH, similar to other binding proteins, exhibits conformational flexibility of the ligand-binding pocket shifting between open (inactive) and tight (active) conformations, with relatively low- and high- affinity towards mannose. We show that an antibody that binds just one of the mannose-binding pocket loops prevents the shift from the inactive to the active conformation and hence blocks formation of high-affinity ligand-receptor complexes. This antibody type was more effective in inhibition of bacterial adhesion than anti-FimH antibodies competitively blocking mannose binding, and unlike the latter or a soluble ligand, showed the ability to detach an established bacterial biofilm from a ligand-coated surface. As the newly described antibody can bind the FimH pocket simultaneously with ligand, we refer to it as a parasteric (next-to-ligand) inhibitor that exhibits non-competitive inhibition from within the binding-pocket of the receptor.
Collapse
Affiliation(s)
- Dagmara I. Kisiela
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- * E-mail: (DIK); (EVS)
| | - Hovhannes Avagyan
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Della Friend
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Aachal Jalan
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Shivani Gupta
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Gianluca Interlandi
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Yan Liu
- Department of Urology, New York University School of Medicine, New York, New York, United States of America
| | - Veronika Tchesnokova
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Victoria B. Rodriguez
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - John P. Sumida
- Analytical Biopharmacy Core, University of Washington, Seattle, Washington, United States of America
| | - Roland K. Strong
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Xue-Ru Wu
- Department of Urology, New York University School of Medicine, New York, New York, United States of America
| | - Wendy E. Thomas
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Evgeni V. Sokurenko
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- * E-mail: (DIK); (EVS)
| |
Collapse
|
10
|
Disruption of integrin-fibronectin complexes by allosteric but not ligand-mimetic inhibitors. Biochem J 2015; 464:301-13. [PMID: 25333419 DOI: 10.1042/bj20141047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Failure of Arg-Gly-Asp (RGD)-based inhibitors to reverse integrin-ligand binding has been reported, but the prevalence of this phenomenon among integrin heterodimers is currently unknown. In the present study we have investigated the interaction of four different RGD-binding integrins (α5β1, αVβ1, αVβ3 and αVβ6) with fibronectin (FN) using surface plasmon resonance. The ability of inhibitors to reverse ligand binding was assessed by their capacity to increase the dissociation rate of pre-formed integrin-FN complexes. For all four receptors we showed that RGD-based inhibitors (such as cilengitide) were completely unable to increase the dissociation rate. Formation of the non-reversible state occurred very rapidly and did not rely on the time-dependent formation of a high-affinity state of the integrin, or the integrin leg regions. In contrast with RGD-based inhibitors, Ca2+ (but not Mg2+) was able to greatly increase the dissociation rate of integrin-FN complexes, with a half-maximal response at ~0.4 mM Ca2+ for αVβ3-FN. The effect of Ca2+ was overcome by co-addition of Mn2+, but not Mg2+. A stimulatory anti-β1 monoclonal antibody (mAb) abrogated the effect of Ca2+ on α5β1-FN complexes; conversely, a function-blocking mAb mimicked the effect of Ca2+. These results imply that Ca2+ acts allosterically, probably through binding to the adjacent metal-ion-dependent adhesion site (ADMIDAS), and that the α1 helix in the β subunit I domain is the key element affected by allosteric modulators. The data suggest an explanation for the limited clinical efficacy of RGD-based integrin antagonists, and we propose that allosteric antagonists could prove to be of greater therapeutic benefit.
Collapse
|
11
|
Singaravelu M, Selvan A, Anishetty S. Molecular dynamics simulations of lectin domain of FimH and immunoinformatics for the design of potential vaccine candidates. Comput Biol Chem 2014; 52:18-24. [DOI: 10.1016/j.compbiolchem.2014.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 08/11/2014] [Accepted: 08/11/2014] [Indexed: 02/04/2023]
|
12
|
Bhatia S, Dimde M, Haag R. Multivalent glycoconjugates as vaccines and potential drug candidates. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00143e] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|