1
|
Hu Z, Martí J. Unraveling atomic-scale mechanisms of GDP extraction catalyzed by SOS1 in KRAS-G12 and KRAS-D12 oncogenes. Comput Biol Med 2024; 186:109599. [PMID: 39731920 DOI: 10.1016/j.compbiomed.2024.109599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024]
Abstract
The guanine exchange factor SOS1 plays a pivotal role in the positive feedback regulation of the KRAS signaling pathway. Recently, the regulation of KRAS-SOS1 interactions and KRAS downstream effector proteins has emerged as a key focus in the development of therapies targeting KRAS-driven cancers. However, the detailed dynamic mechanisms underlying SOS1-catalyzed GDP extraction and the impact of KRAS mutations remain largely unexplored. In this study, we unveil and describe in atomic detail the primary mechanisms by which SOS1 facilitates GDP extraction from KRAS oncogenes. For GDP-bound wild-type KRAS (KRAS-G12), four critical amino acids (Lys811, Glu812, Lys939, and Glu942) are identified as essential for the catalytic function of SOS1. Notably, the KRAS-G12D mutation (KRAS-D12) significantly accelerates the rate of GDP extraction. The molecular basis of this enhancement are attributed to hydrogen bonding interactions between the mutant residue Asp12 and a positively charged pocket in the intrinsically disordered region (residues 807-818), comprising Ser807, Trp809, Thr810, and Lys811. These findings provide novel insights into SOS1-KRAS interactions and offer a foundation for developing anti-cancer strategies aimed at disrupting these mechanisms.
Collapse
Affiliation(s)
- Zheyao Hu
- Department of Physics, Polytechnic University of Catalonia-Barcelona Tech, B4-B5 Northern Campus UPC, Barcelona, 08034, Catalonia, Spain
| | - Jordi Martí
- Department of Physics, Polytechnic University of Catalonia-Barcelona Tech, B4-B5 Northern Campus UPC, Barcelona, 08034, Catalonia, Spain.
| |
Collapse
|
2
|
Hu Z, Martí J. Isomer-sourced structure iteration methods for in silico development of inhibitors: Inducing GTP-bound NRAS-Q61 oncogenic mutations to an "off-like" state. Comput Struct Biotechnol J 2024; 23:2418-2428. [PMID: 38882681 PMCID: PMC11176632 DOI: 10.1016/j.csbj.2024.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
The NRAS-mutant subset of melanoma represent some of the most aggressive and deadliest types associated with poor overall survival. Unfortunately, for more than 40 years, no therapeutic agent directly targeting NRAS mutations has been clinically approved. In this work, based on microsecond scale molecular dynamics simulations, the effect of Q61 mutations on NRAS conformational characteristics is revealed at the atomic level. The GTP-bound NRAS-Q61R and Q61K mutations show a specific targetable pocket between Switch-II and α-helix 3 whereas the NRAS-Q61L non-polar mutation category shows a different targetable pocket. Moreover, a new isomer-sourced structure iteration method has been developed for the in silico design of potential inhibitor prototypes for oncogenes. We show the possibility of a designed prototype HM-387 to target activated NRAS-Q61R and that it can gradually induce the transition from the activated NRAS-Q61R to an "off-like" state.
Collapse
Affiliation(s)
- Zheyao Hu
- Department of Physics, Polytechnic University of Catalonia-Barcelona Tech, B4-B5 Northern Campus UPC, Barcelona, 08034, Catalonia, Spain
| | - Jordi Martí
- Department of Physics, Polytechnic University of Catalonia-Barcelona Tech, B4-B5 Northern Campus UPC, Barcelona, 08034, Catalonia, Spain
| |
Collapse
|
3
|
Wang D, Frechette LB, Best RB. On the role of native contact cooperativity in protein folding. Proc Natl Acad Sci U S A 2024; 121:e2319249121. [PMID: 38776371 PMCID: PMC11145220 DOI: 10.1073/pnas.2319249121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/11/2024] [Indexed: 05/25/2024] Open
Abstract
The consistency of energy landscape theory predictions with available experimental data, as well as direct evidence from molecular simulations, have shown that protein folding mechanisms are largely determined by the contacts present in the native structure. As expected, native contacts are generally energetically favorable. However, there are usually at least as many energetically favorable nonnative pairs owing to the greater number of possible nonnative interactions. This apparent frustration must therefore be reduced by the greater cooperativity of native interactions. In this work, we analyze the statistics of contacts in the unbiased all-atom folding trajectories obtained by Shaw and coworkers, focusing on the unfolded state. By computing mutual cooperativities between contacts formed in the unfolded state, we show that native contacts form the most cooperative pairs, while cooperativities among nonnative or between native and nonnative contacts are typically much less favorable or even anticooperative. Furthermore, we show that the largest network of cooperative interactions observed in the unfolded state consists mainly of native contacts, suggesting that this set of mutually reinforcing interactions has evolved to stabilize the native state.
Collapse
Affiliation(s)
- David Wang
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
- Department of Biology, Johns Hopkins University, Baltimore, MD21218
| | - Layne B. Frechette
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA02453
| | - Robert B. Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
| |
Collapse
|
4
|
Rinkovec T, Kalebic D, Dehaen W, Whitelam S, Harvey JN, De Feyter S. On the origin of cooperativity effects in the formation of self-assembled molecular networks at the liquid/solid interface. Chem Sci 2024; 15:6076-6087. [PMID: 38665531 PMCID: PMC11041291 DOI: 10.1039/d4sc00284a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/12/2024] [Indexed: 04/28/2024] Open
Abstract
In this work we investigate the behaviour of molecules at the nanoscale using scanning tunnelling microscopy in order to explore the origin of the cooperativity in the formation of self-assembled molecular networks (SAMNs) at the liquid/solid interface. By studying concentration dependence of alkoxylated dimethylbenzene, a molecular analogue to 5-alkoxylated isophthalic derivatives, but without hydrogen bonding moieties, we show that the cooperativity effect can be experimentally evaluated even for low-interacting systems and that the cooperativity in SAMN formation is its fundamental trait. We conclude that cooperativity must be a local effect and use the nearest-neighbor Ising model to reproduce the coverage vs. concentration curves. The Ising model offers a direct link between statistical thermodynamics and experimental parameters, making it a valuable tool for assessing the thermodynamics of SAMN formation.
Collapse
Affiliation(s)
- Tamara Rinkovec
- Department of Chemistry, KU Leuven Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Demian Kalebic
- Department of Chemistry, KU Leuven Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Wim Dehaen
- Department of Chemistry, KU Leuven Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Stephen Whitelam
- Molecular Foundry, Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Jeremy N Harvey
- Department of Chemistry, KU Leuven Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Steven De Feyter
- Department of Chemistry, KU Leuven Celestijnenlaan 200F B-3001 Leuven Belgium
| |
Collapse
|
5
|
Reisinger D, Adam R, Tschofenig F, Füllsack M, Jäger G. Modular tipping points: How local network structure impacts critical transitions in networked spin systems. PLoS One 2023; 18:e0292935. [PMID: 37963138 PMCID: PMC10645300 DOI: 10.1371/journal.pone.0292935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/29/2023] [Indexed: 11/16/2023] Open
Abstract
Critical transitions describe a phenomenon where a system abruptly shifts from one stable state to an alternative, often detrimental, stable state. Understanding and possibly preventing the occurrence of a critical transition is thus highly relevant to many ecological, sociological, and physical systems. In this context, it has been shown that the underlying network structure of a system heavily impacts the transition behavior of that system. In this paper, we study a crucial but often overlooked aspect in critical transitions: the modularity of the system's underlying network topology. In particular, we investigate how the transition behavior of a networked system changes as we alter the local network structure of the system through controlled changes of the degree assortativity. We observe that systems with high modularity undergo cascading transitions, while systems with low modularity undergo more unified transitions. We also observe that networked systems that consist of nodes with varying degrees of connectivity tend to transition earlier in response to changes in a control parameter than one would anticipate based solely on the average degree of that network. However, in rare cases, such as when there is both low modularity and high degree disassortativity, the transition behavior aligns with what we would expected given the network's average degree. Results are confirmed for a diverse set of degree distributions including stylized two-degree networks, uniform, Poisson, and power-law degree distributions. On the basis of these results, we argue that to understand critical transitions in networked systems, they must be understood in terms of individual system components and their roles within the network structure.
Collapse
Affiliation(s)
- Daniel Reisinger
- Institute of Environmental Systems Sciences, University of Graz, Graz, Styria, Austria
| | - Raven Adam
- Institute of Environmental Systems Sciences, University of Graz, Graz, Styria, Austria
| | - Fabian Tschofenig
- Institute of Environmental Systems Sciences, University of Graz, Graz, Styria, Austria
| | - Manfred Füllsack
- Institute of Environmental Systems Sciences, University of Graz, Graz, Styria, Austria
| | - Georg Jäger
- Institute of Environmental Systems Sciences, University of Graz, Graz, Styria, Austria
| |
Collapse
|
6
|
Ooka K, Arai M. Accurate prediction of protein folding mechanisms by simple structure-based statistical mechanical models. Nat Commun 2023; 14:6338. [PMID: 37857633 PMCID: PMC10587348 DOI: 10.1038/s41467-023-41664-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/10/2023] [Indexed: 10/21/2023] Open
Abstract
Recent breakthroughs in highly accurate protein structure prediction using deep neural networks have made considerable progress in solving the structure prediction component of the 'protein folding problem'. However, predicting detailed mechanisms of how proteins fold into specific native structures remains challenging, especially for multidomain proteins constituting most of the proteomes. Here, we develop a simple structure-based statistical mechanical model that introduces nonlocal interactions driving the folding of multidomain proteins. Our model successfully predicts protein folding processes consistent with experiments, without the limitations of protein size and shape. Furthermore, slight modifications of the model allow prediction of disulfide-oxidative and disulfide-intact protein folding. These predictions depict details of the folding processes beyond reproducing experimental results and provide a rationale for the folding mechanisms. Thus, our physics-based models enable accurate prediction of protein folding mechanisms with low computational complexity, paving the way for solving the folding process component of the 'protein folding problem'.
Collapse
Affiliation(s)
- Koji Ooka
- Department of Physics, Graduate School of Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
- Komaba Organization for Educational Excellence, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Munehito Arai
- Department of Physics, Graduate School of Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
- Komaba Organization for Educational Excellence, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
| |
Collapse
|
7
|
Dani R, Pawloski W, Chaurasiya DK, Srilatha NS, Agarwal S, Fushman D, Naganathan AN. Conformational Tuning Shapes the Balance between Functional Promiscuity and Specialization in Paralogous Plasmodium Acyl-CoA Binding Proteins. Biochemistry 2023; 62:2982-2996. [PMID: 37788430 PMCID: PMC10774088 DOI: 10.1021/acs.biochem.3c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Paralogous proteins confer enhanced fitness to organisms via complex sequence-conformation codes that shape functional divergence, specialization, or promiscuity. Here, we dissect the underlying mechanism of promiscuous binding versus partial subfunctionalization in paralogues by studying structurally identical acyl-CoA binding proteins (ACBPs) from Plasmodium falciparum that serve as promising drug targets due to their high expression during the protozoan proliferative phase. Combining spectroscopic measurements, solution NMR, SPR, and simulations on two of the paralogues, A16 and A749, we show that minor sequence differences shape nearly every local and global conformational feature. A749 displays a broader and heterogeneous native ensemble, weaker thermodynamic coupling and cooperativity, enhanced fluctuations, and a larger binding pocket volume compared to A16. Site-specific tryptophan probes signal a graded reduction in the sampling of substates in the holo form, which is particularly apparent in A749. The paralogues exhibit a spectrum of binding affinities to different acyl-CoAs with A749, the more promiscuous and hence the likely ancestor, binding 1000-fold stronger to lauroyl-CoA under physiological conditions. We thus demonstrate how minor sequence changes modulate the extent of long-range interactions and dynamics, effectively contributing to the molecular evolution of contrasting functional repertoires in paralogues.
Collapse
Affiliation(s)
- Rahul Dani
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Westley Pawloski
- Center for Biomolecular Structure & Organization, Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Dhruv Kumar Chaurasiya
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | | | - Sonal Agarwal
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - David Fushman
- Center for Biomolecular Structure & Organization, Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
8
|
Tyler S, Laforge C, Guzzo A, Nicolaï A, Maisuradze GG, Senet P. Einstein Model of a Graph to Characterize Protein Folded/Unfolded States. Molecules 2023; 28:6659. [PMID: 37764437 PMCID: PMC10536427 DOI: 10.3390/molecules28186659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The folded structures of proteins can be accurately predicted by deep learning algorithms from their amino-acid sequences. By contrast, in spite of decades of research studies, the prediction of folding pathways and the unfolded and misfolded states of proteins, which are intimately related to diseases, remains challenging. A two-state (folded/unfolded) description of protein folding dynamics hides the complexity of the unfolded and misfolded microstates. Here, we focus on the development of simplified order parameters to decipher the complexity of disordered protein structures. First, we show that any connected, undirected, and simple graph can be associated with a linear chain of atoms in thermal equilibrium. This analogy provides an interpretation of the usual topological descriptors of a graph, namely the Kirchhoff index and Randić resistance, in terms of effective force constants of a linear chain. We derive an exact relation between the Kirchhoff index and the average shortest path length for a linear graph and define the free energies of a graph using an Einstein model. Second, we represent the three-dimensional protein structures by connected, undirected, and simple graphs. As a proof of concept, we compute the topological descriptors and the graph free energies for an all-atom molecular dynamics trajectory of folding/unfolding events of the proteins Trp-cage and HP-36 and for the ensemble of experimental NMR models of Trp-cage. The present work shows that the local, nonlocal, and global force constants and free energies of a graph are promising tools to quantify unfolded/disordered protein states and folding/unfolding dynamics. In particular, they allow the detection of transient misfolded rigid states.
Collapse
Affiliation(s)
- Steve Tyler
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université de Bourgogne, 21078 Dijon CEDEX, France
| | - Christophe Laforge
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université de Bourgogne, 21078 Dijon CEDEX, France
| | - Adrien Guzzo
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université de Bourgogne, 21078 Dijon CEDEX, France
| | - Adrien Nicolaï
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université de Bourgogne, 21078 Dijon CEDEX, France
| | - Gia G. Maisuradze
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Patrick Senet
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université de Bourgogne, 21078 Dijon CEDEX, France
| |
Collapse
|
9
|
Chaudhari AS, Chatterjee A, Domingos CAO, Andrikopoulos PC, Liu Y, Andersson I, Schneider B, Lórenz-Fonfría VA, Fuertes G. Genetically encoded non-canonical amino acids reveal asynchronous dark reversion of chromophore, backbone and side-chains in EL222. Protein Sci 2023; 32:e4590. [PMID: 36764820 PMCID: PMC10019195 DOI: 10.1002/pro.4590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Photoreceptors containing the light-oxygen-voltage (LOV) domain elicit biological responses upon excitation of their flavin mononucleotide (FMN) chromophore by blue light. The mechanism and kinetics of dark-state recovery are not well understood. Here we incorporated the non-canonical amino acid p-cyanophenylalanine (CNF) by genetic code expansion technology at forty-five positions of the bacterial transcription factor EL222. Screening of light-induced changes in infrared (IR) absorption frequency, electric field and hydration of the nitrile groups identified residues CNF31 and CNF35 as reporters of monomer/oligomer and caged/decaged equilibria, respectively. Time-resolved multi-probe UV/Visible and IR spectroscopy experiments of the lit-to-dark transition revealed four dynamical events. Predominantly, rearrangements around the A'α helix interface (CNF31 and CNF35) precede FMN-cysteinyl adduct scission, folding of α-helices (amide bands), and relaxation of residue CNF151. This study illustrates the importance of characterizing all parts of a protein and suggests a key role for the N-terminal A'α extension of the LOV domain in controlling EL222 photocycle length. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Aditya S Chaudhari
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Aditi Chatterjee
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Catarina A O Domingos
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic.,Escola Superior de Tecnologia do Barreiro, Instituto Politécnico de Setúbal, Lavradio, Portugal
| | | | - Yingliang Liu
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Inger Andersson
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic.,Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Bohdan Schneider
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | | | - Gustavo Fuertes
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| |
Collapse
|
10
|
Moses K, Van Tassel PR. Polyelectrolyte Influence on Beta-Hairpin Peptide Stability: A Simulation Study. J Phys Chem B 2023; 127:359-370. [PMID: 36574611 DOI: 10.1021/acs.jpcb.2c06641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Assemblies of proteins and charged macromolecules (polyelectrolytes) find important applications as pharmaceutical formulations, biocatalysts, and cell-contacting substrates. A key question is how the polymer component influences the structure and function of the protein. The present paper addresses the influence of charged polymers on the thermal stability of two model beta-hairpin-forming peptides through an all-atom, replica exchange molecular dynamics simulation. The (negatively charged) peptides consist of the terminal 16 amino acids of the B1 domain of Protein G (GB1) and a variant with three of the GB1 residues substituted with tryptophan (Tryptophan Zipper 4, or TZ4). A (cationic) lysine polymer is seen to thermally stabilize TZ4 and destabilize GB1, while a (also cationic) chitosan polymer slightly stabilizes GB1 but has essentially no effect on TZ4. Free energy profiles reveal folded and unfolded conformations to be separated by kinetic barriers generally acting in the direction of the thermodynamically favored state. Through application of an Ising-like statistical mechanical model, a mechanism is proposed based on competition between (indirect) entropic stabilization of folded versus unfolded states and (direct) competition for hydrogen-bonding and hydrophobic interactions. These findings have important implications to the design of polyelectrolyte-based materials for biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Kevin Moses
- Dept. of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Paul R Van Tassel
- Dept. of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| |
Collapse
|
11
|
Markov field models: Scaling molecular kinetics approaches to large molecular machines. Curr Opin Struct Biol 2022; 77:102458. [PMID: 36162297 DOI: 10.1016/j.sbi.2022.102458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022]
Abstract
With recent advances in structural biology, including experimental techniques and deep learning-enabled high-precision structure predictions, molecular dynamics methods that scale up to large biomolecular systems are required. Current state-of-the-art approaches in molecular dynamics modeling focus on encoding global configurations of molecular systems as distinct states. This paradigm commands us to map out all possible structures and sample transitions between them, a task that becomes impossible for large-scale systems such as biomolecular complexes. To arrive at scalable molecular models, we suggest moving away from global state descriptions to a set of coupled models that each describe the dynamics of local domains or sites of the molecular system. We describe limitations in the current state-of-the-art global-state Markovian modeling approaches and then introduce Markov field models as an umbrella term that includes models from various scientific communities, including Independent Markov decomposition, Ising and Potts models, and (dynamic) graphical models, and evaluate their use for computational molecular biology. Finally, we give a few examples of early adoptions of these ideas for modeling molecular kinetics and thermodynamics.
Collapse
|
12
|
Reisinger D, Adam R, Kogler ML, Füllsack M, Jäger G. Critical transitions in degree mixed networks: A discovery of forbidden tipping regions in networked spin systems. PLoS One 2022; 17:e0277347. [PMID: 36399485 PMCID: PMC9674165 DOI: 10.1371/journal.pone.0277347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
Abstract
Critical transitions can be conceptualized as abrupt shifts in the state of a system typically induced by changes in the system's critical parameter. They have been observed in a variety of systems across many scientific disciplines including physics, ecology, and social science. Because critical transitions are important to such a diverse set of systems it is crucial to understand what parts of a system drive and shape the transition. The underlying network structure plays an important role in this regard. In this paper, we investigate how changes in a network's degree sequence impact the resilience of a networked system. We find that critical transitions in degree mixed networks occur in general sooner than in their degree homogeneous counterparts of equal average degree. This relationship can be expressed with parabolic curves that describe how the tipping point changes when the nodes of an initially homogeneous degree network composed only of nodes with degree k1 are replaced by nodes of a different degree k2. These curves mark clear tipping boundaries for a given degree mixed network and thus allow the identification of possible tipping intersections and forbidden tipping regions when comparing networks with different degree sequences.
Collapse
Affiliation(s)
- Daniel Reisinger
- Institute of Systems Sciences, Innovation and Sustainability Research, University of Graz, Graz, Styria, Austria
| | - Raven Adam
- Institute of Systems Sciences, Innovation and Sustainability Research, University of Graz, Graz, Styria, Austria
| | - Marie Lisa Kogler
- Institute of Systems Sciences, Innovation and Sustainability Research, University of Graz, Graz, Styria, Austria
| | - Manfred Füllsack
- Institute of Systems Sciences, Innovation and Sustainability Research, University of Graz, Graz, Styria, Austria
| | - Georg Jäger
- Institute of Systems Sciences, Innovation and Sustainability Research, University of Graz, Graz, Styria, Austria
| |
Collapse
|
13
|
Ali AAAI, Gulzar A, Wolf S, Stock G. Nonequilibrium Modeling of the Elementary Step in PDZ3 Allosteric Communication. J Phys Chem Lett 2022; 13:9862-9868. [PMID: 36251493 DOI: 10.1021/acs.jpclett.2c02821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
While allostery is of paramount importance for protein signaling and regulation, the underlying dynamical process of allosteric communication is not well understood. The PDZ3 domain represents a prime example of an allosteric single-domain protein, as it features a well-established long-range coupling between the C-terminal α3-helix and ligand binding. In an intriguing experiment, Hamm and co-workers employed photoswitching of the α3-helix to initiate a conformational change of PDZ3 that propagates from the C-terminus to the bound ligand within 200 ns. Performing extensive nonequilibrium molecular dynamics simulations, the modeling of the experiment reproduces the measured time scales and reveals a detailed picture of the allosteric communication in PDZ3. In particular, a correlation analysis identifies a network of contacts connecting the α3-helix and the core of the protein, which move in a concerted manner. Representing a one-step process and involving direct α3-ligand contacts, this cooperative transition is considered as the elementary step in the propagation of conformational change.
Collapse
Affiliation(s)
- Ahmed A A I Ali
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, 79104Freiburg, Germany
| | - Adnan Gulzar
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, 79104Freiburg, Germany
| | - Steffen Wolf
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, 79104Freiburg, Germany
| | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, 79104Freiburg, Germany
| |
Collapse
|
14
|
Ooka K, Liu R, Arai M. The Wako-Saitô-Muñoz-Eaton Model for Predicting Protein Folding and Dynamics. Molecules 2022; 27:molecules27144460. [PMID: 35889332 PMCID: PMC9319528 DOI: 10.3390/molecules27144460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the recent advances in the prediction of protein structures by deep neutral networks, the elucidation of protein-folding mechanisms remains challenging. A promising theory for describing protein folding is a coarse-grained statistical mechanical model called the Wako-Saitô-Muñoz-Eaton (WSME) model. The model can calculate the free-energy landscapes of proteins based on a three-dimensional structure with low computational complexity, thereby providing a comprehensive understanding of the folding pathways and the structure and stability of the intermediates and transition states involved in the folding reaction. In this review, we summarize previous and recent studies on protein folding and dynamics performed using the WSME model and discuss future challenges and prospects. The WSME model successfully predicted the folding mechanisms of small single-domain proteins and the effects of amino-acid substitutions on protein stability and folding in a manner that was consistent with experimental results. Furthermore, extended versions of the WSME model were applied to predict the folding mechanisms of multi-domain proteins and the conformational changes associated with protein function. Thus, the WSME model may contribute significantly to solving the protein-folding problem and is expected to be useful for predicting protein folding, stability, and dynamics in basic research and in industrial and medical applications.
Collapse
Affiliation(s)
- Koji Ooka
- Department of Physics, Graduate School of Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan;
- Komaba Organization for Educational Excellence, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Runjing Liu
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan;
| | - Munehito Arai
- Department of Physics, Graduate School of Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan;
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan;
- Correspondence:
| |
Collapse
|
15
|
Post M, Lickert B, Diez G, Wolf S, Stock G. Cooperative Protein Allosteric Transition Mediated by a Fluctuating Transmission Network. J Mol Biol 2022; 434:167679. [PMID: 35690098 DOI: 10.1016/j.jmb.2022.167679] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 12/13/2022]
Abstract
Allosteric communication between distant protein sites represents a key mechanism of biomolecular regulation and signal transduction. Compared to other processes such as protein folding, however, the dynamical evolution of allosteric transitions is still not well understood. As an example of allosteric coupling between distant protein regions, we consider the global open-closed motion of the two domains of T4 lysozyme, which is triggered by local motion in the hinge region. Combining extensive molecular dynamics simulations with a correlation analysis of interresidue contacts, we identify a network of interresidue distances that move in a concerted manner. The cooperative process originates from a cogwheel-like motion of the hydrophobic core in the hinge region, which constitutes an evolutionary conserved and flexible transmission network. Through rigid contacts and the protein backbone, the small local changes of the hydrophobic core are passed on to the distant terminal domains and lead to the emergence of a rare global conformational transition. As in an Ising-type model, the cooperativity of the allosteric transition can be explained via the interaction of local fluctuations.
Collapse
Affiliation(s)
- Matthias Post
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, 79104 Freiburg, Germany. https://twitter.com/@_posti
| | - Benjamin Lickert
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, 79104 Freiburg, Germany. https://twitter.com/@BenjaminLickert
| | - Georg Diez
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, 79104 Freiburg, Germany. https://twitter.com/@gegadiez
| | - Steffen Wolf
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, 79104 Freiburg, Germany.
| | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, 79104 Freiburg, Germany.
| |
Collapse
|
16
|
Golla H, Kannan A, Gopi S, Murugan S, Perumalsamy LR, Naganathan AN. Structural-Energetic Basis for Coupling between Equilibrium Fluctuations and Phosphorylation in a Protein Native Ensemble. ACS CENTRAL SCIENCE 2022; 8:282-293. [PMID: 35233459 PMCID: PMC8880421 DOI: 10.1021/acscentsci.1c01548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The functioning of proteins is intimately tied to their fluctuations in the native ensemble. The structural-energetic features that determine fluctuation amplitudes and hence the shape of the underlying landscape, which in turn determine the magnitude of the functional output, are often confounded by multiple variables. Here, we employ the FF1 domain from human p190A RhoGAP protein as a model system to uncover the molecular basis for phosphorylation of a buried tyrosine, which is crucial to the transcriptional activity associated with transcription factor TFII-I. Combining spectroscopy, calorimetry, statistical-mechanical modeling, molecular simulations, and in vitro phosphorylation assays, we show that the FF1 domain samples a diverse array of conformations in its native ensemble, some of which are phosphorylation-competent. Upon eliminating unfavorable charge-charge interactions through a single charge-reversal (K53E) or charge-neutralizing (K53Q) mutation, we observe proportionately lower phosphorylation extents due to the altered structural coupling, damped equilibrium fluctuations, and a more compact native ensemble. We thus establish a conformational selection mechanism for phosphorylation in the FF1 domain with K53 acting as a "gatekeeper", modulating the solvent exposure of the buried tyrosine. Our work demonstrates the role of unfavorable charge-charge interactions in governing functional events through the modulation of native ensemble characteristics, a feature that could be prevalent in ordered protein domains.
Collapse
Affiliation(s)
- Hemashree Golla
- Department
of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Adithi Kannan
- Department
of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Soundhararajan Gopi
- Department
of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sowmiya Murugan
- Department
of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Lakshmi R Perumalsamy
- Department
of Biomedical Sciences, Sri Ramachandra
Institute of Higher Education and Research, Chennai 600116, India
| | - Athi N. Naganathan
- Department
of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
17
|
Naganathan AN, Kannan A. A hierarchy of coupling free energies underlie the thermodynamic and functional architecture of protein structures. Curr Res Struct Biol 2021; 3:257-267. [PMID: 34704074 PMCID: PMC8526763 DOI: 10.1016/j.crstbi.2021.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/08/2021] [Accepted: 09/30/2021] [Indexed: 12/22/2022] Open
Abstract
Protein sequences and structures evolve by satisfying varied physical and biochemical constraints. This multi-level selection is enabled not just by the patterning of amino acids on the sequence, but also via coupling between residues in the native structure. Here, we employ an energetically detailed statistical mechanical model with millions of microstates to extract such long-range structural correlations, i.e. thermodynamic coupling free energies, from a diverse family of protein structures. We find that despite the intricate and anisotropic distribution of coupling patterns, the majority of residues (>70%) are only marginally coupled contributing to functional motions and catalysis. Physical origins of ‘sectors’, determinants of native ensemble heterogeneity in extant, ancient and designed proteins, and the basis for allostery emerge naturally from coupling free energies. The statistical framework highlights how evolutionary selection and optimization occur at the level of global interaction network for a given protein fold impacting folding, function, and allosteric outputs. Evolution of protein structures occurs at the level of global interaction network. More than 70% of the protein residues are weakly or marginally coupled. Functional ‘sector’ regions are a manifestation of marginal coupling. Coupling indices vary across the entire proteins in extant-ancient and natural-designed pairs. The proposed methodology can be used to understand allostery and epistasis.
Collapse
Affiliation(s)
- Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Adithi Kannan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
18
|
Wu R, Ou X, Zhang L, Wang F, Liu L. Interfacial Interactions within Amyloid Protein Corona Based on 2D MoS 2 Nanosheets. Chembiochem 2021; 23:e202100581. [PMID: 34708897 DOI: 10.1002/cbic.202100581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 12/21/2022]
Abstract
The interfacial interaction within the amyloid protein corona based on MoS2 nanomaterial is crucial, both for understanding the biological effects of MoS2 nanomaterial and the evolution of amyloid diseases. The specific nano-bio interface phenomenon of human islet amyloid peptide (hIAPP) and MoS2 nanosheet was investigated by using theoretical and experimental methods. The MoS2 nanosheet enables the attraction of hIAPP monomer, dimer, and oligomer on its surface through van der Waals forces. Especially, the means of interaction between two hIAPP peptides might be changed by MoS2 nanosheet. In addition, it is interesting to find that the hIAPP oligomer can stably interact with the MoS2 nanosheet in one unique "standing" binding mode with an entire exposed β-sheet surface. All the interaction modes on the surface of MoS2 nanosheet can be the essence of amyloid protein corona that may provide the venue to facilitate the fibrillation of hIAPP proteins. Further, it was verified experimentally that MoS2 nanosheets could accelerate the fibrillation of hIAPP at a certain concentration mainly based on the newly formed nano-bio interface. In general, our results provide insight into the molecular interaction mechanism of the nano-bio interface within the amyloid protein corona, and shed light on the pathway of amyloid protein aggregation that is related to the evolution of amyloid diseases.
Collapse
Affiliation(s)
- Rongrong Wu
- Institute for Advanced Materials, Jiangsu University, Xuefu Road 301, Zhenjiang, 212000, P. R. China
| | - Xinwen Ou
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Liwei Zhang
- Institute for Advanced Materials, Jiangsu University, Xuefu Road 301, Zhenjiang, 212000, P. R. China
| | - Fenghua Wang
- Institute for Advanced Materials, Jiangsu University, Xuefu Road 301, Zhenjiang, 212000, P. R. China
| | - Lei Liu
- Institute for Advanced Materials, Jiangsu University, Xuefu Road 301, Zhenjiang, 212000, P. R. China
| |
Collapse
|
19
|
Nassar R, Dignon GL, Razban RM, Dill KA. The Protein Folding Problem: The Role of Theory. J Mol Biol 2021; 433:167126. [PMID: 34224747 PMCID: PMC8547331 DOI: 10.1016/j.jmb.2021.167126] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/21/2021] [Accepted: 06/26/2021] [Indexed: 10/20/2022]
Abstract
The protein folding problem was first articulated as question of how order arose from disorder in proteins: How did the various native structures of proteins arise from interatomic driving forces encoded within their amino acid sequences, and how did they fold so fast? These matters have now been largely resolved by theory and statistical mechanics combined with experiments. There are general principles. Chain randomness is overcome by solvation-based codes. And in the needle-in-a-haystack metaphor, native states are found efficiently because protein haystacks (conformational ensembles) are funnel-shaped. Order-disorder theory has now grown to encompass a large swath of protein physical science across biology.
Collapse
Affiliation(s)
- Roy Nassar
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA; Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Gregory L Dignon
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Rostam M Razban
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Ken A Dill
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA; Department of Chemistry, Stony Brook University, Stony Brook, NY, USA; Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
20
|
Abstract
Modern experimental kinetics of protein folding began in the early 1990s with the introduction of nanosecond laser pulses to trigger the folding reaction, providing an almost 106-fold improvement in time resolution over the stopped-flow method being employed at the time. These experiments marked the beginning of the "fast-folding" subfield that enabled investigation of the kinetics of formation of secondary structural elements and disordered loops for the first time, as well as the fastest folding proteins. When I started to work on this subject, a fast folding protein was one that folded in milliseconds. There were, moreover, no analytical theoretical models and no atomistic or coarse-grained molecular dynamics simulations to describe the mechanism. Two of the most important discoveries from my lab since then are a protein that folds in hundreds of nanoseconds, as determined from nanosecond laser temperature experiments, and the discovery that the theoretically predicted barrier crossing time is about the same for proteins that differ in folding rates by 104-fold, as determined from single molecule fluorescence measurements. We also developed what has been called the "Hückel model" of protein folding, which quantitatively explains a wide range of equilibrium and kinetic measurements. This retrospective traces the history of contributions to the "fast folding" subfield from my lab until about 3 years ago, when I left protein folding to spend the rest of my research career trying to discover an inexpensive drug for treating sickle cell disease.
Collapse
Affiliation(s)
- William A Eaton
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
21
|
Garg S, Sagar A, Singaraju GS, Dani R, Bari NK, Naganathan AN, Rakshit S. Weakening of interaction networks with aging in tip-link protein induces hearing loss. Biochem J 2021; 478:121-134. [PMID: 33270084 PMCID: PMC7813477 DOI: 10.1042/bcj20200799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023]
Abstract
Age-related hearing loss (ARHL) is a common condition in humans marking the gradual decrease in hearing with age. Perturbations in the tip-link protein cadherin-23 that absorbs the mechanical tension from sound and maintains the integrity of hearing is associated with ARHL. Here, in search of molecular origins for ARHL, we dissect the conformational behavior of cadherin-23 along with the mutant S47P that progresses the hearing loss drastically. Using an array of experimental and computational approaches, we highlight a lower thermodynamic stability, significant weakening in the hydrogen-bond network and inter-residue correlations among β-strands, due to the S47P mutation. The loss in correlated motions translates to not only a remarkable two orders of magnitude slower folding in the mutant but also to a proportionately complex unfolding mechanism. We thus propose that loss in correlated motions within cadherin-23 with aging may trigger ARHL, a molecular feature that likely holds true for other disease-mutations in β-strand-rich proteins.
Collapse
Affiliation(s)
- Surbhi Garg
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Amin Sagar
- Centre de Biochimie Structurale INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Gayathri S. Singaraju
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Rahul Dani
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Naimat K. Bari
- Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab 160062, India
| | - Athi N. Naganathan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sabyasachi Rakshit
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
- Centre for Protein Science Design and Engineering, Indian Institute of Science Education and Research Mohali, Punjab, India
| |
Collapse
|
22
|
Erendjenova AA, Armeev GA, Shaitan KV. The Effect of the Viscosity of the Medium on the Molecular Dynamics of the Formation of Secondary Structure of (AlaGly)25 and (AlaGly)75 Polypeptides. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s000635092005005x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
23
|
Bhattacharjee K, Gopi S, Naganathan AN. A Disordered Loop Mediates Heterogeneous Unfolding of an Ordered Protein by Altering the Native Ensemble. J Phys Chem Lett 2020; 11:6749-6756. [PMID: 32787218 DOI: 10.1021/acs.jpclett.0c01848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The high flexibility of long disordered or partially structured loops in folded proteins allows for entropic stabilization of native ensembles. Destabilization of such loops could alter the native ensemble or promote alternate conformations within the native ensemble if the ordered regions themselves are held together weakly. This is particularly true of downhill folding systems that exhibit weak unfolding cooperativity. Here, we combine experimental and computational methods to probe the response of the native ensemble of a helical, downhill folding domain PDD, which harbors an 11-residue partially structured loop, to perturbations. Statistical mechanical modeling points to continuous structural changes on both temperature and mutational perturbations driven by entropic stabilization of partially structured conformations within the native ensemble. Long time-scale simulations of the wild-type protein and two mutants showcase a remarkable conformational switching behavior wherein the parallel helices in the wild-type protein sample an antiparallel orientation in the mutants, with the C-terminal helix and the loop connecting the helices displaying high flexibility, disorder, and non-native interactions. We validate these computational predictions via the anomalous fluorescence of a native tyrosine located at the interface of the helices. Our observations highlight the role of long loops in determining the unfolding mechanisms, sensitivity of the native ensembles to mutational perturbations and provide experimentally testable predictions that can be explored in even two-state folding systems.
Collapse
Affiliation(s)
- Kabita Bhattacharjee
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Soundhararajan Gopi
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
24
|
Kim JY, Chung HS. Disordered proteins follow diverse transition paths as they fold and bind to a partner. Science 2020; 368:1253-1257. [PMID: 32527832 DOI: 10.1126/science.aba3854] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/10/2020] [Indexed: 01/06/2023]
Abstract
Transition paths of macromolecular conformational changes such as protein folding are predicted to be heterogeneous. However, experimental characterization of the diversity of transition paths is extremely challenging because it requires measuring more than one distance during individual transitions. In this work, we used fast three-color single-molecule Förster resonance energy transfer spectroscopy to obtain the distribution of binding transition paths of a disordered protein. About half of the transitions follow a path involving strong non-native electrostatic interactions, resulting in a transition time of 300 to 800 microseconds. The remaining half follow more diverse paths characterized by weaker electrostatic interactions and more than 10 times shorter transition path times. The chain flexibility and non-native interactions make diverse binding pathways possible, allowing disordered proteins to bind faster than folded proteins.
Collapse
Affiliation(s)
- Jae-Yeol Kim
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
25
|
Fujii S, Kuroyanagi S, Shimada N, Matsuno J, Lee JH, Takahashi R, Maruyama A, Sakurai K. Bundling Process of Citrulline Polypeptides upon UCST-Type Phase Separation. J Phys Chem B 2020; 124:4036-4043. [PMID: 32311261 DOI: 10.1021/acs.jpcb.0c00934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ureido-modified poly(l-citrulline) (l-ornithine-co-l-citrulline denoted by PlOC) shows UCST-type phase separation behavior even under physiologically relevant conditions, which forms an α-helix structure above its phase separation temperature (Tp) but transforms into a solid-like aggregation composed of regular hexagonal packed cylinders below the Tp. This morphological transformation is characteristic of the phase separation behavior, but the mechanism behind it has remained incompletely understood. Here, we studied the phase separation behavior using small-angle X-ray scattering (SAXS) measurements. To analyze the SAXS data, we employed the modified unified model proposed previously, which decomposes the scattering profile into each structural element, such as the α-helices and their aggregation formed via hydrogen-bonding interactions between the ureido groups. The aggregation level is dependent on the temperature (T) and grouped into three classes: (1) mass-fractal aggregation composed of the α-helix (T > Tp), (2) spherical aggregation composed of the hexagonal packed cylinder (T < Tp), and (3) micro-order agglomeration formed by mutual fusion of the spherical aggregation, which appears as a solid-like aggregation. The SAXS analysis suggested that the transformation from the dispersed state as the α-helix to the agglomeration containing hierarchical structures occurs in a stepwise manner when the temperature falls below the Tp, which might also be transition behavior similar to the process of protein folding through folding intermediates.
Collapse
Affiliation(s)
- Shota Fujii
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu-City, Fukuoka 808-0135, Japan
| | - Sotaro Kuroyanagi
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57, Nagatsuta, Yokohama 226-8501, Japan
| | - Naohiko Shimada
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57, Nagatsuta, Yokohama 226-8501, Japan
| | - Jun Matsuno
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu-City, Fukuoka 808-0135, Japan
| | - Ji Ha Lee
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu-City, Fukuoka 808-0135, Japan
| | - Rintaro Takahashi
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu-City, Fukuoka 808-0135, Japan
| | - Atsushi Maruyama
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57, Nagatsuta, Yokohama 226-8501, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu-City, Fukuoka 808-0135, Japan
| |
Collapse
|
26
|
Trotter D, Wallin S. Effects of Topology and Sequence in Protein Folding Linked via Conformational Fluctuations. Biophys J 2020; 118:1370-1380. [PMID: 32061276 DOI: 10.1016/j.bpj.2020.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/17/2019] [Accepted: 01/13/2020] [Indexed: 01/18/2023] Open
Abstract
Experiments have compared the folding of proteins with different amino acid sequences but the same basic structure, or fold. Results indicate that folding is robust to sequence variations for proteins with some nonlocal folds, such as all-β, whereas the folding of more local, all-α proteins typically exhibits a stronger sequence dependence. Here, we use a coarse-grained model to systematically study how variations in sequence perturb the folding energy landscapes of three model sequences with 3α, 4β + α, and β-barrel folds, respectively. These three proteins exhibit folding features in line with experiments, including expected rank order in the cooperativity of the folding transition and stability-dependent shifts in the location of the free-energy barrier to folding. Using a generalized-ensemble simulation approach, we determine the thermodynamics of around 2000 sequence variants representing all possible hydrophobic or polar single- and double-point mutations. From an analysis of the subset of stability-neutral mutations, we find that folding is perturbed in a topology-dependent manner, with the β-barrel protein being the most robust. Our analysis shows, in particular, that the magnitude of mutational perturbations of the transition state is controlled in part by the size or "width" of the underlying conformational ensemble. This result suggests that the mutational robustness of the folding of the β-barrel protein is underpinned by its conformationally restricted transition state ensemble, revealing a link between sequence and topological effects in protein folding.
Collapse
Affiliation(s)
- Daniel Trotter
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Stefan Wallin
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.
| |
Collapse
|
27
|
Abstract
This review discusses Gō models broadly used in biomolecular simulations. I start with a brief description of the original lattice model study by Nobuhiro Gō. Then, the theory of protein folding behind Gō model, free energy approaches, and off-lattice Gō models are reviewed. I also mention a stringent test for the assumption in Gō models given from all-atom molecular dynamics simulations. Subsequently, I move to application of Gō models to protein dynamical functions. Various extension of Gō models is also reviewed. Finally, some publicly available tools to use Gō models are listed.
Collapse
Affiliation(s)
- Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
28
|
Dave K, Gasic AG, Cheung MS, Gruebele M. Competition of individual domain folding with inter-domain interaction in WW domain engineered repeat proteins. Phys Chem Chem Phys 2019; 21:24393-24405. [PMID: 31663524 DOI: 10.1039/c8cp07775d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Engineered repeat proteins have proven to be a fertile ground for studying the competition between folding, misfolding and transient aggregation of tethered protein domains. We examine the interplay between folding and inter-domain interactions of engineered FiP35 WW domain repeat proteins with n = 1 through 5 repeats. We characterize protein expression, thermal and guanidium melts, as well as laser T-jump kinetics. All experimental data is fitted by a global fitting model with two states per domain (U, N), plus a third state M to account for non-native states due to domain interactions present in all but the monomer. A detailed structural model is provided by coarse-grained simulated annealing using the AWSEM Hamiltonian. Tethered FiP35 WW domains with n = 2 and 3 domains are just slightly less stable than the monomer. The n = 4 oligomer is yet less stable, its expression yield is much lower than the monomer's, and depends on the purification tag used. The n = 5 plasmid did not express at all, indicating the sudden onset of aggregation past n = 4. Thus, tethered FiP35 has a critical nucleus size for inter-domain aggregation of n ≈ 4. According to our simulations, misfolded structures become increasingly prevalent as one proceeds from monomer to pentamer, with extended inter-domain beta sheets appearing first, then multi-sheet 'intramolecular amyloid' structures, and finally novel motifs containing alpha helices. We discuss the implications of our results for oligomeric aggregate formation and structure, transient aggregation of proteins whilst folding, as well as for protein evolution that starts with repeat proteins.
Collapse
Affiliation(s)
- Kapil Dave
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
| | | | | | | |
Collapse
|
29
|
Gopi S, Aranganathan A, Naganathan AN. Thermodynamics and folding landscapes of large proteins from a statistical mechanical model. Curr Res Struct Biol 2019; 1:6-12. [PMID: 34235463 PMCID: PMC8244504 DOI: 10.1016/j.crstbi.2019.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 01/01/2023] Open
Abstract
Statistical mechanical models that afford an intermediate resolution between macroscopic chemical models and all-atom simulations have been successful in capturing folding behaviors of many small single-domain proteins. However, the applicability of one such successful approach, the Wako-Saitô-Muñoz-Eaton (WSME) model, is limited by the size of the protein as the number of conformations grows exponentially with protein length. In this work, we surmount this size limitation by introducing a novel approximation that treats stretches of 3 or 4 residues as blocks, thus reducing the phase space by nearly three orders of magnitude. The performance of the 'bWSME' model is validated by comparing the predictions for a globular enzyme (RNase H) and a repeat protein (IκBα), against experimental observables and the model without block approximation. Finally, as a proof of concept, we predict the free-energy surface of the 370-residue, multi-domain maltose binding protein and identify an intermediate in good agreement with single-molecule force-spectroscopy measurements. The bWSME model can thus be employed as a quantitative predictive tool to explore the conformational landscapes of large proteins, extract the structural features of putative intermediates, identify parallel folding paths, and thus aid in the interpretation of both ensemble and single-molecule experiments.
Collapse
Affiliation(s)
- Soundhararajan Gopi
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Akashnathan Aranganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
30
|
Wang E, Tao P, Wang J, Xiao Y. A novel folding pathway of the villin headpiece subdomain HP35. Phys Chem Chem Phys 2019; 21:18219-18226. [PMID: 31389931 DOI: 10.1039/c9cp01703h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The villin headpiece subdomain (HP35) is a fast-folding protein with 35 residues and its folding pathways have been extensively studied experimentally and theoretically but remain controversial. While experiments showed that HP35 might have multiple folding pathways, most theoretical studies only found one major pathway, although a few theoretical studies revealed two. Here we report our results of molecular dynamics simulations of HP35 folding by using the newest AMBER ff14SB force field and show that HP35 has a novel folding pathway in addition to the two pathways shown previously. We also study the mechanism of determining the folding pathways and found that the dynamics of Helix2 may play a special role in the folding of HP35. Our results may be helpful to understand the folding mechanism of HP35 further.
Collapse
Affiliation(s)
- Ercheng Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | | | | |
Collapse
|
31
|
Measuring the average shape of transition paths during the folding of a single biological molecule. Proc Natl Acad Sci U S A 2019; 116:8125-8130. [PMID: 30952784 DOI: 10.1073/pnas.1816602116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transition paths represent the parts of a reaction where the energy barrier separating products and reactants is crossed. They are essential to understanding reaction mechanisms, yet many of their properties remain unstudied. Here, we report measurements of the average shape of transition paths, studying the folding of DNA hairpins as a model system for folding reactions. Individual transition paths were detected in the folding trajectories of hairpins with different sequences held under tension in optical tweezers, and path shapes were computed by averaging all transitions in the time domain, 〈t(x)〉, or by averaging transitions of a given duration in the extension domain, 〈x(t|τ)〉 τ Whereas 〈t(x)〉 was close to straight, with only a subtle curvature, 〈x(t|τ)〉 τ had more pronounced curvature that fit well to theoretical expectations for the dominant transition path, returning diffusion coefficients similar to values obtained previously from independent methods. Simulations suggested that 〈t(x)〉 provided a less reliable representation of the path shape than 〈x(t|τ)〉 τ , because it was far more sensitive to the effects of coupling the molecule to the experimental force probe. Intriguingly, the path shape variance was larger for some hairpins than others, indicating sequence-dependent changes in the diversity of transition paths reflective of differences in the character of the energy barriers, such as the width of the barrier saddle-point or the presence of parallel paths through multiple barriers between the folded and unfolded states. These studies of average path shapes point the way forward for probing the rich information contained in path shape fluctuations.
Collapse
|
32
|
Lai JK, Kubelka GS, Kubelka J. Effect of Mutations on the Global and Site-Specific Stability and Folding of an Elementary Protein Structural Motif. J Phys Chem B 2018; 122:11083-11094. [PMID: 29985619 DOI: 10.1021/acs.jpcb.8b05280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the folding mechanism of proteins requires detailed knowledge of the roles of individual amino acid residues in stabilization of specific elements and local segments of the native structure. Recently, we have utilized the combination of circular dichroism (CD) and site-specific 13C isotopically edited infrared spectroscopy (IR) coupled with the Ising-like model for protein folding to map the thermal unfolding at the residue level of a de novo designed helix-turn-helix motif αtα. Here we use the same methodology to study how the sequence of local thermal unfolding is affected by selected mutations introduced into the most and least stable parts of the motif. Seven different mutants of αtα are screened to find substitutions with the most pronounced effects on the overall stability. Subsequently, thermal unfolding of two mutated αtα sequences is studied with site-specific resolution, using four distinct 13C isotopologues of each. The data are analyzed with the Ising-like model, which builds on a previous parametrization for the original αtα sequence and tests different ways of incorporating the amino acid substitution. We show that for both more and less stable mutants only the adjustment of all interaction parameters of the model can yield a satisfactory fit to the experimental data. The stabilizing and destabilizing mutations result, respectively, in a similar increase and decrease of the stability of all probed local segments, irrespective of their position with respect to the mutation site. Consequently, the relative order of their unfolding remains essentially unchanged. These results underline the importance of the interconnectivity of the stabilizing interaction network and cooperativity of the protein structure, which is evident even in a small motif with apparently noncooperative, heterogeneous unfolding. Overall, our findings are consistent with the native structure being the dominant factor in determining the folding mechanism, regardless of the details of its overall or local thermodynamic stabilization.
Collapse
Affiliation(s)
- Jason K Lai
- Department of Chemistry , University of Wyoming , Laramie , Wyoming 82071 , United States
| | - Ginka S Kubelka
- Department of Chemistry , University of Wyoming , Laramie , Wyoming 82071 , United States
| | - Jan Kubelka
- Department of Chemistry , University of Wyoming , Laramie , Wyoming 82071 , United States
| |
Collapse
|
33
|
Steinbach PJ. Peptide and Protein Structure Prediction with a Simplified Continuum Solvent Model. J Phys Chem B 2018; 122:11355-11362. [PMID: 30230838 DOI: 10.1021/acs.jpcb.8b07264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A continuum solvent model based on screened Coulomb potentials has been simplified and parametrized to sample native-like structures in replica-exchange simulations of each of six different peptides and miniproteins. Low-energy, native, and non-native structures were used to iteratively refine 11 parameter values. The centroid of the largest cluster of structures sampled in simulations initiated from an extended conformation represents the predicted structure. The main-chain rms deviation of this prediction from the experimental structure was 0.47 Å for the 12-residue Trp-zip2, 0.86 Å for the 14-residue MBH12, 2.53 Å for the 17-residue U(1-17)T9D, 2.03 Å for the 20-residue BS1, 1.08 Å for the 20-residue Trp-cage, and 3.64 Å for the 35-residue villin headpiece subdomain HP35. The centroid of the sixth largest cluster sampled for HP35 deviated by 0.91 Å. The CHARMM22/CMAP force field was used, with an additional ψ torsion term for residues other than glycine and proline. Six parameters govern the dielectric response of the continuum solvent, and four values of surface tension approximate nonpolar effects. An atom's self-energy and interaction energies are screened independently, each depending on whether the atom is part of a charged group, a neutral hydrogen-bonding main-chain group, or any other neutral group. The parameters inferred result in strong main-chain hydrogen bonds, consistent with the view that protein folding is dominated by the formation of these bonds. (1,2) Conformations of MBH12 and BS1 were excluded from the energy-function refinement, suggesting the parameters, referred to as SCP18, are transferable. An efficient estimate of solvent-accessible surface area is also described.
Collapse
Affiliation(s)
- Peter J Steinbach
- Center for Molecular Modeling, Center for Information Technology , National Institutes of Health , Bethesda , Maryland 20892 , United States
| |
Collapse
|
34
|
Zimmerman MI, Porter JR, Sun X, Silva RR, Bowman GR. Choice of Adaptive Sampling Strategy Impacts State Discovery, Transition Probabilities, and the Apparent Mechanism of Conformational Changes. J Chem Theory Comput 2018; 14:5459-5475. [PMID: 30240203 PMCID: PMC6571142 DOI: 10.1021/acs.jctc.8b00500] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interest in atomically detailed simulations has grown significantly with recent advances in computational hardware and Markov state modeling (MSM) methods, yet outstanding questions remain that hinder their widespread adoption. Namely, how do alternative sampling strategies explore conformational space and how might this influence predictions generated from the data? Here, we seek to answer these questions for four commonly used sampling methods: (1) a single long simulation, (2) many short simulations run in parallel, (3) adaptive sampling, and (4) our recently developed goal-oriented sampling algorithm, FAST. We first develop a theoretical framework for analytically calculating the probability of discovering select states on simple landscapes, where we uncover the drastic effects of varying the number and length of simulations. We then use kinetic Monte Carlo simulations on a variety of physically inspired landscapes to characterize the probability of discovering particular states and transition pathways for each of the four methods. Consistently, we find that FAST simulations discover each target state with the highest probability, while traversing realistic pathways. Furthermore, we uncover the potential pathology that short parallel simulations sometimes predict an incorrect transition pathway by crossing large energy barriers that long simulations would typically circumnavigate. We refer to this pathology as "pathway tunneling". To protect against this phenomenon when using adaptive-sampling and FAST simulations, we introduce the FAST-string method. This method enhances sampling along the highest-flux transition paths to refine an MSMs transition probabilities and discriminate between competing pathways. Additionally, we compare the performance of a variety of MSM estimators in describing accurate thermodynamics and kinetics. For adaptive sampling, we recommend simply normalizing the transition counts out of each state after adding small pseudocounts to avoid creating sources or sinks. Lastly, we evaluate whether our insights from simple landscapes hold for all-atom molecular dynamics simulations of the folding of the λ-repressor protein. Remarkably, we find that FAST-contacts predicts the same folding pathway as a set of long simulations but with orders of magnitude less simulation time.
Collapse
Affiliation(s)
- Maxwell I. Zimmerman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Justin R. Porter
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Xianqiang Sun
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Roseane R. Silva
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Gregory R. Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63110, United States
- Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri, 63110, United States
| |
Collapse
|
35
|
Shaitan KV. Features of Energy Landscape Topography in the Space of Torsion Angles for Macromolecules that Form Unique 3D Structures. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918060246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
36
|
Nagarajan S, Xiao S, Raleigh DP, Dyer RB. Heterogeneity in the Folding of Villin Headpiece Subdomain HP36. J Phys Chem B 2018; 122:11640-11648. [PMID: 30118232 DOI: 10.1021/acs.jpcb.8b07683] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Small single domain proteins that fold on the microsecond time scale have been the subject of intense interest as models for probing the complexity of folding energy landscapes. The villin headpiece subdomain (HP36) has been extensively studied because of its simple three helix structure, ultrafast folding lifetime of a few microseconds, and stable native fold. We have previously shown that folding as measured by a single 13C═18O isotopic label on residue A57 in helix 2 occurs at a different rate than that measured by global probes of folding, indicating noncooperative complexity in the folding of HP36. In order to determine whether this complexity reflects intermediates or parallel pathways over a small activation barrier, 13C═18O labels were individually incorporated at six different positions in HP36, including into all 3 helices. The equilibrium thermal unfolding transitions and the folding/unfolding dynamics were monitored using the unique IR signature of the 13C═18O label by temperature dependent FTIR and temperature jump IR spectroscopy, respectively. Equilibrium experiments reveal that the 13C═18O labels at different positions in HP36 show drastic differences in the midpoint of their transitions ( Tm), ranging from 45 to 67 °C. Heterogeneity is also observed in the relaxation kinetics; there are differences in the microsecond phase when different labeled positions are probed. At a final temperature of 45 °C, the relaxation rate for 13C═18O A57 is 2.4e + 05 s-1 whereas for 13C═18O L69 HP36 the relaxation rate is 5.1e + 05 s-1, two times faster. The observation of site-dependent midpoints for the equilibrium unfolding transitions and differences in the relaxation rates of the labeled positions enables us to probe the progressive accumulation of the folded structure, providing insight into the microscopic details of the folding mechanism.
Collapse
Affiliation(s)
- Sureshbabu Nagarajan
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Shifeng Xiao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen 518060 , China
| | - Daniel P Raleigh
- Department of Chemistry , State University of New York at Stony Brook , Stony Brook , New York 11794 , United States.,Institute of Structural and Molecular Biology , University College London , Gower Street , London WC1E 6BT , United Kingdom
| | - R Brian Dyer
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| |
Collapse
|
37
|
Jacobs WM, Shakhnovich EI. Accurate Protein-Folding Transition-Path Statistics from a Simple Free-Energy Landscape. J Phys Chem B 2018; 122:11126-11136. [PMID: 30091592 DOI: 10.1021/acs.jpcb.8b05842] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A central goal of protein-folding theory is to predict the stochastic dynamics of transition paths-the rare trajectories that transit between the folded and unfolded ensembles-using only thermodynamic information, such as a low-dimensional equilibrium free-energy landscape. However, commonly used one-dimensional landscapes typically fall short of this aim, because an empirical coordinate-dependent diffusion coefficient has to be fit to transition-path trajectory data in order to reproduce the transition-path dynamics. We show that an alternative, first-principles free-energy landscape predicts transition-path statistics that agree well with simulations and single-molecule experiments without requiring dynamical data as an input. This "topological configuration" model assumes that distinct, native-like substructures assemble on a time scale that is slower than native-contact formation but faster than the folding of the entire protein. Using only equilibrium simulation data to determine the free energies of these coarse-grained intermediate states, we predict a broad distribution of transition-path transit times that agrees well with the transition-path durations observed in simulations. We further show that both the distribution of finite-time displacements on a one-dimensional order parameter and the ensemble of transition-path trajectories generated by the model are consistent with the simulated transition paths. These results indicate that a landscape based on transient folding intermediates, which are often hidden by one-dimensional projections, can form the basis of a predictive model of protein-folding transition-path dynamics.
Collapse
Affiliation(s)
- William M Jacobs
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
38
|
Narayan A, Naganathan AN. Switching Protein Conformational Substates by Protonation and Mutation. J Phys Chem B 2018; 122:11039-11047. [PMID: 30048131 DOI: 10.1021/acs.jpcb.8b05108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein modules that regulate the availability and conformational status of transcription factors determine the rapidity, duration, and magnitude of cellular response to changing conditions. One such system is the single-gene product Cnu, a four-helix bundle transcription co-repressor, which acts as a molecular thermosensor regulating the expression of virulence genes in enterobacteriaceae through modulation of its native conformational ensemble. Cnu and related genes have also been implicated in pH-dependent expression of virulence genes. We hypothesize that protonation of a conserved buried histidine (H45) in Cnu promotes large electrostatic frustration, thus disturbing the H-NS, a transcription factor, binding face. Spectroscopic and calorimetric methods reveal that H45 exhibits a suppressed p Ka of ∼5.1, the protonation of which switches the conformation to an alternate native ensemble in which the fourth helix is disordered. The population redistribution can also be achieved through a mutation H45V, which does not display any switching behavior at pH values greater than 4. The Wako-Saitô-Muñoz-Eaton (WSME) statistical mechanical model predicts specific differences in the conformations and fluctuations of the fourth and first helices of Cnu determining the observed pH response. We validate these predictions through fluorescence lifetime measurements of a sole tryptophan, highlighting the presence of both native and non-native interactions in the regions adjoining the binding face of Cnu. Our combined experimental-computational study thus shows that Cnu acts both as a thermo- and pH-sensor orchestrated via a subtle but quantifiable balance between the weak packing of a structural element and protonation of a buried histidine that promotes electrostatic frustration.
Collapse
Affiliation(s)
- Abhishek Narayan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| |
Collapse
|
39
|
|
40
|
Hu J, Chen T, Wang M, Chan HS, Zhang Z. A critical comparison of coarse-grained structure-based approaches and atomic models of protein folding. Phys Chem Chem Phys 2018; 19:13629-13639. [PMID: 28530269 DOI: 10.1039/c7cp01532a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Structure-based coarse-grained Gō-like models have been used extensively in deciphering protein folding mechanisms because of their simplicity and tractability. Meanwhile, explicit-solvent molecular dynamics (MD) simulations with physics-based all-atom force fields have been applied successfully to simulate folding/unfolding transitions for several small, fast-folding proteins. To explore the degree to which coarse-grained Gō-like models and their extensions to incorporate nonnative interactions are capable of producing folding processes similar to those in all-atom MD simulations, here we systematically compare the computed unfolded states, transition states, and transition paths obtained using coarse-grained models and all-atom explicit-solvent MD simulations. The conformations in the unfolded state in common Gō models are more extended, and are thus more in line with experiment, than those from all-atom MD simulations. Nevertheless, the structural features of transition states obtained by the two types of models are largely similar. In contrast, the folding transition paths are significantly more sensitive to modeling details. In particular, when common Gō-like models are augmented with nonnative interactions, the predicted dimensions of the unfolded conformations become similar to those computed using all-atom MD. With this connection, the large deviations of all-atom MD from simple diffusion theory are likely caused in part by the presence of significant nonnative effects in folding processes modelled by current atomic force fields. The ramifications of our findings to the application of coarse-grained modeling to more complex biomolecular systems are discussed.
Collapse
Affiliation(s)
- Jie Hu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | | | | | | | | |
Collapse
|
41
|
Study of protein folding under native conditions by rapidly switching the hydrostatic pressure inside an NMR sample cell. Proc Natl Acad Sci U S A 2018; 115:E4169-E4178. [PMID: 29666248 PMCID: PMC5939115 DOI: 10.1073/pnas.1803642115] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Development of specialized instrumentation enables rapid switching of the hydrostatic pressure inside an operating NMR spectrometer. This technology allows observation of protein signals during the repeated folding process. Applied to ubiquitin, a previously extensively studied model of protein folding, the methodology reveals an initially highly dynamic state that deviates relatively little from random coil behavior but also provides evidence for numerous repeatedly failed folding events, previously only observed in computer simulations. Above room temperature, direct NMR evidence shows a ∼50% fraction of proteins folding through an on-pathway kinetic intermediate, thereby revealing two equally efficient parallel folding pathways. In general, small proteins rapidly fold on the timescale of milliseconds or less. For proteins with a substantial volume difference between the folded and unfolded states, their thermodynamic equilibrium can be altered by varying the hydrostatic pressure. Using a pressure-sensitized mutant of ubiquitin, we demonstrate that rapidly switching the pressure within an NMR sample cell enables study of the unfolded protein under native conditions and, vice versa, study of the native protein under denaturing conditions. This approach makes it possible to record 2D and 3D NMR spectra of the unfolded protein at atmospheric pressure, providing residue-specific information on the folding process. 15N and 13C chemical shifts measured immediately after dropping the pressure from 2.5 kbar (favoring unfolding) to 1 bar (native) are close to the random-coil chemical shifts observed for a large, disordered peptide fragment of the protein. However, 15N relaxation data show evidence for rapid exchange, on a ∼100-μs timescale, between the unfolded state and unstable, structured states that can be considered as failed folding events. The NMR data also provide direct evidence for parallel folding pathways, with approximately one-half of the protein molecules efficiently folding through an on-pathway kinetic intermediate, whereas the other half fold in a single step. At protein concentrations above ∼300 μM, oligomeric off-pathway intermediates compete with folding of the native state.
Collapse
|
42
|
Gopi S, Paul S, Ranu S, Naganathan AN. Extracting the Hidden Distributions Underlying the Mean Transition State Structures in Protein Folding. J Phys Chem Lett 2018; 9:1771-1777. [PMID: 29565127 DOI: 10.1021/acs.jpclett.8b00538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The inherent conflict between noncovalent interactions and the large conformational entropy of the polypeptide chain forces folding reactions and their mechanisms to deviate significantly from chemical reactions. Accordingly, measures of structure in the transition state ensemble (TSE) are strongly influenced by the underlying distributions of microscopic folding pathways that are challenging to discern experimentally. Here, we present a detailed analysis of 150,000 folding transition paths of five proteins at three different thermodynamic conditions from an experimentally consistent statistical mechanical model. We find that the underlying TSE structural distributions are rarely unimodal, and the average experimental measures arise from complex underlying distributions. Unfolding pathways also exhibit subtle differences from folding counterparts due to a combination of Hammond behavior and native-state movements. Local interactions and topological complexity, to a lesser extent, are found to determine pathway heterogeneity, underscoring the importance of the balance between local and nonlocal energetics in protein folding.
Collapse
|
43
|
Grassein P, Delarue P, Scheraga HA, Maisuradze GG, Senet P. Statistical Model To Decipher Protein Folding/Unfolding at a Local Scale. J Phys Chem B 2018; 122:3540-3549. [PMID: 29446945 DOI: 10.1021/acs.jpcb.7b10733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein folding/unfolding can be analyzed experimentally at a local scale by monitoring the physical properties of local probes as a function of the temperature, for example, the distance between fluorophores or the values of chemical shifts of backbone atoms. Here, the analytical Lifson-Roig model for the helix-coil transition is modified to analyze local thermal unfolding of the fast-folder W protein of bacteriophage lambda (gpW) simulated by all-atom molecular dynamics (MD) simulations in explicit solvent at 15 different temperatures. The protein structure is described by the coarse-grained dihedral angles (γ) and bond angles (θ) built between successive Cα-Cα virtual bonds. Each (γ,θ) pair serves as a local probe of protein unfolding. Local native/non-native states are defined for each pair of (γ,θ) angles by analyzing the free-energy landscapes Δ G(γ,θ) computed from MD trajectories. The three local elementary equilibrium constants of the model are extracted for each (γ,θ) pair along the sequence from MD simulations, and the model predictions are compared to the MD data. Using only the local equilibrium constants as an input, we show that the local denaturation curves computed from the model partition function fit their MD simulated counterparts in a satisfying manner without any adjustment. In the model and MD simulations, gpW unfolds gradually between 320 and 340 K, with an average native percentage decreasing from 0.8 (320 K) to 0.2 (340 K). In the prism of the model, there is no stable structure at the local scale in this 20 K unfolding temperature range. The enthalpy change upon local unfolding computed from the model and from MD trajectories suggests that the unfolded state between 320 and 340 K corresponds to a dynamical equilibrium between a large ensemble of constantly changing structures. The present results confirm the downhill unfolding of gpW, which does not obey a two-state global folding/unfolding model, and shed light on the interpretation of local denaturation curves.
Collapse
Affiliation(s)
- Paul Grassein
- Laboratoire Interdisciplinaire Carnot de Bourgogne , UMR 6303 CNRS-Univ. de Bourgogne Franche-Comté , 9 Av. A. Savary, BP 47 870 , F-21078 Dijon Cedex , France
| | - Patrice Delarue
- Laboratoire Interdisciplinaire Carnot de Bourgogne , UMR 6303 CNRS-Univ. de Bourgogne Franche-Comté , 9 Av. A. Savary, BP 47 870 , F-21078 Dijon Cedex , France
| | - Harold A Scheraga
- Baker Laboratory of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853-1301 , United States
| | - Gia G Maisuradze
- Baker Laboratory of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853-1301 , United States
| | - Patrick Senet
- Laboratoire Interdisciplinaire Carnot de Bourgogne , UMR 6303 CNRS-Univ. de Bourgogne Franche-Comté , 9 Av. A. Savary, BP 47 870 , F-21078 Dijon Cedex , France.,Baker Laboratory of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853-1301 , United States
| |
Collapse
|
44
|
Shaitan KV. Variational Principles in the Mechanics of Conformational Motions of Macromolecules in a Viscous Medium. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918010165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
45
|
Chung HS, Eaton WA. Protein folding transition path times from single molecule FRET. Curr Opin Struct Biol 2017; 48:30-39. [PMID: 29080467 DOI: 10.1016/j.sbi.2017.10.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 11/28/2022]
Abstract
The transition path is the tiny segment of a single molecule trajectory when the free energy barrier between states is crossed and for protein folding contains all of the information about the self-assembly mechanism. As a first step toward obtaining structural information during the transition path from experiments, single molecule FRET spectroscopy has been used to determine average transition path times from a photon-by-photon analysis of fluorescence trajectories. These results, obtained for several different proteins, have already provided new and demanding tests that support both the accuracy of all-atom molecular dynamics simulations and the basic postulates of energy landscape theory of protein folding.
Collapse
Affiliation(s)
- Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States.
| | - William A Eaton
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States.
| |
Collapse
|
46
|
Shaitan KV. The Topology of the Energy Landscapes of Macromolecules in the Torsion Angle Space and the Principle of the Minimum Energy Dissipation Rate in Conformational Relaxation. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350917060227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
47
|
Theory, simulations, and experiments show that proteins fold by multiple pathways. Proc Natl Acad Sci U S A 2017; 114:E9759-E9760. [PMID: 29087352 DOI: 10.1073/pnas.1716444114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
48
|
Sung SS. Dielectric screening effect of electronic polarization and intramolecular hydrogen bonding. Protein Sci 2017; 26:2003-2009. [PMID: 28726339 DOI: 10.1002/pro.3238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/12/2017] [Indexed: 01/11/2023]
Abstract
Recent site-resolved hydrogen exchange measurements have uncovered significant discrepancies between simulations and experimental data during protein folding, including the excessive intramolecular hydrogen bonds in simulations. This finding indicates a possibility that intramolecular charge-charge interactions have not included sufficient dielectric screening effect of the electronic polarization. Scaling down peptide atomic charges according to the optical dielectric constant is tested in this study. As a result, the number of intramolecular hydrogen bonds is lower than using unscaled atomic charges while reaching the same levels of helical contents or β-hairpin backbone hydrogen bonds, because van der Waals interactions contribute substantially to peptide folding in water. Reducing intramolecular charge-charge interactions and hydrogen bonding increases conformational search efficiency. In particular, it reduces the equilibrium helical content in simulations using AMBER force field and the energy barrier in folding simulations using CHARMM force field.
Collapse
Affiliation(s)
- Shen-Shu Sung
- Department of Pharmacology, College of Medicine, Penn State University, Hershey, Pennsylvania, 17033
| |
Collapse
|
49
|
Jacobs WM, Shakhnovich EI. Structure-Based Prediction of Protein-Folding Transition Paths. Biophys J 2017; 111:925-36. [PMID: 27602721 PMCID: PMC5018131 DOI: 10.1016/j.bpj.2016.06.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/08/2016] [Accepted: 06/27/2016] [Indexed: 12/24/2022] Open
Abstract
We propose a general theory to describe the distribution of protein-folding transition paths. We show that transition paths follow a predictable sequence of high-free-energy transient states that are separated by free-energy barriers. Each transient state corresponds to the assembly of one or more discrete, cooperative units, which are determined directly from the native structure. We show that the transition state on a folding pathway is reached when a small number of critical contacts are formed between a specific set of substructures, after which folding proceeds downhill in free energy. This approach suggests a natural resolution for distinguishing parallel folding pathways and provides a simple means to predict the rate-limiting step in a folding reaction. Our theory identifies a common folding mechanism for proteins with diverse native structures and establishes general principles for the self-assembly of polymers with specific interactions.
Collapse
Affiliation(s)
- William M Jacobs
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts.
| |
Collapse
|
50
|
Chung HS. Transition Path Times Measured by Single-Molecule Spectroscopy. J Mol Biol 2017; 430:409-423. [PMID: 28551335 DOI: 10.1016/j.jmb.2017.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 05/18/2017] [Indexed: 11/28/2022]
Abstract
The transition path is a tiny fraction of a molecular trajectory during which the free-energy barrier is crossed. It is a single-molecule property and contains all mechanistic information of folding processes of biomolecules such as proteins and nucleic acids. However, the transition path has been difficult to probe because it is short and rarely visited when transitions actually occur. Recent technical advances in single-molecule spectroscopy have made it possible to directly probe transition paths, which has opened up new theoretical and experimental approaches to investigating folding mechanisms. This article reviews recent single-molecule fluorescence and force spectroscopic measurements of transition path times and their connection to both theory and simulations.
Collapse
Affiliation(s)
- Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Memorial Dr., Bethesda, MD 20892-0520, USA.
| |
Collapse
|