1
|
Leach T, Gandhi U, Reeves KD, Stumpf K, Okuda K, Marini FC, Walker SJ, Boucher R, Chan J, Cox LA, Atala A, Murphy SV. Development of a novel air-liquid interface airway tissue equivalent model for in vitro respiratory modeling studies. Sci Rep 2023; 13:10137. [PMID: 37349353 PMCID: PMC10287689 DOI: 10.1038/s41598-023-36863-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
The human airways are complex structures with important interactions between cells, extracellular matrix (ECM) proteins and the biomechanical microenvironment. A robust, well-differentiated in vitro culture system that accurately models these interactions would provide a useful tool for studying normal and pathological airway biology. Here, we report the development and characterization of a physiologically relevant air-liquid interface (ALI) 3D airway 'organ tissue equivalent' (OTE) model with three novel features: native pulmonary fibroblasts, solubilized lung ECM, and hydrogel substrate with tunable stiffness and porosity. We demonstrate the versatility of the OTE model by evaluating the impact of these features on human bronchial epithelial (HBE) cell phenotype. Variations of this model were analyzed during 28 days of ALI culture by evaluating epithelial confluence, trans-epithelial electrical resistance, and epithelial phenotype via multispectral immuno-histochemistry and next-generation sequencing. Cultures that included both solubilized lung ECM and native pulmonary fibroblasts within the hydrogel substrate formed well-differentiated ALI cultures that maintained a barrier function and expressed mature epithelial markers relating to goblet, club, and ciliated cells. Modulation of hydrogel stiffness did not negatively impact HBE differentiation and could be a valuable variable to alter epithelial phenotype. This study highlights the feasibility and versatility of a 3D airway OTE model to model the multiple components of the human airway 3D microenvironment.
Collapse
Affiliation(s)
- Timothy Leach
- Wake Forest School of Medicine, Medical Center, Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
- Wake Forest School of Medicine, Medical Center Boulevard, Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC, 27157, USA
| | - Uma Gandhi
- Wake Forest School of Medicine, Medical Center, Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
| | - Kimberly D Reeves
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Kristina Stumpf
- Wake Forest School of Medicine, Medical Center, Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
| | - Kenichi Okuda
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Frank C Marini
- Wake Forest School of Medicine, Medical Center, Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
| | - Stephen J Walker
- Wake Forest School of Medicine, Medical Center, Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
| | - Richard Boucher
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jeannie Chan
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Laura A Cox
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest School of Medicine, Medical Center, Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
- Wake Forest School of Medicine, Medical Center Boulevard, Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC, 27157, USA
| | - Sean V Murphy
- Wake Forest School of Medicine, Medical Center, Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA.
- Wake Forest School of Medicine, Medical Center Boulevard, Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
2
|
Muresanu C, Somasundaram SG, Vissarionov SV, Gavryushova LV, Nikolenko VN, Mikhaleva LM, Kirkland CE, Aliev G. Hypothetical Role of Growth Factors to Reduce Intervertebral Disc Degeneration Significantly through Trained Biological Transformations. Curr Pharm Des 2021; 27:2221-2230. [PMID: 33076800 DOI: 10.2174/1381612826666201019104201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Given the evidence of little or no therapeutic benefit of injection-based growth factor therapies, it has been proposed that a naturally triggered uninterrupted blood circulation of the growth factors would be superior. OBJECTIVE We seek to stimulate discussions and more research about the possibility of using the already available growth factors found in the prostate gland and endometrium by starting novel educable physiology, known as biological transformations controlled by the mind. METHODS We summarized the stretch-gated ion channel mechanism of the cell membrane and offer several practical methods that can be applied by anyone, in order to stimulate and enhance the blood circulation of the growth factors from the seminal fluid to sites throughout the body. This study describes, in detail, the practical application of our earlier published studies about biological transformations. RESULTS A previously reported single-patient case study has been extended, adding more from his personal experiences to continually improve this novel physiological training and extending the ideas from our earlier findings in detail. CONCLUSION The biological transformation findings demonstrate the need for additional research to establish the benefits of these natural therapies to repair and rejuvenate tissues affected by various chronic diseases or aging processes.
Collapse
Affiliation(s)
- Cristian Muresanu
- Research Center for Applied Biotechnology in Diagnosis and Molecular Therapies (BIODIATECH), Str. Trifoiului nr. 12 G, 400478, Cluj-Napoca, Romania
| | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV 26426, United States
| | - Sergey V Vissarionov
- Department of Spinal Pathology and Neurosurgery, Turner Scientific and Research Institute for Children's Orthopedics, Street Parkovskya 64-68, Pushkin, Saint-Petersburg, 196603, Russian Federation
| | - Liliya V Gavryushova
- Saratov State Medical University named after V.I. Razumovsky, 410012, Saratov, Russian Federation
| | - Vladimir N Nikolenko
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russian Federation
| | - Liudmila M Mikhaleva
- Federal State Budgetary Institution, Research Institute of Human Morphology, 3, Tsyurupy Str., Moscow, 117418, Russian Federation
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV 26426, United States
| | - Gjumrakch Aliev
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russian Federation
| |
Collapse
|
3
|
Noble AR, Hogg K, Suman R, Berney DM, Bourgoin S, Maitland NJ, Rumsby MG. Phospholipase D2 in prostate cancer: protein expression changes with Gleason score. Br J Cancer 2019; 121:1016-1026. [PMID: 31673104 PMCID: PMC6964697 DOI: 10.1038/s41416-019-0610-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Phospholipases D1 and D2 (PLD1/2) are implicated in tumorigenesis through their generation of the signalling lipid phosphatidic acid and its downstream effects. Inhibition of PLD1 blocks prostate cell growth and colony formation. Here a role for PLD2 in prostate cancer (PCa), the major cancer of men in the western world, is examined. METHODS PLD2 expression was analysed by immunohistochemistry and western blotting. The effects of PLD2 inhibition on PCa cell viability and cell motility were measured using MTS, colony forming and wound-healing assays. RESULTS PLD2 protein is expressed about equally in luminal and basal prostate epithelial cells. In cells from different Gleason-scored PCa tissue PLD2 protein expression is generally higher than in non-tumorigenic cells and increases in PCa tissue scored Gleason 6-8. PLD2 protein is detected in the cytosol and nucleus and had a punctate appearance. In BPH tissue stromal cells as well as basal and luminal cells express PLD2. PLD2 protein co-expresses with chromogranin A in castrate-resistant PCa tissue. PLD2 inhibition reduces PCa cell viability, colony forming ability and directional cell movement. CONCLUSIONS PLD2 expression correlates with increasing Gleason score to GS8. PLD2 inhibition has the potential to reduce PCa progression.
Collapse
Affiliation(s)
- Amanda R Noble
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, UK
| | - Karen Hogg
- Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | - Rakesh Suman
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, UK
| | - Daniel M Berney
- Department of Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Sylvain Bourgoin
- Centre de Recherche du CHU de Québec, Axe des Maladies Infectieuses et Immunitaires, local T1-58, 2705 boulevard Laurier, Québec, G1V 4G2, QC, Canada
| | - Norman J Maitland
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, UK
| | - Martin G Rumsby
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, UK.
| |
Collapse
|