1
|
Gevin M, Latifi A, Talla E. The modular architecture of sigma factors in cyanobacteria: a framework to assess their diversity and understand their evolution. BMC Genomics 2024; 25:512. [PMID: 38783209 PMCID: PMC11119718 DOI: 10.1186/s12864-024-10415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Bacterial RNA polymerase holoenzyme requires sigma70 factors to start transcription by identifying promoter elements. Cyanobacteria possess multiple sigma70 factors to adapt to a wide variety of ecological niches. These factors are grouped into two categories: primary sigma factor initiates transcription of housekeeping genes during normal growth conditions, while alternative sigma factors initiate transcription of specific genes under particular conditions. However, the present classification does not consider the modular organization of their structural domains, introducing therefore multiple functional and structural biases. A comprehensive analysis of this protein family in cyanobacteria is needed to address these limitations. RESULTS We investigated the structure and evolution of sigma70 factors in cyanobacteria, analyzing their modular architecture and variation among unicellular, filamentous, and heterocyst-forming morphotypes. 4,193 sigma70 homologs were found with 59 distinct modular patterns, including six essential and 29 accessory domains, such as DUF6596. 90% of cyanobacteria typically have 5 to 17 sigma70 homologs and this number likely depends on the strain morphotype, the taxonomic order and the genome size. We classified sigma70 factors into 12 clans and 36 families. According to taxonomic orders and phenotypic traits, the number of homologs within the 14 main families was variable, with the A.1 family including the primary sigma factor since this family was found in all cyanobacterial species. The A.1, A.5, C.1, E.1, J.1, and K.1 families were found to be key sigma families that distinguish heterocyst-forming strains. To explain the diversification and evolution of sigma70, we propose an evolutionary scenario rooted in the diversification of a common ancestor of the A1 family. This scenario is characterized by evolutionary events including domain losses, gains, insertions, and modifications. The high occurrence of the DUF6596 domain in bacterial sigma70 proteins, and its association with the highest prevalence observed in Actinobacteria, suggests that this domain might be important for sigma70 function. It also implies that the domain could have emerged in Actinobacteria and been transferred through horizontal gene transfer. CONCLUSION Our analysis provides detailed insights into the modular domain architecture of sigma70, introducing a novel robust classification. It also proposes an evolutionary scenario explaining their diversity across different taxonomical orders.
Collapse
Affiliation(s)
- Marine Gevin
- Aix Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne, LCB, IMM, Marseille, France
| | - Amel Latifi
- Aix Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne, LCB, IMM, Marseille, France.
| | - Emmanuel Talla
- Aix Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne, LCB, IMM, Marseille, France.
| |
Collapse
|
2
|
Gurumoorthy V, Shrestha UR, Zhang Q, Pingali SV, Boder ET, Urban VS, Smith JC, Petridis L, O'Neill H. Disordered Domain Shifts the Conformational Ensemble of the Folded Regulatory Domain of the Multidomain Oncoprotein c-Src. Biomacromolecules 2023; 24:714-723. [PMID: 36692364 DOI: 10.1021/acs.biomac.2c01158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
c-Src kinase is a multidomain non-receptor tyrosine kinase that aberrantly phosphorylates several signaling proteins in cancers. Although the structural properties of the regulatory domains (SH3-SH2) and the catalytic kinase domain have been extensively characterized, there is less knowledge about the N-terminal disordered region (SH4UD) and its interactions with the other c-Src domains. Here, we used domain-selective isotopic labeling combined with the small-angle neutron scattering contrast matching technique to study SH4UD interactions with SH3-SH2. Our results show that in the presence of SH4UD, the radius of gyration (Rg) of SH3-SH2 increases, indicating that it has a more extended conformation. Hamiltonian replica exchange molecular dynamics simulations provide a detailed molecular description of the structural changes in SH4UD-SH3-SH2 and show that the regulatory loops of SH3 undergo significant conformational changes in the presence of SH4UD, while SH2 remains largely unchanged. Overall, this study highlights how a disordered region can drive a folded region of a multidomain protein to become flexible, which may be important for allosteric interactions with binding partners. This may help in the design of therapeutic interventions that target the regulatory domains of this important family of kinases.
Collapse
Affiliation(s)
- Viswanathan Gurumoorthy
- UT/ORNL Graduate School of Genome and Science Technology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Utsab R Shrestha
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Qiu Zhang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sai Venkatesh Pingali
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Eric T Boder
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Volker S Urban
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Loukas Petridis
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Hugh O'Neill
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
3
|
Rangel-Chávez CP, Galán-Vásquez E, Pescador-Tapia A, Delaye L, Martínez-Antonio A. RNA polymerases in strict endosymbiont bacteria with extreme genome reduction show distinct erosions that might result in limited and differential promoter recognition. PLoS One 2021; 16:e0239350. [PMID: 34324516 PMCID: PMC8321222 DOI: 10.1371/journal.pone.0239350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 06/22/2021] [Indexed: 11/26/2022] Open
Abstract
Strict endosymbiont bacteria present high degree genome reduction, retain smaller proteins, and in some instances, lack complete functional domains compared to free-living counterparts. Until now, the mechanisms underlying these genetic reductions are not well understood. In this study, the conservation of RNA polymerases, the essential machinery for gene expression, is analyzed in endosymbiont bacteria with extreme genome reductions. We analyzed the RNA polymerase subunits to identify and define domains, subdomains, and specific amino acids involved in precise biological functions known in Escherichia coli. We also perform phylogenetic analysis and three-dimensional models over four lineages of endosymbiotic proteobacteria with the smallest genomes known to date: Candidatus Hodgkinia cicadicola, Candidatus Tremblaya phenacola, Candidatus Tremblaya Princeps, Candidatus Nasuia deltocephalinicola, and Candidatus Carsonella ruddii. We found that some Hodgkinia strains do not encode for the RNA polymerase α subunit. The rest encode genes for α, β, β', and σ subunits to form the RNA polymerase. However, 16% shorter, on average, respect their orthologous in E. coli. In the α subunit, the amino-terminal domain is the most conserved. Regarding the β and β' subunits, both the catalytic core and the assembly domains are the most conserved. However, they showed compensatory amino acid substitutions to adapt to changes in the σ subunit. Precisely, the most erosive diversity occurs within the σ subunit. We identified broad amino acid substitution even in those recognizing and binding to the -10-box promoter element. In an overall conceptual image, the RNA polymerase from Candidatus Nasuia conserved the highest similarity with Escherichia coli RNA polymerase and their σ70. It might be recognizing the two main promoter elements (-10 and -35) and the two promoter accessory elements (-10 extended and UP-element). In Candidatus Carsonella, the RNA polymerase could recognize all the promoter elements except the -10-box extended. In Candidatus Tremblaya and Hodgkinia, due to the α carboxyl-terminal domain absence, they might not recognize the UP-promoter element. We also identified the lack of the β flap-tip helix domain in most Hodgkinia's that suggests the inability to bind the -35-box promoter element.
Collapse
Affiliation(s)
- Cynthia Paola Rangel-Chávez
- Biological Engineering Laboratory, Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Irapuato Gto, México
| | - Edgardo Galán-Vásquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, CDMX, México
| | - Azucena Pescador-Tapia
- Biological Engineering Laboratory, Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Irapuato Gto, México
| | - Luis Delaye
- Evolutionary Genomics Laboratory, Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Irapuato Gto, México
| | - Agustino Martínez-Antonio
- Biological Engineering Laboratory, Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Irapuato Gto, México
| |
Collapse
|
4
|
Shimamoto S, Mitsuoka N, Takahashi S, Kawakami T, Hidaka Y. Chemical Digestion of the -Asp-Cys- Sequence for Preparation of Post-translationally Modified Proteins. Protein J 2020; 39:711-716. [PMID: 33175310 DOI: 10.1007/s10930-020-09940-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2020] [Indexed: 11/26/2022]
Abstract
Numerous studies of native proteins have been reported on protein folding in this half century. Recently, post-translationally modified proteins are also focused on protein folding. However, it is still difficult to prepare such types of proteins because it requires not only the chemical but also the recombinant techniques. Native chemical ligation (NCL) is a powerful technique for producing target proteins when combined with recombinant techniques, such as expressed protein ligation (EPL). NCL basically requires an N-terminal peptide with a thioester and a C-terminal peptide which should possess a Cys residue at the N-terminus. Numerous efforts have been made to prepare N-terminal peptides carrying a thioester or a derivative thereof. However, a method for preparing C-terminal Cys-peptides with post-translational modifications has not been well developed, making it difficult to prepare such C-terminal Cys-peptides, except for chemical syntheses or enzymatic digestion. We report here on the development of a convenient technique that involves acid hydrolysis at the -Asp-Cys- sequence, to effectively obtain a C-terminal peptide fragment that can be used for any protein synthesis when combined with EPL, even under denatured conditions. Thus, this chemical digestion strategy permits the NCL strategy to be dramatically accelerated for protein syntheses in which post-translational modifications, such as glycosylation, phosphorylation, etc. are involved. In addition, this method should be useful to prepare the post-translationally modified proteins for protein folding.
Collapse
Affiliation(s)
- Shigeru Shimamoto
- Faculty of Science and Technology, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan.
| | - Natsumi Mitsuoka
- Faculty of Science and Technology, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Saki Takahashi
- Faculty of Science and Technology, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Toru Kawakami
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuji Hidaka
- Faculty of Science and Technology, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan.
| |
Collapse
|
5
|
Cyanobacterial sigma factors: Current and future applications for biotechnological advances. Biotechnol Adv 2020; 40:107517. [DOI: 10.1016/j.biotechadv.2020.107517] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 11/15/2022]
|
6
|
Abstract
Protein semisynthesis-defined herein as the assembly of a protein from a combination of synthetic and recombinant fragments-is a burgeoning field of chemical biology that has impacted many areas in the life sciences. In this review, we provide a comprehensive survey of this area. We begin by discussing the various chemical and enzymatic methods now available for the manufacture of custom proteins containing noncoded elements. This section begins with a discussion of methods that are more chemical in origin and ends with those that employ biocatalysts. We also illustrate the commonalities that exist between these seemingly disparate methods and show how this is allowing for the development of integrated chemoenzymatic methods. This methodology discussion provides the technical foundation for the second part of the review where we cover the great many biological problems that have now been addressed using these tools. Finally, we end the piece with a short discussion on the frontiers of the field and the opportunities available for the future.
Collapse
Affiliation(s)
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
7
|
Structural basis for transcription activation by Crl through tethering of σ S and RNA polymerase. Proc Natl Acad Sci U S A 2019; 116:18923-18927. [PMID: 31484766 DOI: 10.1073/pnas.1910827116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In bacteria, a primary σ-factor associates with the core RNA polymerase (RNAP) to control most transcription initiation, while alternative σ-factors are used to coordinate expression of additional regulons in response to environmental conditions. Many alternative σ-factors are negatively regulated by anti-σ-factors. In Escherichia coli, Salmonella enterica, and many other γ-proteobacteria, the transcription factor Crl positively regulates the alternative σS-regulon by promoting the association of σS with RNAP without interacting with promoter DNA. The molecular mechanism for Crl activity is unknown. Here, we determined a single-particle cryo-electron microscopy structure of Crl-σS-RNAP in an open promoter complex with a σS-regulon promoter. In addition to previously predicted interactions between Crl and domain 2 of σS (σS 2), the structure, along with p-benzoylphenylalanine cross-linking, reveals that Crl interacts with a structural element of the RNAP β'-subunit that we call the β'-clamp-toe (β'CT). Deletion of the β'CT decreases activation by Crl without affecting basal transcription, highlighting the functional importance of the Crl-β'CT interaction. We conclude that Crl activates σS-dependent transcription in part through stabilizing σS-RNAP by tethering σS 2 and the β'CT. We propose that Crl, and other transcription activators that may use similar mechanisms, be designated σ-activators.
Collapse
|
8
|
Lou YC, Chou CC, Yeh HH, Chien CY, Sadotra S, Hsu CH, Chen C. Structural basis for -35 element recognition by σ 4 chimera proteins and their interactions with PmrA response regulator. Proteins 2019; 88:69-81. [PMID: 31293000 DOI: 10.1002/prot.25768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 06/03/2019] [Accepted: 07/06/2019] [Indexed: 11/06/2022]
Abstract
In class II transcription activation, the transcription factor normally binds to the promoter near the -35 position and contacts the domain 4 of σ factors (σ4 ) to activate transcription. However, σ4 of σ70 appears to be poorly folded on its own. Here, by fusing σ4 with the RNA polymerase β-flap-tip-helix, we constructed two σ4 chimera proteins, one from σ70 σ 4 70 c and another from σS σ 4 S c of Klebsiella pneumoniae. The two chimera proteins well folded into a monomeric form with strong binding affinities for -35 element DNA. Determining the crystal structure of σ 4 S c in complex with -35 element DNA revealed that σ 4 S c adopts a similar structure as σ4 in the Escherichia coli RNA polymerase σS holoenzyme and recognizes -35 element DNA specifically by several conserved residues from the helix-turn-helix motif. By using nuclear magnetic resonance (NMR), σ 4 70 c was demonstrated to recognize -35 element DNA similar to σ 4 S c . Carr-Purcell-Meiboom-Gill relaxation dispersion analyses showed that the N-terminal helix and the β-flap-tip-helix of σ 4 70 c have a concurrent transient α-helical structure and DNA binding reduced the slow dynamics on σ 4 70 c . Finally, only σ 4 70 c was shown to interact with the response regulator PmrA and its promoter DNA. The chimera proteins are capable of -35 element DNA recognition and can be used for study with transcription factors or other factors that interact with domain 4 of σ factors.
Collapse
Affiliation(s)
- Yuan-Chao Lou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | - Chun-Chi Chou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | - Hsin-Hong Yeh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | - Chia-Yu Chien
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan, ROC
| | - Sushant Sadotra
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC.,Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, ROC.,Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Chun-Hua Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan, ROC.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan, ROC
| | - Chinpan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| |
Collapse
|
9
|
Gupta S, Tycko R. Segmental isotopic labeling of HIV-1 capsid protein assemblies for solid state NMR. JOURNAL OF BIOMOLECULAR NMR 2018; 70:103-114. [PMID: 29464399 PMCID: PMC5832360 DOI: 10.1007/s10858-017-0162-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/28/2017] [Indexed: 05/09/2023]
Abstract
Recent studies of noncrystalline HIV-1 capsid protein (CA) assemblies by our laboratory and by Polenova and coworkers (Protein Sci 19:716-730, 2010; J Mol Biol 426:1109-1127, 2014; J Biol Chem 291:13098-13112, 2016; J Am Chem Soc 138:8538-8546, 2016; J Am Chem Soc 138:12029-12032, 2016; J Am Chem Soc 134:6455-6466, 2012; J Am Chem Soc 132:1976-1987, 2010; J Am Chem Soc 135:17793-17803, 2013; Proc Natl Acad Sci USA 112:14617-14622, 2015; J Am Chem Soc 138:14066-14075, 2016) have established the capability of solid state nuclear magnetic resonance (NMR) measurements to provide site-specific structural and dynamical information that is not available from other types of measurements. Nonetheless, the relatively high molecular weight of HIV-1 CA leads to congestion of solid state NMR spectra of fully isotopically labeled assemblies that has been an impediment to further progress. Here we describe an efficient protocol for production of segmentally labeled HIV-1 CA samples in which either the N-terminal domain (NTD) or the C-terminal domain (CTD) is uniformly 15N,13C-labeled. Segmental labeling is achieved by trans-splicing, using the DnaE split intein. Comparisons of two-dimensional solid state NMR spectra of fully labeled and segmentally labeled tubular CA assemblies show substantial improvements in spectral resolution. The molecular structure of HIV-1 assemblies is not significantly perturbed by the single Ser-to-Cys substitution that we introduce between NTD and CTD segments, as required for trans-splicing.
Collapse
Affiliation(s)
- Sebanti Gupta
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
- National Institutes of Health, Building 5, Room 409, Bethesda, MD, 20892-0520, USA.
| |
Collapse
|
10
|
The stress sigma factor of RNA polymerase RpoS/σS is a solvent-exposed open molecule in solution. Biochem J 2018; 475:341-354. [DOI: 10.1042/bcj20170768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 11/17/2022]
Abstract
In bacteria, one primary and multiple alternative sigma (σ) factors associate with the RNA polymerase core enzyme (E) to form holoenzymes (Eσ) with different promoter recognition specificities. The alternative σ factor RpoS/σS is produced in stationary phase and under stress conditions and reprograms global gene expression to promote bacterial survival. To date, the three-dimensional structure of a full-length free σ factor remains elusive. The current model suggests that extensive interdomain contacts in a free σ factor result in a compact conformation that masks the DNA-binding determinants of σ, explaining why a free σ factor does not bind double-stranded promoter DNA efficiently. Here, we explored the solution conformation of σS using amide hydrogen/deuterium exchange coupled with mass spectrometry, NMR, analytical ultracentrifugation and molecular dynamics. Our data strongly argue against a compact conformation of free σS. Instead, we show that σS adopts an open conformation in solution in which the folded σ2 and σ4 domains are interspersed by domains with a high degree of disorder. These findings suggest that E binding induces major changes in both the folding and domain arrangement of σS and provide insights into the possible mechanisms of regulation of σS activity by its chaperone Crl.
Collapse
|
11
|
Hubin EA, Lilic M, Darst SA, Campbell EA. Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures. Nat Commun 2017; 8:16072. [PMID: 28703128 PMCID: PMC5511352 DOI: 10.1038/ncomms16072] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/25/2017] [Indexed: 11/25/2022] Open
Abstract
The mycobacteria RNA polymerase (RNAP) is a target for antimicrobials against tuberculosis, motivating structure/function studies. Here we report a 3.2 Å-resolution crystal structure of a Mycobacterium smegmatis (Msm) open promoter complex (RPo), along with structural analysis of the Msm RPo and a previously reported 2.76 Å-resolution crystal structure of an Msm transcription initiation complex with a promoter DNA fragment. We observe the interaction of the Msm RNAP α-subunit C-terminal domain (αCTD) with DNA, and we provide evidence that the αCTD may play a role in Mtb transcription regulation. Our results reveal the structure of an Actinobacteria-unique insert of the RNAP β′ subunit. Finally, our analysis reveals the disposition of the N-terminal segment of Msm σA, which may comprise an intrinsically disordered protein domain unique to mycobacteria. The clade-specific features of the mycobacteria RNAP provide clues to the profound instability of mycobacteria RPo compared with E. coli. Understanding of the mycobacterial transcription system is useful to the development of therapeutics against tuberculosis infection. Here the authors present the crystal structure of a complete M. smegmatis RNA polymerase open promoter complex that reveals unique features of the mycobacterial polymerase.
Collapse
Affiliation(s)
- Elizabeth A Hubin
- The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Mirjana Lilic
- The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Seth A Darst
- The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | | |
Collapse
|
12
|
Crystal structure of Aquifex aeolicus σ N bound to promoter DNA and the structure of σ N-holoenzyme. Proc Natl Acad Sci U S A 2017; 114:E1805-E1814. [PMID: 28223493 DOI: 10.1073/pnas.1619464114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bacterial σ factors confer promoter specificity to the RNA polymerase (RNAP). One alternative σ factor, σN, is unique in its structure and functional mechanism, forming transcriptionally inactive promoter complexes that require activation by specialized AAA+ ATPases. We report a 3.4-Å resolution X-ray crystal structure of a σN fragment in complex with its cognate promoter DNA, revealing the molecular details of promoter recognition by σN The structure allowed us to build and refine an improved σN-holoenzyme model based on previously published 3.8-Å resolution X-ray data. The improved σN-holoenzyme model reveals a conserved interdomain interface within σN that, when disrupted by mutations, leads to transcription activity without activator intervention (so-called bypass mutants). Thus, the structure and stability of this interdomain interface are crucial for the role of σN in blocking transcription activity and in maintaining the activator sensitivity of σN.
Collapse
|
13
|
Abstract
Segmental isotopic labeling of samples for NMR studies is attractive for large complex biomacromolecular systems, especially for studies of function-related protein-ligand interactions and protein dynamics (Goto and Kay, Curr Opin Struct Biol 10:585-592, 2000; Rosa et al., Molecules (Basel, Switzerland) 18:440, 2013; Hiroaki, Expert Opin Drug Discovery 8:523-536, 2013). Advantages of segmental isotopic labeling include selective examination of specific segment(s) within a protein by NMR, significantly reducing the spectral complexity for large proteins, and allowing for the application of a variety of solution-based NMR strategies. By utilizing intein techniques (Wood and Camarero, J Biol Chem 289:14512-14519, 2014; Paulus, Annu Rev Biochem 69:447-496, 2000), two related approaches can generally be used in the segmental isotopic labeling of proteins: expressed protein ligation (Muir, Annu Rev Biochem 72:249-289, 2003) and protein trans-splicing (Shah et al., J Am Chem Soc 134:11338-11341, 2012). Here, we describe general implementation and latest improvements of expressed protein ligation method for the production of segmental isotopic labeled NMR samples.
Collapse
Affiliation(s)
- Dongsheng Liu
- iHuman Institute, ShanghaiTech University, 99 Haike Road, Pudong, Shanghai, 201203, China
| | - David Cowburn
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
14
|
Xue J, Manigrasso M, Scalabrin M, Rai V, Reverdatto S, Burz DS, Fabris D, Schmidt AM, Shekhtman A. Change in the Molecular Dimension of a RAGE-Ligand Complex Triggers RAGE Signaling. Structure 2016; 24:1509-22. [PMID: 27524199 DOI: 10.1016/j.str.2016.06.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/20/2016] [Accepted: 06/16/2016] [Indexed: 01/13/2023]
Abstract
The weak oligomerization exhibited by many transmembrane receptors has a profound effect on signal transduction. The phenomenon is difficult to characterize structurally due to the large sizes of and transient interactions between monomers. The receptor for advanced glycation end products (RAGE), a signaling molecule central to the induction and perpetuation of inflammatory responses, is a weak constitutive oligomer. The RAGE domain interaction surfaces that mediate homo-dimerization were identified by combining segmental isotopic labeling of extracellular soluble RAGE (sRAGE) and nuclear magnetic resonance spectroscopy with chemical cross-linking and mass spectrometry. Molecular modeling suggests that two sRAGE monomers orient head to head forming an asymmetric dimer with the C termini directed toward the cell membrane. Ligand-induced association of RAGE homo-dimers on the cell surface increases the molecular dimension of the receptor, recruiting Diaphanous 1 (DIAPH1) and activating signaling pathways.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/chemistry
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Amino Acid Sequence
- Animals
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Binding Sites
- Cross-Linking Reagents/chemistry
- Formins
- Gene Expression
- Genes, Reporter
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- HEK293 Cells
- Humans
- Ligands
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Maleimides/chemistry
- Mitogen-Activated Protein Kinases/chemistry
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Molecular Docking Simulation
- Nuclear Magnetic Resonance, Biomolecular
- Protein Binding
- Protein Interaction Domains and Motifs
- Protein Structure, Secondary
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Signal Transduction
- Thermodynamics
Collapse
Affiliation(s)
- Jing Xue
- Department of Chemistry, State University of New York at Albany, Albany, NY 12222, USA
| | | | - Matteo Scalabrin
- Department of Chemistry, State University of New York at Albany, Albany, NY 12222, USA
| | - Vivek Rai
- Institute of Life Sciences, Bhubaneswar, Odisha 751023, India
| | - Sergey Reverdatto
- Department of Chemistry, State University of New York at Albany, Albany, NY 12222, USA
| | - David S Burz
- Department of Chemistry, State University of New York at Albany, Albany, NY 12222, USA
| | - Daniele Fabris
- Department of Chemistry, State University of New York at Albany, Albany, NY 12222, USA
| | - Ann Marie Schmidt
- New York University, Langone Medical Center, New York, NY 10016, USA
| | - Alexander Shekhtman
- Department of Chemistry, State University of New York at Albany, Albany, NY 12222, USA.
| |
Collapse
|
15
|
Santillán O, Ramírez-Romero MA, Lozano L, Checa A, Encarnación SM, Dávila G. Region 4 of Rhizobium etli Primary Sigma Factor (SigA) Confers Transcriptional Laxity in Escherichia coli. Front Microbiol 2016; 7:1078. [PMID: 27468278 PMCID: PMC4943231 DOI: 10.3389/fmicb.2016.01078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/27/2016] [Indexed: 11/13/2022] Open
Abstract
Sigma factors are RNA polymerase subunits engaged in promoter recognition and DNA strand separation during transcription initiation in bacteria. Primary sigma factors are responsible for the expression of housekeeping genes and are essential for survival. RpoD, the primary sigma factor of Escherichia coli, a γ-proteobacteria, recognizes consensus promoter sequences highly similar to those of some α-proteobacteria species. Despite this resemblance, RpoD is unable to sustain transcription from most of the α-proteobacterial promoters tested so far. In contrast, we have found that SigA, the primary sigma factor of Rhizobium etli, an α-proteobacteria, is able to transcribe E. coli promoters, although it exhibits only 48% identity (98% coverage) to RpoD. We have called this the transcriptional laxity phenomenon. Here, we show that SigA partially complements the thermo-sensitive deficiency of RpoD285 from E. coli strain UQ285 and that the SigA region σ4 is responsible for this phenotype. Sixteen out of 74 residues (21.6%) within region σ4 are variable between RpoD and SigA. Mutating these residues significantly improves SigA ability to complement E. coli UQ285. Only six of these residues fall into positions already known to interact with promoter DNA and to comprise a helix-turn-helix motif. The remaining variable positions are located on previously unexplored sites inside region σ4, specifically into the first two α-helices of the region. Neither of the variable positions confined to these helices seem to interact directly with promoter sequence; instead, we adduce that these residues participate allosterically by contributing to correct region folding and/or positioning of the HTH motif. We propose that transcriptional laxity is a mechanism for ensuring transcription in spite of naturally occurring mutations from endogenous promoters and/or horizontally transferred DNA sequences, allowing survival and fast environmental adaptation of α-proteobacteria.
Collapse
Affiliation(s)
- Orlando Santillán
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | | | - Luis Lozano
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Alberto Checa
- Programa de Genómica Funcional de Procariontes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Sergio M Encarnación
- Programa de Genómica Funcional de Procariontes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Guillermo Dávila
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico; Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de MéxicoJuriquilla, Mexico
| |
Collapse
|
16
|
Williams FP, Milbradt AG, Embrey KJ, Bobby R. Segmental Isotope Labelling of an Individual Bromodomain of a Tandem Domain BRD4 Using Sortase A. PLoS One 2016; 11:e0154607. [PMID: 27128490 PMCID: PMC4851411 DOI: 10.1371/journal.pone.0154607] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/17/2016] [Indexed: 11/19/2022] Open
Abstract
Bromodomain and extra-terminal (BET) family of proteins are one of the major readers of epigenetic marks and an important target class in oncology and other disease areas. The importance of the BET family of proteins is manifested by the explosion in the number of inhibitors against these targets that have successfully entered clinical trials. One important BET family member is bromodomain containing protein 4 (BRD4). Structural and biophysical studies of BRD4 are complicated by its tertiary-structure consisting of two bromodomains connected by a flexible inter-domain linker of approximately 180 amino acids. A detailed understanding of the interplay of these bromodomains will be key to rational drug design in BRD4, yet there are no reported three-dimensional structures of the multi-domain BRD4 and NMR studies of the tandem domain are hampered by the size of the protein. Here, we present a method for rapid Sortase A-mediated segmental labelling of the individual bromodomains of BRD4 that provides a powerful strategy that will enable NMR studies of ligand-bromodomain interactions with atomic detail. In our labelling strategy, we have used U-[2H,15N]-isotope labelling on the C-terminal bromodomain with selective introduction of 13CH3 methyl groups on Ile (δ1), Val and Leu, whereas the N-terminal bromodomain remained unlabelled. This labelling scheme resulted in significantly simplified NMR spectra and will allow for high-resolution interaction, structure and dynamics studies in the presence of ligands.
Collapse
Affiliation(s)
- Felix P. Williams
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Alderley Park, Macclesfield SK10 4TF, United Kingdom
| | - Alexander G. Milbradt
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Alderley Park, Macclesfield SK10 4TF, United Kingdom
| | - Kevin J. Embrey
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Alderley Park, Macclesfield SK10 4TF, United Kingdom
- * E-mail: (KJE); (RB)
| | - Romel Bobby
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Alderley Park, Macclesfield SK10 4TF, United Kingdom
- * E-mail: (KJE); (RB)
| |
Collapse
|
17
|
Miropolskaya N, Kulbachinskiy A. Aptamers to the sigma factor mimic promoter recognition and inhibit transcription initiation by bacterial RNA polymerase. Biochem Biophys Res Commun 2015; 469:294-9. [PMID: 26631966 DOI: 10.1016/j.bbrc.2015.11.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/23/2015] [Indexed: 11/28/2022]
Abstract
Promoter recognition by bacterial RNA polymerase (RNAP) is a multi-step process involving multiple protein-DNA interactions and several structural and kinetic intermediates which remain only partially characterized. We used single-stranded DNA aptamers containing specific promoter motifs to probe the interactions of the Thermus aquaticus RNAP σ(A) subunit with the -10 promoter element in the absence of other parts of the promoter complex. The aptamer binding decreased intrinsic fluorescence of the σ subunit, likely as a result of interactions between the -10 element and conserved tryptophan residues of the σ DNA-binding region 2. By monitoring these changes, we demonstrated that DNA binding proceeds through a single rate-limiting step resulting in formation of very stable complexes. Deletion of the N-terminal domain of the σ(A) subunit increased the rate of aptamer binding while replacement of this domain with an unrelated N-terminal region 1.1 from the Escherichia coli σ(70) subunit restored the original kinetics of σ-aptamer interactions. The results demonstrate that the key step in promoter recognition can be modelled in a simple σ-aptamer system and reveal that highly divergent N-terminal domains similarly modulate the DNA-binding properties of the σ subunit. The aptamers efficiently suppressed promoter-dependent transcription initiation by the holoenzyme of RNA polymerase, suggesting that they may be used for development of novel transcription inhibitors.
Collapse
Affiliation(s)
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia.
| |
Collapse
|
18
|
Tolstova AP, Dubrovin EV, Koroleva ON. Investigation of σ70 subunit structure dependence in Escherichia coli RNA polymerase on ionic strength by the molecular dynamics simulation method. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915060251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Zuo Y, Steitz TA. Crystal structures of the E. coli transcription initiation complexes with a complete bubble. Mol Cell 2015; 58:534-40. [PMID: 25866247 DOI: 10.1016/j.molcel.2015.03.010] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/12/2015] [Accepted: 03/06/2015] [Indexed: 11/15/2022]
Abstract
During transcription initiation, RNA polymerase binds to promoter DNA to form an initiation complex containing a DNA bubble and enters into abortive cycles of RNA synthesis before escaping the promoter to transit into the elongation phase for processive RNA synthesis. Here we present the crystal structures of E. coli transcription initiation complexes containing a complete transcription bubble and de novo synthesized RNA oligonucleotides at about 6-Å resolution. The structures show how RNA polymerase recognizes DNA promoters that contain spacers of different lengths and reveal a bridging interaction between the 5'-triphosphate of the nascent RNA and the σ factor that may function to stabilize the short RNA-DNA hybrids during the early stage of transcription initiation. The conformation of the RNA oligonucleotides and the paths of the DNA strands in the complete initiation complexes provide insights into the mechanism that controls both the abortive and productive RNA synthesis.
Collapse
Affiliation(s)
- Yuhong Zuo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, New Haven, CT 06510, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
20
|
Kuo HH, Huang WC, Lin TF, Yeh HY, Liou KM, Chang BY. The core-independent promoter-specific binding of Bacillus subtilis σB. FEBS J 2015; 282:1307-18. [PMID: 25652417 DOI: 10.1111/febs.13222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/18/2014] [Accepted: 01/21/2015] [Indexed: 11/28/2022]
Abstract
Bacillus subtilis σ(D) is an alternative σ factor that possesses a core-independent promoter -10 element binding specificity despite the lack of a distinct footprint on its cognate promoter. We wished to determine whether this property is common to alternative σ factors. To this end, we over-expressed B. subtilis σ(B) in Escherichia coli and analyzed its DNA binding ability by electrophoretic mobility shift assay and DNase I footprinting. The major complex formed by σ(B) and its cognate promoter DNA is heparin-sensitive. However, in contrast to the -10 element binding specificity observed for B. subtilis σ(D) , the promoter binding of σ(B) is specific for the -35 element. These and other results clearly demonstrate that alternative σ factors possess different promoter-binding characteristics, and make core-independent contributions to recognition of their cognate promoters.
Collapse
Affiliation(s)
- Heng-Hsu Kuo
- Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
21
|
Kaczka P, Winiewska M, Zhukov I, Rempoła B, Bolewska K, Łoziński T, Ejchart A, Poznańska A, Wierzchowski KL, Poznański J. The TFE-induced transient native-like structure of the intrinsically disordered σ₄⁷⁰ domain of Escherichia coli RNA polymerase. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2014; 43:581-94. [PMID: 25261014 PMCID: PMC4236625 DOI: 10.1007/s00249-014-0987-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/31/2014] [Accepted: 09/08/2014] [Indexed: 11/16/2022]
Abstract
The transient folding of domain 4 of an E. coli RNA polymerase σ⁷⁰ subunit (rECσ₄⁷⁰) induced by an increasing concentration of 2,2,2-trifluoroethanol (TFE) in an aqueous solution was monitored by means of CD and heteronuclear NMR spectroscopy. NMR data, collected at a 30% TFE, allowed the estimation of the population of a locally folded rECσ₄⁷⁰ structure (CSI descriptors) and of local backbone dynamics ((15)N relaxation). The spontaneous organization of the helical regions of the initially unfolded protein into a TFE-induced 3D structure was revealed from structural constraints deduced from (15)N- to (13)C-edited NOESY spectra. In accordance with all the applied criteria, three highly populated α-helical regions, separated by much more flexible fragments, form a transient HLHTH motif resembling those found in PDB structures resolved for homologous proteins. All the data taken together demonstrate that TFE induces a transient native-like structure in the intrinsically disordered protein.
Collapse
Affiliation(s)
- Piotr Kaczka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Maria Winiewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Igor Zhukov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Bożenna Rempoła
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Krystyna Bolewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Tomasz Łoziński
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Andrzej Ejchart
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Anna Poznańska
- Centre for Monitoring and Analyses of Population Health Status, National Institute of Public Health, National Institute of Hygiene, Warsaw, Poland
| | - Kazimierz L. Wierzchowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
22
|
Nabeshima Y, Mizuguchi M, Kajiyama A, Okazawa H. Segmental isotope-labeling of the intrinsically disordered protein PQBP1. FEBS Lett 2014; 588:4583-9. [PMID: 25447530 DOI: 10.1016/j.febslet.2014.10.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/22/2014] [Accepted: 10/27/2014] [Indexed: 11/20/2022]
Abstract
Polyglutamine tract-binding protein 1 (PQBP1) is an intrinsically disordered protein abundantly expressed in the brain. Mutations in the PQBP1 gene are causative for X-linked mental retardation disorders. Here, we investigated the structure of the C-terminal segment within the context of full-length PQBP1. We produced a segmentally isotope-labeled PQBP1 composed of a non-labeled segment (residues 1-219; N-segment) and a (13)C/(15)N-labeled segment (residues 220-265; C-segment). Our results demonstrate that the segmental isotope-labeling combined with NMR spectroscopy is useful for detecting a very weak intra-molecular interaction in an intrinsically disordered protein.
Collapse
Affiliation(s)
- Yuko Nabeshima
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; Graduate School of Innovative Life Science, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Mineyuki Mizuguchi
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; Graduate School of Innovative Life Science, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Asagi Kajiyama
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
23
|
Feklístov A, Sharon BD, Darst SA, Gross CA. Bacterial sigma factors: a historical, structural, and genomic perspective. Annu Rev Microbiol 2014; 68:357-76. [PMID: 25002089 DOI: 10.1146/annurev-micro-092412-155737] [Citation(s) in RCA: 334] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcription initiation is the crucial focal point of gene expression in prokaryotes. The key players in this process, sigma factors (σs), associate with the catalytic core RNA polymerase to guide it through the essential steps of initiation: promoter recognition and opening, and synthesis of the first few nucleotides of the transcript. Here we recount the key advances in σ biology, from their discovery 45 years ago to the most recent progress in understanding their structure and function at the atomic level. Recent data provide important structural insights into the mechanisms whereby σs initiate promoter opening. We discuss both the housekeeping σs, which govern transcription of the majority of cellular genes, and the alternative σs, which direct RNA polymerase to specialized operons in response to environmental and physiological cues. The review concludes with a genome-scale view of the extracytoplasmic function σs, the most abundant group of alternative σs.
Collapse
|
24
|
Topilina NI, Mills KV. Recent advances in in vivo applications of intein-mediated protein splicing. Mob DNA 2014; 5:5. [PMID: 24490831 PMCID: PMC3922620 DOI: 10.1186/1759-8753-5-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/07/2014] [Indexed: 01/27/2023] Open
Abstract
Intein-mediated protein splicing has become an essential tool in modern biotechnology. Fundamental progress in the structure and catalytic strategies of cis- and trans-splicing inteins has led to the development of modified inteins that promote efficient protein purification, ligation, modification and cyclization. Recent work has extended these in vitro applications to the cell or to whole organisms. We review recent advances in intein-mediated protein expression and modification, post-translational processing and labeling, protein regulation by conditional protein splicing, biosensors, and expression of trans-genes.
Collapse
Affiliation(s)
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, MA 01610, USA.
| |
Collapse
|
25
|
The reduction in σ-promoter recognition flexibility as induced by core RNAP is required for σ to discern the optimal promoter spacing. Biochem J 2013; 455:185-93. [PMID: 23875654 DOI: 10.1042/bj20130576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sigma (σ) factors are bacterial transcription initiation factors that direct transcription at cognate promoters. The promoters recognized by primary σ are composed of -10 and -35 consensus elements separated by a spacer of 17±1 bp for optimal activity. However, how the optimal promoter spacing is sensed by the primary σ remains unclear. In the present study, we examined this issue using a transcriptionally active Bacillus subtilis N-terminally truncated σA (SND100-σA). The results of the present study demonstrate that SND100-σA binds specifically to both the -10 and -35 elements of the trnS spacing variants, of which the spacer lengths range from 14 to 21 bp, indicating that simultaneous and specific recognition of promoter -10 and -35 elements is insufficient for primary σ to discern the optimal promoter spacing. Moreover, shortening in length of the flexible linker between the two promoter DNA-binding domains of σA also does not enable SND100-σA to sense the optimal promoter spacing. Efficient recognition of optimal promoter spacing by SND100-σA requires core RNAP (RNA polymerase) which reduces the flexibility of simultaneous and specific binding of SND100-σA to both promoter -10 and -35 elements. Thus the discrimination of optimal promoter spacing by σ is core-dependent.
Collapse
|
26
|
Phage T7 Gp2 inhibition of Escherichia coli RNA polymerase involves misappropriation of σ70 domain 1.1. Proc Natl Acad Sci U S A 2013; 110:19772-7. [PMID: 24218560 DOI: 10.1073/pnas.1314576110] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bacteriophage T7 encodes an essential inhibitor of the Escherichia coli host RNA polymerase (RNAP), the product of gene 2 (Gp2). We determined a series of X-ray crystal structures of E. coli RNAP holoenzyme with or without Gp2. The results define the structure and location of the RNAP σ(70) subunit domain 1.1(σ(1.1)(70)) inside the RNAP active site channel, where it must be displaced by the DNA upon formation of the open promoter complex. The structures and associated data, combined with previous results, allow for a complete delineation of the mechanism for Gp2 inhibition of E. coli RNAP. In the primary inhibition mechanism, Gp2 forms a protein-protein interaction with σ(1.1)(70), preventing the normal egress of σ(1.1)(70) from the RNAP active site channel. Gp2 thus misappropriates a domain of the RNAP holoenzyme, σ(1.1)(70), to inhibit the function of the enzyme.
Collapse
|
27
|
Abstract
Solution nuclear magnetic resonance (NMR) spectroscopy has come a long way in characterizing the structure and function of biological molecules since the first one-dimensional spectrum of protein was recorded about 30 years ago. To date (September 1, 2012), there are 9,521 solution NMR structures in the Protein Data Bank, compared to 74,009 determined by crystallographic methods. Unlike X-ray and electron microscopy (EM) methods, which are based on the concepts of Fourier optics and image reconstruction, structure determination by NMR involves measuring structural restraints and finding structural solutions that satisfy the restraints. Although the NMR approach is much less direct in a physical sense, it has proven itself over the years to be capable of de novo structure determination at high precision. Moreover, the method is highly versatile and can be used in a variety of ways for addressing mechanistic questions. NMR measurements of protein internal dynamics and protein-protein or protein-ligand interaction are directly relevant to function in vivo because the molecules are often in physiological buffer conditions. The method can also be applied to investigate protein-folding intermediates, conformational changes, as well as intrinsically unfolded proteins. Recently, along with X-ray and EM, solution NMR has entered a state of rapid growth for structural studies of membrane proteins, already demonstrating its feasibility in de novo structure determination of membrane-embedded ion channels and receptors. As the hardware advances rapidly, especially in cryogenic probes that have much higher sensitivity, the sample concentration required for solution NMR investigation is decreasing, hopefully soon to a concentration level at which nonspecific protein aggregation is no longer an issue. After three decades of improvement in spectrometer technology, NMR pulse experiments, isotope labeling schemes, and structure determination software, we believe that solution NMR will truly enter the production phase in the next decade to answer biological questions of high impact, and to become more versatile than ever in complementing X-ray and EM in investigating protein structure and function.
Collapse
Affiliation(s)
- James J Chou
- Jack and Eileen Connors Structural Biology Laboratory, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
28
|
Chemical methods for peptide and protein production. Molecules 2013; 18:4373-88. [PMID: 23584057 PMCID: PMC6270108 DOI: 10.3390/molecules18044373] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 03/28/2013] [Accepted: 04/09/2013] [Indexed: 11/17/2022] Open
Abstract
Since the invention of solid phase synthetic methods by Merrifield in 1963, the number of research groups focusing on peptide synthesis has grown exponentially. However, the original step-by-step synthesis had limitations: the purity of the final product decreased with the number of coupling steps. After the development of Boc and Fmoc protecting groups, novel amino acid protecting groups and new techniques were introduced to provide high quality and quantity peptide products. Fragment condensation was a popular method for peptide production in the 1980s, but unfortunately the rate of racemization and reaction difficulties proved less than ideal. Kent and co-workers revolutionized peptide coupling by introducing the chemoselective reaction of unprotected peptides, called native chemical ligation. Subsequently, research has focused on the development of novel ligating techniques including the famous click reaction, ligation of peptide hydrazides, and the recently reported α-ketoacid-hydroxylamine ligations with 5-oxaproline. Several companies have been formed all over the world to prepare high quality Good Manufacturing Practice peptide products on a multi-kilogram scale. This review describes the advances in peptide chemistry including the variety of synthetic peptide methods currently available and the broad application of peptides in medicinal chemistry.
Collapse
|
29
|
Michel E, Skrisovska L, Wüthrich K, Allain FHT. Amino Acid-Selective Segmental Isotope Labeling of Multidomain Proteins for Structural Biology. Chembiochem 2013; 14:457-66. [DOI: 10.1002/cbic.201200732] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Indexed: 11/12/2022]
|
30
|
Koroleva ON, Dubrovin EV, Khodak YA, Kuzmina NV, Yaminsky IV, Drutsa VL. The model of amyloid aggregation of Escherichia coli RNA polymerase σ70 subunit based on AFM data and in vitro assays. Cell Biochem Biophys 2013; 66:623-36. [PMID: 23306967 DOI: 10.1007/s12013-012-9507-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
To propose a model for recently described amyloid aggregation of E.coli RNA polymerase σ(70) subunit, we have investigated the role of its N-terminal region. For this purpose, three mutant variants of protein with deletions Δ1-73, Δ1-100 and Δ74-100 were constructed and studied in a series of in vitro assays and using atomic force microscopy (AFM). Specifically, all RNA polymerase holoenzymes, reconstituted with the use of mutant σ subunits, have shown reduced affinity for promoter-containing DNA and reduced activity in run-off transcription experiments (compared to that of WT species), thus substantiating the modern concept on the modulatory role of N-terminus in formation of open complex and transcription initiation. The ability of mutant proteins to form amyloid-like structures has been investigated using AFM, which revealed the increased propensity of mutant proteins to form rodlike aggregates with the effect being more pronounced for the mutant with the deletion Δ1-73 (10 fold increase). σ(70) subunit aggregation ability has shown complex dependence on the ionic surrounding, which we explain by Debye screening effect and the change of the internal state of the protein. Basing on the obtained data, we propose the model of amyloid fibril formation by σ(70) subunit, implying the involvement of N-terminal region according to the domain swapping mechanism.
Collapse
Affiliation(s)
- Olga N Koroleva
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | | | | | | | | | | |
Collapse
|
31
|
De Rosa L, Russomanno A, Romanelli A, D’Andrea LD. Semi-synthesis of labeled proteins for spectroscopic applications. Molecules 2013; 18:440-65. [PMID: 23282535 PMCID: PMC6269674 DOI: 10.3390/molecules18010440] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 12/21/2012] [Accepted: 12/24/2012] [Indexed: 12/24/2022] Open
Abstract
Since the introduction of SPPS by Merrifield in the 60s, peptide chemists have considered the possibility of preparing large proteins. The introduction of native chemical ligation in the 90s and then of expressed protein ligation have opened the way to the preparation of synthetic proteins without size limitations. This review focuses on semi-synthetic strategies useful to prepare proteins decorated with spectroscopic probes, like fluorescent labels and stable isotopes, and their biophysical applications. We show that expressed protein ligation, combining the advantages of organic chemistry with the easy and size limitless recombinant protein expression, is an excellent strategy for the chemical synthesis of labeled proteins, enabling a single protein to be functionalized at one or even more distinct positions with different probes.
Collapse
Affiliation(s)
- Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, Napoli 80134, Italy; E-Mails: (L.D.R.); (A.R.)
| | - Anna Russomanno
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, Napoli 80134, Italy; E-Mails: (L.D.R.); (A.R.)
| | - Alessandra Romanelli
- Dipartimento delle Scienze Biologiche, Università di Napoli “Federico II”, Via Mezzocannone 16, Napoli 80134, Italy; E-Mail:
| | - Luca Domenico D’Andrea
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, Napoli 80134, Italy; E-Mails: (L.D.R.); (A.R.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-081-253-6679; Fax: +39-081-253-4574
| |
Collapse
|
32
|
Barraud P, Allain FHT. Solution structure of the two RNA recognition motifs of hnRNP A1 using segmental isotope labeling: how the relative orientation between RRMs influences the nucleic acid binding topology. JOURNAL OF BIOMOLECULAR NMR 2013; 55:119-38. [PMID: 23247503 DOI: 10.1007/s10858-012-9696-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/11/2012] [Indexed: 05/21/2023]
Abstract
Human hnRNP A1 is a multi-functional protein involved in many aspects of nucleic-acid processing such as alternative splicing, micro-RNA biogenesis, nucleo-cytoplasmic mRNA transport and telomere biogenesis and maintenance. The N-terminal region of hnRNP A1, also named unwinding protein 1 (UP1), is composed of two closely related RNA recognition motifs (RRM), and is followed by a C-terminal glycine rich region. Although crystal structures of UP1 revealed inter-domain interactions between RRM1 and RRM2 in both the free and bound form of UP1, these interactions have never been established in solution. Moreover, the relative orientation of hnRNP A1 RRMs is different in the free and bound crystal structures of UP1, raising the question of the biological significance of this domain movement. In the present study, we have used NMR spectroscopy in combination with segmental isotope labeling techniques to carefully analyze the inter-RRM contacts present in solution and subsequently determine the structure of UP1 in solution. Our data unambiguously demonstrate that hnRNP A1 RRMs interact in solution, and surprisingly, the relative orientation of the two RRMs observed in solution is different from the one found in the crystal structure of free UP1 and rather resembles the one observed in the nucleic-acid bound form of the protein. This strongly supports the idea that the two RRMs of hnRNP A1 have a single defined relative orientation which is the conformation previously observed in the bound form and now observed in solution using NMR. It is likely that the conformation in the crystal structure of the free form is a less stable form induced by crystal contacts. Importantly, the relative orientation of the RRMs in proteins containing multiple-RRMs strongly influences the RNA binding topologies that are practically accessible to these proteins. Indeed, RRM domains are asymmetric binding platforms contacting single-stranded nucleic acids in a single defined orientation. Therefore, the path of the nucleic acid molecule on the multiple RRM domains is strongly dependent on whether the RRMs are interacting with each other. The different nucleic acid recognition modes by multiple-RRM domains are briefly reviewed and analyzed on the basis of the current structural information.
Collapse
Affiliation(s)
- Pierre Barraud
- Institute of Molecular Biology and Biophysics, ETH Zurich, Schafmattstrasse 20, 8093 Zurich, Switzerland
| | | |
Collapse
|
33
|
Bol'shakov O, Kovacs J, Chahar M, Ha K, Khelashvili L, Katritzky AR. S- toN-Acyl transfer inS-acylcysteine isopeptides via 9-, 10-, 12-, and 13-membered cyclic transition states. J Pept Sci 2012; 18:704-9. [DOI: 10.1002/psc.2438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/05/2012] [Accepted: 07/06/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Oleg Bol'shakov
- Center for Heterocyclic Compounds, Department of Chemistry; University of Florida; Gainesville; FL; 32611-7200; USA
| | - Judit Kovacs
- Center for Heterocyclic Compounds, Department of Chemistry; University of Florida; Gainesville; FL; 32611-7200; USA
| | - Mamta Chahar
- Center for Heterocyclic Compounds, Department of Chemistry; University of Florida; Gainesville; FL; 32611-7200; USA
| | - Khanh Ha
- Center for Heterocyclic Compounds, Department of Chemistry; University of Florida; Gainesville; FL; 32611-7200; USA
| | - Levan Khelashvili
- Center for Heterocyclic Compounds, Department of Chemistry; University of Florida; Gainesville; FL; 32611-7200; USA
| | | |
Collapse
|
34
|
Okumura M, Shimamoto S, Hidaka Y. A chemical method for investigating disulfide-coupled peptide and protein folding. FEBS J 2012; 279:2283-95. [PMID: 22487262 DOI: 10.1111/j.1742-4658.2012.08596.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Investigations of protein folding have largely involved studies using disulfide-containing proteins, as disulfide-coupled folding of proteins permits the folding intermediates to be trapped and their conformations determined. Over the last decade, a combination of new biotechnical and chemical methodology has resulted in a remarkable acceleration in our understanding of the mechanism of disulfide-coupled protein folding. In particular, expressed protein ligation, a combination of native chemical ligation and an intein-based approach, permits specifically labeled proteins to be easily produced for studies of protein folding using biophysical methods, such as NMR spectroscopy and X-ray crystallography. A method for regio-selective formation of disulfide bonds using chemical procedures has also been established. This strategy is particularly relevant for the study of disulfide-coupled protein folding, and provides us not only with the native conformation, but also the kinetically trapped topological isomer with native disulfide bonds. Here we review recent developments and applications of biotechnical and chemical methods to investigations of disulfide-coupled peptide and protein folding. Chemical additives designed to accelerate correct protein folding and to avoid non-specific aggregation are also discussed.
Collapse
Affiliation(s)
- Masaki Okumura
- Faculty of Science and Engineering, Kinki University, Higashi-osaka, Osaka, Japan
| | | | | |
Collapse
|
35
|
Kamei A, Hauser PS, Beckstead JA, Weers PMM, Ryan RO. Expressed protein ligation-mediated template protein extension. Protein Expr Purif 2012; 83:113-6. [PMID: 22487214 DOI: 10.1016/j.pep.2012.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 03/23/2012] [Accepted: 03/24/2012] [Indexed: 11/18/2022]
Abstract
Expressed protein ligation (EPL) was performed to investigate sequence requirements for a variant human apolipoprotein A-I (apoA-I) to adopt a folded structure. A C-terminal truncated apoA-I, corresponding to residues 1-172, was expressed and isolated from Escherichia coli. Compared to full length apoA-I (243 amino acids), apoA-I(1-172) displayed less α-helix secondary structure and lower stability in solution. To determine if extension of this polypeptide would confer secondary structure content and/or stability, 20 residues were added to the C-terminus of apoA-I(1-172) by EPL, creating apoA-I(Milano)(1-192). The EPL product displayed biophysical properties similar to full-length apoA-I(Milano). The results provide a general protein engineering strategy to modify the length of a recombinant template polypeptide using synthetic peptides as well as a convenient, cost effective way to investigate the structure/function relations in apolipoprotein fragments or domains of different size.
Collapse
Affiliation(s)
- Ayako Kamei
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA 94609, United States
| | | | | | | | | |
Collapse
|
36
|
Borra R, Dong D, Elnagar AY, Woldemariam GA, Camarero JA. In-cell fluorescence activation and labeling of proteins mediated by FRET-quenched split inteins. J Am Chem Soc 2012; 134:6344-53. [PMID: 22404648 DOI: 10.1021/ja300209u] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Methods to visualize, track, and modify proteins in living cells are central for understanding the spatial and temporal underpinnings of life inside cells. Although fluorescent proteins have proven to be extremely useful for in vivo studies of protein function, their utility is inherently limited because their spectral and structural characteristics are interdependent. These limitations have spurred the creation of alternative approaches for the chemical labeling of proteins. We report in this work the use of fluorescence resonance emission transfer (FRET)-quenched DnaE split inteins for the site-specific labeling and concomitant fluorescence activation of proteins in living cells. We have successfully employed this approach for the site-specific in-cell labeling of the DNA binding domain (DBD) of the transcription factor YY1 using several human cell lines. Moreover, we have shown that this approach can be also used for modifying proteins to control their cellular localization and potentially alter their biological activity.
Collapse
Affiliation(s)
- Radhika Borra
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | |
Collapse
|
37
|
Xue J, Burz DS, Shekhtman A. Segmental labeling to study multidomain proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 992:17-33. [PMID: 23076577 DOI: 10.1007/978-94-007-4954-2_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This chapter contains a review of methodologies and recent applications of segmental labeling for NMR structural studies of proteins and protein complexes. Segmental labeling is used to specifically label a segment of protein structure with NMR active nuclei, thus reducing NMR spectral complexity and greatly facilitating structural NMR studies of large multi-domain proteins. It can also be used to introduce a synthetic fragment into a protein structure to study post-translationally modified proteins. Detailed protocols describing segmental labeling techniques are also included.
Collapse
Affiliation(s)
- Jing Xue
- Department of Chemistry, State University of New York, Albany, NY 12222, USA
| | | | | |
Collapse
|
38
|
Abstract
Split inteins carry out a naturally occurring process known as protein trans-splicing, where two protein fragments bind to form a catalytically competent enzyme, then catalyze their own excision and the ligation of their flanking sequences. In the past thirteen years since their discovery, chemists and biologists have utilized split inteins in exogenous contexts for a number of biotechnological applications centered around the formation of native peptide bonds. While many protein trans-splicing technologies have emerged and flourished in recent years, several factors still limit their wide-spread practical use. Here, we discuss the development, applications, and limitations of split intein-based technologies and propose that further advancement in this field will require a more fundamental understanding of split intein structure and function.
Collapse
Affiliation(s)
- Neel H Shah
- Department of Chemistry, Princeton University, 325 Frick Laboratory, Princeton, New Jersey 08544, USA, Telephone: 609-258-5778
| | | |
Collapse
|
39
|
Clerico EM, Zhuravleva A, Smock RG, Gierasch LM. Segmental isotopic labeling of the Hsp70 molecular chaperone DnaK using expressed protein ligation. Biopolymers 2011; 94:742-52. [PMID: 20564022 DOI: 10.1002/bip.21426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Introducing biophysical labels into specific regions of large and dynamic multidomain proteins greatly facilitates mechanistic analysis. Ligation of expressed domains that are labeled in a desired manner before assembly of the intact molecular machine provides such a strategy. We have elaborated an experimental route using expressed protein ligation (EPL) to create an Hsp70 molecular chaperone (the E. coli Hsp70, DnaK) where only one of the two constituent domains was labeled, in this case with NMR active isotopes, allowing visualization of the single domain in the context of the two domain protein. Several technical obstacles were overcome, including choice of site for ligation with retention of function, optimization of ligation yield, and purification from unreacted domains. Ligated semilabeled DnaK was successfully produced with a Cys residue at position 383, and the ligated product harboring the Cys mutation was confirmed to be functional and identical to an expressed Cys-containing two-domain construct. The NMR spectrum of the segmentally labeled protein was considerably simplified, enabling unequivocal assignment and enhanced analysis of dynamics, as a prelude to exploring the energy landscape for allostery in the Hsp70 family.
Collapse
Affiliation(s)
- Eugenia M Clerico
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst 01003, MA
| | | | | | | |
Collapse
|
40
|
Saecker RM, Record MT, Dehaseth PL. Mechanism of bacterial transcription initiation: RNA polymerase - promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. J Mol Biol 2011; 412:754-71. [PMID: 21371479 DOI: 10.1016/j.jmb.2011.01.018] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/07/2011] [Accepted: 01/08/2011] [Indexed: 10/18/2022]
Abstract
Initiation of RNA synthesis from DNA templates by RNA polymerase (RNAP) is a multi-step process, in which initial recognition of promoter DNA by RNAP triggers a series of conformational changes in both RNAP and promoter DNA. The bacterial RNAP functions as a molecular isomerization machine, using binding free energy to remodel the initial recognition complex, placing downstream duplex DNA in the active site cleft and then separating the nontemplate and template strands in the region surrounding the start site of RNA synthesis. In this initial unstable "open" complex the template strand appears correctly positioned in the active site. Subsequently, the nontemplate strand is repositioned and a clamp is assembled on duplex DNA downstream of the open region to form the highly stable open complex, RP(o). The transcription initiation factor, σ(70), plays critical roles in promoter recognition and RP(o) formation as well as in early steps of RNA synthesis.
Collapse
Affiliation(s)
- Ruth M Saecker
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
41
|
Raha P, Chattopadhyay S, Mukherjee S, Chattopadhyay R, Roy K, Roy S. Alternative Sigma Factors in the Free State Are Equilibrium Mixtures of Open and Compact Conformations. Biochemistry 2010; 49:9809-19. [DOI: 10.1021/bi1011173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Paromita Raha
- Department of Structural Biology and Bioinformatics, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | | | - Srijata Mukherjee
- Department of Structural Biology and Bioinformatics, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Ruchira Chattopadhyay
- Department of Structural Biology and Bioinformatics, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Koushik Roy
- Department of Structural Biology and Bioinformatics, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Siddhartha Roy
- Department of Structural Biology and Bioinformatics, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| |
Collapse
|
42
|
Yeh HY, Chen TC, Liou KM, Hsu HT, Chung KM, Hsu LL, Chang BY. The core-independent promoter-specific interaction of primary sigma factor. Nucleic Acids Res 2010; 39:913-25. [PMID: 20935043 PMCID: PMC3035472 DOI: 10.1093/nar/gkq911] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Previous studies have led to a model in which the promoter-specific recognition of prokaryotic transcription initiation factor, sigma (σ), is core dependent. Most σ functions were studied on the basis of this tenet. Here, we provide in vitro evidence demonstrating that the intact Bacillus subtilis primary sigma, σ(A), by itself, is able to interact specifically with promoter deoxyribonucleic acid (DNA), albeit with low sequence selectivity. The core-independent promoter-specific interaction of the σ(A) is -10 specific. However, the promoter -10 specific interaction is unable to allow the σ(A) to discern the optimal promoter spacing. To fulfill this goal, the σ(A) requires assistance from core RNA polymerase (RNAP). The ability of σ, by itself, to interact specifically with promoter might introduce a critical new dimension of study in prokaryotic σ function.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ban-Yang Chang
- *To whom correspondence should be addressed. Tel: 886 4 2285 3486; Fax: 886 4 2285 3487;
| |
Collapse
|
43
|
Berrade L, Kwon Y, Camarero J. Photomodulation of protein trans-splicing through backbone photocaging of the DnaE split intein. Chembiochem 2010; 11:1368-72. [PMID: 20512791 PMCID: PMC2935465 DOI: 10.1002/cbic.201000157] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Indexed: 01/14/2023]
Abstract
A novel strategy to modulate the assembly and trans-splicing activity of the Ssp DnaE split-intein was achieved by introducing two photolabile protecting groups onto the backbone of the C-intein polypeptide. This modification was not only able to efficiently block the trans-splicing activity, but also reduce significantly the binding affinity constant between the C- and N-intein fragments. The original activity of the wild-type split intein could be fully recovered by brief exposure to UV light.
Collapse
Affiliation(s)
- Luis Berrade
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Youngeun Kwon
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biomedical Engineering, Dongguk University-Seoul, Pildong 3-ga, Seoul, Korea 100-713
| | - Julio Camarero
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
44
|
Promoter melting triggered by bacterial RNA polymerase occurs in three steps. Proc Natl Acad Sci U S A 2010; 107:12523-8. [PMID: 20615963 DOI: 10.1073/pnas.1003533107] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
RNA synthesis, carried out by DNA-dependent RNA polymerase (RNAP) in a process called transcription, involves several stages. In bacteria, transcription initiation starts with promoter recognition and binding of RNAP holoenzyme, resulting in the formation of the closed (R.P(c)) RNAP-promoter DNA complex. Subsequently, a transition to the open R.P(o) complex occurs, characterized by separation of the promoter DNA strands in an approximately 12 base-pair region to form the transcription bubble. Using coarse-grained self-organized polymer models of Thermus aquatics RNAP holoenzyme and promoter DNA complexes, we performed Brownian dynamics simulations of the R.P(c) --> R.P(o) transition. In the fast trajectories, unwinding of the promoter DNA begins by local melting around the -10 element, which is followed by sequential unzipping of DNA till the +2 site. The R.P(c) --> R.P(o) transition occurs in three steps. In step I, dsDNA melts and the nontemplate strand makes stable interactions with RNAP. In step II, DNA scrunches into RNA polymerase and the downstream base pairs sequentially open to form the transcription bubble, which results in strain build up. Subsequently, downstream dsDNA bending relieves the strain as R.P(o) forms. Entry of the dsDNA into the active-site channel of RNAP requires widening of the channel, which occurs by a swing mechanism involving transient movements of a subdomain of the beta subunit caused by steric repulsion with the DNA template strand. If premature local melting away from the -10 element occurs first then the transcription bubble formation is slow involving reformation of the opened base pairs and subsequent sequential unzipping as in the fast trajectories.
Collapse
|
45
|
Volkmann G, Iwaï H. Protein trans-splicing and its use in structural biology: opportunities and limitations. MOLECULAR BIOSYSTEMS 2010; 6:2110-21. [DOI: 10.1039/c0mb00034e] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Skrisovska L, Schubert M, Allain FHT. Recent advances in segmental isotope labeling of proteins: NMR applications to large proteins and glycoproteins. JOURNAL OF BIOMOLECULAR NMR 2010; 46:51-65. [PMID: 19690964 DOI: 10.1007/s10858-009-9362-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 07/17/2009] [Indexed: 05/19/2023]
Abstract
In the last 15 years substantial advances have been made to place isotope labels in native and glycosylated proteins for NMR studies and structure determination. Key developments include segmental isotope labeling using Native Chemical Ligation, Expressed Protein Ligation and Protein Trans-Splicing. These advances are pushing the size limit of NMR spectroscopy further making larger proteins accessible for this technique. It is just emerging that segmental isotope labeling can be used to define inter-domain interactions in NMR structure determination. Labeling of post-translational modified proteins like glycoproteins remains difficult but some promising developments were recently achieved. Key achievements are segmental and site-specific labeling schemes that improve resonance assignment and structure determination of the glycan moiety. We adjusted the focus of this perspective article to concentrate on the NMR applications based on recent developments rather than on labeling methods themselves to illustrate the considerable potential for biomolecular NMR.
Collapse
Affiliation(s)
- Lenka Skrisovska
- Institute for Molecular Biology and Biophysics, ETH Zürich, Zurich, Switzerland
| | | | | |
Collapse
|
47
|
Identification of conserved amino acid residues of the Salmonella sigmaS chaperone Crl involved in Crl-sigmaS interactions. J Bacteriol 2009; 192:1075-87. [PMID: 20008066 DOI: 10.1128/jb.01197-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteins that bind sigma factors typically attenuate the function of the sigma factor by restricting its access to the RNA polymerase (RNAP) core enzyme. An exception to this general rule is the Crl protein that binds the stationary-phase sigma factor sigma(S) (RpoS) and enhances its affinity for the RNAP core enzyme, thereby increasing expression of sigma(S)-dependent genes. Analyses of sequenced bacterial genomes revealed that crl is less widespread and less conserved at the sequence level than rpoS. Seventeen residues are conserved in all members of the Crl family. Site-directed mutagenesis of the crl gene from Salmonella enterica serovar Typhimurium and complementation of a Deltacrl mutant of Salmonella indicated that substitution of the conserved residues Y22, F53, W56, and W82 decreased Crl activity. This conclusion was further confirmed by promoter binding and abortive transcription assays. We also used a bacterial two-hybrid system (BACTH) to show that the four substitutions in Crl abolish Crl-sigma(S) interaction and that residues 1 to 71 in sigma(S) are dispensable for Crl binding. In Escherichia coli, it has been reported that Crl also interacts with the ferric uptake regulator Fur and that Fur represses crl transcription. However, the Salmonella Crl and Fur proteins did not interact in the BACTH system. In addition, a fur mutation did not have any significant effect on the expression level of Crl in Salmonella. These results suggest that the relationship between Crl and Fur is different in Salmonella and E. coli.
Collapse
|
48
|
Berrade L, Camarero JA. Expressed protein ligation: a resourceful tool to study protein structure and function. Cell Mol Life Sci 2009; 66:3909-22. [PMID: 19685006 PMCID: PMC3806878 DOI: 10.1007/s00018-009-0122-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 07/23/2009] [Accepted: 07/28/2009] [Indexed: 01/21/2023]
Abstract
This review outlines the use of expressed protein ligation (EPL) to study protein structure, function and stability. EPL is a chemoselective ligation method that allows the selective ligation of unprotected polypeptides from synthetic and recombinant origin for the production of semi-synthetic protein samples of well-defined and homogeneous chemical composition. This method has been extensively used for the site-specific introduction of biophysical probes, unnatural amino acids, and increasingly complex post-translational modifications. Since it was introduced 10 years ago, EPL applications have grown increasingly more sophisticated in order to address even more complex biological questions. In this review, we highlight how this powerful technology combined with standard biochemical analysis techniques has been used to improve our ability to understand protein structure and function.
Collapse
Affiliation(s)
- Luis Berrade
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, PSC 616, Los Angeles, CA 90033 USA
| | - Julio A. Camarero
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, PSC 616, Los Angeles, CA 90033 USA
| |
Collapse
|
49
|
Sletten E, Bertozzi C. Bioorthogonale Chemie - oder: in einem Meer aus Funktionalität nach Selektivität fischen. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200900942] [Citation(s) in RCA: 522] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Kobashigawa Y, Kumeta H, Ogura K, Inagaki F. Attachment of an NMR-invisible solubility enhancement tag using a sortase-mediated protein ligation method. JOURNAL OF BIOMOLECULAR NMR 2009; 43:145-150. [PMID: 19140010 DOI: 10.1007/s10858-008-9296-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/04/2008] [Accepted: 12/05/2008] [Indexed: 05/27/2023]
Abstract
Sample solubility is essential for structural studies of proteins by solution NMR. Attachment of a solubility enhancement tag, such as GB1, MBP and thioredoxin, to a target protein has been used for this purpose. However, signal overlap of the tag with the target protein often made the spectral analysis difficult. Here we report a sortase-mediated protein ligation method to eliminate NMR signals arising from the tag by preparing the isotopically labeled target protein attached with the non-labeled GB1 tag at the C-terminus.
Collapse
Affiliation(s)
- Yoshihiro Kobashigawa
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | | | | | | |
Collapse
|