1
|
Tjondro HC, Ugonotti J, Kawahara R, Chatterjee S, Loke I, Chen S, Soltermann F, Hinneburg H, Parker BL, Venkatakrishnan V, Dieckmann R, Grant OC, Bylund J, Rodger A, Woods RJ, Karlsson-Bengtsson A, Struwe WB, Thaysen-Andersen M. Hyper-truncated Asn355- and Asn391-glycans modulate the activity of neutrophil granule myeloperoxidase. J Biol Chem 2021; 296:100144. [PMID: 33273015 PMCID: PMC7857493 DOI: 10.1074/jbc.ra120.016342] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
Myeloperoxidase (MPO) plays essential roles in neutrophil-mediated immunity via the generation of reactive oxidation products. Complex carbohydrates decorate MPO at discrete sites, but their functional relevance remains elusive. To this end, we have characterised the structure-biosynthesis-activity relationship of neutrophil MPO (nMPO). Mass spectrometry demonstrated that nMPO carries both characteristic under-processed and hyper-truncated glycans. Occlusion of the Asn355/Asn391-glycosylation sites and the Asn323-/Asn483-glycans, located in the MPO dimerisation zone, was found to affect the local glycan processing, thereby providing a molecular basis of the site-specific nMPO glycosylation. Native mass spectrometry, mass photometry and glycopeptide profiling revealed significant molecular complexity of diprotomeric nMPO arising from heterogeneous glycosylation, oxidation, chlorination and polypeptide truncation variants and a previously unreported low-abundance monoprotomer. Longitudinal profiling of maturing, mature, granule-separated and pathogen-stimulated neutrophils demonstrated that nMPO is dynamically expressed during granulopoiesis, unevenly distributed across granules and degranulated upon activation. We also show that proMPO-to-MPO maturation occurs during early/mid-stage granulopoiesis. While similar global MPO glycosylation was observed across conditions, the conserved Asn355-/Asn391-sites displayed elevated glycan hyper-truncation, which correlated with higher enzyme activities of MPO in distinct granule populations. Enzymatic trimming of the Asn355-/Asn391-glycans recapitulated the activity gain and showed that nMPO carrying hyper-truncated glycans at these positions exhibits increased thermal stability, polypeptide accessibility and ceruloplasmin-mediated inhibition potential relative to native nMPO. Finally, molecular modelling revealed that hyper-truncated Asn355-glycans positioned in the MPO-ceruloplasmin interface are critical for uninterrupted inhibition. Here, through an innovative and comprehensive approach, we report novel functional roles of MPO glycans, providing new insight into neutrophil-mediated immunity.
Collapse
Affiliation(s)
- Harry C Tjondro
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Julian Ugonotti
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Rebeca Kawahara
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Sayantani Chatterjee
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Ian Loke
- Cordlife Group Limited, Singapore, Singapore
| | - Siyun Chen
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Fabian Soltermann
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Hannes Hinneburg
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Benjamin L Parker
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Vignesh Venkatakrishnan
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Regis Dieckmann
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Oliver C Grant
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Johan Bylund
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alison Rodger
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Anna Karlsson-Bengtsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Weston B Struwe
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia.
| |
Collapse
|
2
|
Putz EJ, Palmer MV, Ma H, Casas E, Reinhardt TA, Lippolis JD. Case report: characterization of a persistent, treatment-resistant, novel Staphylococcus aureus infection causing chronic mastitis in a Holstein dairy cow. BMC Vet Res 2020; 16:336. [PMID: 32933523 PMCID: PMC7491080 DOI: 10.1186/s12917-020-02528-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
Background Mastitis is the most common health concern plaguing the modern dairy cow and costs dairy producers estimates of two billion dollars annually. Staphylococcus aureus infections are prevalent, displaying varied disease presentation and markedly low cure rates. Neutrophils are considered the first line of defense against mastitis causing bacteria and are frequently targeted in the development of treatment and prevention technologies. We describe a case of naturally occurring, chronic mastitis in a Holstein cow (1428), caused by a novel strain of S. aureus that was not able to be cleared by antibiotic treatment. Case presentation The infection was identified in a single quarter, 2 months into the cow’s first lactation. The infection persisted for the following 20 months, including through dry off, and a second calving and lactation. This case of mastitis was associated with a consistently high somatic cell count, however presented with no other clinical signs. This cow was unsuccessfully treated with antibiotics commonly used to treat mastitis, consisting of two rounds of treatment during lactation and an additional round at the beginning of dry off. The chronic infection was also unchanged through an experimental mid-lactation treatment with pegylated granulocyte-colony stimulating factor (PEG-gCSF) and an additional periparturient treatment with PEG-gCSF. We isolated milk neutrophils from 1428 and compared them to two cows challenged with experimental S. aureus, strain Newbould 305. Neutrophils from 1428’s milk had higher surface expression of myeloperoxidase compared to experimental Newbould challenged animals, as well as increased presence of Neutrophil Extracellular Traps. This suggests a heightened activation state of neutrophils sourced from 1428’s naturally occurring infection. Upon postmortem examination, the affected quarter revealed multifocal abscesses separated by fibrous connective tissues. Abscesses were most common in the gland cistern and collecting duct region. Microscopically, the inflammatory reaction was pyogranulomatous to granulomatous and consistent with botryomycosis. Colonies of Gram-positive cocci were found within the eosinophilic matrix of the Splendore-Hoeppli reaction within granulomas and intracellularly within the acinar epithelium. Conclusions Collectively, we describe a unique case of chronic mastitis, the characterization of which provides valuable insight into the mechanics of S. aureus treatment resistance and immune escape.
Collapse
Affiliation(s)
- Ellie J Putz
- USDA-ARS-National Animal Disease Center, Infectious Bacterial Diseases Research Unit, Ames, IA, USA.,USDA-ARS-National Animal Disease Center, Ruminant Disease and Immunology Research Unit, Ames, IA, USA
| | - Mitchell V Palmer
- USDA-ARS-National Animal Disease Center, Infectious Bacterial Diseases Research Unit, Ames, IA, USA
| | - Hao Ma
- USDA-ARS-National Animal Disease Center, Ruminant Disease and Immunology Research Unit, Ames, IA, USA
| | - Eduardo Casas
- USDA-ARS-National Animal Disease Center, Ruminant Disease and Immunology Research Unit, Ames, IA, USA
| | - Timothy A Reinhardt
- USDA-ARS-National Animal Disease Center, Ruminant Disease and Immunology Research Unit, Ames, IA, USA
| | - John D Lippolis
- USDA-ARS-National Animal Disease Center, Ruminant Disease and Immunology Research Unit, Ames, IA, USA.
| |
Collapse
|
3
|
Li Z, Xiao G, Lyu M, Wang Y, He S, Du H, Wang X, Feng Y, Zhu Y. Shuxuening injection facilitates neurofunctional recovery via down-regulation of G-CSF-mediated granulocyte adhesion and diapedesis pathway in a subacute stroke mouse model. Biomed Pharmacother 2020; 127:110213. [PMID: 32417690 DOI: 10.1016/j.biopha.2020.110213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/19/2020] [Accepted: 04/28/2020] [Indexed: 01/09/2023] Open
Abstract
Post-stroke neural damage is a serious health concern which does not yet have an effective treatment. We have shown previously that Shuxuening injection (SXNI), a Ginkgo biloba extract-based natural medicine, protects brain after an acute ischemic stroke, but its efficacy for post-stroke recovery is not known. This study was to investigate whether SXNI can improve the prognosis of stroke at a subacute phase. Mice with cerebral ischemia-reperfusion injury (CIRI) were established by middle cerebral artery occlusion (MCAO), and drugs or saline were injected by the tail vein every 12 h after reperfusion. The therapeutic effect of SXNI was evaluated by survival rate, modified neurologic severity scores (mNSS), open-field test, locomotive gait patterns, cerebral infarction volume, brain edema and histopathological changes. Subsequently, a combined method of RNA-seq and Ingenuity® Pathway Analysis (IPA) was performed to identify key targets and pathways of SXNI facilitating the prognosis of stroke in mouse brain. The results of the transcriptome analysis were verified by real time reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), western blot (WB) and immunohistochemistry (IHC). The experimental results showed that in the new subacute stroke model, SXNI markedly improves the survival rate, neurological and motor functions and histopathological changes, and significantly reduces cerebral infarction and edema volume. RNA-seq analysis of subacute stroke mice with or without SXNI (3 mL/kg) indicated 963 differentially expressed genes (DEGs) with a fold change ≥ 1.5 and a P-value ≤ 0.01. IPA analysis of DEGs showed that granulocyte adhesion and diapedesis ranked first in the pathway ranking, and the most critical gene regulated by SXNI was G-csf. Simultaneously, RT-PCR, ELISA, WB and IHC results demonstrated that SXNI not only obviously reduced the mRNA expression levels of key genes G-csf, Sele and Mac-1 in this pathway, but also significantly decreased the protein expression levels of G-CSF in serum and E-selectin and MAC-1 in brain tissues. In summary, our research suggested that SXNI can exert a remarkable neurofunctional therapeutic effect on stroke mice via down-regulating G-CSF to inhibit granulocyte adhesion and diapedesis. This study provides experimental evidence that SXNI may fulfill the need for stroke medicine targeting specifically at the recovery stage.
Collapse
Affiliation(s)
- Zhixiong Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Guangxu Xiao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Ming Lyu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yule Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Shuang He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Hongxia Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Xintong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Yuxin Feng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin, 301617, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, 220 Dongting Road, TEDA, Tianjin, 300457, China.
| |
Collapse
|
4
|
Putz EJ, Eder JM, Reinhardt TA, Sacco RE, Casas E, Lippolis JD. Differential phenotype of immune cells in blood and milk following pegylated granulocyte colony-stimulating factor therapy during a chronic Staphylococcus aureus infection in lactating Holsteins. J Dairy Sci 2019; 102:9268-9284. [PMID: 31400902 DOI: 10.3168/jds.2019-16448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/10/2019] [Indexed: 01/23/2023]
Abstract
Neutrophils are principal host innate immune cell responders to mastitis infections. Thus, therapies have been developed that target neutrophil expansion. This includes the neutrophil-stimulating cytokine granulocyte colony-stimulating factor (gCSF). Pegylated gCSF (PEG-gCSF; Imrestor, Elanco Animal Health, Greenfield, IN) has been shown to reduce the natural incidence of mastitis in periparturient cows in commercial settings and reduce severity of disease against experimental mastitis challenge. Pegylated gCSF stimulates neutrophil expansion but also induces changes in monocyte and lymphocyte circulating numbers, surface protein expression changes, or both. We hypothesized that PEG-gCSF modulates surface expression of monocytes and neutrophils and facilitates their migration to the mammary gland. We challenged 8 mid-lactation Holsteins with approximately 150 cfu of Staphylococcus aureus (Newbould 305) in a single quarter via intramammary infusion. All animals developed chronic infections as assessed by bacteria counts and somatic cell counts (SCC). Ten to 16 wk postchallenge, 4 of the animals were treated with 2 subcutaneous injections of PEG-gCSF 7 d apart. Complete blood counts, SCC, bacterial counts, milk yield, feed intake, neutrophils extracellular trap analysis, and flow cytometric analyses of milk and blood samples were performed at indicated time points for 14 d after the first PEG-gCSF injection. The PEG-gCSF-treated cows had significantly increased numbers of blood neutrophils and lymphocytes compared with control cows. Flow cytometric analyses revealed increased surface expression of myeloperoxidase (MPO) on neutrophils and macrophages in milk but not in blood of treated cows. Neutrophils isolated from blood of PEG-gCSF-treated cows had decreased surface expression of CD62L (L-selectin) in blood, consistent with cell activation. Surprisingly, CD62L cell surface expression was increased on neutrophils and macrophages sourced from milk from treated animals compared with cells isolated from controls. The PEG-gCSF-treated cows did not clear the S. aureus infection, nor did they significantly differ in SCC from controls. These findings provide evidence that PEG-gCSF therapy modifies cell surface expression of neutrophils and monocytes. However, although surface MPO+ cells accumulate in the mammary gland, the lack of bacterial control from these milk-derived cells suggests an incomplete role for PEG-gCSF treatment against chronic S. aureus infection and possibly chronic mammary infections in general.
Collapse
Affiliation(s)
- E J Putz
- Ruminant Diseases and Immunology Research Unit, USDA Agricultural Research Service, National Animal Disease Center, Ames, IA 50010; Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN 37830
| | - J M Eder
- Ruminant Diseases and Immunology Research Unit, USDA Agricultural Research Service, National Animal Disease Center, Ames, IA 50010; Immunobiology Interdepartmental Graduate Program, Iowa State University, Ames 50011
| | - T A Reinhardt
- Ruminant Diseases and Immunology Research Unit, USDA Agricultural Research Service, National Animal Disease Center, Ames, IA 50010
| | - R E Sacco
- Ruminant Diseases and Immunology Research Unit, USDA Agricultural Research Service, National Animal Disease Center, Ames, IA 50010; Immunobiology Interdepartmental Graduate Program, Iowa State University, Ames 50011
| | - E Casas
- Ruminant Diseases and Immunology Research Unit, USDA Agricultural Research Service, National Animal Disease Center, Ames, IA 50010
| | - J D Lippolis
- Ruminant Diseases and Immunology Research Unit, USDA Agricultural Research Service, National Animal Disease Center, Ames, IA 50010.
| |
Collapse
|
5
|
Hosseini M, Rezvani HR, Aroua N, Bosc C, Farge T, Saland E, Guyonnet-Dupérat V, Zaghdoudi S, Jarrou L, Larrue C, Sabatier M, Mouchel PL, Gotanègre M, Piechaczyk M, Bossis G, Récher C, Sarry JE. Targeting Myeloperoxidase Disrupts Mitochondrial Redox Balance and Overcomes Cytarabine Resistance in Human Acute Myeloid Leukemia. Cancer Res 2019; 79:5191-5203. [PMID: 31358527 DOI: 10.1158/0008-5472.can-19-0515] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/29/2019] [Accepted: 07/19/2019] [Indexed: 11/16/2022]
Abstract
Chemotherapies alter cellular redox balance and reactive oxygen species (ROS) content. Recent studies have reported that chemoresistant cells have an increased oxidative state in hematologic malignancies. In this study, we demonstrated that chemoresistant acute myeloid leukemia (AML) cells had a lower level of mitochondrial and cytosolic ROS in response to cytarabine (AraC) and overexpressed myeloperoxidase (MPO), a heme protein that converts hydrogen peroxide to hypochlorous acid (HOCl), compared with sensitive AML cells. High MPO-expressing AML cells were less sensitive to AraC in vitro and in vivo. They also produced higher levels of HOCl and exhibited an increased rate of mitochondrial oxygen consumption when compared with low MPO-expressing AML cells. Targeting MPO expression or enzyme activity sensitized AML cells to AraC treatment by triggering oxidative damage and sustaining oxidative stress, particularly in high MPO-expressing AML cells. This sensitization stemmed from mitochondrial superoxide accumulation, which impaired oxidative phosphorylation and cellular energetic balance, driving apoptotic death and selective eradication of chemoresistant AML cells in vitro and in vivo. Altogether, this study uncovers a noncanonical function of MPO enzyme in maintaining redox balance and mitochondrial energetic metabolism, therefore affecting downstream pathways involved in AML chemoresistance. SIGNIFICANCE: These findings demonstrate the role of myeloperoxidase in the regulation of ROS levels and sensitivity of AML cells to cytarabine, an essential chemotherapeutic backbone in the therapy of AML.
Collapse
Affiliation(s)
- Mohsen Hosseini
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Hamid Reza Rezvani
- INSERM U1035, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Nesrine Aroua
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Claudie Bosc
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Thomas Farge
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Estelle Saland
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | | | - Sonia Zaghdoudi
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Latifa Jarrou
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Clément Larrue
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Marie Sabatier
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Pierre Luc Mouchel
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France.,Service d'Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, Toulouse, France
| | - Mathilde Gotanègre
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Marc Piechaczyk
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Equipe Labellisée LIGUE, Montpellier, France
| | - Guillaume Bossis
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Equipe Labellisée LIGUE, Montpellier, France
| | - Christian Récher
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France.,Service d'Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, Toulouse, France
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Equipe Labellisée LIGUE 2018, Toulouse, France. .,University of Toulouse, Toulouse, France
| |
Collapse
|
6
|
Lippolis J, Powell E, Reinhardt T, Thacker T, Casas E. Symposium review: Omics in dairy and animal science—Promise, potential, and pitfalls. J Dairy Sci 2019; 102:4741-4754. [DOI: 10.3168/jds.2018-15267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/06/2018] [Indexed: 01/08/2023]
|
7
|
Yang J, Lou S, Kong D, Li C. Surface Engineering of Pancreatic Islets with a Heparinized StarPEG Nanocoating. J Vis Exp 2018:56879. [PMID: 29985314 PMCID: PMC6101986 DOI: 10.3791/56879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cell surface engineering can protect implanted cells from host immune attack. It can also reshape cellular landscape to improve graft function and survival post-transplantation. This protocol aims to achieve surface engineering of pancreatic islets using an ultrathin heparin-incorporated starPEG (Hep-PEG) nanocoating. To generate the Hep-PEG nanocoating for pancreatic islet surface engineering, heparin succinimidyl succinate (Heparin-NHS) was first synthesized by modification of its carboxylate groups using N-(3-dimethylamino propyl)-N'-ethyl carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). The Hep-PEG mixture was then formed by crosslinking of the amino end-functionalized eight-armed starPEG (starPEG-(NH2)8) and Heparin-NHS. For islet surface coating, mouse islets were isolated via collagenase digestion and gradient purification using Histopaque. Isolated islets were then treated with ice cold Hep-PEG solution for 10 min to allow covalent binding between NHS and the amine groups of islet cell membrane. Nanocoating with the Hep-PEG incurs minimal alteration to islet size and volume and heparinization of the islets with Hep-PEG may also reduce instant blood-mediated inflammatory reaction during islet transplantation. This "easy-to-adopt" approach is mild enough for surface engineering of living cells without compromising cell viability. Considering that heparin has shown binding affinity to multiple cytokines, the Hep-PEG nanocoating also provides an open platform that enables incorporation of unlimited functional biological mediators and multi-layered surfaces for living cell surface bioengineering.
Collapse
Affiliation(s)
- Jingyi Yang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College
| | - Shaofeng Lou
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College
| | - Chen Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College;
| |
Collapse
|
8
|
Powell EJ, Reinhardt TA, Casas E, Lippolis JD. The effect of pegylated granulocyte colony-stimulating factor treatment prior to experimental mastitis in lactating Holsteins. J Dairy Sci 2018; 101:8182-8193. [PMID: 29885891 DOI: 10.3168/jds.2018-14550] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/24/2018] [Indexed: 12/27/2022]
Abstract
Neutrophils are the first-acting and most prominent cellular defense against mastitis-causing pathogens. This makes neutrophil activation and expansion obvious candidates for targeted therapeutics. The granulocyte colony-stimulating factor (G-CSF) cytokine stimulates the bone marrow to produce granulocytes and stem cells and release them into the bloodstream, which results in neutrophilia as well as increasing the presence of other progenitor cells in the bloodstream. A pegylated form of G-CSF (PEG-gCSF) has been shown to significantly decrease naturally occurring mastitis rates in cows postpartum. The use of PEG-gCSF had not been evaluated in response to an experimental mastitis challenge. In an effort to examine the effect and mechanism of PEG-gCSF treatment, we challenged 11 mid-lactation Holsteins with ∼400 cfu Escherichia coli P4 by intramammary infusion. Five cows received 2 PEG-gCSF injections, one at 14 d and the other at 7 d before disease challenge, and 6 cows remained untreated. To evaluate the response of cows to the PEG-gCSF treatment, we measured complete blood counts, somatic cell counts, bacterial counts, milk yield, and feed intake data. The PEG-gCSF-treated cows had significantly increased circulating levels of neutrophils and lymphocytes after each PEG-gCSF injection, as well as following mastitis challenge. The PEG-gCSF-treated cows had significantly lower bacterial counts and lower milk BSA levels at the peak of infection. In addition, control cows had significant decreases in milk yield postinfection and significantly reduced feed intake postinfection compared with PEG-gCSF-treated cows. Collectively, PEG-gCSF treatment resulted in reduced disease severity when administered before a bacterial challenge. Mechanistically, we show that G-CSF treatment increases cell surface expression of an E-selectin ligand before infection on neutrophils and monocytes found in the blood. These cells quickly disappear from the blood shortly after infection, suggesting a mechanism for the reduced mastitis severity by priming immune cells for quick targeting to the site of infection.
Collapse
Affiliation(s)
- E J Powell
- Ruminant Diseases and Immunology Research Unit, USDA Agricultural Research Service, National Animal Disease Center, Ames, IA 50010; Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN 37830
| | - T A Reinhardt
- Ruminant Diseases and Immunology Research Unit, USDA Agricultural Research Service, National Animal Disease Center, Ames, IA 50010
| | - E Casas
- Ruminant Diseases and Immunology Research Unit, USDA Agricultural Research Service, National Animal Disease Center, Ames, IA 50010
| | - J D Lippolis
- Ruminant Diseases and Immunology Research Unit, USDA Agricultural Research Service, National Animal Disease Center, Ames, IA 50010.
| |
Collapse
|
9
|
Vanhamme L, Zouaoui Boudjeltia K, Van Antwerpen P, Delporte C. The other myeloperoxidase: Emerging functions. Arch Biochem Biophys 2018; 649:1-14. [PMID: 29614255 DOI: 10.1016/j.abb.2018.03.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/07/2018] [Accepted: 03/30/2018] [Indexed: 12/20/2022]
Abstract
Myeloperoxidase (MPO) is a member of the mammalian peroxidase family. It is mainly expressed in neutrophils, monocytes and macrophages. As a catalyzer of reactive oxidative species and radical species formation, it contributes to neutrophil bactericidal activity. Nevertheless MPO invalidation does not seem to have major health consequences in affected individuals. This suggests that MPO might have alternative functions supporting its conservation during evolution. We will review the available data supporting these non-canonical functions in terms of tissue specific expression, function and enzymatic activity. Thus, we discuss its cell type specific expression. We review in between others its roles in angiogenesis, endothelial (dys-) function, immune reaction, and inflammation. We summarize its pathological actions in clinical conditions such as cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Luc Vanhamme
- Laboratory of Molecular Biology of Inflammation, IBMM, Faculty of Sciences, Université Libre de Bruxelles, Gosselies, Belgium; Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium.
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| | - Pierre Van Antwerpen
- Pharmacognosy, Bioanalysis and Drug Discovery Unit, RD3, and Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - Cédric Delporte
- Pharmacognosy, Bioanalysis and Drug Discovery Unit, RD3, and Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
10
|
Lou S, Zhang X, Zhang J, Deng J, Kong D, Li C. Pancreatic islet surface bioengineering with a heparin-incorporated starPEG nanofilm. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:24-31. [PMID: 28575981 DOI: 10.1016/j.msec.2017.03.295] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/28/2017] [Accepted: 03/31/2017] [Indexed: 01/06/2023]
Abstract
Cell surface engineering could protect implanted cells from host immune rejections while modify the cellular landscape for better post-transplantation graft function and survival. Islet transplantation is considered the most promising therapeutic option with the potential to cure diabetes. Current approach to improve clinical efficacy of pancreatic islet transplantation is alginate encapsulation. However, disappointing outcomes have been reported in clinical trials due to larger islet size resulted by encapsulation and alginate-elicited host immune responses. We have developed an ultrathin nanofilm of starPEG with incorporated heparin (Hep-PEG) that binds covalently to the amine groups of islet surface membrane via its N-hydroxysuccinimide groups. The Hep-PEG nanocoating elicited minimal alteration on islet volume in culture. Hep-PEG-coated islets exhibited robust islet viability accompanied by uncompromised islet insulin secretory function. Instant blood-mediated inflammatory reaction was also reduced by Hep-PEG islet coating, accompanied by enhanced intra-islet revascularization. In addition, despite its semi-permeability, Hep-PEG islet coating promoted the survival of islets exposed to pro-inflammatory cytokines. Considering that inflammation and hypoxia are primary causes of immediate cell loss for cell therapy, the Hep-PEG nanofilm represents a viable approach for cell surface engineering which would improve the clinical outcome of cell therapies.
Collapse
Affiliation(s)
- Shaofeng Lou
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiuyuan Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science& Peking Union Medical College, Tianjin 300192, China
| | - Jimin Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Juan Deng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science& Peking Union Medical College, Tianjin 300192, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science& Peking Union Medical College, Tianjin 300192, China.
| | - Chen Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science& Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
11
|
Silva M, Fung RKF, Donnelly CB, Videira PA, Sackstein R. Cell-Specific Variation in E-Selectin Ligand Expression among Human Peripheral Blood Mononuclear Cells: Implications for Immunosurveillance and Pathobiology. THE JOURNAL OF IMMUNOLOGY 2017; 198:3576-3587. [PMID: 28330896 DOI: 10.4049/jimmunol.1601636] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/22/2017] [Indexed: 12/26/2022]
Abstract
Both host defense and immunopathology are shaped by the ordered recruitment of circulating leukocytes to affected sites, a process initiated by binding of blood-borne cells to E-selectin displayed at target endothelial beds. Accordingly, knowledge of the expression and function of leukocyte E-selectin ligands is key to understanding the tempo and specificity of immunoreactivity. In this study, we performed E-selectin adherence assays under hemodynamic flow conditions coupled with flow cytometry and Western blot analysis to elucidate the function and structural biology of glycoprotein E-selectin ligands expressed on human PBMCs. Circulating monocytes uniformly express high levels of the canonical E-selectin binding determinant sialyl Lewis X (sLeX) and display markedly greater adhesive interactions with E-selectin than do circulating lymphocytes, which exhibit variable E-selectin binding among CD4+ and CD8+ T cells but no binding by B cells. Monocytes prominently present sLeX decorations on an array of protein scaffolds, including P-selectin glycoprotein ligand-1, CD43, and CD44 (rendering the E-selectin ligands cutaneous lymphocyte Ag, CD43E, and hematopoietic cell E-selectin/L-selectin ligand, respectively), and B cells altogether lack E-selectin ligands. Quantitative PCR gene expression studies of glycosyltransferases that regulate display of sLeX reveal high transcript levels among circulating monocytes and low levels among circulating B cells, and, commensurately, cell surface α(1,3)-fucosylation reveals that acceptor sialyllactosaminyl glycans convertible into sLeX are abundantly expressed on human monocytes yet are relatively deficient on B cells. Collectively, these findings unveil distinct cell-specific patterns of E-selectin ligand expression among human PBMCs, indicating that circulating monocytes are specialized to engage E-selectin and providing key insights into the molecular effectors mediating recruitment of these cells at inflammatory sites.
Collapse
Affiliation(s)
- Mariana Silva
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal.,Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115.,Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA 02115
| | - Ronald Kam Fai Fung
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115.,Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115.,Medical Training and Administration Unit, Royal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia; and
| | - Conor Brian Donnelly
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115.,Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA 02115
| | - Paula Alexandra Videira
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal.,Unidade de Ciências Biomoleculares Aplicadas, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Robert Sackstein
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115; .,Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
12
|
Mula RVR, Machiah D, Holland L, Wang X, Parihar H, Sharma AC, Selvaraj P, Shashidharamurthy R. Immune Complex-Induced, Nitric Oxide-Mediated Vascular Endothelial Cell Death by Phagocytes Is Prevented with Decoy FcγReceptors. PLoS One 2016; 11:e0153620. [PMID: 27101012 PMCID: PMC4839578 DOI: 10.1371/journal.pone.0153620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/31/2016] [Indexed: 01/05/2023] Open
Abstract
Autoimmune vasculitis is an endothelial inflammatory disease that results from the deposition of immune-complexes (ICs) in blood vessels. The interaction between Fcgamma receptors (FcγRs) expressed on inflammatory cells with ICs is known to cause blood vessel damage. Hence, blocking the interaction of ICs and inflammatory cells is essential to prevent the IC-mediated blood vessel damage. Thus we tested if uncoupling the interaction of FcγRs and ICs prevents endothelium damage. Herein, we demonstrate that dimeric FcγR-Igs prevented nitric oxide (NO) mediated apoptosis of human umbilical vein endothelial cells (HUVECs) in an in vitro vasculitis model. Dimeric FcγR-Igs significantly inhibited the IC-induced upregulation of inducible nitric oxide synthase (iNOS) and nitric oxide (NO) release by murine monocytic cell line. However, FcγR-Igs did not affect the exogenously added NO-induced upregulation of pro-apoptotic genes such as Bax (15 fold), Bak (35 fold), cytochrome-C (11 fold) and caspase-3 (30 fold) in HUVECs. In conclusion, these data suggest that IC-induced NO could be one of the major inflammatory mediator promoting blood vessel inflammation and endothelial cell death during IC-mediated vasculitis which can be effectively blocked by dimeric decoy FcγRs.
Collapse
Affiliation(s)
- Ramanjaneya V. R. Mula
- Department of Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine - School of Pharmacy, Suwanee, Georgia, United States of America
| | - Deepa Machiah
- Department of Molecular Pathology Laboratory, Yerkes National Primate Research Centre, Atlanta, Georgia, United States of America
| | - Lauren Holland
- Department of Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine - School of Pharmacy, Suwanee, Georgia, United States of America
| | - Xinyu Wang
- Department of Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine - School of Pharmacy, Suwanee, Georgia, United States of America
| | - Harish Parihar
- Department of Pharmacy Practice, Philadelphia College of Osteopathic Medicine - School of Pharmacy, Suwanee, Georgia, United States of America
| | - Avadhesh C. Sharma
- Department of Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine - School of Pharmacy, Suwanee, Georgia, United States of America
| | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Rangaiah Shashidharamurthy
- Department of Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine - School of Pharmacy, Suwanee, Georgia, United States of America
- * E-mail:
| |
Collapse
|
13
|
S100A8/A9 is an important host defence mediator in neuropathic foot ulcers in patients with type 2 diabetes mellitus. Arch Dermatol Res 2016; 308:347-55. [PMID: 27084691 DOI: 10.1007/s00403-016-1646-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 02/04/2016] [Accepted: 03/30/2016] [Indexed: 01/13/2023]
Abstract
Chronic wounds and in particular diabetic foot ulcers (DFUs) are a growing clinical challenge, but the underlying molecular pathophysiological mechanisms are unclear. Recently, we reported reduced levels of the immunomodulating and antimicrobial S100A8/A9 in non-healing venous leg ulcers (VLUs), while another study found increased S100A8/A9 in DFUs. To clarify these apparently contradictory findings, we compared S100A8/A9 as well as an inducer, lipopolysaccharide (LPS) and selected innate immune response mediators in wound fluids from non-healing DFUs and VLUs with healing wounds. Wound fluids were collected from neuropathic DFUs (n = 6) and VLUs (n = 9) of median 2-year duration, and split-thickness skin graft donor site wounds (n = 10) by standardized method. None of the patients had ischaemic extremities or clinically infected wounds. LPS was determined by limulus amoebocyte lysate test, and S100A8/A9, granulocyte colony-stimulating factor (G-CSF), interleukin (IL)-10 and vascular endothelial growth factor (VEGF) by immunospecific quantitative assays. LPS levels were median 8.7 (interquartile range 5.4-21.2) ng/ml in DFUs compared with 121 (22-2000) ng/ml in VLUs. S100A8/A9 was higher (p = 0.020) in DFUs [718 (634-811) µg/ml] than in VLUs [303 (252-533) µg/ml]. Neither G-CSF nor IL-10 wound fluid levels differed significantly between the chronic wound groups. VEGF levels correlated with LPS (r = 0.758, p = 0.011, n = 10) and were higher (p = 0.024) in VLU wound fluids. LPS (p < 0.0001), S100A8/A9 (p = 0.005), G-CSF (p = 0.003), IL-10 (p = 0.003) and VEGF (p = 0.005) were increased in chronic wound fluids combined compared with the sterile donor site wound fluids. The protein alterations in the wounds were not reflected in the patients' sera. Low S100A8/A9 levels may contribute to poor wound healing in colonized chronic wounds with striking difference between DFUs and VLUs.
Collapse
|
14
|
Goldberg GL, Cornish AL, Murphy J, Pang ES, Lim LL, Campbell IK, Scalzo-Inguanti K, Chen X, McMenamin PG, Maraskovsky E, McKenzie BS, Wicks IP. G-CSF and Neutrophils Are Nonredundant Mediators of Murine Experimental Autoimmune Uveoretinitis. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:172-84. [DOI: 10.1016/j.ajpath.2015.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 09/11/2015] [Accepted: 09/24/2015] [Indexed: 10/22/2022]
|
15
|
Selectin-mediated leukocyte trafficking during the development of autoimmune disease. Autoimmun Rev 2015; 14:984-95. [DOI: 10.1016/j.autrev.2015.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/18/2015] [Indexed: 12/18/2022]
|
16
|
Gabius HJ, Kaltner H, Kopitz J, André S. The glycobiology of the CD system: a dictionary for translating marker designations into glycan/lectin structure and function. Trends Biochem Sci 2015; 40:360-76. [PMID: 25981696 DOI: 10.1016/j.tibs.2015.03.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 12/21/2022]
Abstract
The profile of cell surface molecules, the biochemical platform for cellular communication, can be likened to a molecular fingerprint. Historically, raising monoclonal antibodies by immunization with cells has been instrumental in obtaining tools suited for phenotyping and functional analysis. Initially for leukocyte antigens, the resulting cluster of differentiation (CD) nomenclature has become a popular system for classification. Glycans presented on proteins or lipids and receptors for carbohydrate structures (lectins) are part of the CD list. Our review presents biochemical and biomedical highlights of the respective CD entries.
Collapse
Affiliation(s)
- Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Veterinärstraße 13, 80539 Munich, Germany.
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Veterinärstraße 13, 80539 Munich, Germany
| | - Jürgen Kopitz
- Institute of Pathology, Department of Applied Tumor Biology, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Veterinärstraße 13, 80539 Munich, Germany
| |
Collapse
|