1
|
Singh N, Kaushik R, Prakash A, Singh Saini S, Garg S, Adhikary A, Ladher RK. Mosaic Atoh1 deletion in the chick auditory epithelium reveals a homeostatic mechanism to restore hair cell number. Dev Biol 2024; 516:35-46. [PMID: 39074652 DOI: 10.1016/j.ydbio.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
The mechanosensory hair cell of the vertebrate inner ear responds to the mechanical deflections that result from hearing or change in the acceleration due to gravity, to allow us to perceive and interpret sounds, maintain balance and spatial orientation. In mammals, ototoxic compounds, disease, and acoustic trauma can result in damage and extrusion of hair cells, without replacement, resulting in hearing loss. In contrast, non-mammalian vertebrates can regenerate sensory hair cells. Upon damage, hair cells are extruded and an associated cell type, the supporting cell is transformed into a hair cell. The mechanisms that can trigger regeneration are not known. Using mosaic deletion of the hair cell master gene, Atoh1, in the embryonic avian inner ear, we find that despite hair cells depletion at E9, by E12, hair cell number is restored in sensory epithelium. Our study suggests a homeostatic mechanism can restores hair cell number in the basilar papilla, that is activated when juxtracrine signalling is disrupted. Restoration of hair cell numbers during development may mirror regenerative processes, and our work provides insights into the mechanisms that trigger regeneration.
Collapse
Affiliation(s)
- Nishant Singh
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK PO, Bellary Road, Bangalore, 560065, India; The University of Trans-Disciplinary Health Sciences and Technology, Yelahanka, Bangalore, 560064, India
| | - Raman Kaushik
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK PO, Bellary Road, Bangalore, 560065, India
| | - Anubhav Prakash
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK PO, Bellary Road, Bangalore, 560065, India; Ashoka University, Sonipat, Haryana, 131029, India
| | - Surjit Singh Saini
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK PO, Bellary Road, Bangalore, 560065, India
| | - Sonal Garg
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK PO, Bellary Road, Bangalore, 560065, India
| | - Adrija Adhikary
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK PO, Bellary Road, Bangalore, 560065, India
| | - Raj K Ladher
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK PO, Bellary Road, Bangalore, 560065, India.
| |
Collapse
|
2
|
Bell JM, Turner EM, Biesemeyer C, Vanderbeck MM, Hendricks R, McGraw HF. foxg1a is required for hair cell development and regeneration in the zebrafish lateral line. Biol Open 2024; 13:bio060580. [PMID: 39301848 PMCID: PMC11423914 DOI: 10.1242/bio.060580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
Mechanosensory hair cells located in the inner ear mediate the sensations of hearing and balance. If damaged, mammalian inner ear hair cells are unable to regenerate, resulting in permanent sensory deficits. Aquatic vertebrates like zebrafish (Danio rerio) have a specialized class of mechanosensory hair cells found in the lateral line system, allowing them to sense changes in water current. Unlike mammalian inner ear hair cells, lateral line hair cells can robustly regenerate following damage. In mammals, the transcription factor Foxg1 functions to promote normal development of the inner ear. Foxg1a is expressed in lateral line sensory organs in zebrafish larvae, but its function during lateral line development and regeneration has not been investigated. Our study demonstrates that mutation of foxg1a results in slower posterior lateral line primordium migration and delayed neuromast formation. In developing and regenerating neuromasts, we find that loss of Foxg1a function results in reduced hair cell numbers, as well as decreased proliferation of neuromast cells. Foxg1a specifically regulates the development and regeneration of Islet1-labeled hair cells. These data suggest that Foxg1 may be a valuable target for investigation of clinical hair cell regeneration.
Collapse
Affiliation(s)
- Jon M. Bell
- University of Missouri Kansas City, School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, MO 64110, USA
| | - Emily M. Turner
- University of Missouri Kansas City, School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, MO 64110, USA
| | - Cole Biesemeyer
- University of Missouri Kansas City, School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, MO 64110, USA
- Research Organisms, Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Madison M. Vanderbeck
- University of Missouri Kansas City, School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, MO 64110, USA
| | - Roe Hendricks
- University of Missouri Kansas City, School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, MO 64110, USA
| | - Hillary F. McGraw
- University of Missouri Kansas City, School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, MO 64110, USA
| |
Collapse
|
3
|
Yuan S, Leng P, Feng Y, Jin F, Zhang H, Zhang C, Huang Y, Shan Z, Yang Z, Hao Q, Chen S, Chen L, Cao D, Guo W, Yang H, Chen H, Zhou X. Comparative genomic and transcriptomic analyses provide new insight into symbiotic host specificity. iScience 2024; 27:110207. [PMID: 38984200 PMCID: PMC11231455 DOI: 10.1016/j.isci.2024.110207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/03/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024] Open
Abstract
Host specificity plays important roles in expanding the host range of rhizobia, while the genetic information responsible for host specificity remains largely unexplored. In this report, the roots of four symbiotic systems with notable different symbiotic phenotypes and the control were studied at four different post-inoculation time points by RNA sequencning (RNA-seq). The differentially expressed genes (DEGs) were divided into "found only in soybean or Lotus," "only expressed in soybean or Lotus," and "expressed in both hosts" according to the comparative genomic analysis. The distributions of enriched function ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways vary significantly in different symbiotic systems. Host specific genes account for the majority of the DEGs involved in response to stimulus, associated with plant-pathogen interaction pathways, and encoding resistance (R) proteins, the symbiotic nitrogen fixation (SNF) proteins and the target proteins in the SNF-related modules. Our findings provided molecular candidates for better understanding the mechanisms of symbiotic host-specificity.
Collapse
Affiliation(s)
- Songli Yuan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Piao Leng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yong Feng
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Fuxiao Jin
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Hui Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Chanjuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zhihui Shan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zhonglu Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qingnan Hao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Shuilian Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Limiao Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Dong Cao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Wei Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Hongli Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Haifeng Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xinan Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
4
|
Ma J, Xia M, Guo J, Li W, Sun S, Chen B. MEK/ERK signaling drives the transdifferentiation of supporting cells into functional hair cells by modulating the Notch pathway. Stem Cells Transl Med 2024; 13:661-677. [PMID: 38709826 PMCID: PMC11227976 DOI: 10.1093/stcltm/szae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/02/2024] [Indexed: 05/08/2024] Open
Abstract
Loss of cochlear hair cells (HCs) leads to permanent hearing loss in mammals, and regenerative medicine is regarded as an ideal strategy for hearing recovery. Limited genetic and pharmaceutical approaches for HC regeneration have been established, and the existing strategies cannot achieve recovery of auditory function. A promising target to promote HC regeneration is MEK/ERK signaling because dynamic shifts in its activity during the critical stages of inner ear development have been observed. Here, we first showed that MEK/ERK signaling is activated specifically in supporting cells (SCs) after aminoglycoside-induced HC injury. We then selected 4 MEK/ERK signaling inhibitors, and PD0325901 (PD03) was found to induce the transdifferentiation of functional supernumerary HCs from SCs in the neonatal mammalian cochlear epithelium. We next found that PD03 facilitated the generation of HCs in inner ear organoids. Through genome-wide high-throughput RNA sequencing and verification, we found that the Notch pathway is the downstream target of MEK/ERK signaling. Importantly, delivery of PD03 into the inner ear induced mild HC regeneration in vivo. Our study thus reveals the importance of MEK/ERK signaling in cell fate determination and suggests that PD03 might serve as a new approach for HC regeneration.
Collapse
Affiliation(s)
- Jiaoyao Ma
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Mingyu Xia
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Jin Guo
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Wen Li
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Shan Sun
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Bing Chen
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200032, People’s Republic of China
| |
Collapse
|
5
|
Sierra NC, Olsman N, Yi L, Pachter L, Goentoro L, Gold DA. A Novel Approach to Comparative RNA-Seq Does Not Support a Conserved Set of Orthologs Underlying Animal Regeneration. Genome Biol Evol 2024; 16:evae120. [PMID: 38922665 PMCID: PMC11214158 DOI: 10.1093/gbe/evae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Molecular studies of animal regeneration typically focus on conserved genes and signaling pathways that underlie morphogenesis. To date, a holistic analysis of gene expression across animals has not been attempted, as it presents a suite of problems related to differences in experimental design and gene homology. By combining orthology analyses with a novel statistical method for testing gene enrichment across large data sets, we are able to test whether tissue regeneration across animals shares transcriptional regulation. We applied this method to a meta-analysis of six publicly available RNA-Seq data sets from diverse examples of animal regeneration. We recovered 160 conserved orthologous gene clusters, which are enriched in structural genes as opposed to those regulating morphogenesis. A breakdown of gene presence/absence provides limited support for the conservation of pathways typically implicated in regeneration, such as Wnt signaling and cell pluripotency pathways. Such pathways are only conserved if we permit large amounts of paralog switching through evolution. Overall, our analysis does not support the hypothesis that a shared set of ancestral genes underlie regeneration mechanisms in animals. After applying the same method to heat shock studies and getting similar results, we raise broader questions about the ability of comparative RNA-Seq to reveal conserved gene pathways across deep evolutionary relationships.
Collapse
Affiliation(s)
- Noémie C Sierra
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Noah Olsman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lynn Yi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lea Goentoro
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - David A Gold
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, CA 95616, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
6
|
Bell JM, Biesemeyer C, Turner EM, Vanderbeck MM, McGraw HF. foxg1a is required for hair cell development and regeneration in the zebrafish lateral line. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589268. [PMID: 38659824 PMCID: PMC11042177 DOI: 10.1101/2024.04.12.589268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Mechanosensory hair cells located in the inner ear mediate the sensations of hearing and balance. If damaged, mammalian inner ear hair cells are unable to regenerate, resulting in permanent sensory deficits. Aquatic vertebrates like zebrafish (Danio rerio) have a specialized class of mechanosensory hair cells found in the lateral line system, allowing them to sense changes in water current. Unlike mammalian inner ear hair cells, lateral line hair cells can robustly regenerate following damage. In mammalian models, the transcription factor Foxg1 functions to promote normal development of the inner ear. Foxg1a is expressed in lateral line sensory organs in zebrafish larvae, but its function during lateral line development and regeneration has not been investigated. We find that loss of Foxg1a function results in reduced hair cell development and regeneration, as well as decreased cellular proliferation in the lateral line system. These data suggest that Foxg1 may be a valuable target for investigation of clinical hair cell regeneration. Summary statement Our work demonstrates a role for Foxg1a in developing and regenerating new sensory cells through proliferation.
Collapse
|
7
|
Rodríguez-Morales R. Sensing in the dark: Constructive evolution of the lateral line system in blind populations of Astyanax mexicanus. Ecol Evol 2024; 14:e11286. [PMID: 38654714 PMCID: PMC11036076 DOI: 10.1002/ece3.11286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Cave-adapted animals evolve a suite of regressive and constructive traits that allow survival in the dark. Most studies aiming at understanding cave animal evolution have focused on the genetics and environmental underpinnings of regressive traits, with special emphasis on vision loss. Possibly as a result of vision loss, other non-visual sensory systems have expanded and compensated in cave species. For instance, in many cave-dwelling fish species, including the blind cavefish of the Mexican tetra, Astyanax mexicanus, a major non-visual mechanosensory system called the lateral line, compensated for vision loss through morphological expansions. While substantial work has shed light on constructive adaptation of this system, there are still many open questions regarding its developmental origin, synaptic plasticity, and overall adaptive value. This review provides a snapshot of the current state of knowledge of lateral line adaption in A. mexicanus, with an emphasis on anatomy, synaptic plasticity, and behavior. Multiple open avenues for future research in this system, and how these can be leveraged as tools for both evolutionary biology and evolutionary medicine, are discussed.
Collapse
Affiliation(s)
- Roberto Rodríguez-Morales
- Department of Anatomy & Neurobiology, School of Medicine University of Puerto Rico San Juan Puerto Rico
| |
Collapse
|
8
|
Choi SW, Abitbol JM, Cheng AG. Hair Cell Regeneration: From Animals to Humans. Clin Exp Otorhinolaryngol 2024; 17:1-14. [PMID: 38271988 PMCID: PMC10933805 DOI: 10.21053/ceo.2023.01382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Cochlear hair cells convert sound into electrical signals that are relayed via the spiral ganglion neurons to the central auditory pathway. Hair cells are vulnerable to damage caused by excessive noise, aging, and ototoxic agents. Non-mammals can regenerate lost hair cells by mitotic regeneration and direct transdifferentiation of surrounding supporting cells. However, in mature mammals, damaged hair cells are not replaced, resulting in permanent hearing loss. Recent studies have uncovered mechanisms by which sensory organs in non-mammals and the neonatal mammalian cochlea regenerate hair cells, and outlined possible mechanisms why this ability declines rapidly with age in mammals. Here, we review similarities and differences between avian, zebrafish, and mammalian hair cell regeneration. Moreover, we discuss advances and limitations of hair cell regeneration in the mature cochlea and their potential applications to human hearing loss.
Collapse
Affiliation(s)
- Sung-Won Choi
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Otorhinolaryngology-Head and Neck Surgery and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine, Busan, Korea
| | - Julia M. Abitbol
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Alan G. Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
9
|
Marcé-Nogué J, Liu J. Finite element modelling of sound transmission in the Weberian apparatus of zebrafish ( Danio rerio). J R Soc Interface 2024; 21:20230553. [PMID: 38196376 PMCID: PMC10777150 DOI: 10.1098/rsif.2023.0553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024] Open
Abstract
Zebrafish, an essential vertebrate model, has greatly expanded our understanding of hearing. However, one area that remains unexplored is the biomechanics of the Weberian apparatus, crucial for sound conduction and perception. Using micro-computed tomography (μCT) bioimaging, we created three-dimensional finite element models of the zebrafish Weberian ossicles. These models ranged from the exact size to scaled isometric versions with constrained geometry (1 to 10 mm in ossicular chain length). Harmonic finite element analysis of all 11 models revealed that the resonance frequency of the zebrafish's Weberian ossicular chain is approximately 900 Hz, matching their optimal hearing range. Interestingly, resonance frequency negatively correlated with size, while the ratio of peak displacement and difference of resonance frequency between tripus and scaphium remained constant. This suggests the transmission efficiency of the ossicular chain and the homogeneity of resonance frequency at both ends of the chain are not size-dependent. We conclude that the Weberian apparatus's resonance frequency can explain zebrafish's best hearing frequency, and their biomechanical characteristics are not influenced by isometric ontogeny. As the first biomechanical modelling of atympanic ear and among the few non-human ear modelling, this study provides a methodological framework for further investigations into hearing mechanisms and the hearing evolution of vertebrates.
Collapse
Affiliation(s)
- Jordi Marcé-Nogué
- Department of Mechanical Engineering, Universitat Rovira i Virgili Tarragona, 43007 Tarragona, Catalonia, Spain
- Institut Català de Paleontologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Juan Liu
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- University of California Museum of Paleontology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Tuz-Sasik MU, Manuel R, Boije H. Efferent axons in the zebrafish lateral line degenerate following sensory hair cell ablation. Mol Cell Neurosci 2023; 127:103900. [PMID: 37714280 DOI: 10.1016/j.mcn.2023.103900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
The zebrafish lateral line is a frequently used model to study the mechanisms behind peripheral neuronal innervation of sensory organs and the regeneration thereof. The lateral line system consists of neuromasts, a cluster of protruding hair cells, which are innervated by sensory afferent and modulatory efferent neurons. These flow-sensing hair cells are similar to the hair cells in the mammalian ear. Though, while hair cell loss in humans is irreversible, the zebrafish neuromasts are regarded as the fastest regenerating structure in vertebrates, making them an ideal model to study regeneration. However, one component of the lateral line system, the efferent projections, has largely been omitted in regenerative studies. Here, for the first time, we bring insights into the fate of efferent axons during ablation and regeneration of the hair cells in the zebrafish lateral line. Our behavioral analysis showed functional recovery of hair cells and sensory transmission within 48 h and their regeneration were in line with previous studies. Analysis of the inhibitory efferent projections revealed that in approximately half the cases the inhibitory efferent axons degenerated, which was never observed for the sensory afferent axons. Quantification of hair cells following ablation suggests that the presence of mature hair cells in the neuromast may prevent axon degeneration. Within 120 h, degenerated efferent axons regenerated along the axonal tract of the lateral line. Reanalysis of published single cell neuromast data hinted to a role for Bdnf in the survival of efferent axons. However, sequestering Bdnf, blocking the Trk-receptors, and inhibiting the downstream ERK-signaling, did not induce axon degeneration, indicating that efferent survival is not mediated through neurotrophic factors. To further explore the relation between hair cells and efferent projections, we generated atoh1a mutants, where mature hair cells never form. In larvae lacking hair cells, inhibitory efferent projections were still present, following the tract of the sensory afferent without displaying any innervation. Our study reveal the fate of efferent innervation following hair cell ablation and provide insights into the inherent differences in regeneration between neurons in the peripheral and central nervous system.
Collapse
Affiliation(s)
- Melek Umay Tuz-Sasik
- Department of Immunology, Genetics and Pathology, Cell and Neurobiology, Uppsala University, Uppsala, Sweden
| | - Remy Manuel
- Department of Immunology, Genetics and Pathology, Cell and Neurobiology, Uppsala University, Uppsala, Sweden
| | - Henrik Boije
- Department of Immunology, Genetics and Pathology, Cell and Neurobiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
11
|
Tisi A, Palaniappan S, Maccarrone M. Advanced Omics Techniques for Understanding Cochlear Genome, Epigenome, and Transcriptome in Health and Disease. Biomolecules 2023; 13:1534. [PMID: 37892216 PMCID: PMC10605747 DOI: 10.3390/biom13101534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Advanced genomics, transcriptomics, and epigenomics techniques are providing unprecedented insights into the understanding of the molecular underpinnings of the central nervous system, including the neuro-sensory cochlea of the inner ear. Here, we report for the first time a comprehensive and updated overview of the most advanced omics techniques for the study of nucleic acids and their applications in cochlear research. We describe the available in vitro and in vivo models for hearing research and the principles of genomics, transcriptomics, and epigenomics, alongside their most advanced technologies (like single-cell omics and spatial omics), which allow for the investigation of the molecular events that occur at a single-cell resolution while retaining the spatial information.
Collapse
Affiliation(s)
- Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Sakthimala Palaniappan
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
- Laboratory of Lipid Neurochemistry, European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| |
Collapse
|
12
|
Hakim S, Imran A, Hussain MS, Mirza MS. RNA-Seq analysis of mung bean (Vigna radiata L.) roots shows differential gene expression and predicts regulatory pathways responding to taxonomically different rhizobia. Microbiol Res 2023; 275:127451. [PMID: 37478540 DOI: 10.1016/j.micres.2023.127451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Symbiotic interaction among legume and rhizobia is a complex phenomenon which results in the formation of nitrogen-fixing nodules. Mung bean is promiscuous host however expression profile of this important legume plant in response to rhizobial infection was particularly lacking and urgently needed. We have demonstrated the pattern of gene expression of mung bean roots inoculated with two symbionts Bradyrhizobium yuanmingense Vr50 and Sinorhizobium (Ensifer) aridi Vr33 and non-inoculated control (CK). The RNA-Seq data analyzed at two growth stages i.e., 1-3 h and 10-16 days post inoculation revealed significantly higher number of differentially expressed genes (DEGs) at nodulation stage. The DEGs encoding receptor kinases identified at early stage might be involved in perception of Nod factors produced by different rhizobia. At nodulation stage important genes involved in plant hormone signal transduction, nitrogen and sulfur metabolism were identified. KEGG pathway enrichment analysis showed that metabolic pathways were most prominent in both groups (Group 1: Vr33 vs CK; Group 2: Vr50 vs CK), followed by biosynthesis of secondary metabolites, plant hormone signal transduction and biosynthesis of amino acids. Furthermore, DEGs involved in cell communication and plant hormone signal transduction were found to be different among two symbiotic systems while DEGs involved in carbon, nitrogen and sulfur metabolism were similar but their expression varied in response to two rhizobial strains. This study provides the first insight into the mechanisms underlying interactions of mung bean host with two taxonomically different symbionts (Bradyrhizobium and Sinorhizobium) and the candidate genes for better understanding the mechanisms of symbiotic host-specificity.
Collapse
Affiliation(s)
- Sughra Hakim
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Asma Imran
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Faisalabad, Pakistan
| | | | - M Sajjad Mirza
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Faisalabad, Pakistan.
| |
Collapse
|
13
|
Smith-Cortinez N, Hendriksen FGJ, Ramekers D, Stokroos RJ, Versnel H, Straatman LV. Long-term survival of LGR5 expressing supporting cells after severe ototoxic trauma in the adult mouse cochlea. Front Cell Neurosci 2023; 17:1236894. [PMID: 37692553 PMCID: PMC10483136 DOI: 10.3389/fncel.2023.1236894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction The leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) is a tissue resident stem cell marker, which it is expressed in supporting cells (SCs) in the organ of Corti in the mammalian inner ear. These LGR5+ SCs can be used as an endogenous source of progenitor cells for regeneration of hair cells (HCs) to treat hearing loss and deafness. We have recently reported that LGR5+ SCs survive 1 week after ototoxic trauma. Here, we evaluated Lgr5 expression in the adult cochlea and long-term survival of LGR5+ SCs following severe hearing loss. Methods Lgr5GFP transgenic mice and wild type mice aged postnatal day 30 (P30) and P200 were used. P30 animals were deafened with a single dose of furosemide and kanamycin. Seven and 28 days after deafening, auditory brainstem responses (ABRs) were recorded. Cochleas were harvested to characterize mature HCs and LGR5+ SCs by immunofluorescence microscopy and quantitative reverse transcription PCR (q-RT-PCR). Results There were no significant age-related changes in Lgr5 expression when comparing normal-hearing (NH) mice aged P200 with P30. Seven and 28 days after ototoxic trauma, there was severe outer HC loss and LGR5 was expressed in the third row of Deiters' cells and in inner pillar cells. Seven days after induction of ototoxic trauma there was an up-regulation of the mRNA expression of Lgr5 compared to the NH condition; 28 days after ototoxic trauma Lgr5 expression was similar to NH levels. Discussion The presence of LGR5+ SCs in the adult mouse cochlea, which persists after severe HC loss, suggests potential regenerative capacity of endogenous cochlear progenitor cells in adulthood. To our knowledge, this is the first study showing not only long-term survival of LGR5+ SCs in the normal and ototoxically damaged cochlea, but also increased Lgr5 expression in the adult mouse cochlea after deafening, suggesting long-term availability of potential target cells for future regenerative therapies.
Collapse
Affiliation(s)
- Natalia Smith-Cortinez
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands
- UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ferry G. J. Hendriksen
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Dyan Ramekers
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands
- UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Robert J. Stokroos
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands
- UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Huib Versnel
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands
- UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Louise V. Straatman
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands
- UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
14
|
Bing J, Sun J, Zhao R, Sun L, Xi C, Liu J, Zhang X, Zeng S. The effects of Wnt, BMP, and Notch signaling pathways on cell proliferation and neural differentiation in a song control nucleus (HVC) of Lonchura striata. Dev Neurobiol 2023; 83:157-166. [PMID: 37433016 DOI: 10.1002/dneu.22920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/06/2023] [Accepted: 06/24/2023] [Indexed: 07/13/2023]
Abstract
There is obvious sexual dimorphism in the song control system of songbirds. In the higher vocal center (HVC), cell proliferation and neuronal differentiation contribute to the net addition of neurons. However, the mechanism underlying these changes is unclear. Given that Wnt, Bmp, and Notch pathways are involved in cell proliferation and neuronal differentiation, no reports are available to study the role of the three pathways in the song control system. To address the issue, we studied cell proliferation in the ventricle zone overlying the developing HVC and neural differentiation within the HVC of Bengalese finches (Lonchura striata) at posthatching day 15 when HVC progenitor cells are generated on a large scale and differentiate into neurons, after Wnt and Bmp pathways were activated by using a pharmacological agonist (LiCl) or Bmp4, respectively, and the Notch pathway was inhibited by an inhibitor (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester), DAPT). The results indicated that both cell proliferation and neural differentiation toward HVC neurons increased significantly after activation of the Wnt signaling pathway or inhibition of the Notch signaling pathway. Although cell proliferation was increased, neural differentiation was inhibited after treatment with Bmp4. There was obvious synergetic enhancement in the number of proliferating cells after the coregulation of two or three signaling pathways. In addition, synergetic enhancement was also found in the Wnt and Notch pathways in neural differentiation toward neurons within HVC. These results suggest that the three signaling pathways are involved in cell proliferation and neural differentiation of HVC.
Collapse
Affiliation(s)
- Jie Bing
- Beijing, Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Jing Sun
- Beijing, Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Rui Zhao
- Beijing, Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Lina Sun
- Beijing, Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Chao Xi
- Beijing, Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Jin Liu
- Beijing, Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Xinwen Zhang
- Hainan, Institute of Science and Technology, Haikou, China
- College of Life Sciences, Hainan Normal University, Haikou, China
| | - Shaoju Zeng
- Beijing, Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| |
Collapse
|
15
|
Wang X, Gu X, Wang C, He Y, Liu D, Sun S, Li H. Loss of ndrg2 Function Is Involved in Notch Activation in Neuromast Hair Cell Regeneration in Zebrafish. Mol Neurobiol 2023; 60:3100-3112. [PMID: 36800156 DOI: 10.1007/s12035-023-03262-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023]
Abstract
The regeneration of hair cells in zebrafish is a complex process involving the precise regulation of multiple signaling pathways, but this complicated regulatory network is not fully understood. Current research has primarily focused on finding molecules and pathways that can regulate hair cell regeneration and restore hair cell functions. Here, we show the role of N-Myc downstream regulated gene 2 (ndrg2) in zebrafish hair cell regeneration. We first found that ndrg2 was dynamically expressed in neuromasts of the developing zebrafish, and this expression was increased after neomycin-induced hair cell damage. Then, ndrg2 loss-of-function larvae showed reduced numbers of regenerated hair cells but increased numbers of supporting cells after neomycin exposure. By in situ hybridization, we further observed that ndrg2 loss of function resulted in the activation of Notch signaling and downregulation of atoh1a during hair cell regeneration in vivo. Additionally, blocking Notch signaling rescued the number of regenerated hair cells in ndrg2-deficient larvae. Together, this study provides evidence for the role of ndrg2 in regulating hair cell regeneration in zebrafish neuromasts.
Collapse
Affiliation(s)
- Xin Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200031, People's Republic of China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China
| | - Xiaodong Gu
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200031, People's Republic of China
| | - Cheng Wang
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China
| | - Yingzi He
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200031, People's Republic of China
| | - Dong Liu
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China.
| | - Shan Sun
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200031, People's Republic of China.
| | - Huawei Li
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200031, People's Republic of China.
- The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
16
|
Smith-Cortinez N, Tan AK, Stokroos RJ, Versnel H, Straatman LV. Regeneration of Hair Cells from Endogenous Otic Progenitors in the Adult Mammalian Cochlea: Understanding Its Origins and Future Directions. Int J Mol Sci 2023; 24:ijms24097840. [PMID: 37175547 PMCID: PMC10177935 DOI: 10.3390/ijms24097840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Sensorineural hearing loss is caused by damage to sensory hair cells and/or spiral ganglion neurons. In non-mammalian species, hair cell regeneration after damage is observed, even in adulthood. Although the neonatal mammalian cochlea carries regenerative potential, the adult cochlea cannot regenerate lost hair cells. The survival of supporting cells with regenerative potential after cochlear trauma in adults is promising for promoting hair cell regeneration through therapeutic approaches. Targeting these cells by manipulating key signaling pathways that control mammalian cochlear development and non-mammalian hair cell regeneration could lead to regeneration of hair cells in the mammalian cochlea. This review discusses the pathways involved in the development of the cochlea and the impact that trauma has on the regenerative capacity of the endogenous progenitor cells. Furthermore, it discusses the effects of manipulating key signaling pathways targeting supporting cells with progenitor potential to promote hair cell regeneration and translates these findings to the human situation. To improve hearing recovery after hearing loss in adults, we propose a combined approach targeting (1) the endogenous progenitor cells by manipulating signaling pathways (Wnt, Notch, Shh, FGF and BMP/TGFβ signaling pathways), (2) by manipulating epigenetic control, and (3) by applying neurotrophic treatments to promote reinnervation.
Collapse
Affiliation(s)
- Natalia Smith-Cortinez
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - A Katherine Tan
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Robert J Stokroos
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Huib Versnel
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Louise V Straatman
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
17
|
Chen X, Wan H, Bai Y, Zhang Y, Hua Q. Advances in Understanding the Notch Signaling Pathway in the Cochlea. Curr Pharm Des 2023; 29:3266-3273. [PMID: 37990430 DOI: 10.2174/0113816128273532231103110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/17/2023] [Indexed: 11/23/2023]
Abstract
The cochlear structure is highly complex and specific, and its development is regulated by multiple signaling pathways. Abnormalities in cochlear development can lead to different degrees of loss of function. Hair cells (HCs), which are difficult to regenerate in the mature mammalian cochlea, are susceptible to damage from noise and ototoxic drugs, and damage to HCs can cause hearing loss to varying degrees. Notch, a classical developmental signaling molecule, has been shown to be closely associated with embryonic cochlear development and plays an important role in HC regeneration in mammals, suggesting that the Notch signaling pathway may be a potential therapeutic target for cochlear development and hearing impairment due to HC damage. In recent years, the important role of the Notch signaling pathway in the cochlea has received increasing attention. In this paper, we review the role of Notch signaling in cochlear development and HC regeneration, with the aim of providing new research ideas for the prevention and treatment of related diseases.
Collapse
Affiliation(s)
- Xiaoying Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huanzhi Wan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yutong Bai
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuanyuan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
18
|
Neuromasts and Olfactory Organs of Zebrafish Larvae Represent Possible Sites of SARS-CoV-2 Pseudovirus Host Cell Entry. J Virol 2022; 96:e0141822. [PMID: 36448804 PMCID: PMC9769390 DOI: 10.1128/jvi.01418-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the acute respiratory disease coronavirus disease 2019 (COVID-19), which has resulted in millions of deaths globally. Here, we explored the mechanism of host cell entry of a luciferase-ZsGreen spike (SARS-CoV-2)-pseudotyped lentivirus using zebrafish embryos/larvae as an in vivo model. Successful pseudovirus entry was demonstrated via the expression of the luciferase (luc) gene, which was validated by reverse transcription-PCR (RT-PCR). Treatment of larvae with chloroquine (a broad-spectrum viral inhibitor that blocks membrane fusion) or bafilomycin A1 (a specific inhibitor of vacuolar proton ATPases, which blocks endolysosomal trafficking) significantly reduced luc expression, indicating the possible involvement of the endolysosomal system in the viral entry mechanism. The pharmacological inhibition of two-pore channel (TPC) activity or use of the tpcn2dhkz1a mutant zebrafish line also led to diminished luc expression. The localized expression of ACE2 and TPC2 in the anterior neuromasts and the forming olfactory organs was demonstrated, and the occurrence of endocytosis in both locations was confirmed. Together, our data indicate that zebrafish embryos/larvae are a viable and tractable model to explore the mechanism of SARS-CoV-2 host cell entry, that the peripheral sense organs are a likely site for viral host cell entry, and that TPC2 plays a key role in the translocation of the virus through the endolysosomal system. IMPORTANCE Despite the development of effective vaccines to combat the COVID-19 pandemic, which help prevent the most life-threatening symptoms, full protection cannot be guaranteed, especially with the emergence of new viral variants. Moreover, some resistance to vaccination remains in certain age groups and cultures. As such, there is an urgent need for the development of new strategies and therapies to help combat this deadly disease. Here, we provide compelling evidence that the peripheral sensory organs of zebrafish possess several key components required for SARS-CoV-2 host cell entry. The nearly transparent larvae provide a most amenable complementary platform to investigate the key steps of viral entry into host cells, as well as its spread through the tissues and organs. This will help in the identification of key viral entry steps for therapeutic intervention, provide an inexpensive model for screening novel antiviral compounds, and assist in the development of new and more effective vaccines.
Collapse
|
19
|
Iyer AA, Hosamani I, Nguyen JD, Cai T, Singh S, McGovern MM, Beyer L, Zhang H, Jen HI, Yousaf R, Birol O, Sun JJ, Ray RS, Raphael Y, Segil N, Groves AK. Cellular reprogramming with ATOH1, GFI1, and POU4F3 implicate epigenetic changes and cell-cell signaling as obstacles to hair cell regeneration in mature mammals. eLife 2022; 11:e79712. [PMID: 36445327 PMCID: PMC9708077 DOI: 10.7554/elife.79712] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022] Open
Abstract
Reprogramming of the cochlea with hair-cell-specific transcription factors such as ATOH1 has been proposed as a potential therapeutic strategy for hearing loss. ATOH1 expression in the developing cochlea can efficiently induce hair cell regeneration but the efficiency of hair cell reprogramming declines rapidly as the cochlea matures. We developed Cre-inducible mice to compare hair cell reprogramming with ATOH1 alone or in combination with two other hair cell transcription factors, GFI1 and POU4F3. In newborn mice, all transcription factor combinations tested produced large numbers of cells with the morphology of hair cells and rudimentary mechanotransduction properties. However, 1 week later, only a combination of ATOH1, GFI1 and POU4F3 could reprogram non-sensory cells of the cochlea to a hair cell fate, and these new cells were less mature than cells generated by reprogramming 1 week earlier. We used scRNA-seq and combined scRNA-seq and ATAC-seq to suggest at least two impediments to hair cell reprogramming in older animals. First, hair cell gene loci become less epigenetically accessible in non-sensory cells of the cochlea with increasing age. Second, signaling from hair cells to supporting cells, including Notch signaling, can prevent reprogramming of many supporting cells to hair cells, even with three hair cell transcription factors. Our results shed light on the molecular barriers that must be overcome to promote hair cell regeneration in the adult cochlea.
Collapse
Affiliation(s)
- Amrita A Iyer
- Department of Molecular & Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Ishwar Hosamani
- Department of Molecular & Human Genetics, Baylor College of MedicineHoustonUnited States
| | - John D Nguyen
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology at USCLos AngelesUnited States
| | - Tiantian Cai
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
| | - Sunita Singh
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Melissa M McGovern
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Lisa Beyer
- Department of Otolaryngology-Head and Neck Surgery, University of MichiganAnn ArborUnited States
| | - Hongyuan Zhang
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Hsin-I Jen
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Rizwan Yousaf
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Onur Birol
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
| | - Jenny J Sun
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Russell S Ray
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Yehoash Raphael
- Department of Otolaryngology-Head and Neck Surgery, University of MichiganAnn ArborUnited States
| | - Neil Segil
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology at USCLos AngelesUnited States
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern CaliforniaLos AngelesUnited States
| | - Andrew K Groves
- Department of Molecular & Human Genetics, Baylor College of MedicineHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
20
|
Denans N, Tran NTT, Swall ME, Diaz DC, Blanck J, Piotrowski T. An anti-inflammatory activation sequence governs macrophage transcriptional dynamics during tissue injury in zebrafish. Nat Commun 2022; 13:5356. [PMID: 36127326 PMCID: PMC9489698 DOI: 10.1038/s41467-022-33015-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 08/26/2022] [Indexed: 11/23/2022] Open
Abstract
Macrophages are essential for tissue repair and regeneration. Yet, the molecular programs, as well as the timing of their activation during and after tissue injury are poorly defined. Using a high spatio-temporal resolution single cell analysis of macrophages coupled with live imaging after sensory hair cell death in zebrafish, we find that the same population of macrophages transitions through a sequence of three major anti-inflammatory activation states. Macrophages first show a signature of glucocorticoid activation, then IL-10 signaling and finally the induction of oxidative phosphorylation by IL-4/Polyamine signaling. Importantly, loss-of-function of glucocorticoid and IL-10 signaling shows that each step of the sequence is independently activated. Lastly, we show that IL-10 and IL-4 signaling act synergistically to promote synaptogenesis between hair cells and efferent neurons during regeneration. Our results show that macrophages, in addition to a switch from M1 to M2, sequentially and independently transition though three anti-inflammatory pathways in vivo during tissue injury in a regenerating organ.
Collapse
Affiliation(s)
- Nicolas Denans
- Stowers Institute for Medical Research, 1000 east 50th street, Kansas City, MO, 64110, USA.
| | - Nhung T T Tran
- Stowers Institute for Medical Research, 1000 east 50th street, Kansas City, MO, 64110, USA
| | - Madeleine E Swall
- Stowers Institute for Medical Research, 1000 east 50th street, Kansas City, MO, 64110, USA
| | - Daniel C Diaz
- Stowers Institute for Medical Research, 1000 east 50th street, Kansas City, MO, 64110, USA
- Parse Biosciences, 201 Elliott Ave W, Suite 290, Seattle, WA, 98119, USA
| | - Jillian Blanck
- Stowers Institute for Medical Research, 1000 east 50th street, Kansas City, MO, 64110, USA
| | - Tatjana Piotrowski
- Stowers Institute for Medical Research, 1000 east 50th street, Kansas City, MO, 64110, USA.
| |
Collapse
|
21
|
Lin MJ, Lee CM, Hsu WL, Chen BC, Lee SJ. Macrophages Break Interneuromast Cell Quiescence by Intervening in the Inhibition of Schwann Cells in the Zebrafish Lateral Line. Front Cell Dev Biol 2022; 10:907863. [PMID: 35846366 PMCID: PMC9285731 DOI: 10.3389/fcell.2022.907863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
In the zebrafish lateral line system, interneuromast cells (INCs) between neuromasts are kept quiescent by underlying Schwann cells (SWCs). Upon severe injuries that cause the complete loss of an entire neuromast, INCs can occasionally differentiate into neuromasts but how they escape from the inhibition by SWCs is still unclear. Using a genetic/chemical method to ablate a neuromast precisely, we found that a small portion of larvae can regenerate a new neuromast. However, the residual regeneration capacity was hindered by inhibiting macrophages. Using in toto imaging, we further discovered heterogeneities in macrophage behavior and distribution along the lateral line. We witnessed the crawling of macrophages between the injured lateral line and SWCs during regeneration and between the second primordium and the first mature lateral line during development. It implies that macrophages may physically alleviate the nerve inhibition to break the dormancy of INCs during regeneration and development in the zebrafish lateral line.
Collapse
Affiliation(s)
- Meng-Ju Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan, R.O.C.
| | - Chia-Ming Lee
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan, R.O.C.
| | - Wei-Lin Hsu
- Department of Life Science, National Taiwan University, Taipei, Taiwan, R.O.C.
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan, R.O.C.
| | - Shyh-Jye Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan, R.O.C.
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan, R.O.C.
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan, R.O.C.
- *Correspondence: Shyh-Jye Lee,
| |
Collapse
|
22
|
Lee MP, Waldhaus J. In vitro and in vivo models: What have we learnt about inner ear regeneration and treatment for hearing loss? Mol Cell Neurosci 2022; 120:103736. [PMID: 35577314 PMCID: PMC9551661 DOI: 10.1016/j.mcn.2022.103736] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 01/07/2023] Open
Abstract
The sensory cells of the inner ear, called hair cells, do not regenerate spontaneously and therefore, hair cell loss and subsequent hearing loss are permanent in humans. Conversely, functional hair cell regeneration can be observed in non-mammalian vertebrate species like birds and fish. Also, during postnatal development in mice, limited regenerative capacity and the potential to isolate stem cells were reported. Together, these findings spurred the interest of current research aiming to investigate the endogenous regenerative potential in mammals. In this review, we summarize current in vitro based approaches and briefly introduce different in vivo model organisms utilized to study hair cell regeneration. Furthermore, we present an overview of the findings that were made synergistically using both, the in vitro and in vivo based tools.
Collapse
Affiliation(s)
- Mary P Lee
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joerg Waldhaus
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
23
|
Single-cell transcriptome analysis reveals three sequential phases of gene expression during zebrafish sensory hair cell regeneration. Dev Cell 2022; 57:799-819.e6. [PMID: 35316618 PMCID: PMC9188816 DOI: 10.1016/j.devcel.2022.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/19/2021] [Accepted: 02/28/2022] [Indexed: 12/20/2022]
Abstract
Loss of sensory hair cells (HCs) in the mammalian inner ear leads to permanent hearing and vestibular defects, whereas loss of HCs in zebrafish results in their regeneration. We used single-cell RNA sequencing (scRNA-seq) to characterize the transcriptional dynamics of HC regeneration in zebrafish at unprecedented spatiotemporal resolution. We uncovered three sequentially activated modules: first, an injury/inflammatory response and downregulation of progenitor cell maintenance genes within minutes after HC loss; second, the transient activation of regeneration-specific genes; and third, a robust re-activation of developmental gene programs, including HC specification, cell-cycle activation, ribosome biogenesis, and a metabolic switch to oxidative phosphorylation. The results are relevant not only for our understanding of HC regeneration and how we might be able to trigger it in mammals but also for regenerative processes in general. The data are searchable and publicly accessible via a web-based interface.
Collapse
|
24
|
Heller IS, Guenther CA, Meireles AM, Talbot WS, Kingsley DM. Characterization of mouse Bmp5 regulatory injury element in zebrafish wound models. Bone 2022; 155:116263. [PMID: 34826632 PMCID: PMC9007314 DOI: 10.1016/j.bone.2021.116263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/21/2022]
Abstract
Many key signaling molecules used to build tissues during embryonic development are re-activated at injury sites to stimulate tissue regeneration and repair. Bone morphogenetic proteins provide a classic example, but the mechanisms that lead to reactivation of BMPs following injury are still unknown. Previous studies have mapped a large "injury response element" (IRE) in the mouse Bmp5 gene that drives gene expression following bone fractures and other types of injury. Here we show that the large mouse IRE region is also activated in both zebrafish tail resection and mechanosensory hair cell injury models. Using the ability to test multiple constructs and image temporal and spatial dynamics following injury responses, we have narrowed the original size of the mouse IRE region by over 100 fold and identified a small 142 bp minimal enhancer that is rapidly induced in both mesenchymal and epithelial tissues after injury. These studies identify a small sequence that responds to evolutionarily conserved local signals in wounded tissues and suggest candidate pathways that contribute to BMP reactivation after injury.
Collapse
Affiliation(s)
- Ian S Heller
- Department of Developmental Biology, Stanford University School of Medicine, United States of America
| | - Catherine A Guenther
- Department of Developmental Biology, Stanford University School of Medicine, United States of America; Howard Hughes Medical Institute, Stanford University School of Medicine, United States of America
| | - Ana M Meireles
- Department of Developmental Biology, Stanford University School of Medicine, United States of America
| | - William S Talbot
- Department of Developmental Biology, Stanford University School of Medicine, United States of America
| | - David M Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, United States of America; Howard Hughes Medical Institute, Stanford University School of Medicine, United States of America.
| |
Collapse
|
25
|
Riley SE, Feng Y, Hansen CG. Hippo-Yap/Taz signalling in zebrafish regeneration. NPJ Regen Med 2022; 7:9. [PMID: 35087046 PMCID: PMC8795407 DOI: 10.1038/s41536-022-00209-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/14/2021] [Indexed: 12/29/2022] Open
Abstract
The extent of tissue regeneration varies widely between species. Mammals have a limited regenerative capacity whilst lower vertebrates such as the zebrafish (Danio rerio), a freshwater teleost, can robustly regenerate a range of tissues, including the spinal cord, heart, and fin. The molecular and cellular basis of this altered response is one of intense investigation. In this review, we summarise the current understanding of the association between zebrafish regeneration and Hippo pathway function, a phosphorylation cascade that regulates cell proliferation, mechanotransduction, stem cell fate, and tumorigenesis, amongst others. We also compare this function to Hippo pathway activity in the regenerative response of other species. We find that the Hippo pathway effectors Yap/Taz facilitate zebrafish regeneration and that this appears to be latent in mammals, suggesting that therapeutically promoting precise and temporal YAP/TAZ signalling in humans may enhance regeneration and hence reduce morbidity.
Collapse
Affiliation(s)
- Susanna E Riley
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Yi Feng
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Carsten Gram Hansen
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
26
|
Fan C, Ouyang Y, Yuan X, Wang J. An enhancer trap zebrafish line for lateral line development and regulation of six2b expression. Gene Expr Patterns 2022; 43:119231. [PMID: 34995793 DOI: 10.1016/j.gep.2022.119231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 11/30/2022]
Abstract
Zebrafish lateral line system which is derived from neurogenic placodes has become a popular model for developmental biology since its formation involves cell migration, pattern formation, organogenesis, and hair cell regeneration. Transgenic lines play a crucial role in lateral line system study. Here, we identified an enhancer trap transgenic zebrafish line Et(gata2a:EGFP)189b (ET189b for short), which expressed enhanced green fluorescent protein (EGFP) in the pituitary, otic, and lateral line placodes and their derivatives. Especially, in neuromast, the accessory cells rather than hair cells were labeled by EGFP. Furthermore, we found the Tol2 transposon construct is integrated at the proximal upstream region of six2b gene locus. And EGFP expression of ET189b closely reflects the expression of endogenous six2b during development and after dkk1b over-expression. Taken together, our results indicated that ET189b is an ideal line for research on lateral line development and regulation of six2b expression.
Collapse
Affiliation(s)
- Chunxin Fan
- Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, China.
| | - Yajing Ouyang
- Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai, China
| | - Xiaoyi Yuan
- Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai, China
| | - Jian Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, China.
| |
Collapse
|
27
|
Montalbano G, Olivotto I, Germanà A, Randazzo B. Evaluation of the hair cell regeneration and claudin b and phoenix gene expression during exposure to low concentrations of cadmium and zinc in early developing zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109116. [PMID: 34182097 DOI: 10.1016/j.cbpc.2021.109116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/28/2022]
Abstract
Zebrafish possess hair cells on the body surface similar to that of mammals inner hear, in particular in the neuromasts, and due to its ability in regenerating damaged hair cells, is regularly used as a powerful animal model to study in vivo cytotoxicity. Among the factors leading to hair cell disruption, metal ions are of particular concern since they are important environmental pollutants. To date, several studies on zebrafish hair cell regeneration after metal exposure exist, while no data on regeneration during continuous metal exposure are available. In the present study, neuromast hair cell disruption and regeneration were assessed in zebrafish larvae for the first time during zinc (Zn) and cadmium (Cd) continuous exposure and a visual and molecular approach was adopted. Fluorescent vital dye DASPEI was used to assess hair cell regeneration and the gene expression of claudin b (cldnb) and phoenix (pho), was analyzed. Metallotionein-2 (mt2) gene expression was used as standard molecular marker of metal toxicity and confirmed the higher toxicity of Cd compared to Zn. In addition, Cd caused a delay in hair cell regeneration compared to Zn. Molecular analysis showed cldnb gene expression increased in relation to the metal concentrations used, confirming the involvement of this gene in hair cell regeneration. On the contrary, a dramatic decrease of pho gene expression was observed in Cd exposed groups, suggesting a negative impact of Cd on pho expression, thus negatively interfering with hair cell regeneration in zebrafish larvae exposed to this metal.
Collapse
Affiliation(s)
| | - Ike Olivotto
- Polytechnic University of Marche, Department of Life and Environmental Sciences, Ancona, Italy
| | - Antonino Germanà
- Messina Study University, Department of Veterinary Sciences, Messina, Italy
| | - Basilio Randazzo
- Polytechnic University of Marche, Department of Life and Environmental Sciences, Ancona, Italy.
| |
Collapse
|
28
|
Xu S, Yang N. Research Progress on the Mechanism of Cochlear Hair Cell Regeneration. Front Cell Neurosci 2021; 15:732507. [PMID: 34489646 PMCID: PMC8417573 DOI: 10.3389/fncel.2021.732507] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/28/2021] [Indexed: 12/26/2022] Open
Abstract
Mammalian inner ear hair cells do not have the ability to spontaneously regenerate, so their irreversible damage is the main cause of sensorineural hearing loss. The damage and loss of hair cells are mainly caused by factors such as aging, infection, genetic factors, hypoxia, autoimmune diseases, ototoxic drugs, or noise exposure. In recent years, research on the regeneration and functional recovery of mammalian auditory hair cells has attracted more and more attention in the field of auditory research. How to regenerate and protect hair cells or auditory neurons through biological methods and rebuild auditory circuits and functions are key scientific issues that need to be resolved in this field. This review mainly summarizes and discusses the recent research progress in gene therapy and molecular mechanisms related to hair cell regeneration in the field of sensorineural hearing loss.
Collapse
Affiliation(s)
- Shan Xu
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, China
| | - Ning Yang
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
29
|
Yuan X, Qin Y, Wang J, Fan C. Anisomycin induces hair cell death and blocks supporting cell proliferation in zebrafish lateral line neuromast. Comp Biochem Physiol C Toxicol Pharmacol 2021; 247:109053. [PMID: 33887477 DOI: 10.1016/j.cbpc.2021.109053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022]
Abstract
Ototoxicity of drugs is an important inducement for hearing loss. Anisomycin is a candidate drug for parasite, cancer, immunosuppression, and mental disease. However, the ototoxicity of anisomycin has not been examined. In this study, the ototoxicity of anisomycin was evaluated using zebrafish lateral line. We found the zebrafish treated with anisomycin during lateral line development could inhibit hair cell formation in a time- and dose-dependent manner. After neuromasts are mature with differentiated hair cells by 5 day post-fertilization, anisomycin could induce hair cell loss effectively through chronic exposure rather than acute exposure. TUNEL assay and qPCR of apoptosis related genes tp53, casp8, casp3a, and casp3b indicated that cell apoptotic was induced by chronic anisomycin exposure. Furthermore, knocking down tp53 with antisense morpholino could attenuate the hair cell loss induced by anisomycin. In addition, we found that anisomycin chronic exposure also inhibited the proliferation of supporting cell. Together, these results indicate that chronic anisomycin exposure could induce hair cell death and block supporting cell proliferation, which causes hair cell loss in zebrafish neuromast. This study provides primary ototoxicity evaluation for anisomycin.
Collapse
Affiliation(s)
- Xiaoyi Yuan
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, China; Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai, China
| | - Yanjun Qin
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, China; Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai, China
| | - Jian Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China
| | - Chunxin Fan
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China; Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
30
|
Gao J, Fan L, Zhao L, Su Y. The interaction of Notch and Wnt signaling pathways in vertebrate regeneration. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:11. [PMID: 33791915 PMCID: PMC8012441 DOI: 10.1186/s13619-020-00072-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Regeneration is an evolutionarily conserved process in animal kingdoms, however, the regenerative capacities differ from species and organ/tissues. Mammals possess very limited regenerative potential to replace damaged organs, whereas non-mammalian species usually have impressive abilities to regenerate organs. The regeneration process requires proper spatiotemporal regulation from key signaling pathways. The canonical Notch and Wnt signaling pathways, two fundamental signals guiding animal development, have been demonstrated to play significant roles in the regeneration of vertebrates. In recent years, increasing evidence has implicated the cross-talking between Notch and Wnt signals during organ regeneration. In this review, we summarize the roles of Notch signaling and Wnt signaling during several representative organ regenerative events, emphasizing the functions and molecular bases of their interplay in these processes, shedding light on utilizing these two signaling pathways to enhance regeneration in mammals and design legitimate therapeutic strategies.
Collapse
Affiliation(s)
- Junying Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, Shandong, China.,College of Fisheries, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Lixia Fan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, Shandong, China.,College of Fisheries, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Long Zhao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, Shandong, China. .,College of Fisheries, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Ying Su
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, Shandong, China. .,College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong, China.
| |
Collapse
|
31
|
Iyer AA, Groves AK. Transcription Factor Reprogramming in the Inner Ear: Turning on Cell Fate Switches to Regenerate Sensory Hair Cells. Front Cell Neurosci 2021; 15:660748. [PMID: 33854418 PMCID: PMC8039129 DOI: 10.3389/fncel.2021.660748] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Non-mammalian vertebrates can restore their auditory and vestibular hair cells naturally by triggering the regeneration of adjacent supporting cells. The transcription factor ATOH1 is a key regulator of hair cell development and regeneration in the inner ear. Following the death of hair cells, supporting cells upregulate ATOH1 and give rise to new hair cells. However, in the mature mammalian cochlea, such natural regeneration of hair cells is largely absent. Transcription factor reprogramming has been used in many tissues to convert one cell type into another, with the long-term hope of achieving tissue regeneration. Reprogramming transcription factors work by altering the transcriptomic and epigenetic landscapes in a target cell, resulting in a fate change to the desired cell type. Several studies have shown that ATOH1 is capable of reprogramming cochlear non-sensory tissue into cells resembling hair cells in young animals. However, the reprogramming ability of ATOH1 is lost with age, implying that the potency of individual hair cell-specific transcription factors may be reduced or lost over time by mechanisms that are still not clear. To circumvent this, combinations of key hair cell transcription factors have been used to promote hair cell regeneration in older animals. In this review, we summarize recent findings that have identified and studied these reprogramming factor combinations for hair cell regeneration. Finally, we discuss the important questions that emerge from these findings, particularly the feasibility of therapeutic strategies using reprogramming factors to restore human hearing in the future.
Collapse
Affiliation(s)
- Amrita A. Iyer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Program in Genetics & Genomics, Houston, TX, United States
| | - Andrew K. Groves
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Program in Genetics & Genomics, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
32
|
Wu M, Xia M, Li W, Li H. Single-Cell Sequencing Applications in the Inner Ear. Front Cell Dev Biol 2021; 9:637779. [PMID: 33644075 PMCID: PMC7907461 DOI: 10.3389/fcell.2021.637779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/21/2021] [Indexed: 01/29/2023] Open
Abstract
Genomics studies face specific challenges in the inner ear due to the multiple types and limited amounts of inner ear cells that are arranged in a very delicate structure. However, advances in single-cell sequencing (SCS) technology have made it possible to analyze gene expression variations across different cell types as well as within specific cell groups that were previously considered to be homogeneous. In this review, we summarize recent advances in inner ear research brought about by the use of SCS that have delineated tissue heterogeneity, identified unknown cell subtypes, discovered novel cell markers, and revealed dynamic signaling pathways during development. SCS opens up new avenues for inner ear research, and the potential of the technology is only beginning to be explored.
Collapse
Affiliation(s)
- Mingxuan Wu
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Mingyu Xia
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Wenyan Li
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Huawei Li
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,The Institutes of Brain Science and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Zhang Y, Wang Y, Yao X, Wang C, Chen F, Liu D, Shao M, Xu Z. Rbm24a Is Necessary for Hair Cell Development Through Regulating mRNA Stability in Zebrafish. Front Cell Dev Biol 2020; 8:604026. [PMID: 33392193 PMCID: PMC7773828 DOI: 10.3389/fcell.2020.604026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/01/2020] [Indexed: 11/30/2022] Open
Abstract
Hair cells in the inner ear and lateral lines are mechanosensitive receptor cells whose development and function are tightly regulated. Several transcription factors as well as splicing factors have been identified to play important roles in hair cell development, whereas the role of RNA stability in this process is poorly understood. In the present work, we report that RNA-binding motif protein 24a (Rbm24a) is indispensable for hair cell development in zebrafish. Rbm24a expression is detected in the inner ear as well as lateral line neuromasts. Albeit rbm24a deficient zebrafish do not survive beyond 9 days post fertilization (dpf) due to effects outside of the inner ear, rbm24a deficiency does not affect the early development of inner ear except for delayed otolith formation and semicircular canal fusion. However, hair cell development is severely affected and hair bundle is disorganized in rbm24a mutants. As a result, the auditory and vestibular function of rbm24a mutants are compromised. RNAseq analyses identified several Rbm24a-target mRNAs that are directly bound by Rbm24a and are dysregulated in rbm24a mutants. Among the identified Rbm24a-target genes, lrrc23, dfna5b, and smpx are particularly interesting as their dysregulation might contribute to the inner ear phenotypes in rbm24a mutants. In conclusion, our data suggest that Rbm24a affects hair cell development in zebrafish through regulating mRNA stability.
Collapse
Affiliation(s)
- Yan Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xuebo Yao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Changquan Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Dong Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, School of Life Sciences, Nantong University, Nantong, China
| | - Ming Shao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, China
| |
Collapse
|
34
|
Lee S, Song JJ, Beyer LA, Swiderski DL, Prieskorn DM, Acar M, Jen HI, Groves AK, Raphael Y. Combinatorial Atoh1 and Gfi1 induction enhances hair cell regeneration in the adult cochlea. Sci Rep 2020; 10:21397. [PMID: 33293609 PMCID: PMC7722738 DOI: 10.1038/s41598-020-78167-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
Mature mammalian cochlear hair cells (HCs) do not spontaneously regenerate once lost, leading to life-long hearing deficits. Attempts to induce HC regeneration in adult mammals have used over-expression of the HC-specific transcription factor Atoh1, but to date this approach has yielded low and variable efficiency of HC production. Gfi1 is a transcription factor important for HC development and survival. We evaluated the combinatorial effects of Atoh1 and Gfi1 over-expression on HC regeneration using gene transfer methods in neonatal cochlear explants, and in vivo in adult mice. Adenoviral over-expression of Atoh1 and Gfi1 in cultured neonatal cochlear explants resulted in numerous ectopic HC-like cells (HCLCs), with significantly more cells in Atoh1 + Gfi1 cultures than Atoh1 alone. In vitro, ectopic HCLCs emerged in regions medial to inner HCs as well as in the stria vascularis. In vivo experiments were performed in mature Pou4f3DTR mice in which HCs were completely and specifically ablated by administration of diphtheria toxin. Adenoviral expression of Atoh1 or Atoh1 + Gfi1 in cochlear supporting cells induced appearance of HCLCs, with Atoh1 + Gfi1 expression leading to 6.2-fold increase of new HCLCs after 4 weeks compared to Atoh1 alone. New HCLCs were detected throughout the cochlea, exhibited immature stereocilia and survived for at least 8 weeks. Combinatorial Atoh1 and Gfi1 induction is thus a promising strategy to promote HC regeneration in the mature mammalian cochlea.
Collapse
Affiliation(s)
- Sungsu Lee
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA
- Department of Otolaryngology - Head and Neck Surgery, Chonnam National University Hospital, Gwangju, South Korea
| | - Jae-Jun Song
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Lisa A Beyer
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA
| | - Diane M Prieskorn
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA
| | - Melih Acar
- Department of Medical Biology, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Hsin-I Jen
- Department of Neuroscience, Baylor College of Medicine, Houston, USA
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
35
|
Wang J, Lu C, Zhao Y, Tang Z, Song J, Fan C. Transcriptome profiles of sturgeon lateral line electroreceptor and mechanoreceptor during regeneration. BMC Genomics 2020; 21:875. [PMID: 33287707 PMCID: PMC7720607 DOI: 10.1186/s12864-020-07293-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/28/2020] [Indexed: 11/10/2022] Open
Abstract
Background The electrosensory ampullary organs (AOs) and mechanosensory neuromasts (NMs) found in sturgeon and some other non-neopterygian fish or amphibians are both originated from lateral line placodes. However, these two sensory organs have characteristic morphological and physiological differences. The molecular mechanisms for the specification of AOs and NMs are not clearly understood. Results We sequenced the transcriptome for neomycin treated sturgeon AOs and NMs in the early regeneration stages, and de novo assembled a sturgeon transcriptome. By comparing the gene expression differences among untreated AOs, NMs and general epithelia (EPs), we located some specific genes for these two sensory organs. In sturgeon lateral line, the voltage-gated calcium channels and voltage-gated potassium channels were predominant calcium and potassium channel subtypes, respectively. And by correlating gene expression with the regeneration process, we predicated several candidate key transcriptional regulation related genes might be involved in AOs and NMs regeneration. Conclusions Genes with specific expression in the two lateral line sensory organs suggests their important roles in mechanoreceptor and electroreceptor formation. The candidate transcriptional regulation related genes may be important for mechano- and electro- receptor specification, in a “dosage-related” manner. These results suggested the molecular basis for specification of these two sensory organs in sturgeon.
Collapse
Affiliation(s)
- Jian Wang
- International Joint Center for Marine Biological Sciences Research, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Chengcheng Lu
- International Joint Center for Marine Biological Sciences Research, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai, China
| | - Yifan Zhao
- International Joint Center for Marine Biological Sciences Research, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai, China
| | - Zhijiao Tang
- Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai, China
| | - Jiakun Song
- Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai, China
| | - Chunxin Fan
- International Joint Center for Marine Biological Sciences Research, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China. .,Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
36
|
Li M, Liu J, Liu D, Duan X, Zhang Q, Wang D, Zheng Q, Bai X, Lu Z. Naringin attenuates cisplatin- and aminoglycoside-induced hair cell injury in the zebrafish lateral line via multiple pathways. J Cell Mol Med 2020; 25:975-989. [PMID: 33274582 PMCID: PMC7812295 DOI: 10.1111/jcmm.16158] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/04/2020] [Accepted: 11/20/2020] [Indexed: 01/22/2023] Open
Abstract
Exposure to ototoxic drugs is a significant cause of hearing loss that affects about 30 thousand children with potentially serious physical, social and psychological dysfunctions every year. Cisplatin (CP) and aminoglycosides are effective antineoplastic or bactericidal drugs, and their application has a high probability of ototoxicity which results from the death of hair cells (HCs). Here, we describe the therapeutic effect of the flavonoid compound naringin (Nar) against ototoxic effects of cisplatin and aminoglycosides include gentamicin (GM) and neomycin (Neo) in zebrafish HCs. Animals incubated with Nar (100‐400 μmol/L) were protected against the pernicious effects of CP (150‐250 μmol/L), GM (50‐150 μmol/L) and Neo (50‐150 μmol/L). We also provide evidence for the potential mechanism of Nar against ototoxicity, including antioxidation, anti‐apoptosis, promoting proliferation and hair cell regeneration. We found that mRNA levels of the apoptotic‐ and pyroptosis‐related genes are regulated by Nar both in vivo and in vitro. Finally, by proving that Nar does not affect the anti‐tumour efficacy of CP and antibacterial activity of aminoglycosides in vitro, we highlight its value in clinical application. In conclusion, these results unravel a novel therapeutic role for Nar as an otoprotective drug against the adverse effects of CP and aminoglycosides.
Collapse
Affiliation(s)
- Ming Li
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Orthopaedics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingwen Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dong Liu
- College of Life Science, Nantong University, Nantong, China
| | - Xuchu Duan
- College of Life Science, Nantong University, Nantong, China
| | - Qingchen Zhang
- Department of Orthopaedics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dawei Wang
- Department of Orthopaedics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingyin Zheng
- Department of Otolaryngology-Head & Neck Surgery, Case Western Reserve University, Cleveland, OH, USA
| | - Xiaohui Bai
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Orthopaedics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Orthopaedics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
37
|
Feng Y, Yu P, Li J, Cao Y, Zhang J. Phosphatidylinositol 4-kinase β is required for the ciliogenesis of zebrafish otic vesicle. J Genet Genomics 2020; 47:627-636. [PMID: 33358778 DOI: 10.1016/j.jgg.2020.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/26/2022]
Abstract
The primary cilium, an important microtubule-based organelle, protrudes from nearly all the vertebrate cells. The motility of cilia is necessary for various developmental and physiological processes. Phosphoinositides (PIs) and its metabolite, PtdIns(4,5)P2, have been revealed to contribute to cilia assembly and disassembly. As an important kinase of the PI pathway and signaling, phosphatidylinositol 4-kinase β (PI4KB) is the one of the most extensively studied phosphatidylinositol 4-kinase isoform. However, its potential roles in organ development remain to be characterized. To investigate the developmental role of Pi4kb, especially its function on zebrafish ciliogenesis, we generated pi4kb deletion mutants using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 technique. The homozygous pi4kb mutants exhibit an absence of primary cilia in the inner ear, neuromasts, and pronephric ducts accompanied by severe edema in the eyes and other organs. Moreover, smaller otic vesicle, malformed semicircular canals, and the insensitivity on sound stimulation were characteristics of pi4kb mutants. At the protein level, both in vivo and in vitro analyses revealed that synthesis of Pi4p was greatly reduced owing to the loss of Pi4kb. In addition, the expression of the Pi4kb-binding partner of neuronal calcium sensor-1, as well as the phosphorylation of phosphatidylinositol-4-phosphate downstream effecter of Akt, was significantly inhibited in pi4kb mutants. Taken together, our work uncovers a novel role of Pi4kb in zebrafish inner ear development and the functional formation of hearing ability by determining hair cell ciliogenesis.
Collapse
Affiliation(s)
- Yufei Feng
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China
| | - Ping Yu
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China
| | - Jingyu Li
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ying Cao
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China.
| |
Collapse
|
38
|
White PM. Perspectives on Human Hearing Loss, Cochlear Regeneration, and the Potential for Hearing Restoration Therapies. Brain Sci 2020; 10:E756. [PMID: 33092183 PMCID: PMC7589617 DOI: 10.3390/brainsci10100756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/23/2022] Open
Abstract
Most adults who acquire hearing loss find it to be a disability that is poorly corrected by current prosthetics. This gap drives current research in cochlear mechanosensory hair cell regeneration and in hearing restoration. Birds and fish can spontaneously regenerate lost hair cells through a process that has become better defined in the last few years. Findings from these studies have informed new research on hair cell regeneration in the mammalian cochlea. Hair cell regeneration is one part of the greater problem of hearing restoration, as hearing loss can stem from a myriad of causes. This review discusses these issues and recent findings, and places them in the greater social context of need and community.
Collapse
Affiliation(s)
- Patricia M White
- Department of Neuroscience, Ernest J. Del Monte Institute for Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA
| |
Collapse
|
39
|
Holman HA, Wan Y, Rabbitt RD. Developmental GAD2 Expression Reveals Progenitor-like Cells with Calcium Waves in Mammalian Crista Ampullaris. iScience 2020; 23:101407. [PMID: 32771977 PMCID: PMC7415930 DOI: 10.1016/j.isci.2020.101407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/29/2020] [Accepted: 07/21/2020] [Indexed: 01/26/2023] Open
Abstract
Sense of motion, spatial orientation, and balance in vertebrates relies on sensory hair cells in the inner ear vestibular system. Vestibular supporting cells can regenerate hair cells that are lost from aging, ototoxicity, and trauma, although not all factors or specific cell types are known. Here we report a population of GAD2-positive cells in the mouse crista ampullaris and trace GAD2 progenitor-like cells that express pluripotent transcription factors SOX2, PROX1, and CTBP2. GAD2 progenitor-like cells organize into rosettes around a central branched structure in the eminentia cruciatum (EC) herein named the EC plexus. GCaMP5G calcium indicator shows spontaneous and acetylcholine-evoked whole-cell calcium waves in neonatal and adult mice. We present a hypothetical model that outlines the lineage and potential regenerative capacity of GAD2 cells in the mammalian vestibular neuroepithelium.
Collapse
Affiliation(s)
- Holly A Holman
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Yong Wan
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Richard D Rabbitt
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Graduate Program in Neuroscience, University of Utah, Salt Lake City, UT 84112, USA; Department of Otolaryngology-Head & Neck Surgery, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
40
|
Zhang S, Qiang R, Dong Y, Zhang Y, Chen Y, Zhou H, Gao X, Chai R. Hair cell regeneration from inner ear progenitors in the mammalian cochlea. AMERICAN JOURNAL OF STEM CELLS 2020; 9:25-35. [PMID: 32699655 PMCID: PMC7364385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Cochlear hair cells (HCs) are the mechanoreceptors of the auditory system, and because these cells cannot be spontaneously regenerated in adult mammals, hearing loss due to HC damage is permanent. However, cochleae of neonatal mice harbor some progenitor cells that retain limited ability to give rise to new HCs in vivo. Here we review the regulatory factors, signaling pathways, and epigenetic factors that have been reported to play roles in HC regeneration in the neonatal mammalian cochlea.
Collapse
Affiliation(s)
- Shasha Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing 210096, China
| | - Ruiying Qiang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing 210096, China
| | - Ying Dong
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing 210096, China
| | - Yuan Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing 210096, China
| | - Yin Chen
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210008, China
| | - Han Zhou
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210008, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210008, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong UniversityNantong 226001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of ScienceBeijing, China
- Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast UniversityNanjing 211189, China
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210008, China
| |
Collapse
|
41
|
Ye Z, Su Z, Xie S, Liu Y, Wang Y, Xu X, Zheng Y, Zhao M, Jiang L. Yap-lin28a axis targets let7-Wnt pathway to restore progenitors for initiating regeneration. eLife 2020; 9:55771. [PMID: 32352377 PMCID: PMC7250571 DOI: 10.7554/elife.55771] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
The sox2 expressing (sox2+) progenitors in adult mammalian inner ear lose the capacity to regenerate while progenitors in the zebrafish lateral line are able to proliferate and regenerate damaged HCs throughout lifetime. To mimic the HC damage in mammals, we have established a zebrafish severe injury model to eliminate both progenitors and HCs. The atoh1a expressing (atoh1a+) HC precursors were the main population that survived post severe injury, and gained sox2 expression to initiate progenitor regeneration. In response to severe injury, yap was activated to upregulate lin28a transcription. Severe-injury-induced progenitor regeneration was disabled in lin28a or yap mutants. In contrary, overexpression of lin28a initiated the recovery of sox2+ progenitors. Mechanistically, microRNA let7 acted downstream of lin28a to activate Wnt pathway for promoting regeneration. Our findings that lin28a is necessary and sufficient to regenerate the exhausted sox2+ progenitors shed light on restoration of progenitors to initiate HC regeneration in mammals.
Collapse
Affiliation(s)
- Zhian Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhongwu Su
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Siyu Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
| | - Yuye Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yongqiang Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xi Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Meng Zhao
- Key Laboratory of Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
| | - Linjia Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
42
|
Kantarci H, Gou Y, Riley BB. The Warburg Effect and lactate signaling augment Fgf-MAPK to promote sensory-neural development in the otic vesicle. eLife 2020; 9:56301. [PMID: 32338604 PMCID: PMC7253172 DOI: 10.7554/elife.56301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/26/2020] [Indexed: 12/26/2022] Open
Abstract
Recent studies indicate that many developing tissues modify glycolysis to favor lactate synthesis (Agathocleous et al., 2012; Bulusu et al., 2017; Gu et al., 2016; Oginuma et al., 2017; Sá et al., 2017; Wang et al., 2014; Zheng et al., 2016), but how this promotes development is unclear. Using forward and reverse genetics in zebrafish, we show that disrupting the glycolytic gene phosphoglycerate kinase-1 (pgk1) impairs Fgf-dependent development of hair cells and neurons in the otic vesicle and other neurons in the CNS/PNS. Fgf-MAPK signaling underperforms in pgk1- / - mutants even when Fgf is transiently overexpressed. Wild-type embryos treated with drugs that block synthesis or secretion of lactate mimic the pgk1- / - phenotype, whereas pgk1- / - mutants are rescued by treatment with exogenous lactate. Lactate treatment of wild-type embryos elevates expression of Etv5b/Erm even when Fgf signaling is blocked. However, lactate’s ability to stimulate neurogenesis is reversed by blocking MAPK. Thus, lactate raises basal levels of MAPK and Etv5b (a critical effector of the Fgf pathway), rendering cells more responsive to dynamic changes in Fgf signaling required by many developing tissues.
Collapse
Affiliation(s)
- Husniye Kantarci
- Biology Department, Texas A&M University, College Station, United States
| | - Yunzi Gou
- Biology Department, Texas A&M University, College Station, United States
| | - Bruce B Riley
- Biology Department, Texas A&M University, College Station, United States
| |
Collapse
|
43
|
Wu X, Zou S, Wu F, He Z, Kong W. Role of microRNA in inner ear stem cells and related research progress. AMERICAN JOURNAL OF STEM CELLS 2020; 9:16-24. [PMID: 32419976 PMCID: PMC7218733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Deafness is one of the major global health problems that seriously affects the quality of human life. At present, there are no successful treatments for deafness caused by cochlear hair cell (HC) damage. The irreversibility of mammalian hearing impairment is that the inner ear's sensory epithelium cannot repair lost hair cells and neurons through spontaneous regeneration. The goal of stem cell therapy for sensorineural hearing loss is to reconstruct the damaged inner ear structure and achieve functional repair. microRNA (miRNA), as a class of highly conserved endogenous non-coding small RNAs, plays an important role in the development of cochlea and HCs. miRNA also participates in the regulation of stem cell proliferation and differentiation, and plays an important role in the process of regeneration of inner ear HCs, miRNA has a broad application prospect of clinical treatment of hearing loss, which is conducive to solving the medical problem of inner ear HC regeneration.
Collapse
Affiliation(s)
- Xia Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, P. R. China
| | - Shengyu Zou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, P. R. China
| | - Fan Wu
- Otorhinolaryngology Department, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University107 West Yan Jiang Road, Guangzhou 510120, P. R. China
| | - Zuhong He
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, P. R. China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, P. R. China
| |
Collapse
|
44
|
Han E, Ho Oh K, Park S, Chan Rah Y, Park HC, Koun S, Choi J. Analysis of behavioral changes in zebrafish (Danio rerio) larvae caused by aminoglycoside-induced damage to the lateral line and muscles. Neurotoxicology 2020; 78:134-142. [PMID: 32169463 DOI: 10.1016/j.neuro.2020.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/29/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
Zebrafish behavior is influenced by the lateral line hair cells and muscles. Drug-induced behavioral changes can serve as indicators in the evaluation of drug toxicity. The aminoglycoside family of antibiotics comprise a number of agents, including neomycin (NM) and gentamicin (GM). We hypothesized that NM and GM exert different effects on zebrafish larvae through their action on the lateral line and muscle fibers, inducing different swimming behavioral patterns such as locomotor behavior and the startle response. In this study, 125 μM NM and 5, 10, 20 μM GM induced hair cell damage in the anterior and posterior lateral lines of zebrafish larvae. However, unlike GM, 125 μM NM also caused muscle damage. Locomotor behavior was decreased in the 125 μM NM-exposed group compared to the group exposed to GM. Furthermore, 125 μM NM exposure induced significantly different patterns of various indices of startle behavior compared with the GM exposure groups. Additionally, the larvae exhibited different startle responses depending on the concentration of GM. These results suggest that GM may be the drug-of-choice for analyzing behavioral changes in zebrafish caused by damage to the lateral line alone. Our study highlights the importance of confirming muscle damage in behavioral analyses using zebrafish.
Collapse
Affiliation(s)
- Eunjung Han
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea; Laboratory of Neurodevelopmental Genetics, Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyoung Ho Oh
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea; Korea University Zebrafish Translational Medical Research Center, Ansan, Republic of Korea
| | - Saemi Park
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Yoon Chan Rah
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Hae-Chul Park
- Laboratory of Neurodevelopmental Genetics, Graduate School of Medicine, Korea University, Seoul, Republic of Korea; Korea University Zebrafish Translational Medical Research Center, Ansan, Republic of Korea
| | - Soonil Koun
- Biomedical Research Center, Korea University Ansan Hospital, Ansan, Republic of Korea; Korea University Zebrafish Translational Medical Research Center, Ansan, Republic of Korea.
| | - June Choi
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea; Korea University Zebrafish Translational Medical Research Center, Ansan, Republic of Korea.
| |
Collapse
|
45
|
Dalle Nogare D, Chitnis AB. NetLogo agent-based models as tools for understanding the self-organization of cell fate, morphogenesis and collective migration of the zebrafish posterior Lateral Line primordium. Semin Cell Dev Biol 2019; 100:186-198. [PMID: 31901312 DOI: 10.1016/j.semcdb.2019.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 01/25/2023]
Abstract
Interactions between primordium cells and their environment determines the self-organization of the zebrafish posterior Lateral Line primordium as it migrates under the skin from the ear to the tip of the tail forming and depositing neuromasts to spearhead formation of the posterior Lateral Line sensory system. In this review we describe how the NetLogo agent-based programming environment has been used in our lab to visualize and explore how self-generated chemokine gradients determine collective migration, how the dynamics of Wnt signaling can be used to predict patterns of neuromast deposition, and how previously defined interactions between Wnt and Fgf signaling systems have the potential to determine the periodic formation of center-biased Fgf signaling centers in the wake of a shrinking Wnt system. We also describe how NetLogo was used as a database for storing and visualizing the results of in toto lineage analysis of all cells in the migrating primordium. Together, the models illustrate how this programming environment can be used in diverse ways to integrate what has been learnt from biological experiments about the nature of interactions between cells and their environment, and explore how these interactions could potentially determine emergent patterns of cell fate specification, morphogenesis and collective migration of the zebrafish posterior Lateral Line primordium.
Collapse
Affiliation(s)
- Damian Dalle Nogare
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD USA
| | - Ajay B Chitnis
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD USA.
| |
Collapse
|
46
|
Midkine-a Is Required for Cell Cycle Progression of Müller Glia during Neuronal Regeneration in the Vertebrate Retina. J Neurosci 2019; 40:1232-1247. [PMID: 31882403 PMCID: PMC7002140 DOI: 10.1523/jneurosci.1675-19.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/27/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022] Open
Abstract
In the retina of zebrafish, Müller glia have the ability to reprogram into stem cells capable of regenerating all classes of retinal neurons and restoring visual function. Understanding the cellular and molecular mechanisms controlling the stem cell properties of Müller glia in zebrafish may provide cues to unlock the regenerative potential in the mammalian nervous system. Midkine is a cytokine/growth factor with multiple roles in neural development, tissue repair, and disease. In the retina of zebrafish, Müller glia have the ability to reprogram into stem cells capable of regenerating all classes of retinal neurons and restoring visual function. Understanding the cellular and molecular mechanisms controlling the stem cell properties of Müller glia in zebrafish may provide cues to unlock the regenerative potential in the mammalian nervous system. Midkine is a cytokine/growth factor with multiple roles in neural development, tissue repair, and disease. In midkine-a loss-of-function mutants of both sexes, Müller glia initiate the appropriate reprogramming response to photoreceptor death by increasing expression of stem cell-associated genes, and entering the G1 phase of the cell cycle. However, transition from G1 to S phase is blocked in the absence of Midkine-a, resulting in significantly reduced proliferation and selective failure to regenerate cone photoreceptors. Failing to progress through the cell cycle, Müller glia undergo reactive gliosis, a pathological hallmark in the injured CNS of mammals. Finally, we determined that the Midkine-a receptor, anaplastic lymphoma kinase, is upstream of the HLH regulatory protein, Id2a, and of the retinoblastoma gene, p130, which regulates progression through the cell cycle. These results demonstrate that Midkine-a functions as a core component of the mechanisms that regulate proliferation of stem cells in the injured CNS. SIGNIFICANCE STATEMENT The death of retinal neurons and photoreceptors is a leading cause of vision loss. Regenerating retinal neurons is a therapeutic goal. Zebrafish can regenerate retinal neurons from intrinsic stem cells, Müller glia, and are a powerful model to understand how stem cells might be used therapeutically. Midkine-a, an injury-induced growth factor/cytokine that is expressed by Müller glia following neuronal death, is required for Müller glia to progress through the cell cycle. The absence of Midkine-a suspends proliferation and neuronal regeneration. With cell cycle progression stalled, Müller glia undergo reactive gliosis, a pathological hallmark of the mammalian retina. This work provides a unique insight into mechanisms that control the cell cycle during neuronal regeneration.
Collapse
|
47
|
Kaaij LJT, van der Weide RH, Ketting RF, de Wit E. Systemic Loss and Gain of Chromatin Architecture throughout Zebrafish Development. Cell Rep 2019; 24:1-10.e4. [PMID: 29972771 PMCID: PMC6047509 DOI: 10.1016/j.celrep.2018.06.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 04/18/2018] [Accepted: 05/30/2018] [Indexed: 11/18/2022] Open
Abstract
The spatial organization of chromosomes is critical in establishing gene expression programs. We generated in situ Hi-C maps throughout zebrafish development to gain insight into higher-order chromatin organization and dynamics. Zebrafish chromosomes segregate in active and inactive chromatin (A/B compartments), which are further organized into topologically associating domains (TADs). Zebrafish A/B compartments and TADs have genomic features similar to those of their mammalian counterparts, including evolutionary conservation and enrichment of CTCF binding sites at TAD borders. At the earliest time point, when there is no zygotic transcription, the genome is highly structured. After zygotic genome activation (ZGA), the genome loses structural features, which are re-established throughout early development. Despite the absence of structural features, we see clustering of super-enhancers in the 3D genome. Our results provide insight into vertebrate genome organization and demonstrate that the developing zebrafish embryo is a powerful model system to study the dynamics of nuclear organization.
Collapse
Affiliation(s)
| | - Robin H van der Weide
- Oncode Institute and Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | | | - Elzo de Wit
- Oncode Institute and Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
48
|
Cigliola V, Ghila L, Chera S, Herrera PL. Tissue repair brakes: A common paradigm in the biology of regeneration. Stem Cells 2019; 38:330-339. [PMID: 31722129 DOI: 10.1002/stem.3118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/09/2019] [Accepted: 10/20/2019] [Indexed: 12/12/2022]
Abstract
To date, most attention on tissue regeneration has focused on the exploration of positive cues promoting or allowing the engagement of natural cellular restoration upon injury. In contrast, the signals fostering cell identity maintenance in the vertebrate body have been poorly investigated; yet they are crucial, for their counteraction could become a powerful method to induce and modulate regeneration. Here we review the mechanisms inhibiting pro-regenerative spontaneous adaptive cell responses in different model organisms and organs. The pharmacological or genetic/epigenetic modulation of such regenerative brakes could release a dormant but innate adaptive competence of certain cell types and therefore boost tissue regeneration in different situations.
Collapse
Affiliation(s)
- Valentina Cigliola
- Department of Cell Biology, Regeneration Next, Duke University Medical Center, Durham, North Carolina
| | - Luiza Ghila
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simona Chera
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Pedro L Herrera
- Department of Genetic Medicine & Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
49
|
Jacobo A, Dasgupta A, Erzberger A, Siletti K, Hudspeth A. Notch-Mediated Determination of Hair-Bundle Polarity in Mechanosensory Hair Cells of the Zebrafish Lateral Line. Curr Biol 2019; 29:3579-3587.e7. [DOI: 10.1016/j.cub.2019.08.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/05/2019] [Accepted: 08/22/2019] [Indexed: 10/25/2022]
|
50
|
Giffen KP, Liu H, Kramer KL, He DZ. Expression of Protein-Coding Gene Orthologs in Zebrafish and Mouse Inner Ear Non-sensory Supporting Cells. Front Neurosci 2019; 13:1117. [PMID: 31680844 PMCID: PMC6813431 DOI: 10.3389/fnins.2019.01117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/03/2019] [Indexed: 11/13/2022] Open
Abstract
Non-mammalian vertebrates, including zebrafish, retain the ability to regenerate hair cells (HCs) due to unknown molecular mechanisms that regulate proliferation and conversion of non-sensory supporting cells (nsSCs) to HCs. This regenerative capacity is not conserved in mammals. Identification of uniquely expressed orthologous genes in zebrafish nsSCs may reveal gene candidates involved in the proliferation and transdifferentiation of zebrafish nsSCs to HCs in the inner ear. A list of orthologous protein-coding genes was generated based on an Ensembl Biomart comparison of the zebrafish and mouse genomes. Our previously published RNA-seq-based transcriptome datasets of isolated inner ear zebrafish nsSCs and HCs, and mouse non-sensory supporting pillar and Deiters’ cells, and HCs, were merged to analyze gene expression patterns between the two species. Out of 17,498 total orthologs, 11,752 were expressed in zebrafish nsSCs and over 10,000 orthologs were expressed in mouse pillar and Deiters’ cells. Differentially expressed genes common among the zebrafish nsSCs and mouse pillar and Deiters’ cells, compared to species-specific HCs, included 306 downregulated and 314 upregulated genes; however, over 1,500 genes were uniquely upregulated in zebrafish nsSCs. Functional analysis of genes uniquely expressed in nsSCs identified several transcription factors associated with cell fate determination, cell differentiation and nervous system development, indicating inherent molecular properties of nsSCs that promote self-renewal and transdifferentiation into new HCs. Our study provides a means of characterizing these orthologous genes, involved in proliferation and transdifferentiation of nsSCs to HCs in zebrafish, which may lead to identification of potential targets for HC regeneration in mammals.
Collapse
Affiliation(s)
- Kimberlee P Giffen
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Huizhan Liu
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Kenneth L Kramer
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - David Z He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| |
Collapse
|