1
|
Dornes A, Schmidt LM, Mais CN, Hook JC, Pané-Farré J, Kressler D, Thormann K, Bange G. Polar confinement of a macromolecular machine by an SRP-type GTPase. Nat Commun 2024; 15:5797. [PMID: 38987236 PMCID: PMC11236974 DOI: 10.1038/s41467-024-50274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024] Open
Abstract
The basal structure of the bacterial flagellum includes a membrane embedded MS-ring (formed by multiple copies of FliF) and a cytoplasmic C-ring (composed of proteins FliG, FliM and FliN). The SRP-type GTPase FlhF is required for directing the initial flagellar protein FliF to the cell pole, but the mechanisms are unclear. Here, we show that FlhF anchors developing flagellar structures to the polar landmark protein HubP/FimV, thereby restricting their formation to the cell pole. Specifically, the GTPase domain of FlhF interacts with HubP, while a structured domain at the N-terminus of FlhF binds to FliG. FlhF-bound FliG subsequently engages with the MS-ring protein FliF. Thus, the interaction of FlhF with HubP and FliG recruits a FliF-FliG complex to the cell pole. In addition, the modulation of FlhF activity by the MinD-type ATPase FlhG controls the interaction of FliG with FliM-FliN, thereby regulating the progression of flagellar assembly at the pole.
Collapse
Affiliation(s)
- Anita Dornes
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Hans-Meerwein-Strasse 6, C07, 35043, Marburg, Germany
| | - Lisa Marie Schmidt
- Justus-Liebig-Universität, Department of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
| | - Christopher-Nils Mais
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Hans-Meerwein-Strasse 6, C07, 35043, Marburg, Germany
| | - John C Hook
- Justus-Liebig-Universität, Department of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
| | - Jan Pané-Farré
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Hans-Meerwein-Strasse 6, C07, 35043, Marburg, Germany
| | - Dieter Kressler
- University of Fribourg, Department of Biology, Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Kai Thormann
- Justus-Liebig-Universität, Department of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26, 35392, Giessen, Germany.
| | - Gert Bange
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Hans-Meerwein-Strasse 6, C07, 35043, Marburg, Germany.
- Max-Planck-Institute for terrestrial Microbiology, Molecular Physiology of Microbes, Karl-von-Frisch Strasse 14, 35043, Marburg, Germany.
| |
Collapse
|
2
|
Schumacher K, Braun D, Kleigrewe K, Jung K. Motility-activating mutations upstream of flhDC reduce acid shock survival of Escherichia coli. Microbiol Spectr 2024; 12:e0054424. [PMID: 38651876 PMCID: PMC11237407 DOI: 10.1128/spectrum.00544-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
Many neutralophilic bacterial species try to evade acid stress with an escape strategy, which is reflected in the increased expression of genes coding for flagellar components. Extremely acid-tolerant bacteria, such as Escherichia coli, survive the strong acid stress, e.g., in the stomach of vertebrates. Recently, we were able to show that the induction of motility genes in E. coli is strictly dependent on the degree of acid stress, i.e., they are induced under mild acid stress but not under severe acid stress. However, it was not known to what extent fine-tuned expression of motility genes is related to fitness and the ability to survive periods of acid shock. In this study, we demonstrate that the expression of FlhDC, the master regulator of flagellation, is inversely correlated with the acid shock survival of E. coli. We encountered this phenomenon when analyzing mutants from the Keio collection, in which the expression of flhDC was altered by an insertion sequence element. These results suggest a fitness trade-off between acid tolerance and motility.IMPORTANCEEscherichia coli is extremely acid-resistant, which is crucial for survival in the gastrointestinal tract of vertebrates. Recently, we systematically studied the response of E. coli to mild and severe acidic conditions using Ribo-Seq and RNA-Seq. We found that motility genes are induced at pH 5.8 but not at pH 4.4, indicating stress-dependent synthesis of flagellar components. In this study, we demonstrate that motility-activating mutations upstream of flhDC, encoding the master regulator of flagella genes, reduce the ability of E. coli to survive periods of acid shock. Furthermore, we show an inverse correlation between motility and acid survival using a chromosomal isopropyl β-D-thio-galactopyranoside (IPTG)-inducible flhDC promoter and by sampling differentially motile subpopulations from swim agar plates. These results reveal a previously undiscovered trade-off between motility and acid tolerance and suggest a differentiation of E. coli into motile and acid-tolerant subpopulations, driven by the integration of insertion sequence elements.
Collapse
Affiliation(s)
- Kilian Schumacher
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Djanna Braun
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| |
Collapse
|
3
|
Grognot M, Nam JW, Elson LE, Taute KM. Physiological adaptation in flagellar architecture improves Vibrio alginolyticus chemotaxis in complex environments. Proc Natl Acad Sci U S A 2023; 120:e2301873120. [PMID: 37579142 PMCID: PMC10450658 DOI: 10.1073/pnas.2301873120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/10/2023] [Indexed: 08/16/2023] Open
Abstract
Bacteria navigate natural habitats with a wide range of mechanical properties, from the ocean to the digestive tract and soil, by rotating helical flagella like propellers. Species differ in the number, position, and shape of their flagella, but the adaptive value of these flagellar architectures is unclear. Many species traverse multiple types of environments, such as pathogens inside and outside a host. We investigate the hypothesis that flagellar architectures mediate environment-specific benefits in the marine pathogen Vibrio alginolyticus which exhibits physiological adaptation to the mechanical environment. In addition to its single polar flagellum, the bacterium produces lateral flagella in environments that differ mechanically from water. These are known to facilitate surface motility and attachment. We use high-throughput 3D bacterial tracking to quantify chemotactic performance of both flagellar architectures in three archetypes of mechanical environments relevant to the bacterium's native habitats: water, polymer solutions, and hydrogels. We reveal that lateral flagella impede chemotaxis in water by lowering the swimming speed but improve chemotaxis in both types of complex environments. Statistical trajectory analysis reveals two distinct underlying behavioral mechanisms: In viscous solutions of the polymer PVP K90, lateral flagella increase the swimming speed. In agar hydrogels, lateral flagella improve overall chemotactic performance, despite lowering the swimming speed, by preventing trapping in pores. Our findings show that lateral flagella are multipurpose tools with a wide range of applications beyond surfaces. They implicate flagellar architecture as a mediator of environment-specific benefits and point to a rich space of bacterial navigation behaviors in complex environments.
Collapse
Affiliation(s)
- Marianne Grognot
- Rowland Institute, Harvard University, Cambridge, MA02142
- Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule University, Aachen52074, Germany
| | - Jong Woo Nam
- Rowland Institute, Harvard University, Cambridge, MA02142
| | | | - Katja M. Taute
- Rowland Institute, Harvard University, Cambridge, MA02142
- Biozentrum, Ludwig-Maximilians-Universität München, Martinsried82152, Germany
| |
Collapse
|
4
|
Wisnoski NI, Lennon JT. Scaling up and down: movement ecology for microorganisms. Trends Microbiol 2023; 31:242-253. [PMID: 36280521 DOI: 10.1016/j.tim.2022.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Movement is critical for the fitness of organisms, both large and small. It dictates how individuals acquire resources, evade predators, exchange genetic material, and respond to stressful environments. Movement also influences ecological and evolutionary dynamics at higher organizational levels, such as populations and communities. However, the links between individual motility and the processes that generate and maintain microbial diversity are poorly understood. Movement ecology is a framework linking the physiological and behavioral properties of individuals to movement patterns across scales of space, time, and biological organization. By synthesizing insights from cell biology, ecology, and evolution, we expand theory from movement ecology to predict the causes and consequences of microbial movements.
Collapse
Affiliation(s)
- Nathan I Wisnoski
- Wyoming Geographic Information Science Center, University of Wyoming, Laramie, WY 82071, USA; Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
5
|
Kühn MJ, Edelmann DB, Thormann KM. Polar flagellar wrapping and lateral flagella jointly contribute to Shewanella putrefaciens environmental spreading. Environ Microbiol 2022; 24:5911-5923. [PMID: 35722744 DOI: 10.1111/1462-2920.16107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 01/12/2023]
Abstract
Flagella enable bacteria to actively spread within the environment. A number of species possess two separate flagellar systems, where in most cases a primary polar flagellar system is supported by distinct secondary lateral flagella under appropriate conditions. Using functional fluorescence tagging on one of these species, Shewanella putrefaciens, as a model system, we explored how two different flagellar systems can exhibit efficient joint function. The S. putrefaciens secondary flagellar filaments are composed as a mixture of two highly homologous non-glycosylated flagellins, FlaA2 and FlaB2 . Both are solely sufficient to form a functional filament, however, full spreading motility through soft agar requires both flagellins. During swimming, lateral flagella emerge from the cell surface at angles between 30° and 50°, and only filaments located close to the cell pole may form a bundle. Upon a directional shift from forward to backward swimming initiated by the main polar flagellum, the secondary filaments flip over and thus support propulsion into either direction. Lateral flagella do not inhibit the wrapping of the polar flagellum around the cell body at high load. Accordingly, screw thread-like motility mediated by the primary flagellum and activity of lateral flagella cumulatively supports spreading through constricted environments such as polysaccharide matrices.
Collapse
Affiliation(s)
- Marco J Kühn
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany.,Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Daniel B Edelmann
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Kai M Thormann
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| |
Collapse
|
6
|
Abstract
A huge number of bacterial species are motile by flagella, which allow them to actively move toward favorable environments and away from hazardous areas and to conquer new habitats. The general perception of flagellum-mediated movement and chemotaxis is dominated by the Escherichia coli paradigm, with its peritrichous flagellation and its famous run-and-tumble navigation pattern, which has shaped the view on how bacteria swim and navigate in chemical gradients. However, a significant amount-more likely the majority-of bacterial species exhibit a (bi)polar flagellar localization pattern instead of lateral flagella. Accordingly, these species have evolved very different mechanisms for navigation and chemotaxis. Here, we review the earlier and recent findings on the various modes of motility mediated by polar flagella. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kai M Thormann
- Institute of Microbiology and Molecular Biology, Justus Liebig University Gießen, Gießen, Germany;
| | - Carsten Beta
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany;
| | - Marco J Kühn
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland;
| |
Collapse
|
7
|
Rick T, Kreiling V, Höing A, Fiedler S, Glatter T, Steinchen W, Hochberg G, Bähre H, Seifert R, Bange G, Knauer SK, Graumann PL, Thormann KM. GGDEF domain as spatial on-switch for a phosphodiesterase by interaction with landmark protein HubP. NPJ Biofilms Microbiomes 2022; 8:35. [PMID: 35501424 PMCID: PMC9061725 DOI: 10.1038/s41522-022-00297-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractIn bacteria, the monopolar localization of enzymes and protein complexes can result in a bimodal distribution of enzyme activity between the dividing cells and heterogeneity of cellular behaviors. In Shewanella putrefaciens, the multidomain hybrid diguanylate cyclase/phosphodiesterase PdeB, which degrades the secondary messenger c-di-GMP, is located at the flagellated cell pole. Here, we show that direct interaction between the inactive diguanylate cyclase (GGDEF) domain of PdeB and the FimV domain of the polar landmark protein HubP is crucial for full function of PdeB as a phosphodiesterase. Thus, the GGDEF domain serves as a spatially controlled on-switch that effectively restricts PdeBs activity to the flagellated cell pole. PdeB regulates abundance and activity of at least two crucial surface-interaction factors, the BpfA surface-adhesion protein and the MSHA type IV pilus. The heterogeneity in c-di-GMP concentrations, generated by differences in abundance and timing of polar appearance of PdeB, orchestrates the population behavior with respect to cell-surface interaction and environmental spreading.
Collapse
|
8
|
Lack of N-Terminal Segment of the Flagellin Protein Results in the Production of a Shortened Polar Flagellum in the Deep-Sea Sedimentary Bacterium Pseudoalteromonas sp. Strain SM9913. Appl Environ Microbiol 2021; 87:e0152721. [PMID: 34406825 DOI: 10.1128/aem.01527-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial polar flagella, comprised of flagellin, are essential for bacterial motility. Pseudoalteromonas sp. strain SM9913 is a bacterium isolated from deep-sea sediments. Unlike other Pseudoalteromonas strains that have a long polar flagellum, strain SM9913 has an abnormally short polar flagellum. Here, we investigated the underlying reason for the short flagellum and found that a single-base mutation was responsible for the altered flagellar assembly. This mutation leads to the fragmentation of the flagellin gene into two genes, PSM_A2281, encoding the core segment and the C-terminal segment, and PSM_A2282, encoding the N-terminal segment, and only gene PSM_A2281 is involved in the production of the short polar flagellum. When a chimeric gene of PSM_A2281 and PSM_A2282 encoding an intact flagellin, A2281::82, was expressed, a long polar flagellum was produced, indicating that the N-terminal segment of flagellin contributes to the production of a polar flagellum of a normal length. Analyses of the simulated structures of A2281 and A2281::82 and that of the flagellar filament assembled with A2281::82 indicate that due to the lack of two α-helices, the core of the flagellar filament assembled with A2281 is incomplete and is likely too weak to support the stability and movement of a long flagellum. This mutation in strain SM9913 had little effect on its growth and only a small effect on its swimming motility, implying that strain SM9913 can live well with this mutation in natural sedimentary environments. This study provides a better understanding of the assembly and production of bacterial flagella. IMPORTANCE Polar flagella, which are essential organelles for bacterial motility, are comprised of multiple flagellin subunits. A flagellin molecule contains an N-terminal segment, a core segment, and a C-terminal segment. The results of this investigation of the deep-sea sedimentary bacterium Pseudoalteromonas sp. strain SM9913 demonstrate that a single-base mutation in the flagellin gene leads to the production of an incomplete flagellin without the N-terminal segment and that the loss of the N-terminal segment of the flagellin protein results in the production of a shortened polar flagellar filament. Our results shed light on the important function of the N-terminal segment of flagellin in the assembly and stability of bacterial flagellar filament.
Collapse
|
9
|
Abstract
Cholera disease is caused by Vibrio cholerae infecting the lining of the small intestine and results in severe diarrhea. V. cholerae’s swimming motility is known to play a crucial role in pathogenicity and may aid the bacteria in crossing the intestinal mucus barrier to reach sites of infection, but the exact mechanisms are unknown. The cell can be either pushed or pulled by its single polar flagellum, but there is no consensus on the resulting repertoire of motility behaviors. We use high-throughput three-dimensional (3D) bacterial tracking to observe V. cholerae swimming in buffer, in viscous solutions of the synthetic polymer PVP, and in mucin solutions that may mimic the host environment. We perform a statistical characterization of its motility behavior on the basis of large 3D trajectory data sets. We find that V. cholerae performs asymmetric run-reverse-flick motility, consisting of a sequence of a forward run, reversal, and a shorter backward run, followed by a turn by approximately 90°, called a flick, preceding the next forward run. Unlike many run-reverse-flick swimmers, V. cholerae’s backward runs are much shorter than its forward runs, resulting in an increased effective diffusivity. We also find that the swimming speed is not constant but subject to frequent decreases. The turning frequency in mucin matches that observed in buffer. Run-reverse-flick motility and speed fluctuations are present in all environments studied, suggesting that these behaviors also occur in natural aquatic habitats as well as the host environment. IMPORTANCE Cholera disease produces vomiting and severe diarrhea and causes approximately 100,000 deaths per year worldwide. The disease is caused by the bacterium Vibrio cholerae colonizing the lining of the small intestine. V. cholerae’s ability to swim is known to increase its infectivity, but the underlying mechanisms are not known. One possibility is that swimming aids in crossing the protective mucus barrier that covers the lining of the small intestine. Our work characterizing how V. cholerae swims in environments that mimic properties of the host environment may advance the understanding of how motility contributes to infection.
Collapse
|
10
|
Pecina A, Schwan M, Blagotinsek V, Rick T, Klüber P, Leonhard T, Bange G, Thormann KM. The Stand-Alone PilZ-Domain Protein MotL Specifically Regulates the Activity of the Secondary Lateral Flagellar System in Shewanella putrefaciens. Front Microbiol 2021; 12:668892. [PMID: 34140945 PMCID: PMC8203827 DOI: 10.3389/fmicb.2021.668892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
A number of bacterial species control the function of the flagellar motor in response to the levels of the secondary messenger c-di-GMP, which is often mediated by c-di-GMP-binding proteins that act as molecular brakes or clutches to slow the motor rotation. The gammaproteobacterium Shewanella putrefaciens possesses two distinct flagellar systems, the primary single polar flagellum and a secondary system with one to five lateral flagellar filaments. Here, we identified a protein, MotL, which specifically regulates the activity of the lateral, but not the polar, flagellar motors in response to the c-di-GMP levels. MotL only consists of a single PilZ domain binding c-di-GMP, which is crucial for its function. Deletion and overproduction analyses revealed that MotL slows down the lateral flagella at elevated levels of c-di-GMP, and may speed up the lateral flagellar-mediated movement at low c-di-GMP concentrations. In vitro interaction studies hint at an interaction of MotL with the C-ring of the lateral flagellar motors. This study shows a differential c-di-GMP-dependent regulation of the two flagellar systems in a single species, and implicates that PilZ domain-only proteins can also act as molecular regulators to control the flagella-mediated motility in bacteria.
Collapse
Affiliation(s)
- Anna Pecina
- Department of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Meike Schwan
- Department of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Vitan Blagotinsek
- Department of Chemistry, SYNMIKRO Research Center, Philipps-University Marburg, Marburg, Germany
| | - Tim Rick
- Department of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Patrick Klüber
- Department of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Tabea Leonhard
- Department of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Gert Bange
- Department of Chemistry, SYNMIKRO Research Center, Philipps-University Marburg, Marburg, Germany
| | - Kai M Thormann
- Department of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Giessen, Germany
| |
Collapse
|
11
|
Ferreira JL, Coleman I, Addison ML, Zachs T, Quigley BL, Wuichet K, Beeby M. The "Jack-of-all-Trades" Flagellum From Salmonella and E. coli Was Horizontally Acquired From an Ancestral β-Proteobacterium. Front Microbiol 2021; 12:643180. [PMID: 33859630 PMCID: PMC8042155 DOI: 10.3389/fmicb.2021.643180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/05/2021] [Indexed: 11/24/2022] Open
Abstract
The γ-proteobacteria are a group of diverse bacteria including pathogenic Escherichia, Salmonella, Vibrio, and Pseudomonas species. The majority swim in liquids with polar, sodium-driven flagella and swarm on surfaces with lateral, non-chemotactic flagella. Notable exceptions are the enteric Enterobacteriaceae such as Salmonella and E. coli. Many of the well-studied Enterobacteriaceae are gut bacteria that both swim and swarm with the same proton-driven peritrichous flagella. How different flagella evolved in closely related lineages, however, has remained unclear. Here, we describe our phylogenetic finding that Enterobacteriaceae flagella are not native polar or lateral γ-proteobacterial flagella but were horizontally acquired from an ancestral β-proteobacterium. Using electron cryo-tomography and subtomogram averaging, we confirmed that Enterobacteriaceae flagellar motors resemble contemporary β-proteobacterial motors and are distinct to the polar and lateral motors of other γ-proteobacteria. Structural comparisons support a model in which γ-proteobacterial motors have specialized, suggesting that acquisition of a β-proteobacterial flagellum may have been beneficial as a general-purpose motor suitable for adjusting to diverse conditions. This acquisition may have played a role in the development of the enteric lifestyle.
Collapse
Affiliation(s)
- Josie L Ferreira
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Izaak Coleman
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Max L Addison
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Tobias Zachs
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Bonnie L Quigley
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Kristin Wuichet
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Grognot M, Taute KM. More than propellers: how flagella shape bacterial motility behaviors. Curr Opin Microbiol 2021; 61:73-81. [PMID: 33845324 DOI: 10.1016/j.mib.2021.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 02/14/2021] [Indexed: 12/22/2022]
Abstract
Bacteria use a wide variety of flagellar architectures to navigate their environment. While the iconic run-tumble motility strategy of the peritrichously flagellated Escherichia coli has been well studied, recent work has revealed a variety of new motility behaviors that can be achieved with different flagellar architectures, such as single, bundled, or opposing polar flagella. The recent discovery of various flagellar gymnastics such as flicking and flagellar wrapping is increasingly shifting the view from flagella as passive propellers to versatile appendages that can be used in a wide range of conformations. Here, we review recent observations of how flagella shape motility behaviors and summarize the nascent structure-function map linking flagellation and behavior.
Collapse
Affiliation(s)
- Marianne Grognot
- Rowland Institute at Harvard, 100 Edwin H Land Blvd, Cambridge, MA 02142, USA
| | - Katja M Taute
- Rowland Institute at Harvard, 100 Edwin H Land Blvd, Cambridge, MA 02142, USA.
| |
Collapse
|
13
|
Hook JC, Blagotinsek V, Pané-Farré J, Mrusek D, Altegoer F, Dornes A, Schwan M, Schier L, Thormann KM, Bange G. A Proline-Rich Element in the Type III Secretion Protein FlhB Contributes to Flagellar Biogenesis in the Beta- and Gamma-Proteobacteria. Front Microbiol 2020; 11:564161. [PMID: 33384667 PMCID: PMC7771051 DOI: 10.3389/fmicb.2020.564161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/26/2020] [Indexed: 11/24/2022] Open
Abstract
Flagella are bacterial organelles of locomotion. Their biogenesis is highly coordinated in time and space and relies on a specialized flagellar type III secretion system (fT3SS) required for the assembly of the extracellular hook, rod, and filament parts of this complex motor device. The fT3SS protein FlhB switches secretion substrate specificity once the growing hook reaches its determined length. Here we present the crystal structure of the cytoplasmic domain of the transmembrane protein FlhB. The structure visualizes a so-far unseen proline-rich region (PRR) at the very C-terminus of the protein. Strains lacking the PRR show a decrease in flagellation as determined by hook- and filament staining, indicating a role of the PRR during assembly of the hook and filament structures. Phylogenetic analysis shows that the PRR is a primary feature of FlhB proteins of flagellated beta- and gamma-proteobacteria. Taken together, our study adds another layer of complexity and organismic diversity to the process of flagella biogenesis.
Collapse
Affiliation(s)
- John C Hook
- Department of Microbiology and Molecular Biology, Justus-Liebig-Universität, Giessen, Germany
| | - Vitan Blagotinsek
- SYNMIKRO Research Center, Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Jan Pané-Farré
- SYNMIKRO Research Center, Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Devid Mrusek
- SYNMIKRO Research Center, Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Florian Altegoer
- SYNMIKRO Research Center, Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Anita Dornes
- SYNMIKRO Research Center, Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Meike Schwan
- Department of Microbiology and Molecular Biology, Justus-Liebig-Universität, Giessen, Germany
| | - Lukas Schier
- SYNMIKRO Research Center, Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Kai M Thormann
- Department of Microbiology and Molecular Biology, Justus-Liebig-Universität, Giessen, Germany
| | - Gert Bange
- SYNMIKRO Research Center, Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
14
|
Rossmann FM, Hug I, Sangermani M, Jenal U, Beeby M. In situ structure of the Caulobacter crescentus flagellar motor and visualization of binding of a CheY-homolog. Mol Microbiol 2020; 114:443-453. [PMID: 32449846 PMCID: PMC7534056 DOI: 10.1111/mmi.14525] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/30/2022]
Abstract
Bacterial flagellar motility is controlled by the binding of CheY proteins to the cytoplasmic switch complex of the flagellar motor, resulting in changes in swimming speed or direction. Despite its importance for motor function, structural information about the interaction between effector proteins and the motor are scarce. To address this gap in knowledge, we used electron cryotomography and subtomogram averaging to visualize such interactions inside Caulobacter crescentus cells. In C. crescentus, several CheY homologs regulate motor function for different aspects of the bacterial lifestyle. We used subtomogram averaging to image binding of the CheY family protein CleD to the cytoplasmic Cring switch complex, the control center of the flagellar motor. This unambiguously confirmed the orientation of the motor switch protein FliM and the binding of a member of the CheY protein family to the outside rim of the C ring. We also uncovered previously unknown structural elaborations of the alphaproteobacterial flagellar motor, including two novel periplasmic ring structures, and the stator ring harboring eleven stator units, adding to our growing catalog of bacterial flagellar diversity.
Collapse
Affiliation(s)
| | - Isabelle Hug
- Focal Area of Infection BiologyBiozentrum of the University of BaselBaselSwitzerland
| | - Matteo Sangermani
- Focal Area of Infection BiologyBiozentrum of the University of BaselBaselSwitzerland
| | - Urs Jenal
- Focal Area of Infection BiologyBiozentrum of the University of BaselBaselSwitzerland
| | - Morgan Beeby
- Department of Life SciencesImperial College LondonLondonUK
| |
Collapse
|
15
|
Characterization of FliL Proteins in Bradyrhizobium diazoefficiens: Lateral FliL Supports Swimming Motility, and Subpolar FliL Modulates the Lateral Flagellar System. J Bacteriol 2020; 202:JB.00708-19. [PMID: 31843800 DOI: 10.1128/jb.00708-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/07/2019] [Indexed: 02/07/2023] Open
Abstract
Bradyrhizobium diazoefficiens is a soil alphaproteobacterium that possesses two evolutionarily distinct flagellar systems, a constitutive subpolar flagellum and inducible lateral flagella that, depending on the carbon source, may be expressed simultaneously in liquid medium and used interactively for swimming. In each system, more than 30 genes encode the flagellar proteins, most of which are well characterized. Among the exceptions is FliL, which has been scarcely studied in alphaproteobacteria and whose function in other bacterial classes is somewhat controversial. Because each B. diazoefficiens flagellar system contains its own fliL paralog, we obtained the respective deletions ΔfliLS (subpolar) and ΔfliLL (lateral) to study their functions in swimming. We determined that FliLL was essential for lateral flagellum-driven motility. FliLS was dispensable for swimming in either liquid or semisolid medium; however, it was found to play a crucial role in upregulation of the lateral flagellum regulon under conditions of increased viscosity/flagellar load. Therefore, although FliLS seems to be not essential for swimming, it may participate in a mechanosensor complex that controls lateral flagellum induction.IMPORTANCE Bacterial motility propelled by flagella is an important trait in most environments, where microorganisms must explore the habitat toward beneficial resources and evade toxins. Most bacterial species have a unique flagellar system, but a few species possess two different flagellar systems in the same cell. An example is Bradyrhizobium diazoefficiens, the N2-fixing symbiont of soybean, which uses both systems for swimming. Among the less-characterized flagellar proteins is FliL, a protein typically associated with a flagellum-driven surface-based collective motion called swarming. By using deletion mutants in each flagellar system's fliL, we observed that one of them (lateral) was required for swimming, while the other (subpolar) took part in the control of lateral flagellum synthesis. Hence, this protein seems to participate in the coordination of activity and production of both flagellar systems.
Collapse
|
16
|
Najafi J, Altegoer F, Bange G, Wagner C. Swimming of bacterium Bacillus subtilis with multiple bundles of flagella. SOFT MATTER 2019; 15:10029-10034. [PMID: 31769462 DOI: 10.1039/c9sm01790a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We characterize the bundle properties for three different strains of B. subtilis bacteria with various numbers of flagella. Our study reveals that, surprisingly, the number of bundles is independent of the number of flagella, and the formation of three bundles is always the most frequent case. We assume that this relates to the fact that different mutants have the same body length. There is no significant difference between the bundle width and length for distinct strains, but the projected angle between the bundles increases with the flagellar number. Furthermore, we find that the swimming speed is anti-correlated with the projected angle between the bundles, and the wobbling angle between the swimming direction and cell body increases with the number of flagella. Our findings highlight the impact of geometrical properties of bacteria such as body length and bundle configuration on their motility.
Collapse
Affiliation(s)
- Javad Najafi
- Experimental Physics, Saarland University, 66123 Saarbrücken, Germany.
| | | | | | | |
Collapse
|
17
|
Abstract
Shewanella baltica was the dominant culturable nitrate-reducing bacterium in the eutrophic and strongly stratified Baltic Sea in the 1980s, where it primarily inhabited the oxic-anoxic transition zone. The genomic structures of 46 of these isolates were investigated through comparative genomic hybridization (CGH), which revealed a gradient of genomic similarity, ranging from 65% to as high as 99%. The core genome of the S. baltica species was enriched in anaerobic respiration-associated genes. Auxiliary genes, most of which locate within a few genomic islands (GIs), were nonuniformly distributed among the isolates. Specifically, hypothetical and mobile genetic element (MGE)-associated genes dominated intraclade gene content differences, whereas gain/loss of functional genes drove gene content differences among less related strains. Among the major S. baltica clades, gene signatures related to specific redox-driven and spatial niches within the water column were identified. For instance, genes involved in anaerobic respiration of sulfur compounds may provide key adaptive advantages for clade A strains in anoxic waters where sulfur-containing electron acceptors are present. Genes involved in cell motility, in particular, a secondary flagellar biosynthesis system, may be associated with the free-living lifestyle by clade E strains. Collectively, this study revealed characteristics of genome variations present in the water column and active speciation of S. baltica strains, driven by niche partitioning and horizontal gene transfer (HGT).IMPORTANCE Speciation in nature is a fundamental process driving the formation of the vast microbial diversity on Earth. In the central Baltic Sea, the long-term stratification of water led to formation of a large-scale vertical redoxcline that provided a gradient of environmental niches with respect to the availability of electron acceptors and donors. The region was home to Shewanella baltica populations, which composed the dominant culturable nitrate-reducing bacteria, particularly in the oxic-anoxic transition zone. Using the collection of S. baltica isolates as a model system, genomic variations showed contrasting gene-sharing patterns within versus among S. baltica clades and revealed genomic signatures of S. baltica clades related to redox niche specialization as well as particle association. This study provides important insights into genomic mechanisms underlying bacterial speciation within this unique natural redoxcline.
Collapse
|
18
|
The GGDEF Domain of the Phosphodiesterase PdeB in Shewanella putrefaciens Mediates Recruitment by the Polar Landmark Protein HubP. J Bacteriol 2019; 201:JB.00534-18. [PMID: 30670544 DOI: 10.1128/jb.00534-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022] Open
Abstract
Bacteria commonly exhibit a high degree of cellular organization and polarity which affect many vital processes such as replication, cell division, and motility. In Shewanella and other bacteria, HubP is a polar marker protein which is involved in proper chromosome segregation, placement of the chemotaxis system, and various aspects of pilus- and flagellum-mediated motility. Here, we show that HubP also recruits a transmembrane multidomain protein, PdeB, to the flagellated cell pole. PdeB is an active phosphodiesterase and degrades the second messenger c-di-GMP. In Shewanella putrefaciens, PdeB affects both the polar and the lateral flagellar systems at the level of function and/or transcription in response to environmental medium conditions. Mutant analysis on fluorescently labeled PdeB indicated that a diguanylate cyclase (GGDEF) domain in PdeB is strictly required for HubP-dependent localization. Bacterial two-hybrid and in vitro interaction studies on purified proteins strongly indicate that this GGDEF domain of PdeB directly interacts with the C-terminal FimV domain of HubP. Polar localization of PdeB occurs late during the cell cycle after cell division and separation and is not dependent on medium conditions. In vitro activity measurements did not reveal a difference in PdeB phosphodiesterase activities in the presence or absence of the HubP FimV domain. We hypothesize that recruitment of PdeB to the flagellated pole by HubP may create an asymmetry of c-di-GMP levels between mother and daughter cells and may assist in organization of c-di-GMP-dependent regulation within the cell.IMPORTANCE c-di-GMP-dependent signaling affects a range of processes in many bacterial species. Most bacteria harbor a plethora of proteins with domains which are potentially involved in synthesis and breakdown of c-di-GMP. A potential mechanism to elicit an appropriate c-di-GMP-dependent response is to organize the corresponding proteins in a spatiotemporal fashion. Here, we show that a major contributor to c-di-GMP levels and flagellum-mediated swimming in Shewanella, PdeB, is recruited to the flagellated cell pole by the polar marker protein HubP. Polar recruitment involves a direct interaction between HubP and a GGDEF domain in PdeB, demonstrating a novel mechanism of polar targeting by the widely conserved HubP/FimV polar marker.
Collapse
|
19
|
Garrido-Sanz D, Redondo-Nieto M, Mongiardini E, Blanco-Romero E, Durán D, Quelas JI, Martin M, Rivilla R, Lodeiro AR, Althabegoiti MJ. Phylogenomic Analyses of Bradyrhizobium Reveal Uneven Distribution of the Lateral and Subpolar Flagellar Systems, Which Extends to Rhizobiales. Microorganisms 2019; 7:microorganisms7020050. [PMID: 30781830 PMCID: PMC6406911 DOI: 10.3390/microorganisms7020050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 11/20/2022] Open
Abstract
Dual flagellar systems have been described in several bacterial genera, but the extent of their prevalence has not been fully explored. Bradyrhizobium diazoefficiens USDA 110T possesses two flagellar systems, the subpolar and the lateral flagella. The lateral flagellum of Bradyrhizobium displays no obvious role, since its performance is explained by cooperation with the subpolar flagellum. In contrast, the lateral flagellum is the only type of flagella present in the related Rhizobiaceae family. In this work, we have analyzed the phylogeny of the Bradyrhizobium genus by means of Genome-to-Genome Blast Distance Phylogeny (GBDP) and Average Nucleotide Identity (ANI) comparisons of 128 genomes and divided it into 13 phylogenomic groups. While all the Bradyrhizobium genomes encode the subpolar flagellum, none of them encodes only the lateral flagellum. The simultaneous presence of both flagella is exclusive of the B. japonicum phylogenomic group. Additionally, 292 Rhizobiales order genomes were analyzed and both flagellar systems are present together in only nine genera. Phylogenetic analysis of 150 representative Rhizobiales genomes revealed an uneven distribution of these flagellar systems. While genomes within and close to the Rhizobiaceae family only possess the lateral flagellum, the subpolar flagellum is exclusive of more early-diverging families, where certain genera also present both flagella.
Collapse
Affiliation(s)
- Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin 2, 28049 Madrid, Spain.
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin 2, 28049 Madrid, Spain.
| | - Elías Mongiardini
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, UNLP y CCT-La Plata-CONICET, La Plata B1900, Argentina.
| | - Esther Blanco-Romero
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin 2, 28049 Madrid, Spain.
| | - David Durán
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin 2, 28049 Madrid, Spain.
| | - Juan I Quelas
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, UNLP y CCT-La Plata-CONICET, La Plata B1900, Argentina.
| | - Marta Martin
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin 2, 28049 Madrid, Spain.
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin 2, 28049 Madrid, Spain.
| | - Aníbal R Lodeiro
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, UNLP y CCT-La Plata-CONICET, La Plata B1900, Argentina.
| | - M Julia Althabegoiti
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, UNLP y CCT-La Plata-CONICET, La Plata B1900, Argentina.
| |
Collapse
|
20
|
Recent Advances and Current Trends in Nucleotide Second Messenger Signaling in Bacteria. J Mol Biol 2019; 431:908-927. [PMID: 30668970 DOI: 10.1016/j.jmb.2019.01.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 02/01/2023]
Abstract
The "International Symposium on Nucleotide Second Messenger Signaling in Bacteria" (September 30-October 3, 2018, Berlin), which was organized within the framework of DFG Priority Programme 1879 (www.spp1879.de), brought together 125 participants from 20 countries to discuss recent progress and future trends in this field. Even 50 years after its discovery, (p)ppGpp is venturing into exciting new fields, especially in gram-positive bacteria. After triggering the current renaissance in bacterial second messenger research, c-di-GMP is becoming ever more global with abounding new molecular mechanisms of action and physiological functions. The more recently discovered c-di-AMP is rapidly catching up and has now been found even in archaea, with its function in osmotic homeostasis being conserved across kingdom boundaries. Small modules associated with mobile genetic elements, which make and react to numerous novel mixed cyclic dinucleotides, seem to roam around rather freely in the bacterial world. Finally, many novel and old nucleotide molecules are still lurking around in search of a function. Across many talks it became apparent that (p)ppGpp, c-di-GMP and GTP/ATP can share and compete for binding sites (e.g., the Walker A motif in GTP/ATPases) with intriguing regulatory consequences, thus contributing to the emergent trend of systemwide networks that interconnect diverse signaling nucleotides. Overall, this inspiring conference made it clear that second messenger signaling is currently one of the most dynamic and exciting areas in microbial molecular biology and physiology, with major impacts ranging from microbial systems biology and ecology to infection biology.
Collapse
|
21
|
Kühn MJ, Schmidt FK, Farthing NE, Rossmann FM, Helm B, Wilson LG, Eckhardt B, Thormann KM. Spatial arrangement of several flagellins within bacterial flagella improves motility in different environments. Nat Commun 2018; 9:5369. [PMID: 30560868 PMCID: PMC6299084 DOI: 10.1038/s41467-018-07802-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 11/22/2018] [Indexed: 11/26/2022] Open
Abstract
Bacterial flagella are helical proteinaceous fibers, composed of the protein flagellin, that confer motility to many bacterial species. The genomes of about half of all flagellated species include more than one flagellin gene, for reasons mostly unknown. Here we show that two flagellins (FlaA and FlaB) are spatially arranged in the polar flagellum of Shewanella putrefaciens, with FlaA being more abundant close to the motor and FlaB in the remainder of the flagellar filament. Observations of swimming trajectories and numerical simulations demonstrate that this segmentation improves motility in a range of environmental conditions, compared to mutants with single-flagellin filaments. In particular, it facilitates screw-like motility, which enhances cellular spreading through obstructed environments. Similar mechanisms may apply to other bacterial species and may explain the maintenance of multiple flagellins to form the flagellar filament.
Collapse
Affiliation(s)
- Marco J Kühn
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, 35392, Gießen, Germany
| | - Felix K Schmidt
- Fachbereich Physik und LOEWE Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, 35032, Marburg, Germany
| | - Nicola E Farthing
- Department of Physics, University of York, Heslington, York, YO10 5DD, UK
- Department of Mathematics, University of York, Heslington, York, YO10 5DD, UK
| | - Florian M Rossmann
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, 35392, Gießen, Germany
| | - Bina Helm
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, 35392, Gießen, Germany
| | - Laurence G Wilson
- Department of Physics, University of York, Heslington, York, YO10 5DD, UK.
| | - Bruno Eckhardt
- Fachbereich Physik und LOEWE Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, 35032, Marburg, Germany.
| | - Kai M Thormann
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, 35392, Gießen, Germany.
| |
Collapse
|
22
|
Becker M, Patz S, Becker Y, Berger B, Drungowski M, Bunk B, Overmann J, Spröer C, Reetz J, Tchuisseu Tchakounte GV, Ruppel S. Comparative Genomics Reveal a Flagellar System, a Type VI Secretion System and Plant Growth-Promoting Gene Clusters Unique to the Endophytic Bacterium Kosakonia radicincitans. Front Microbiol 2018; 9:1997. [PMID: 30214433 PMCID: PMC6125372 DOI: 10.3389/fmicb.2018.01997] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/08/2018] [Indexed: 01/04/2023] Open
Abstract
The recent worldwide discovery of plant growth-promoting (PGP) Kosakonia radicincitans in a large variety of crop plants suggests that this species confers significant influence on plants, both in terms of yield increase and product quality improvement. We provide a comparative genome analysis which helps to unravel the genetic basis for K. radicincitans' motility, competitiveness and plant growth-promoting capacities. We discovered that K. radicincitans carries multiple copies of complex gene clusters, among them two flagellar systems and three type VI secretion systems (T6SSs). We speculate that host invasion may be facilitated by different flagella, and bacterial competitor suppression by effector proteins ejected via T6SSs. We found a large plasmid in K. radicincitans DSM 16656T, the species type strain, that confers the potential to exploit plant-derived carbon sources. We propose that multiple copies of complex gene clusters in K. radicincitans are metabolically expensive but provide competitive advantage over other bacterial strains in nutrient-rich environments. The comparison of the DSM 16656T genome to genomes of other genera of enteric plant growth-promoting bacteria (PGPB) exhibits traits unique to DSM 16656T and K. radicincitans, respectively, and traits shared between genera. We used the output of the in silico analysis for predicting the purpose of genomic features unique to K. radicincitans and performed microarray, PhyloChip, and microscopical analyses to gain deeper insight into the interaction of DSM 16656T, plants and associated microbiota. The comparative genome analysis will facilitate the future search for promising candidates of PGPB for sustainable crop production.
Collapse
Affiliation(s)
- Matthias Becker
- Leibniz Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany
| | - Sascha Patz
- Leibniz Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany.,Algorithms in Bioinformatics, Center for Bioinformatics, University of Tübingen, Tübingen, Germany
| | - Yvonne Becker
- Leibniz Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany.,Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institute-Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Beatrice Berger
- Leibniz Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany.,Institute for National and International Plant Health, Julius Kühn-Institute-Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Mario Drungowski
- Leibniz Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jochen Reetz
- Federal Institute for Risk Assessment, Berlin, Germany
| | | | - Silke Ruppel
- Leibniz Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany
| |
Collapse
|
23
|
Brenzinger S, Pecina A, Mrusek D, Mann P, Völse K, Wimmi S, Ruppert U, Becker A, Ringgaard S, Bange G, Thormann KM. ZomB is essential for flagellar motor reversals in Shewanella putrefaciens and Vibrio parahaemolyticus. Mol Microbiol 2018; 109:694-709. [PMID: 29995998 DOI: 10.1111/mmi.14070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2018] [Indexed: 01/05/2023]
Abstract
The ability of most bacterial flagellar motors to reverse the direction of rotation is crucial for efficient chemotaxis. In Escherichia coli, motor reversals are mediated by binding of phosphorylated chemotaxis protein CheY to components of the flagellar rotor, FliM and FliN, which induces a conformational switch of the flagellar C-ring. Here, we show that for Shewanella putrefaciens, Vibrio parahaemolyticus and likely a number of other species an additional transmembrane protein, ZomB, is critically required for motor reversals as mutants lacking ZomB exclusively exhibit straightforward swimming also upon full phosphorylation or overproduction of CheY. ZomB is recruited to the cell poles by and is destabilized in the absence of the polar landmark protein HubP. ZomB also co-localizes to and may thus interact with the flagellar motor. The ΔzomB phenotype was suppressed by mutations in the very C-terminal region of FliM. We propose that the flagellar motors of Shewanella, Vibrio and numerous other species harboring orthologs to ZomB are locked in counterclockwise rotation and may require interaction with ZomB to enable the conformational switch required for motor reversals. Regulation of ZomB activity or abundance may provide these species with an additional means to modulate chemotaxis efficiency.
Collapse
Affiliation(s)
- Susanne Brenzinger
- Justus-Liebig Universität, Department of Microbiology and Molecular Biology, 35392, Giessen, Germany
| | - Anna Pecina
- Justus-Liebig Universität, Department of Microbiology and Molecular Biology, 35392, Giessen, Germany
| | - Devid Mrusek
- LOEWE Center for Synthetic Microbiology (Synmikro) & Department of Chemistry, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Petra Mann
- Department of Ecophysiology, Max-Planck-Institut für terrestrische Mikrobiologie, 35043, Marburg, Germany
| | - Kerstin Völse
- Justus-Liebig Universität, Department of Microbiology and Molecular Biology, 35392, Giessen, Germany
| | - Stephan Wimmi
- Department of Ecophysiology, Max-Planck-Institut für terrestrische Mikrobiologie, 35043, Marburg, Germany
| | - Ulrike Ruppert
- Justus-Liebig Universität, Department of Microbiology and Molecular Biology, 35392, Giessen, Germany
| | - Anke Becker
- LOEWE Center for Synthetic Microbiology (Synmikro) & Department of Biology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Simon Ringgaard
- Department of Ecophysiology, Max-Planck-Institut für terrestrische Mikrobiologie, 35043, Marburg, Germany
| | - Gert Bange
- LOEWE Center for Synthetic Microbiology (Synmikro) & Department of Chemistry, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Kai M Thormann
- Justus-Liebig Universität, Department of Microbiology and Molecular Biology, 35392, Giessen, Germany
| |
Collapse
|
24
|
Cogo C, Pérez-Giménez J, Rajeswari CB, Luna MF, Lodeiro AR. Induction by Bradyrhizobium diazoefficiens of Different Pathways for Growth in D-mannitol or L-arabinose Leading to Pronounced Differences in CO 2 Fixation, O 2 Consumption, and Lateral-Flagellum Production. Front Microbiol 2018; 9:1189. [PMID: 29922265 PMCID: PMC5996035 DOI: 10.3389/fmicb.2018.01189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/16/2018] [Indexed: 11/20/2022] Open
Abstract
Bradyrhizobium diazoefficiens, a soybean N2-fixing symbiont, constitutes the basic input in one of the most prominent inoculant industries worldwide. This bacterium may be cultured with D-mannitol or L-arabinose as carbon-plus-energy source (C-source) with similar specific growth rates, but with higher biomass production with D-mannitol. To better understand the bacterium’s carbon metabolism, we analyzed, by liquid chromatography and tandem mass spectrometry (MS), the whole set of proteins obtained from cells grown on each C-source. Among 3,334 proteins identified, 266 were overproduced in D-mannitol and 237 in L-arabinose, but among these, only 22% from D-mannitol cultures and 35% from L-arabinose cultures were annotated with well defined functions. In the D-mannitol-differential pool we found 19 enzymes of the pentose-phosphate and Calvin–Benson–Bassham pathways and accordingly observed increased extracellular-polysaccharide production by D-mannitol grown bacteria in a CO2-enriched atmosphere. Moreover, poly-3-hydroxybutyrate biosynthesis was increased, suggesting a surplus of reducing power. In contrast, the L-arabinose-differential pool contained 11 enzymes of the L-2-keto-3-deoxyarabonate pathway, 4 enzymes for the synthesis of nicotinamide-adenine dinucleotide from aspartate, with those cultures having a threefold higher O2-consumption rate than the D-mannitol cultures. The stoichiometric balances deduced from the modeled pathways, however, resulted in similar O2 consumptions and ATP productions per C-mole of substrate. These results suggested higher maintenance-energy demands in L-arabinose, which energy may be used partly for flagella-driven motility. Since B. diazoefficiens produces the lateral-flagella system in only L-arabinose, we calculated the O2-consumption rates of a lafR::Km mutant devoid of lateral flagella cultured in L-arabinose or D-mannitol. Contrary to that of the wild-type, the O2-consumption rate of this mutant was similar on both C-sources, and accordingly outcompeted the wild-type in coculture, suggesting that the lateral flagella behaved as parasitic structures under these conditions. Proteomic data are available via ProteomeXchange with identifier PXD008263.
Collapse
Affiliation(s)
- Carolina Cogo
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas-UNLP y CCT La Plata-CONICET, La Plata, Argentina.,Departamento de Ciencias Básicas, Facultad de Ingeniería-UNLP, La Plata, Argentina
| | - Julieta Pérez-Giménez
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas-UNLP y CCT La Plata-CONICET, La Plata, Argentina
| | - Chandrasekar B Rajeswari
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas-UNLP y CCT La Plata-CONICET, La Plata, Argentina
| | - María F Luna
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, Facultad de Ciencias Exactas-UNLP y CCT La Plata-CONICET, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Argentina
| | - Aníbal R Lodeiro
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas-UNLP y CCT La Plata-CONICET, La Plata, Argentina
| |
Collapse
|
25
|
Partially Reciprocal Replacement of FlrA and FlrC in Regulation of Shewanella oneidensis Flagellar Biosynthesis. J Bacteriol 2018; 200:JB.00796-17. [PMID: 29358496 DOI: 10.1128/jb.00796-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 01/17/2018] [Indexed: 12/23/2022] Open
Abstract
In some bacteria with a polar flagellum, an established regulatory hierarchy controlling stepwise assembly of the organelle consists of four regulators: FlrA, σ54, FlrBC, and σ28 Because all of these regulators mediate the expression of multiple targets, they are essential to the assembly of a functional flagellum and therefore to motility. However, this is not the case for the gammaproteobacterium Shewanella oneidensis: cells lacking FlrB, FlrC, or both remain flagellated and motile. In this study, we unravel the underlying mechanism, showing that FlrA and FlrC are partially substitutable for each other in regulating flagellar assembly. While both regulators are bacterial enhancer binding proteins (bEBPs) for σ54, FlrA differs from FlrC in its independence of σ54 for its own transcription and its inability to activate the flagellin gene flaA These differences largely account for the distinct phenotypes resulting from the loss or overproduction of FlrA and FlrC.IMPORTANCE The assembly of a polar flagellum in bacteria has been characterized as relying on four regulators, FlrA, σ54, FlrBC, and σ28, in a hierarchical manner. They all are essential to the process and therefore to motility, except in S. oneidensis, in which FlrB, FlrC, or both together are not essential. Here we show that FlrA and FlrC, as bEBPs, are partially reciprocal in functionality in this species. As a consequence, the presence of one allows flagellar assembly and motility in the other's absence. Despite this, there are significant differences in the physiological roles played by these two regulators: FlrA is the master regulator of flagellar assembly, whereas FlrC fine-tunes motility. These intriguing observations open up a new avenue to further exploration of the regulation of flagellar assembly.
Collapse
|
26
|
Pankratova EV, Kalyakulina AI, Krivonosov MI, Denisov SV, Taute KM, Zaburdaev VY. Chemotactic drift speed for bacterial motility pattern with two alternating turning events. PLoS One 2018; 13:e0190434. [PMID: 29351336 PMCID: PMC5774696 DOI: 10.1371/journal.pone.0190434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/14/2017] [Indexed: 01/07/2023] Open
Abstract
Bacterial chemotaxis is one of the most extensively studied adaptive responses in cells. Many bacteria are able to bias their apparently random motion to produce a drift in the direction of the increasing chemoattractant concentration. It has been recognized that the particular motility pattern employed by moving bacteria has a direct impact on the efficiency of chemotaxis. The linear theory of chemotaxis pioneered by de Gennes allows for calculation of the drift velocity in small gradients for bacteria with basic motility patterns. However, recent experimental data on several bacterial species highlighted the motility pattern where the almost straight runs of cells are interspersed with turning events leading to the reorientation of the cell swimming directions with two distinct angles following in strictly alternating order. In this manuscript we generalize the linear theory of chemotaxis to calculate the chemotactic drift speed for the motility pattern of bacteria with two turning angles. By using the experimental data on motility parameters of V. alginolyticus bacteria we can use our theory to relate the efficiency of chemotaxis and the size of bacterial cell body. The results of this work can have a straightforward extension to address most general motility patterns with alternating angles, speeds and durations of runs.
Collapse
Affiliation(s)
- Evgeniya V. Pankratova
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhniy Novgorod, Russia
- * E-mail:
| | - Alena I. Kalyakulina
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhniy Novgorod, Russia
| | - Mikhail I. Krivonosov
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhniy Novgorod, Russia
| | - Sergei V. Denisov
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhniy Novgorod, Russia
- Department of Theoretical Physics, University of Augsburg, Augsburg, Germany
| | - Katja M. Taute
- Rowland Institute at Harvard, Harvard University, Cambridge, United States of America
| | - Vasily Yu. Zaburdaev
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Institute of Supercomputing Technologies, Lobachevsky State University, Nizhniy Novgorod, Russia
| |
Collapse
|
27
|
Impact of fluorescent protein fusions on the bacterial flagellar motor. Sci Rep 2017; 7:12583. [PMID: 28974721 PMCID: PMC5626733 DOI: 10.1038/s41598-017-11241-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/22/2017] [Indexed: 01/16/2023] Open
Abstract
Fluorescent fusion proteins open a direct and unique window onto protein function. However, they also introduce the risk of perturbation of the function of the native protein. Successful applications of fluorescent fusions therefore rely on a careful assessment and minimization of the side effects, but such insight is still lacking for many applications. This is particularly relevant in the study of the internal dynamics of motor proteins, where both the chemical and mechanical reaction coordinates can be affected. Fluorescent proteins fused to the stator of the Bacterial Flagellar Motor (BFM) have previously been used to unveil the motor subunit dynamics. Here we report the effects on single motors of three fluorescent proteins fused to the stators, all of which altered BFM behavior. The torque generated by individual stators was reduced while their stoichiometry remained unaffected. MotB fusions decreased the switching frequency and induced a novel bias-dependent asymmetry in the speed in the two directions. These effects could be mitigated by inserting a linker at the fusion point. These findings provide a quantitative account of the effects of fluorescent fusions to the stator on BFM dynamics and their alleviation- new insights that advance the use of fluorescent fusions to probe the dynamics of protein complexes.
Collapse
|
28
|
Nguyen FTM, Graham MD. Buckling Instabilities and Complex Trajectories in a Simple Model of Uniflagellar Bacteria. Biophys J 2017; 112:1010-1022. [PMID: 28297638 DOI: 10.1016/j.bpj.2016.12.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/08/2016] [Accepted: 12/27/2016] [Indexed: 11/24/2022] Open
Abstract
Observations of uniflagellar bacteria show that buckling instabilities of the hook protein connecting the cell body and flagellum play a role in locomotion. To understand this phenomenon, we develop models at varying levels of description with a particular focus on the parameter dependence of the buckling instability. A key dimensionless group called the flexibility number measures the hook flexibility relative to the thrust exerted by the flagellum; this parameter and the geometric parameters of the cell determine the stability of straight swimming. Two very simple models amenable to analytical treatment are developed to examine buckling in stationary (pinned) and moving swimmers. We then consider a more detailed model incorporating a helical flagellum and the rotational degrees of freedom of the cell body and flagellum, and we use numerical simulations to map out the parameter dependence of the buckling instability. In all models, a bifurcation occurs as the flexibility number increases, separating equilibrium configurations into straight or bent, and for the full model, separating trajectories into straight or helical. More specifically for the latter, the critical flexibility marks the transition from periodicity to quasi-periodicity in the behavior of variables determining configuration. We also find that for a given body geometry, there is a specific flagellar geometry that minimizes the critical flexibility number at which buckling occurs. These results highlight the role of flexibility in the biology of real organisms and the engineering of artificial microswimmers.
Collapse
Affiliation(s)
- Frank T M Nguyen
- Department of Chemical and Biological Engineering University of Wisconsin-Madison, Madison, Wisconsin
| | - Michael D Graham
- Department of Chemical and Biological Engineering University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
29
|
Bacteria exploit a polymorphic instability of the flagellar filament to escape from traps. Proc Natl Acad Sci U S A 2017; 114:6340-6345. [PMID: 28559324 DOI: 10.1073/pnas.1701644114] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many bacterial species swim by rotating single polar helical flagella. Depending on the direction of rotation, they can swim forward or backward and change directions to move along chemical gradients but also to navigate their obstructed natural environment in soils, sediments, or mucus. When they get stuck, they naturally try to back out, but they can also resort to a radically different flagellar mode, which we discovered here. Using high-speed microscopy, we monitored the swimming behavior of the monopolarly flagellated species Shewanella putrefaciens with fluorescently labeled flagellar filaments at an agarose-glass interface. We show that, when a cell gets stuck, the polar flagellar filament executes a polymorphic change into a spiral-like form that wraps around the cell body in a spiral-like fashion and enables the cell to escape by a screw-like backward motion. Microscopy and modeling suggest that this propagation mode is triggered by an instability of the flagellum under reversal of the rotation and the applied torque. The switch is reversible and bacteria that have escaped the trap can return to their normal swimming mode by another reversal of motor direction. The screw-type flagellar arrangement enables a unique mode of propagation and, given the large number of polarly flagellated bacteria, we expect it to be a common and widespread escape or motility mode in complex and structured environments.
Collapse
|
30
|
Nuñez H, Moya-Beltrán A, Covarrubias PC, Issotta F, Cárdenas JP, González M, Atavales J, Acuña LG, Johnson DB, Quatrini R. Molecular Systematics of the Genus Acidithiobacillus: Insights into the Phylogenetic Structure and Diversification of the Taxon. Front Microbiol 2017; 8:30. [PMID: 28154559 PMCID: PMC5243848 DOI: 10.3389/fmicb.2017.00030] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/05/2017] [Indexed: 11/13/2022] Open
Abstract
The acidithiobacilli are sulfur-oxidizing acidophilic bacteria that thrive in both natural and anthropogenic low pH environments. They contribute to processes that lead to the generation of acid rock drainage in several different geoclimatic contexts, and their properties have long been harnessed for the biotechnological processing of minerals. Presently, the genus is composed of seven validated species, described between 1922 and 2015: Acidithiobacillus thiooxidans, A. ferrooxidans, A. albertensis, A. caldus, A. ferrivorans, A. ferridurans, and A. ferriphilus. However, a large number of Acidithiobacillus strains and sequence clones have been obtained from a variety of ecological niches over the years, and many isolates are thought to vary in phenotypic properties and cognate genetic traits. Moreover, many isolates remain unclassified and several conflicting specific assignments muddle the picture from an evolutionary standpoint. Here we revise the phylogenetic relationships within this species complex and determine the phylogenetic species boundaries using three different typing approaches with varying degrees of resolution: 16S rRNA gene-based ribotyping, oligotyping, and multi-locus sequencing analysis (MLSA). To this end, the 580 16S rRNA gene sequences affiliated to the Acidithiobacillus spp. were collected from public and private databases and subjected to a comprehensive phylogenetic analysis. Oligotyping was used to profile high-entropy nucleotide positions and resolve meaningful differences between closely related strains at the 16S rRNA gene level. Due to its greater discriminatory power, MLSA was used as a proxy for genome-wide divergence in a smaller but representative set of strains. Results obtained indicate that there is still considerable unexplored diversity within this genus. At least six new lineages or phylotypes, supported by the different methods used herein, are evident within the Acidithiobacillus species complex. Although the diagnostic characteristics of these subgroups of strains are as yet unresolved, correlations to specific metadata hint to the mechanisms behind econiche-driven divergence of some of the species/phylotypes identified. The emerging phylogenetic structure for the genus outlined in this study can be used to guide isolate selection for future population genomics and evolutionary studies in this important acidophile model.
Collapse
Affiliation(s)
- Harold Nuñez
- Microbial Ecophysiology Laboratory, Fundación Ciencia & VidaSantiago, Chile
| | - Ana Moya-Beltrán
- Microbial Ecophysiology Laboratory, Fundación Ciencia & VidaSantiago, Chile
- Faculty of Biological Sciences, Andres Bello UniversitySantiago, Chile
| | | | - Francisco Issotta
- Microbial Ecophysiology Laboratory, Fundación Ciencia & VidaSantiago, Chile
| | | | - Mónica González
- Microbial Ecophysiology Laboratory, Fundación Ciencia & VidaSantiago, Chile
| | - Joaquín Atavales
- Microbial Ecophysiology Laboratory, Fundación Ciencia & VidaSantiago, Chile
| | - Lillian G. Acuña
- Microbial Ecophysiology Laboratory, Fundación Ciencia & VidaSantiago, Chile
| | | | - Raquel Quatrini
- Microbial Ecophysiology Laboratory, Fundación Ciencia & VidaSantiago, Chile
| |
Collapse
|
31
|
Liu F, Fu J, Liu C, Chen J, Sun M, Chen H, Tan C, Wang X. Characterization and distinction of two flagellar systems in extraintestinal pathogenic Escherichia coli PCN033. Microbiol Res 2016; 196:69-79. [PMID: 28164791 DOI: 10.1016/j.micres.2016.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/30/2016] [Accepted: 11/26/2016] [Indexed: 01/09/2023]
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) can invade and colonize multiple extraintestinal tissues and can cause a wide range of infections; however the mechanisms of its pathogenicity are not well understood. Flagella contribute to the infection of E. coli strains by mediating adhesion and invasion. Our previous bioinformatic analysis revealed two flagella gene clusters in the genome of an ExPEC isolate, PCN033. One encodes the conventional flagellum system (Flag-1) and the other encodes the Flag-2 system, whose function is uncharacterized. Here we aimed to characterize these two flagellum systems and determine their contributions to the flagellum formation and certain pathogenicity-associated phenotypes. Our observations support the involvement of Flag-1 system, but not Flag-2 system, in the synthesis and maturation of the flagellum structure, and in mediating bacterial swimming and swarming. Moreover, flgD, which encodes a flagellar-hook scaffolding protein in the Flag-1 system, is required for flagellum assembly by influencing the production of FliC (flagellin). Deletion of flgD attenuated ExPEC strain PCN033 invasion and colonization in vivo, probably by affecting bacterial adhesion and invasion, and by reducing resistance to phagocytosis by circulating monocytes. In contrast, these phenotypes were not observed in the strain with deletion of lfgD, encoding the FlgD-like protein in the Flag-2 system. Taken together, these findings indicate that Flag-1 flagellum system is the determinative component of bacterial flagella that contributes to the infection.
Collapse
Affiliation(s)
- Feng Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiyang Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Canying Liu
- Department of Veterinary Medicine, Foshan University, Foshan, Guangdong, China
| | - Jing Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Minhua Sun
- Guangdong Lab for Animal Diseases/Guangdong Open Laboratory of Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China; Key Laboratory of development of veterinary diagnostic products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China; Key Laboratory of development of veterinary diagnostic products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China; Key Laboratory of development of veterinary diagnostic products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
32
|
Licata NA, Mohari B, Fuqua C, Setayeshgar S. Diffusion of Bacterial Cells in Porous Media. Biophys J 2016; 110:247-57. [PMID: 26745427 DOI: 10.1016/j.bpj.2015.09.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 09/22/2015] [Accepted: 09/30/2015] [Indexed: 12/24/2022] Open
Abstract
The chemotaxis signal transduction network regulates the biased random walk of many bacteria in favorable directions and away from harmful ones through modulating the frequency of directional reorientations. In mutants of diverse bacteria lacking the chemotaxis response, migration in classic motility agar, which constitutes a fluid-filled porous medium, is compromised; straight-swimming cells unable to tumble become trapped within the agar matrix. Spontaneous mutations that restore spreading have been previously observed in the enteric bacterium Escherichia coli, and recent work in other bacterial species has isolated and quantified different classes of nonchemotacting mutants exhibiting the same spreading phenotype. We present a theoretical description of bacterial diffusion in a porous medium-the natural habitat for many cell types-which elucidates how diverse modifications of the motility apparatus resulting in a nonzero tumbling frequency allows for unjamming of otherwise straight-swimming cells at internal boundaries and leads to net migration. A unique result of our analysis is increasing diffusive spread with increasing tumbling frequency in the small pore limit, consistent with earlier experimental observations but not captured by previous models. Our theoretical results, combined with a simple model of bacterial diffusion and growth in agar, are compared with our experimental measurements of swim ring expansion as a function of time, demonstrating good quantitative agreement. Our results suggest that the details of the cellular tumbling process may be adapted to enable bacteria to propagate efficiently through complex environments. For engineered, self-propelled microswimmers that navigate via alternating straight runs and changes in direction, these results suggest an optimal reorientation strategy for efficient migration in a porous environment with a given microarchitecture.
Collapse
Affiliation(s)
- Nicholas A Licata
- Department of Physics, Indiana University, Bloomington, Indiana; Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan
| | - Bitan Mohari
- Department of Biology, Indiana University, Bloomington, Indiana
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, Indiana
| | - Sima Setayeshgar
- Department of Physics, Indiana University, Bloomington, Indiana.
| |
Collapse
|
33
|
Kim BJ, Chu I, Jusuf S, Kuo T, TerAvest MA, Angenent LT, Wu M. Oxygen Tension and Riboflavin Gradients Cooperatively Regulate the Migration of Shewanella oneidensis MR-1 Revealed by a Hydrogel-Based Microfluidic Device. Front Microbiol 2016; 7:1438. [PMID: 27703448 PMCID: PMC5028412 DOI: 10.3389/fmicb.2016.01438] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/30/2016] [Indexed: 11/13/2022] Open
Abstract
Shewanella oneidensis is a model bacterial strain for studies of bioelectrochemical systems (BESs). It has two extracellular electron transfer pathways: (1) shuttling electrons via an excreted mediator riboflavin; and (2) direct contact between the c-type cytochromes at the cell membrane and the electrode. Despite the extensive use of S. oneidensis in BESs such as microbial fuel cells and biosensors, many basic microbiology questions about S. oneidensis in the context of BES remain unanswered. Here, we present studies of motility and chemotaxis of S. oneidensis under well controlled concentration gradients of two electron acceptors, oxygen and oxidized form of riboflavin (flavin+), using a newly developed microfluidic platform. Experimental results demonstrate that either oxygen or flavin+ is a chemoattractant to S. oneidensis. The chemotactic tendency of S. oneidensis in a flavin+ concentration gradient is significantly enhanced in an anaerobic in contrast to an aerobic condition. Furthermore, either a low oxygen tension or a high flavin+ concentration considerably enhances the speed of S. oneidensis. This work presents a robust microfluidic platform for generating oxygen and/or flavin+ gradients in an aqueous environment, and demonstrates that two important electron acceptors, oxygen and oxidized riboflavin, cooperatively regulate S. oneidensis migration patterns. The microfluidic tools presented as well as the knowledge gained in this work can be used to guide the future design of BESs for efficient electron production.
Collapse
Affiliation(s)
- Beum Jun Kim
- Department of Biological and Environmental Engineering, Cornell University Ithaca, NY, USA
| | - Injun Chu
- School of Chemical and Biomolecular Engineering, Cornell University Ithaca, NY, USA
| | - Sebastian Jusuf
- Department of Biological and Environmental Engineering, Cornell University Ithaca, NY, USA
| | - Tiffany Kuo
- Department of Biological and Environmental Engineering, Cornell University Ithaca, NY, USA
| | - Michaela A TerAvest
- Department of Biological and Environmental Engineering, Cornell University Ithaca, NY, USA
| | - Largus T Angenent
- Department of Biological and Environmental Engineering, Cornell UniversityIthaca, NY, USA; Atkinson Center for a Sustainable Future, Cornell UniversityIthaca, NY, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell UniversityIthaca, NY, USA; Atkinson Center for a Sustainable Future, Cornell UniversityIthaca, NY, USA
| |
Collapse
|
34
|
Espeso DR, Martínez-García E, de Lorenzo V, Goñi-Moreno Á. Physical Forces Shape Group Identity of Swimming Pseudomonas putida Cells. Front Microbiol 2016; 7:1437. [PMID: 27695443 PMCID: PMC5025637 DOI: 10.3389/fmicb.2016.01437] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/30/2016] [Indexed: 12/03/2022] Open
Abstract
The often striking macroscopic patterns developed by motile bacterial populations on agar plates are a consequence of the environmental conditions where the cells grow and spread. Parameters such as medium stiffness and nutrient concentration have been reported to alter cell swimming behavior, while mutual interactions among populations shape collective patterns. One commonly observed occurrence is the mutual inhibition of clonal bacteria when moving toward each other, which results in a distinct halt at a finite distance on the agar matrix before having direct contact. The dynamics behind this phenomenon (i.e., intolerance to mix in time and space with otherwise identical others) has been traditionally explained in terms of cell-to-cell competition/cooperation regarding nutrient availability. In this work, the same scenario has been revisited from an alternative perspective: the effect of the physical mechanics that frame the process, in particular the consequences of collisions between moving bacteria and the semi-solid matrix of the swimming medium. To this end, we set up a simple experimental system in which the swimming patterns of Pseudomonas putida were tested with different geometries and agar concentrations. A computational analysis framework that highlights cell-to-medium interactions was developed to fit experimental observations. Simulated outputs suggested that the medium is compressed in the direction of the bacterial front motion. This phenomenon generates what was termed a compression wave that goes through the medium preceding the swimming population and that determines the visible high-level pattern. Taken together, the data suggested that the mechanical effects of the bacteria moving through the medium created a factual barrier that impedes to merge with neighboring cells swimming from a different site. The resulting divide between otherwise clonal bacteria is thus brought about by physical forces—not genetic or metabolic programs.
Collapse
Affiliation(s)
- David R Espeso
- Systems Biology Program, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Esteban Martínez-García
- Systems Biology Program, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Ángel Goñi-Moreno
- Systems Biology Program, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas Madrid, Spain
| |
Collapse
|
35
|
Swimming performance of Bradyrhizobium diazoefficiens is an emergent property of its two flagellar systems. Sci Rep 2016; 6:23841. [PMID: 27053439 PMCID: PMC4823718 DOI: 10.1038/srep23841] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/16/2016] [Indexed: 01/05/2023] Open
Abstract
Many bacterial species use flagella for self-propulsion in aqueous media. In the soil, which is a complex and structured environment, water is found in microscopic channels where viscosity and water potential depend on the composition of the soil solution and the degree of soil water saturation. Therefore, the motility of soil bacteria might have special requirements. An important soil bacterial genus is Bradyrhizobium, with species that possess one flagellar system and others with two different flagellar systems. Among the latter is B. diazoefficiens, which may express its subpolar and lateral flagella simultaneously in liquid medium, although its swimming behaviour was not described yet. These two flagellar systems were observed here as functionally integrated in a swimming performance that emerged as an epistatic interaction between those appendages. In addition, each flagellum seemed engaged in a particular task that might be required for swimming oriented toward chemoattractants near the soil inner surfaces at viscosities that may occur after the loss of soil gravitational water. Because the possession of two flagellar systems is not general in Bradyrhizobium or in related genera that coexist in the same environment, there may be an adaptive tradeoff between energetic costs and ecological benefits among these different species.
Collapse
|
36
|
Staying in Shape: the Impact of Cell Shape on Bacterial Survival in Diverse Environments. Microbiol Mol Biol Rev 2016; 80:187-203. [PMID: 26864431 DOI: 10.1128/mmbr.00031-15] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria display an abundance of cellular forms and can change shape during their life cycle. Many plausible models regarding the functional significance of cell morphology have emerged. A greater understanding of the genetic programs underpinning morphological variation in diverse bacterial groups, combined with assays of bacteria under conditions that mimic their varied natural environments, from flowing freshwater streams to diverse human body sites, provides new opportunities to probe the functional significance of cell shape. Here we explore shape diversity among bacteria, at the levels of cell geometry, size, and surface appendages (both placement and number), as it relates to survival in diverse environments. Cell shape in most bacteria is determined by the cell wall. A major challenge in this field has been deconvoluting the effects of differences in the chemical properties of the cell wall and the resulting cell shape perturbations on observed fitness changes. Still, such studies have begun to reveal the selective pressures that drive the diverse forms (or cell wall compositions) observed in mammalian pathogens and bacteria more generally, including efficient adherence to biotic and abiotic surfaces, survival under low-nutrient or stressful conditions, evasion of mammalian complement deposition, efficient dispersal through mucous barriers and tissues, and efficient nutrient acquisition.
Collapse
|
37
|
Martinez LE, Hardcastle JM, Wang J, Pincus Z, Tsang J, Hoover TR, Bansil R, Salama NR. Helicobacter pylori strains vary cell shape and flagellum number to maintain robust motility in viscous environments. Mol Microbiol 2016; 99:88-110. [PMID: 26365708 PMCID: PMC4857613 DOI: 10.1111/mmi.13218] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2015] [Indexed: 12/24/2022]
Abstract
The helical shape of the human stomach pathogen Helicobacter pylori has been suggested to provide mechanical advantage for penetrating the viscous stomach mucus layer. Using single-cell tracking and quantitative morphology analysis, we document marked variation in cell body helical parameters and flagellum number among H. pylori strains leading to distinct and broad speed distributions in broth and viscous gastric mucin media. These distributions reflect both temporal variation in swimming speed and morphologic variation within the population. Isogenic mutants with straight-rod morphology showed 7-21% reduction in speed and a lower fraction of motile bacteria. Mutational perturbation of flagellum number revealed a 19% increase in speed with 4 versus 3 median flagellum number. Resistive force theory modeling incorporating variation of both cell shape and flagellum number predicts qualitative speed differences of 10-30% among strains. However, quantitative comparisons suggest resistive force theory underestimates the influence of cell body shape on speed for helical shaped bacteria.
Collapse
Affiliation(s)
- Laura E. Martinez
- Graduate Program in Pathobiology, Department of Global Health, University of Washington, Seattle, WA 98195 USA
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
| | | | - Jeffrey Wang
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
| | - Zachary Pincus
- Department of Developmental Biology and Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jennifer Tsang
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Timothy R. Hoover
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Rama Bansil
- Department of Physics, Boston University, Boston, MA 02215 USA
| | - Nina R. Salama
- Graduate Program in Pathobiology, Department of Global Health, University of Washington, Seattle, WA 98195 USA
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
| |
Collapse
|
38
|
High-throughput 3D tracking of bacteria on a standard phase contrast microscope. Nat Commun 2015; 6:8776. [PMID: 26522289 PMCID: PMC4659942 DOI: 10.1038/ncomms9776] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/01/2015] [Indexed: 11/29/2022] Open
Abstract
Bacteria employ diverse motility patterns in traversing complex three-dimensional (3D) natural habitats. 2D microscopy misses crucial features of 3D behaviour, but the applicability of existing 3D tracking techniques is constrained by their performance or ease of use. Here we present a simple, broadly applicable, high-throughput 3D bacterial tracking method for use in standard phase contrast microscopy. Bacteria are localized at micron-scale resolution over a range of 350 × 300 × 200 μm by maximizing image cross-correlations between their observed diffraction patterns and a reference library. We demonstrate the applicability of our technique to a range of bacterial species and exploit its high throughput to expose hidden contributions of bacterial individuality to population-level variability in motile behaviour. The simplicity of this powerful new tool for bacterial motility research renders 3D tracking accessible to a wider community and paves the way for investigations of bacterial motility in complex 3D environments. Microscopy techniques used to study the movement of swimming microbes are limited to two dimensions or require sophisticated devices. Here, Taute et al. present a simple method for high-throughput 3D tracking of bacteria using standard phase contrast microscopy.
Collapse
|
39
|
Rossmann F, Brenzinger S, Knauer C, Dörrich AK, Bubendorfer S, Ruppert U, Bange G, Thormann KM. The role of FlhF and HubP as polar landmark proteins in Shewanella putrefaciens CN-32. Mol Microbiol 2015; 98:727-42. [PMID: 26235439 DOI: 10.1111/mmi.13152] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2015] [Indexed: 01/06/2023]
Abstract
Spatiotemporal regulation of cell polarity plays a role in many fundamental processes in bacteria and often relies on 'landmark' proteins which recruit the corresponding clients to their designated position. Here, we explored the localization of two multi-protein complexes, the polar flagellar motor and the chemotaxis array, in Shewanella putrefaciens CN-32. We demonstrate that polar positioning of the flagellar system, but not of the chemotaxis system, depends on the GTPase FlhF. In contrast, the chemotaxis array is recruited by a transmembrane protein which we identified as the functional ortholog of Vibrio cholerae HubP. Mediated by its periplasmic N-terminal LysM domain, SpHubP exhibits an FlhF-independent localization pattern during cell cycle similar to its Vibrio counterpart and also has a role in proper chromosome segregation. In addition, while not affecting flagellar positioning, SpHubP is crucial for normal flagellar function and is involved in type IV pili-mediated twitching motility. We hypothesize that a group of HubP/FimV homologs, characterized by a rather conserved N-terminal periplasmic section required for polar targeting and a highly variable acidic cytoplasmic part, primarily mediating recruitment of client proteins, serves as polar markers in various bacterial species with respect to different cellular functions.
Collapse
Affiliation(s)
- Florian Rossmann
- Department of Microbiology and Molecular Biology, Justus-Liebig Universität, 35392, Giessen, Germany.,Department of Ecophysiology, Max-Planck-Institut für terrestrische Mikrobiologie, 35043, Marburg, Germany
| | - Susanne Brenzinger
- Department of Microbiology and Molecular Biology, Justus-Liebig Universität, 35392, Giessen, Germany.,Department of Ecophysiology, Max-Planck-Institut für terrestrische Mikrobiologie, 35043, Marburg, Germany
| | - Carina Knauer
- LOEWE Center for Synthetic Microbiology (Synmikro) & Department of Chemistry, Philipps University Marburg, 35043, Marburg, Germany
| | - Anja K Dörrich
- Department of Microbiology and Molecular Biology, Justus-Liebig Universität, 35392, Giessen, Germany
| | - Sebastian Bubendorfer
- Department of Microbiology and Molecular Biology, Justus-Liebig Universität, 35392, Giessen, Germany
| | - Ulrike Ruppert
- Department of Microbiology and Molecular Biology, Justus-Liebig Universität, 35392, Giessen, Germany
| | - Gert Bange
- LOEWE Center for Synthetic Microbiology (Synmikro) & Department of Chemistry, Philipps University Marburg, 35043, Marburg, Germany
| | - Kai M Thormann
- Department of Microbiology and Molecular Biology, Justus-Liebig Universität, 35392, Giessen, Germany
| |
Collapse
|
40
|
Phenotypic Heterogeneity, a Phenomenon That May Explain Why Quorum Sensing Does Not Always Result in Truly Homogenous Cell Behavior. Appl Environ Microbiol 2015. [PMID: 26025903 DOI: 10.1128/aem.00900-15/format/epub] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Phenotypic heterogeneity describes the occurrence of "nonconformist" cells within an isogenic population. The nonconformists show an expression profile partially different from that of the remainder of the population. Phenotypic heterogeneity affects many aspects of the different bacterial lifestyles, and it is assumed that it increases bacterial fitness and the chances for survival of the whole population or smaller subpopulations in unfavorable environments. Well-known examples for phenotypic heterogeneity have been associated with antibiotic resistance and frequently occurring persister cells. Other examples include heterogeneous behavior within biofilms, DNA uptake and bacterial competence, motility (i.e., the synthesis of additional flagella), onset of spore formation, lysis of phages within a small subpopulation, and others. Interestingly, phenotypic heterogeneity was recently also observed with respect to quorum-sensing (QS)-dependent processes, and the expression of autoinducer (AI) synthase genes and other QS-dependent genes was found to be highly heterogeneous at a single-cell level. This phenomenon was observed in several Gram-negative bacteria affiliated with the genera Vibrio, Dinoroseobacter, Pseudomonas, Sinorhizobium, and Mesorhizobium. A similar observation was made for the Gram-positive bacterium Listeria monocytogenes. Since AI molecules have historically been thought to be the keys to homogeneous behavior within isogenic populations, the observation of heterogeneous expression is quite intriguing and adds a new level of complexity to the QS-dependent regulatory networks. All together, the many examples of phenotypic heterogeneity imply that we may have to partially revise the concept of homogeneous and coordinated gene expression in isogenic bacterial populations.
Collapse
|
41
|
Schuhmacher JS, Thormann KM, Bange G. How bacteria maintain location and number of flagella? FEMS Microbiol Rev 2015. [PMID: 26195616 DOI: 10.1093/femsre/fuv034] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bacteria differ in number and location of their flagella that appear in regular patterns at the cell surface (flagellation pattern). Despite the plethora of bacterial species, only a handful of these patterns exist. The correct flagellation pattern is a prerequisite for motility, but also relates to biofilm formation and the pathogenicity of disease-causing flagellated bacteria. However, the mechanisms that maintain location and number of flagella are far from being understood. Here, we review our knowledge on mechanisms that enable bacteria to maintain their appropriate flagellation pattern. While some peritrichous flagellation patterns might occur by rather simple stochastic processes, other bacterial species appear to rely on landmark systems to define the designated flagellar position. Such landmarks are the Tip system of Caulobacter crescentus or the signal recognition particle (SRP)-GTPase FlhF and the MinD/ParA-type ATPase FlhG (synonyms: FleN, YlxH and MinD2). The latter two proteins constitute a regulatory circuit essential for diverse flagellation patterns in many Gram-positive and negative species. The interactome of FlhF/G (e.g. C-ring proteins FliM, FliN, FliY or the transcriptional regulator FleQ/FlrA) seems evolutionary adapted to meet the specific needs for a respective pattern. This variability highlights the importance of the correct flagellation pattern for motile species.
Collapse
Affiliation(s)
- Jan S Schuhmacher
- LOEWE Center for Synthetic Microbiology & Dep. of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse, D-35043 Marburg, Germany
| | - Kai M Thormann
- Justus-Liebig University, Department of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Gert Bange
- LOEWE Center for Synthetic Microbiology & Dep. of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse, D-35043 Marburg, Germany
| |
Collapse
|
42
|
Phenotypic Heterogeneity, a Phenomenon That May Explain Why Quorum Sensing Does Not Always Result in Truly Homogenous Cell Behavior. Appl Environ Microbiol 2015; 81:5280-9. [PMID: 26025903 DOI: 10.1128/aem.00900-15] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Phenotypic heterogeneity describes the occurrence of "nonconformist" cells within an isogenic population. The nonconformists show an expression profile partially different from that of the remainder of the population. Phenotypic heterogeneity affects many aspects of the different bacterial lifestyles, and it is assumed that it increases bacterial fitness and the chances for survival of the whole population or smaller subpopulations in unfavorable environments. Well-known examples for phenotypic heterogeneity have been associated with antibiotic resistance and frequently occurring persister cells. Other examples include heterogeneous behavior within biofilms, DNA uptake and bacterial competence, motility (i.e., the synthesis of additional flagella), onset of spore formation, lysis of phages within a small subpopulation, and others. Interestingly, phenotypic heterogeneity was recently also observed with respect to quorum-sensing (QS)-dependent processes, and the expression of autoinducer (AI) synthase genes and other QS-dependent genes was found to be highly heterogeneous at a single-cell level. This phenomenon was observed in several Gram-negative bacteria affiliated with the genera Vibrio, Dinoroseobacter, Pseudomonas, Sinorhizobium, and Mesorhizobium. A similar observation was made for the Gram-positive bacterium Listeria monocytogenes. Since AI molecules have historically been thought to be the keys to homogeneous behavior within isogenic populations, the observation of heterogeneous expression is quite intriguing and adds a new level of complexity to the QS-dependent regulatory networks. All together, the many examples of phenotypic heterogeneity imply that we may have to partially revise the concept of homogeneous and coordinated gene expression in isogenic bacterial populations.
Collapse
|
43
|
MinD-like ATPase FlhG effects location and number of bacterial flagella during C-ring assembly. Proc Natl Acad Sci U S A 2015; 112:3092-7. [PMID: 25733861 DOI: 10.1073/pnas.1419388112] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The number and location of flagella, bacterial organelles of locomotion, are species specific and appear in regular patterns that represent one of the earliest taxonomic criteria in microbiology. However, the mechanisms that reproducibly establish these patterns during each round of cell division are poorly understood. FlhG (previously YlxH) is a major determinant for a variety of flagellation patterns. Here, we show that FlhG is a structural homolog of the ATPase MinD, which serves in cell-division site determination. Like MinD, FlhG forms homodimers that are dependent on ATP and lipids. It interacts with a complex of the flagellar C-ring proteins FliM and FliY (also FliN) in the Gram-positive, peritrichous-flagellated Bacillus subtilis and the Gram-negative, polar-flagellated Shewanella putrefaciens. FlhG interacts with FliM/FliY in a nucleotide-independent manner and activates FliM/FliY to assemble with the C-ring protein FliG in vitro. FlhG-driven assembly of the FliM/FliY/FliG complex is strongly enhanced by ATP and lipids. The protein shows a highly dynamic subcellular distribution between cytoplasm and flagellar basal bodies, suggesting that FlhG effects flagellar location and number during assembly of the C-ring. We describe the molecular evolution of a MinD-like ATPase into a flagellation pattern effector and suggest that the underappreciated structural diversity of the C-ring proteins might contribute to the formation of different flagellation patterns.
Collapse
|
44
|
The flagellar set Fla2 in Rhodobacter sphaeroides is controlled by the CckA pathway and is repressed by organic acids and the expression of Fla1. J Bacteriol 2014; 197:833-47. [PMID: 25512309 DOI: 10.1128/jb.02429-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Rhodobacter sphaeroides has two different sets of flagellar genes. Under the growth conditions commonly used in the laboratory, the expression of the fla1 set is constitutive, whereas the fla2 genes are not expressed. Phylogenetic analyses have previously shown that the fla1 genes were acquired by horizontal transfer from a gammaproteobacterium and that the fla2 genes are endogenous genes of this alphaproteobacterium. In this work, we characterized a set of mutants that were selected for swimming using the Fla2 flagella in the absence of the Fla1 flagellum (Fla2(+) strains). We determined that these strains have a single missense mutation in the histidine kinase domain of CckA. The expression of these mutant alleles in a Fla1(-) strain allowed fla2-dependent motility without selection. Motility of the Fla2(+) strains is also dependent on ChpT and CtrA. The mutant versions of CckA showed an increased autophosphorylation activity in vitro. Interestingly, we found that cckA is transcriptionally repressed by the presence of organic acids, suggesting that the availability of carbon sources could be a part of the signal that turns on this flagellar set. Evidence is presented showing that reactivation of fla1 gene expression in the Fla2(+) background strongly reduces the number of cells with Fla2 flagella.
Collapse
|