1
|
Cabello-Donayre M, Cabello-Donayre I, Guerra D, Orrego LM, Morales JC, Cautain B, Vicente F, Pérez-Victoria JM. A yeast-based high-throughput screen identifies inhibitors of trypanosomatid HRG heme transporters with potent leishmanicidal and trypanocidal activity. Int J Antimicrob Agents 2024; 63:107092. [PMID: 38242251 DOI: 10.1016/j.ijantimicag.2024.107092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
OBJECTIVES New drugs are required to treat neglected diseases caused by trypanosomatid parasites such as Leishmania, Trypanosoma brucei and Trypanosoma cruzi. An Achilles' heel of these parasites is their heme auxotrophy; they have an absolute dependence on scavenging this molecule from the host, and trypanosomatid HRG heme transporters (TrypHRG) play an important role in this process. As these proteins are essential for the parasites and have low similarity with their human orthologue, they have been proposed as attractive therapeutic targets. Here, we have developed two yeast-based assays that allow an inexpensive high-throughput screening of TrypHRG inhibitors within a cellular context. METHODS We first assessed that Leishmania major, Leishmania donovani and T. brucei HRG proteins were heterologously expressed in the digestive vacuole membrane of a mutant heme auxotrophic yeast strain. Here, TrypHRG imports hemoglobinderived heme into the cytosol, allowing mutant yeast to grow in the presence of low hemoglobin concentrations and promoting the activity of hemeproteins such as catalase, which was used as a reporter of cytosolic heme levels. RESULTS In the presence of a TrypHRG inhibitor, both catalase activity (test 1) and yeast growth (test 2) were diminished, being easily monitored. The assays were then tested on a pilot scale for HTS purposes using a collection of repurposing drugs and food antioxidants. Some of the TrypHRG inhibitors identified in yeast presented strong trypanocidal and leishmanicidal activity in the submicromolar range, proving the potential of this approach. CONCLUSIONS Cumulatively, it was shown that the inhibition bioassays developed were robust and applicable to large-scale HTS.
Collapse
Affiliation(s)
- María Cabello-Donayre
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain; Universidad Internacional de La Rioja, Logroño, La Rioja, Spain
| | - Irene Cabello-Donayre
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain
| | - Diego Guerra
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain; Programa de Estudio y Control de Enfermedades Tropicales PECET, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Lina M Orrego
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain
| | - Juan C Morales
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain
| | - Bastien Cautain
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, PTS Granada, Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, PTS Granada, Granada, Spain
| | - José M Pérez-Victoria
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain.
| |
Collapse
|
2
|
Qi Y, Qin Q, Liao G, Tong L, Jin C, Wang B, Fang W. Unveiling the super tolerance of Candida nivariensis to oxidative stress: insights into the involvement of a catalase. Microbiol Spectr 2024; 12:e0316923. [PMID: 38206032 PMCID: PMC10846165 DOI: 10.1128/spectrum.03169-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024] Open
Abstract
Yeast cells involved in fermentation processes face various stressors that disrupt redox homeostasis and cause cellular damage, making the study of oxidative stress mechanisms crucial. In this investigation, we isolated a resilient yeast strain, Candida nivariensis GXAS-CN, capable of thriving in the presence of high concentrations of H2O2. Transcriptomic analysis revealed the up-regulation of multiple antioxidant genes in response to oxidative stress. Deletion of the catalase gene Cncat significantly impacted H2O2-induced oxidative stress. Enzymatic analysis of recombinant CnCat highlighted its highly efficient catalase activity and its essential role in mitigating H2O2. Furthermore, over-expression of CnCat in Saccharomyces cerevisiae improved oxidative resistance by reducing intracellular ROS accumulation. The presence of multiple stress-responsive transcription factor binding sites at the promoters of antioxidative genes indicates their regulation by different transcription factors. These findings demonstrate the potential of utilizing the remarkably tolerant C. nivariensis GXAS-CN or enhancing the resistance of S. cerevisiae to improve the efficiency and cost-effectiveness of industrial fermentation processes.IMPORTANCEEnduring oxidative stress is a crucial trait for fermentation strains. The importance of this research is its capacity to advance industrial fermentation processes. Through an in-depth examination of the mechanisms behind the remarkable H2O2 resistance in Candida nivariensis GXAS-CN and the successful genetic manipulation of this strain, we open the door to harnessing the potential of the catalase CnCat for enhancing the oxidative stress resistance and performance of yeast strains. This pioneering achievement creates avenues for fine-tuning yeast strains for precise industrial applications, ultimately leading to more efficient and cost-effective biotechnological processes.
Collapse
Affiliation(s)
- Yanhua Qi
- Institute of Biological Science and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Qijian Qin
- Institute of Biological Science and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Guiyan Liao
- Institute of Biological Science and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Lige Tong
- Institute of Biological Science and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bin Wang
- Institute of Biological Science and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Wenxia Fang
- Institute of Biological Science and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| |
Collapse
|
3
|
Lučić M, Wilson MT, Pullin J, Hough MA, Svistunenko DA, Worrall JAR. New insights into controlling radical migration pathways in heme enzymes gained from the study of a dye-decolorising peroxidase. Chem Sci 2023; 14:12518-12534. [PMID: 38020392 PMCID: PMC10646903 DOI: 10.1039/d3sc04453j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
In heme enzymes, such as members of the dye-decolorising peroxidase (DyP) family, the formation of the highly oxidising catalytic Fe(iv)-oxo intermediates following reaction with hydrogen peroxide can lead to free radical migration (hole hopping) from the heme to form cationic tyrosine and/or tryptophan radicals. These species are highly oxidising (∼1 V vs. NHE) and under certain circumstances can catalyse the oxidation of organic substrates. Factors that govern which specific tyrosine or tryptophan the free radical migrates to in heme enzymes are not well understood, although in the case of tyrosyl radical formation the nearby proximity of a proton acceptor is a recognised facilitating factor. By using an A-type member of the DyP family (DtpAa) as an exemplar, we combine protein engineering, X-ray crystallography, hole-hopping calculations, EPR spectroscopy and kinetic modelling to provide compelling new insights into the control of radical migration pathways following reaction of the heme with hydrogen peroxide. We demonstrate that the presence of a tryptophan/tyrosine dyad motif displaying a T-shaped orientation of aromatic rings on the proximal side of the heme dominates the radical migration landscape in wild-type DtpAa and continues to do so following the rational engineering into DtpAa of a previously identified radical migration pathway in an A-type homolog on the distal side of the heme. Only on disrupting the proximal dyad, through removal of an oxygen atom, does the radical migration pathway then switch to the engineered distal pathway to form the desired tyrosyl radical. Implications for protein design and biocatalysis are discussed.
Collapse
Affiliation(s)
- Marina Lučić
- School of Life Sciences, University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
| | - Michael T Wilson
- School of Life Sciences, University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
| | - Jacob Pullin
- School of Life Sciences, University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
| | - Michael A Hough
- School of Life Sciences, University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
- Diamond Light Source, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - Dimitri A Svistunenko
- School of Life Sciences, University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
| | - Jonathan A R Worrall
- School of Life Sciences, University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
| |
Collapse
|
4
|
Gibbs CA, Fedoretz-Maxwell BP, Warren JJ. On the roles of methionine and the importance of its microenvironments in redox metalloproteins. Dalton Trans 2022; 51:4976-4985. [PMID: 35253809 DOI: 10.1039/d1dt04387k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The amino acid residue methionine (Met) is commonly thought of as a ligand in redox metalloproteins, for example in cytochromes c and in blue copper proteins. However, the roles of Met can go beyond a simple ligand. The thioether functional group of Met allows it to be considered as a hydrophobic residue as well as one that is capable of weak dipolar interactions. In addition, the lone pairs on sulphur allow Met to interact with other groups, inluding the aforementioned metal ions. Because of its properties, Met can play diverse roles in metal coordination, fine tuning of redox reactions, or supporting protein structures. These roles are strongly influenced by the nature of the surrounding medium. Herein, we describe several common interactions between Met and surrounding aromatic amino acids and how they affect the physical properties of both copper and iron metalloproteins. While the importance of interactions between Met and other groups is established in biological systems, less is known about their roles in redox metalloproteins and our view is that this is an area that is ready for greater attention.
Collapse
Affiliation(s)
- Curtis A Gibbs
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby BC V5A 1S6, Canada.
| | | | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby BC V5A 1S6, Canada.
| |
Collapse
|
5
|
Keum H, Yoo D, Jon S. Photomedicine based on heme-derived compounds. Adv Drug Deliv Rev 2022; 182:114134. [PMID: 35122881 DOI: 10.1016/j.addr.2022.114134] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/16/2021] [Accepted: 01/30/2022] [Indexed: 02/08/2023]
Abstract
Photoimaging and phototherapy have become major platforms for the diagnosis and treatment of various health complications. These applications require a photosensitizer (PS) that is capable of absorbing light from a source and converting it into other energy forms for detection and therapy. While synthetic inorganic materials such as quantum dots and gold nanorods have been widely explored for their medical diagnosis and photodynamic (PDT) and photothermal (PTT) therapy capabilities, translation of these technologies has lagged, primarily owing to potential cytotoxicity and immunogenicity issues. Of the various photoreactive molecules, the naturally occurring endogenous compound heme, a constituent of red blood cells, and its derivatives, porphyrin, biliverdin and bilirubin, have shown immense potential as noteworthy candidates for clinically translatable photoreactive agents, as evidenced by previous reports. While porphyrin-based photomedicines have attracted significant attention and are well documented, research on photomedicines based on two other heme-derived compounds, biliverdin and bilirubin, has been relatively lacking. In this review, we summarize the unique photoproperties of heme-derived compounds and outline recent efforts to use them in biomedical imaging and phototherapy applications.
Collapse
|
6
|
Hanna DA, Moore CM, Liu L, Yuan X, Dominic IM, Fleischhacker AS, Hamza I, Ragsdale SW, Reddi AR. Heme oxygenase-2 (HO-2) binds and buffers labile ferric heme in human embryonic kidney cells. J Biol Chem 2021; 298:101549. [PMID: 34973332 PMCID: PMC8808069 DOI: 10.1016/j.jbc.2021.101549] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 01/13/2023] Open
Abstract
Heme oxygenases (HOs) detoxify heme by oxidatively degrading it into carbon monoxide, iron, and biliverdin, which is reduced to bilirubin and excreted. Humans express two isoforms of HO: the inducible HO-1, which is upregulated in response to excess heme and other stressors, and the constitutive HO-2. Much is known about the regulation and physiological function of HO-1, whereas comparatively little is known about the role of HO-2 in regulating heme homeostasis. The biochemical necessity for expressing constitutive HO-2 is dependent on whether heme is sufficiently abundant and accessible as a substrate under conditions in which HO-1 is not induced. By measuring labile heme, total heme, and bilirubin in human embryonic kidney HEK293 cells with silenced or overexpressed HO-2, as well as various HO-2 mutant alleles, we found that endogenous heme is too limiting a substrate to observe HO-2-dependent heme degradation. Rather, we discovered a novel role for HO-2 in the binding and buffering of heme. Taken together, in the absence of excess heme, we propose that HO-2 regulates heme homeostasis by acting as a heme buffering factor that controls heme bioavailability. When heme is in excess, HO-1 is induced, and both HO-2 and HO-1 can provide protection from heme toxicity via enzymatic degradation. Our results explain why catalytically inactive mutants of HO-2 are cytoprotective against oxidative stress. Moreover, the change in bioavailable heme due to HO-2 overexpression, which selectively binds ferric over ferrous heme, is consistent with labile heme being oxidized, thereby providing new insights into heme trafficking and signaling.
Collapse
Affiliation(s)
- David A. Hanna
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Courtney M. Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Liu Liu
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Xiaojing Yuan
- Department of Animal and Avian Sciences, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Iramofu M. Dominic
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | - Iqbal Hamza
- Department of Animal and Avian Sciences, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Amit R. Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA,School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA,Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA,For correspondence: Amit R. Reddi
| |
Collapse
|
7
|
Gray HB, Winkler JR. Functional and protective hole hopping in metalloenzymes. Chem Sci 2021; 12:13988-14003. [PMID: 34760183 PMCID: PMC8565380 DOI: 10.1039/d1sc04286f] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/20/2021] [Indexed: 01/19/2023] Open
Abstract
Electrons can tunnel through proteins in microseconds with a modest release of free energy over distances in the 15 to 20 Å range. To span greater distances, or to move faster, multiple charge transfers (hops) are required. When one of the reactants is a strong oxidant, it is convenient to consider the movement of a positively charged "hole" in a direction opposite to that of the electron. Hole hopping along chains of tryptophan (Trp) and tyrosine (Tyr) residues is a critical function in several metalloenzymes that generate high-potential intermediates by reactions with O2 or H2O2, or by activation with visible light. Examination of the protein structural database revealed that Tyr/Trp chains are common protein structural elements, particularly among enzymes that react with O2 and H2O2. In many cases these chains may serve a protective role in metalloenzymes by deactivating high-potential reactive intermediates formed in uncoupled catalytic turnover.
Collapse
Affiliation(s)
- Harry B Gray
- Beckman Institute, California Institute of Technology 1200 E California Boulevard Pasadena CA 19925 USA
| | - Jay R Winkler
- Beckman Institute, California Institute of Technology 1200 E California Boulevard Pasadena CA 19925 USA
| |
Collapse
|
8
|
Daskalova A, Petrova V, Velkova L, Kujumdzieva A, Tomova A, Voelter W, Dolashka P. Investigation of protein expression of Saccharomyces cerevisiae cells in quiescent and proliferating state before and after toxic stress. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1879677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Asya Daskalova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ventsislava Petrova
- Department of General and Industrial Microbiology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| | - Lyudmila Velkova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Anna Kujumdzieva
- Department of General and Industrial Microbiology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| | - Anna Tomova
- Department of General and Industrial Microbiology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| | - Wolfgang Voelter
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Pavlina Dolashka
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
9
|
A Cytoplasmic Heme Sensor Illuminates the Impacts of Mitochondrial and Vacuolar Functions and Oxidative Stress on Heme-Iron Homeostasis in Cryptococcus neoformans. mBio 2020; 11:mBio.00986-20. [PMID: 32723917 PMCID: PMC7387795 DOI: 10.1128/mbio.00986-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Invasive fungal diseases are increasing in frequency, and new drug targets and antifungal drugs are needed to bolster therapy. The mechanisms by which pathogens obtain critical nutrients such as iron from heme during host colonization represent a promising target for therapy. In this study, we employed a fluorescent heme sensor to investigate heme homeostasis in Cryptococcus neoformans. We demonstrated that endocytosis is a key aspect of heme acquisition and that vacuolar and mitochondrial functions are important in regulating the pool of available heme in cells. Stress generated by oxidative conditions impacts the heme pool, as do the drugs artemisinin and metformin; these drugs have heme-related activities and are in clinical use for malaria and diabetes, respectively. Overall, our study provides insights into mechanisms of fungal heme acquisition and demonstrates the utility of the heme sensor for drug characterization in support of new therapies for fungal diseases. Pathogens must compete with hosts to acquire sufficient iron for proliferation during pathogenesis. The pathogenic fungus Cryptococcus neoformans is capable of acquiring iron from heme, the most abundant source in vertebrate hosts, although the mechanisms of heme sensing and acquisition are not entirely understood. In this study, we adopted a chromosomally encoded heme sensor developed for Saccharomyces cerevisiae to examine cytosolic heme levels in C. neoformans using fluorescence microscopy, fluorimetry, and flow cytometry. We validated the responsiveness of the sensor upon treatment with exogenous hemin, during proliferation in macrophages, and in strains defective for endocytosis. We then used the sensor to show that vacuolar and mitochondrial dysregulation and oxidative stress reduced the labile heme pool in the cytosol. Importantly, the sensor provided a tool to further demonstrate that the drugs artemisinin and metformin have heme-related activities and the potential to be repurposed for antifungal therapy. Overall, this study provides insights into heme sensing by C. neoformans and establishes a powerful tool to further investigate mechanisms of heme-iron acquisition in the context of fungal pathogenesis.
Collapse
|
10
|
van Son M, Schilder JT, Di Savino A, Blok A, Ubbink M, Huber M. The Transient Complex of Cytochrome c and Cytochrome c Peroxidase: Insights into the Encounter Complex from Multifrequency EPR and NMR Spectroscopy. Chemphyschem 2020; 21:1060-1069. [PMID: 32301564 PMCID: PMC7317791 DOI: 10.1002/cphc.201901160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/03/2020] [Indexed: 12/31/2022]
Abstract
We present a novel approach to study transient protein-protein complexes with standard, 9 GHz, and high-field, 95 GHz, electron paramagnetic resonance (EPR) and paramagnetic NMR at ambient temperatures and in solution. We apply it to the complex of yeast mitochondrial iso-1-cytochrome c (Cc) with cytochrome c peroxidase (CcP) with the spin label [1-oxyl-2,2,5,5-tetramethyl-Δ3-pyrroline-3-methyl)-methanethiosulfonate] attached at position 81 of Cc (SL-Cc). A dissociation constant KD of 20±4×10-6 M (EPR and NMR) and an equal amount of stereo-specific and encounter complex (NMR) are found. The EPR spectrum of the fully bound complex reveals that the encounter complex has a significant population (60 %) that shares important features, such as the Cc-interaction surface, with the stereo-specific complex.
Collapse
Affiliation(s)
- Martin van Son
- Leiden Institute of Physics, Huygens-Kamerlingh Onnes LaboratoryLeiden UniversityNiels Bohrweg 22333 CALeiden (TheNetherlands
| | - Jesika T. Schilder
- Leiden Institute of ChemistryLeiden University, Gorlaeus LaboratoriesEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Antonella Di Savino
- Leiden Institute of ChemistryLeiden University, Gorlaeus LaboratoriesEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Anneloes Blok
- Leiden Institute of ChemistryLeiden University, Gorlaeus LaboratoriesEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Marcellus Ubbink
- Leiden Institute of ChemistryLeiden University, Gorlaeus LaboratoriesEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Martina Huber
- Leiden Institute of Physics, Huygens-Kamerlingh Onnes LaboratoryLeiden UniversityNiels Bohrweg 22333 CALeiden (TheNetherlands
| |
Collapse
|
11
|
Dastpeyman S, Godin R, Cosa G, English AM. Quantifying Heme-Protein Maturation from Ratiometric Fluorescence Lifetime Measurements on the Single Fluorophore in Its GFP Fusion. J Phys Chem A 2020; 124:746-754. [PMID: 31894984 DOI: 10.1021/acs.jpca.9b11901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein maturation by heme insertion is a common post-translation modification of key biological importance. Nonetheless, where and when this maturation occurs in eukaryotic cells remain unknown for most heme proteins. Here, we demonstrate for the first time that the maturation of a chromosomally expressed, endogenous heme protein fused to a green fluorescent protein (GFP) can be tracked in live cells. Selecting yeast cytochrome c peroxidase (Ccp1) as our model heme-binding protein, we first characterized the emission in vitro of recombinant Ccp1-GFP with GFP fused C-terminally to Ccp1 by the linker GRRIPGLIN. Time-correlated single-photon counting reveals a single fluorescence lifetime for heme-free apoCcp1-GFP, τ0 = 2.84 ± 0.01 ns. Heme bound to Ccp1 only partially quenches GFP fluorescence since holoCcp1-GFP exhibits two lifetimes, τ1 = 0.95 ± 0.02 and τ2 = 2.46 ± 0.03 ns with fractional amplitudes a1 = 38 ± 1.5% and a2 = 62 ± 1.5%. Also, τ and a are independent of Ccp1-GFP concentration and solution pH between 5.5 and 8.0, and a standard plot of a1 vs % holoCcp1-GFP in mixtures with apoCcp1-GFP is linear, establishing that the fraction of Ccp1-GFP with heme bound can be determined from a1. Fluorescence lifetime imaging microscopy (FLIM) of live yeast cells chromosomally expressing the same Ccp1-GFP fusion revealed 30% holoCcp1-GFP (i.e., mature Ccp1) and 70% apoCcp1-GFP in agreement with biochemical measurements on cell lysates. Thus, ratiometric fluorescence lifetime measurements offer promise for probing heme-protein maturation in live cells, and we can dispense with the reference fluorophore required for ratiometric intensity-based measurements.
Collapse
Affiliation(s)
- Samaneh Dastpeyman
- PROTEO and Department of Chemistry and Biochemistry , Concordia University , 7141 Sherbrooke St West , Montreal , Canada H4B 1R6
| | - Robert Godin
- Department of Chemistry , McGill University , 801 Sherbrooke St West , Montreal , Canada H3A 0B8
| | - Gonzalo Cosa
- Department of Chemistry , McGill University , 801 Sherbrooke St West , Montreal , Canada H3A 0B8
| | - Ann M English
- PROTEO and Department of Chemistry and Biochemistry , Concordia University , 7141 Sherbrooke St West , Montreal , Canada H4B 1R6
| |
Collapse
|
12
|
Abstract
A recently proposed oxidative damage protection mechanism in proteins relies on hole hopping escape routes formed by redox-active amino acids. We present a computational tool to identify the dominant charge hopping pathways through these residues based on the mean residence times of the transferring charge along these hopping pathways. The residence times are estimated by combining a kinetic model with well-known rate expressions for the charge-transfer steps in the pathways. We identify the most rapid hole hopping escape routes in cytochrome P450 monooxygenase, cytochrome c peroxidase, and benzylsuccinate synthase (BSS). This theoretical analysis supports the existence of hole hopping chains as a mechanism capable of providing hole escape from protein catalytic sites on biologically relevant timescales. Furthermore, we find that pathways involving the [4Fe4S] cluster as the terminal hole acceptor in BSS are accessible on the millisecond timescale, suggesting a potential protective role of redox-active cofactors for preventing protein oxidative damage.
Collapse
|
13
|
Dual species transcript profiling during the interaction between banana (Musa acuminata) and the fungal pathogen Fusarium oxysporum f. sp. cubense. BMC Genomics 2019; 20:519. [PMID: 31234790 PMCID: PMC6591919 DOI: 10.1186/s12864-019-5902-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/12/2019] [Indexed: 12/15/2022] Open
Abstract
Background Banana wilt disease, caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 (Foc TR4), is one of the most devastating diseases in banana (Musa spp.). Foc is a soil borne pathogen that causes rot of the roots or wilt of leaves by colonizing the xylem vessels. The dual RNA sequencing is used to simultaneously assess the transcriptomes of pathogen and host. This method greatly helps to understand the responses of pathogen and host to each other and discover the potential pathogenic mechanism. Results Plantlets of two economically important banana cultivars, Foc TR4 less susceptible cultivar NK and susceptible cultivar BX, were used to research the Foc-banana interaction mechanism. Notably, the infected NK had more significantly up-regulated genes on the respiration machinery including TCA cycle, glyoxylate, glycerol, and glycolysis compared to BX at 27 h post inoculation (hpi). In addition, genes involved in plant-pathogen interaction, starch, sucrose, linolenic acid and sphingolipid metabolisms were uniquely more greatly induced in BX than those in NK during the whole infection. Genes related to the biosynthesis and metabolism of SA and JA were greatly induced in the infected NK; while auxin and abscisic acid metabolisms related genes were strongly stimulated in the infected BX at 27 hpi. Furthermore, most of fungal genes were more highly expressed in the roots of BX than in those of NK. The fungal genes related to pathogenicity, pectin and chitin metabolism, reactive oxygen scavenging played the important roles during the infection of Foc. CCP1 (cytochrome c peroxidase 1) was verified to involve in cellulose utilization, oxidative stress response and pathogenicity of fungus. Conclusion The transcriptome indicated that NK had much faster defense response against Foc TR4 than BX and the expression levels of fungal genes were higher in BX than those in NK. The metabolisms of carbon, nitrogen, and signal transduction molecular were differentially involved in pathogen infection in BX and NK. Additionally, the putative virulence associated fungal genes involved in colonization, nutrition acquirement and transport provided more insights into the infection process of Foc TR4 in banana roots. Electronic supplementary material The online version of this article (10.1186/s12864-019-5902-z) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Calvillo-Medina RP, Reyes-Grajeda JP, Barba-Escoto L, Bautista-Hernandez LA, Campos-Guillén J, Jones GH, Bautista-de Lucio VM. Proteome analysis of biofilm produced by a Fusarium falciforme keratitis infectious agent. Microb Pathog 2019; 130:232-241. [DOI: 10.1016/j.micpath.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/30/2018] [Accepted: 03/01/2019] [Indexed: 11/16/2022]
|
15
|
Donegan RK, Moore CM, Hanna DA, Reddi AR. Handling heme: The mechanisms underlying the movement of heme within and between cells. Free Radic Biol Med 2019; 133:88-100. [PMID: 30092350 PMCID: PMC6363905 DOI: 10.1016/j.freeradbiomed.2018.08.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 02/02/2023]
Abstract
Heme is an essential cofactor and signaling molecule required for virtually all aerobic life. However, excess heme is cytotoxic. Therefore, heme must be safely transported and trafficked from the site of synthesis in the mitochondria or uptake at the cell surface, to hemoproteins in most subcellular compartments. While heme synthesis and degradation are relatively well characterized, little is known about how heme is trafficked and transported throughout the cell. Herein, we review eukaryotic heme transport, trafficking, and mobilization, with a focus on factors that regulate bioavailable heme. We also highlight the role of gasotransmitters and small molecules in heme mobilization and bioavailability, and heme trafficking at the host-pathogen interface.
Collapse
Affiliation(s)
- Rebecca K Donegan
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Courtney M Moore
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - David A Hanna
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Amit R Reddi
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, United States; Parker Petit Institute for Bioengineering & Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| |
Collapse
|
16
|
Abstract
Metformin elicits pleiotropic effects that are beneficial for treating diabetes, as well as particular cancers and aging. In spite of its importance, a convincing and unifying mechanism to explain how metformin operates is lacking. Here we describe investigations into the mechanism of metformin action through heme and hemoprotein(s). Metformin suppresses heme production by 50% in yeast, and this suppression requires mitochondria function, which is necessary for heme synthesis. At high concentrations comparable to those in the clinic, metformin also suppresses heme production in human erythrocytes, erythropoietic cells and hepatocytes by 30–50%; the heme-targeting drug artemisinin operates at a greater potency. Significantly, metformin prevents oxidation of heme in three protein scaffolds, cytochrome c, myoglobin and hemoglobin, with Kd values < 3 mM suggesting a dual oxidation and reduction role in the regulation of heme redox transition. Since heme- and porphyrin-like groups operate in diverse enzymes that control important metabolic processes, we suggest that metformin acts, at least in part, through stabilizing appropriate redox states in heme and other porphyrin-containing groups to control cellular metabolism.
Collapse
|
17
|
Cantoni O, Guidarelli A, Fiorani M. Mitochondrial Uptake and Accumulation of Vitamin C: What Can We Learn from Cell Culture Studies? Antioxid Redox Signal 2018; 29:1502-1515. [PMID: 28699359 DOI: 10.1089/ars.2017.7253] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The mitochondrial fraction of l-ascorbic acid (AA) is of critical importance for the regulation of the redox status of these organelles and for cell survival. Recent Advances: Most cell types take up AA by the high-affinity sodium-dependent vitamin C transporter 2 (SVCT2) sensitive to inhibition by dehydroascorbic acid (DHA). DHA can also be taken up by glucose transporters (GLUTs) and then reduced back to AA. DHA concentrations, normally very low in biological fluids, may only become significant next to superoxide-releasing cells. Very little is known about the mechanisms mediating the mitochondrial transport of the vitamin. CRITICAL ISSUES Information on AA transport is largely derived from studies using cultured cells and is therefore conditioned by possible cell culture effects as overexpression of SVCT2 in the plasma membrane and mitochondria. Mitochondrial SVCT2 is susceptible to inhibition by DHA and transports AA with a low affinity as a consequence of the restrictive ionic conditions. In some cells, however, high-affinity mitochondrial transport of AA is observed. Mitochondrial uptake of DHA may take place through GLUTs, an event followed by its prompt reduction to AA in the matrix. Intracellular levels of DHA are, however, normally very low. FUTURE DIRECTIONS We need to establish, or rule out, the role and significance of mitochondrial SVCT2 in vivo. The key question for mitochondrial DHA transport is instead related to its very low intracellular concentrations.
Collapse
Affiliation(s)
- Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo ," Urbino, Italy
| | - Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo ," Urbino, Italy
| | - Mara Fiorani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo ," Urbino, Italy
| |
Collapse
|
18
|
Kathiresan M, English AM. LC-MS/MS Proteoform Profiling Exposes Cytochrome c Peroxidase Self-Oxidation in Mitochondria and Functionally Important Hole Hopping from Its Heme. J Am Chem Soc 2018; 140:12033-12039. [PMID: 30145880 DOI: 10.1021/jacs.8b05966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
LC-MS/MS profiling reveals that the proteoforms of cytochrome c peroxidase (Ccp1) isolated from respiring yeast mitochondria are oxidized at numerous Met, Trp, and Tyr residues. In vitro oxidation of recombinant Ccp1 by H2O2 in the absence of its reducing substrate, ferrocytochrome c, gives rise to similar proteoforms, indicating uncoupling of Ccp1 oxidation and reduction in mitochondria. The oxidative modifications found in the Ccp1 proteoforms are consistent with radical transfer (hole hopping) from the heme along several chains of redox-active residues (Trp, Met, Tyr). These modifications delineate likely hole-hopping pathways to novel substrate-binding sites. Moreover, a decrease in recombinant Ccp1 oxidation by H2O2 in vitro in the presence of glutathione supports a protective role for hole hopping to this antioxidant. Isolation and characterization of extramitochondrial Ccp1 proteoforms reveals that hole hopping from the heme in these proteoforms results in selective oxidation of the proximal heme ligand (H175) and heme labilization. Previously, we demonstrated that this labilized heme is recruited for catalase maturation (Kathiresan, M.; Martins, D.; English, A. M. Respiration triggers heme transfer from cytochrome c peroxidase to catalase in yeast mitochondria. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 17468-17473; DOI: 10.1073/pnas.1409692111 ). Following heme release, apoCcp1 exits mitochondria, yielding the extramitochondrial proteoforms that we characterize here. The targeting of Ccp1 for selective H175 oxidation may be linked to the phosphorylation status of Y153 close to the heme since pY153 is abundant in certain proteoforms. In sum, when insufficient electrons from ferrocytochrome c are available to Ccp1 in mitochondria, hole hopping from its heme expands its physiological functions. Specifically, we observe an unprecedented hole-hopping sequence for heme labilization and identify hole-hopping pathways from the heme to novel substrates and to glutathione at Ccp1's surface. Furthermore, our results underscore the power of proteoform profiling by LC-MS/MS in exploring the cellular roles of oxidoreductases.
Collapse
Affiliation(s)
- Meena Kathiresan
- Quebec Network for Research on Protein Function, Structure and Engineering (PROTEO), and Department of Chemistry and Biochemistry , Concordia University , Montreal , QC H4B 1R6 , Canada
| | - Ann M English
- Quebec Network for Research on Protein Function, Structure and Engineering (PROTEO), and Department of Chemistry and Biochemistry , Concordia University , Montreal , QC H4B 1R6 , Canada
| |
Collapse
|
19
|
Moreno-Navarrete JM, Rodríguez A, Ortega F, Becerril S, Girones J, Sabater-Masdeu M, Latorre J, Ricart W, Frühbeck G, Fernández-Real JM. Heme Biosynthetic Pathway is Functionally Linked to Adipogenesis via Mitochondrial Respiratory Activity. Obesity (Silver Spring) 2017; 25:1723-1733. [PMID: 28857503 DOI: 10.1002/oby.21956] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate key enzymes of heme biosynthesis in human adipocytes and adipose tissue (AT). METHODS Heme biosynthesis-related gene expression (ALAS1, ALAD, HMBS) was investigated in whole AT from humans (n = 178 and n = 75) and rats according to obesity status and during adipogenesis of human preadipocytes. The effects of aminotriazole (an ALAD inhibitor) and of ALAD knockdown were also studied. RESULTS Consistent heme biosynthesis-related gene expression was detected in both subcutaneous AT (SAT) and visceral AT (VAT) and was significantly increased in SAT. ALAS1, ALAD, and HMBS mRNAs were positively associated with adipogenic gene expression in human AT and significantly decreased in subjects with obesity. These results were replicated in an independent cohort. Both SAT and VAT heme levels were positively correlated with ALAS1, ALAD, and HMBS mRNAs. ALAD and HMBS were mainly expressed in adipocytes and increased during differentiation of human adipocytes in parallel to adipogenic genes. In rats, high-fat diet-induced weight gain resulted in decreased Alad and Hmbs mRNAs in a similar way to what was observed with Adipoq. Aminotriazole administration or ALAD knockdown attenuated adipogenesis in parallel with decreased glucose uptake and impaired mitochondrial respiratory function during human adipocyte differentiation. CONCLUSIONS Current data suggest a possible role of heme biosynthesis in human adipogenesis.
Collapse
Affiliation(s)
- José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III, Girona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, CIBEROBN, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Francisco Ortega
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III, Girona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, CIBEROBN, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Jordi Girones
- Department of Surgery, Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | - Mònica Sabater-Masdeu
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III, Girona, Spain
| | - Jéssica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III, Girona, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III, Girona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, CIBEROBN, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III, Girona, Spain
| |
Collapse
|
20
|
Hanna DA, Martinez-Guzman O, Reddi AR. Heme Gazing: Illuminating Eukaryotic Heme Trafficking, Dynamics, and Signaling with Fluorescent Heme Sensors. Biochemistry 2017; 56:1815-1823. [PMID: 28316240 DOI: 10.1021/acs.biochem.7b00007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Heme (iron protoporphyrin IX) is an essential protein prosthetic group and signaling molecule required for most life on Earth. All heme-dependent processes require the dynamic and rapid mobilization of heme from sites of synthesis or uptake to hemoproteins present in virtually every subcellular compartment. The cytotoxicity and hydrophobicity of heme necessitate that heme mobilization be carefully controlled to mitigate the deleterious effects of this essential toxin. Indeed, a number of disorders, including certain cancers, cardiovascular diseases, and aging and age-related neurodegenerative diseases, are tied to defects in heme homeostasis. However, the molecules and mechanisms that mediate heme transport and trafficking, and the dynamics of these processes, are poorly understood. This is in large part due to the lack of physical tools for probing cellular heme. Herein, we discuss the recent development of fluorescent probes that can monitor and image kinetically labile heme with respect to its mobilization and role in signaling. In particular, we will highlight how heme gazing with these tools can uncover new heme trafficking factors upon being integrated with genetic screens and illuminate the concentration, subcellular distribution, and dynamics of labile heme in various physiological contexts. Altogether, the monitoring of labile heme, along with recent biochemical and cell biological studies demonstrating the reversible regulation of certain cellular processes by heme, is challenging us to reconceptualize heme from being a static cofactor buried in protein active sites to a dynamic and mobile signaling molecule.
Collapse
Affiliation(s)
- David A Hanna
- School of Chemistry and Biochemistry and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Osiris Martinez-Guzman
- School of Chemistry and Biochemistry and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Amit R Reddi
- School of Chemistry and Biochemistry and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
21
|
Kathiresan M, English AM. LC-MS/MS suggests that hole hopping in cytochrome c peroxidase protects its heme from oxidative modification by excess H 2O 2. Chem Sci 2017; 8:1152-1162. [PMID: 28451256 PMCID: PMC5369544 DOI: 10.1039/c6sc03125k] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/06/2016] [Indexed: 12/20/2022] Open
Abstract
We recently reported that cytochrome c peroxidase (Ccp1) functions as a H2O2 sensor protein when H2O2 levels rise in respiring yeast. The availability of its reducing substrate, ferrocytochrome c (CycII), determines whether Ccp1 acts as a H2O2 sensor or peroxidase. For H2O2 to serve as a signal it must modify its receptor so we employed high-performance LC-MS/MS to investigate in detail the oxidation of Ccp1 by 1, 5 and 10 M eq. of H2O2 in the absence of CycII to prevent peroxidase activity. We observe strictly heme-mediated oxidation, implicating sequential cycles of binding and reduction of H2O2 at Ccp1's heme. This results in the incorporation of ∼20 oxygen atoms predominantly at methionine and tryptophan residues. Extensive intramolecular dityrosine crosslinking involving neighboring residues was uncovered by LC-MS/MS sequencing of the crosslinked peptides. The proximal heme ligand, H175, is converted to oxo-histidine, which labilizes the heme but irreversible heme oxidation is avoided by hole hopping to the polypeptide until oxidation of the catalytic distal H52 in Ccp1 treated with 10 M eq. of H2O2 shuts down heterolytic cleavage of H2O2 at the heme. Mapping of the 24 oxidized residues in Ccp1 reveals that hole hopping from the heme is directed to three polypeptide zones rich in redox-active residues. This unprecedented analysis unveils the remarkable capacity of a polypeptide to direct hole hopping away from its active site, consistent with heme labilization being a key outcome of Ccp1-mediated H2O2 signaling. LC-MS/MS identification of the oxidized residues also exposes the bias of electron paramagnetic resonance (EPR) detection toward transient radicals with low O2 reactivity.
Collapse
Affiliation(s)
- Meena Kathiresan
- Concordia University Faculty of Arts and Science, and PROTEOhttp://www.proteo.ca/index.html , Chemistry and Biochemistry , Montreal , Canada .
| | - Ann M English
- Concordia University Faculty of Arts and Science, and PROTEOhttp://www.proteo.ca/index.html , Chemistry and Biochemistry , Montreal , Canada .
| |
Collapse
|
22
|
Field MJ, Bains RK, Warren JJ. Using an artificial tryptophan “wire” in cytochrome c peroxidase for oxidation of organic substrates. Dalton Trans 2017; 46:11078-11083. [DOI: 10.1039/c7dt02330h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Addition of tryptophan residues between heme and the protein surface in cytochrome c peroxidase gives rise to new redox reactivity, in analogy to lignolytic peroxidases.
Collapse
|
23
|
Cabello-Donayre M, Malagarie-Cazenave S, Campos-Salinas J, Gálvez FJ, Rodríguez-Martínez A, Pineda-Molina E, Orrego LM, Martínez-García M, Sánchez-Cañete MP, Estévez AM, Pérez-Victoria JM. Trypanosomatid parasites rescue heme from endocytosed hemoglobin through lysosomal HRG transporters. Mol Microbiol 2016; 101:895-908. [PMID: 27328668 DOI: 10.1111/mmi.13430] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2016] [Indexed: 12/24/2022]
Abstract
Pathogenic trypanosomatid parasites are auxotrophic for heme and they must scavenge it from their human host. Trypanosoma brucei (responsible for sleeping sickness) and Leishmania (leishmaniasis) can fulfill heme requirement by receptor-mediated endocytosis of host hemoglobin. However, the mechanism used to transfer hemoglobin-derived heme from the lysosome to the cytosol remains unknown. Here we provide strong evidence that HRG transporters mediate this essential step. In bloodstream T. brucei, TbHRG localizes to the endolysosomal compartment where endocytosed hemoglobin is known to be trafficked. TbHRG overexpression increases cytosolic heme levels whereas its downregulation is lethal for the parasites unless they express the Leishmania orthologue LmHR1. LmHR1, known to be an essential plasma membrane protein responsible for the uptake of free heme in Leishmania, is also present in its acidic compartments which colocalize with endocytosed hemoglobin. Moreover, LmHR1 levels modulated by its overexpression or the abrogation of an LmHR1 allele correlate with the mitochondrial bioavailability of heme from lysosomal hemoglobin. In addition, using heme auxotrophic yeasts we show that TbHRG and LmHR1 transport hemoglobin-derived heme from the digestive vacuole to the cytosol. Collectively, these results show that trypanosomatid parasites rescue heme from endocytosed hemoglobin through endolysosomal HRG transporters, which could constitute novel drug targets.
Collapse
Affiliation(s)
- María Cabello-Donayre
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain
| | - Sophie Malagarie-Cazenave
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain
| | - Jenny Campos-Salinas
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain
| | - Francisco J Gálvez
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain
| | - Alba Rodríguez-Martínez
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain
| | - Estela Pineda-Molina
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain
| | - Lina M Orrego
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain
| | - Marta Martínez-García
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain
| | - María P Sánchez-Cañete
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain
| | - Antonio M Estévez
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain
| | - José M Pérez-Victoria
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain.
| |
Collapse
|
24
|
Abstract
Heme is universally recognized as an essential and ubiquitous prosthetic group that enables proteins to carry out a diverse array of functions. All heme-dependent processes, from protein hemylation to heme signaling, require the dynamic and rapid mobilization of heme to hemoproteins present in virtually every subcellular compartment. The cytotoxicity and hydrophobicity of heme necessitates that heme mobilization is carefully controlled at the cellular and systemic level. However, the molecules and mechanisms that mediate heme homeostasis are poorly understood. In this Account, we provide a heuristic paradigm with which to conceptualize heme trafficking and highlight the most recent developments in the mechanisms underlying heme trafficking. As an iron-containing tetrapyrrole, heme exhibits properties of both transition metals and lipids. Accordingly, we propose its transport and trafficking will reflect principles gleaned from the trafficking of both metals and lipids. Using this conceptual framework, we follow the flow of heme from the final step of heme synthesis in the mitochondria to hemoproteins present in various subcellular organelles. Further, given that many cells and animals that cannot make heme can assimilate it intact from nutritional sources, we propose that intercellular heme trafficking pathways must exist. This necessitates that heme be able to be imported and exported from cells, escorted between cells and organs, and regulated at the organismal level via a coordinated systemic process. In this Account, we highlight recently discovered heme transport and trafficking factors and provide the biochemical foundation for the cell and systems biology of heme. Altogether, we seek to reconceptualize heme from an exchange inert cofactor buried in hemoprotein active sites to an exchange labile and mobile metallonutrient.
Collapse
Affiliation(s)
- Amit R. Reddi
- School of Chemistry and Biochemistry and Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Iqbal Hamza
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20740, United States
| |
Collapse
|
25
|
Shlaifer I, Turnbull JL. Characterization of two key enzymes for aromatic amino acid biosynthesis in symbiotic archaea. Extremophiles 2016; 20:503-14. [DOI: 10.1007/s00792-016-0840-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/15/2016] [Indexed: 10/21/2022]
|
26
|
Heme dynamics and trafficking factors revealed by genetically encoded fluorescent heme sensors. Proc Natl Acad Sci U S A 2016; 113:7539-44. [PMID: 27247412 DOI: 10.1073/pnas.1523802113] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Heme is an essential cofactor and signaling molecule. Heme acquisition by proteins and heme signaling are ultimately reliant on the ability to mobilize labile heme (LH). However, the properties of LH pools, including concentration, oxidation state, distribution, speciation, and dynamics, are poorly understood. Herein, we elucidate the nature and dynamics of LH using genetically encoded ratiometric fluorescent heme sensors in the unicellular eukaryote Saccharomyces cerevisiae We find that the subcellular distribution of LH is heterogeneous; the cytosol maintains LH at ∼20-40 nM, whereas the mitochondria and nucleus maintain it at concentrations below 2.5 nM. Further, we find that the signaling molecule nitric oxide can initiate the rapid mobilization of heme in the cytosol and nucleus from certain thiol-containing factors. We also find that the glycolytic enzyme glyceraldehyde phosphate dehydrogenase constitutes a major cellular heme buffer, and is responsible for maintaining the activity of the heme-dependent nuclear transcription factor heme activator protein (Hap1p). Altogether, we demonstrate that the heme sensors can be used to reveal fundamental aspects of heme trafficking and dynamics and can be used across multiple organisms, including Escherichia coli, yeast, and human cell lines.
Collapse
|
27
|
Kathiresan M, English AM. Targeted proteomics identify metabolism-dependent interactors of yeast cytochrome c peroxidase: implications in stress response and heme trafficking. Metallomics 2016; 8:434-43. [PMID: 26980054 DOI: 10.1039/c5mt00330j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently we discovered that cytochrome c peroxidase (Ccp1) functions primarily as a mitochondrial H2O2 sensor and heme donor in yeast cells. When cells switch their metabolism from fermentation to respiration mitochondrial H2O2 levels spike, and overoxidation of its polypeptide labilizes Ccp1's heme. A large pool of heme-free Ccp1 exits the mitochondria and enters the nucleus and vacuole. To gain greater insight into the mechanisms of Ccp1's H2O2-sensing and heme-donor functions during the cell's different metabolic states, here we use glutathione-S-transferase (GST) pulldown assays, combined with 1D gel electrophoresis and mass spectrometry to probe for interactors of apo- and holoCcp1 in extracts from 1 d fermenting and 7 d stationary-phase respiring yeast. We identified Ccp1's peroxidase cosubstrate Cyc1 and 28 novel interactors of GST-apoCcp1 and GST-holoCcp1 including mitochondrial superoxide dismutase 2 (Sod2) and cytosolic Sod1, the mitochondrial transporter Pet9, the three yeast isoforms of glyceraldehyde-3-phosphate dehydrogenase (Tdh3/2/1), heat shock proteins including Hsp90 and Hsp70, and the main peroxiredoxin in yeast (Tsa1) as well as its cosubstrate, thioreoxin (Trx1). These new interactors expand the scope of Ccp1's possible roles in stress response and in heme trafficking and suggest several new lines of investigation. Furthermore, our targeted proteomics analysis underscores the limitations of large-scale interactome studies that found only 4 of the 30 Ccp1 interactors isolated here.
Collapse
Affiliation(s)
- M Kathiresan
- PROTEO and the Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St West, Montreal, Quebec, Canada H4B 1R6.
| | | |
Collapse
|
28
|
Neya S, Nagai M, Nagatomo S, Hoshino T, Yoneda T, Kawaguchi AT. Utility of heme analogues to intentionally modify heme-globin interactions in myoglobin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:582-588. [PMID: 26435388 DOI: 10.1016/j.bbabio.2015.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/12/2015] [Accepted: 09/25/2015] [Indexed: 01/01/2023]
Abstract
Myoglobin reconstitution with various synthetic heme analogues was reviewed to follow the consequences of modified heme-globin interactions. Utility of dimethyl sulfoxide as the solvent for water-insoluble hemes was emphasized. Proton NMR spectroscopy revealed that loose heme-globin contacts in the heme pocket eventually caused the dynamic heme rotation around the iron-histidine bond. The full rotational rate was estimated to be about 1400 s(-1) at room temperature for 1,4,5,8-tetramethylhemin. The X-ray analysis of the myoglobin containing iron porphine, the smallest heme without any side chains, showed that the original globin fold was well conserved despite the serious disruption of native heme-globin contacts. Comparison between the two myoglobins with static and rotatory prosthetic groups indicated that the oxygen and carbon monoxide binding profiles were almost unaffected by the heme motion. On the other hand, altered tetrapyrrole array of porphyrin dramatically changed the dissociation constant of oxygen from 0.0005 mm Hg of porphycene-myoglobin to ∞ in oxypyriporphyrin-myoglobin. Heme-globin interactions in myoglobin were also monitored with circular dichroism spectroscopy. The observation on several reconstituted protein revealed an unrecognized role of the propionate groups in protoheme. Shortening of heme 6,7-propionates to carboxylates resulted in almost complete disappearance of the positive circular dichroism band in the Soret region. The theoretical analysis suggested that the disappeared circular dichroism band reflected the cancellation effects between different conformers of the carboxyl groups directly attached to heme periphery. The above techniques were proposed to be applicable to other hemoproteins to create new biocatalysts. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.
Collapse
Affiliation(s)
- Saburo Neya
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chuoh-Inohana, Chiba City, Chiba 260-8675, Japan.
| | - Masako Nagai
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo 184-0003, Japan
| | - Shigenori Nagatomo
- Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Tyuji Hoshino
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chuoh-Inohana, Chiba City, Chiba 260-8675, Japan
| | - Tomoki Yoneda
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chuoh-Inohana, Chiba City, Chiba 260-8675, Japan
| | - Akira T Kawaguchi
- School of Medicine, Tokai University, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
29
|
Martins D, Bakas I, McIntosh K, English AM. Peroxynitrite and hydrogen peroxide elicit similar cellular stress responses mediated by the Ccp1 sensor protein. Free Radic Biol Med 2015; 85:138-47. [PMID: 25881547 DOI: 10.1016/j.freeradbiomed.2015.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/03/2015] [Accepted: 04/06/2015] [Indexed: 12/30/2022]
Abstract
Peroxynitrite [ONOO(H)] is an oxidant associated with deleterious effects in cells. Because it is an inorganic peroxide that reacts rapidly with peroxidases, we speculated that cells may respond to ONOO(H) and H2O2 challenge in a similar manner. We exposed yeast cells to SIN-1, a well-characterized ONOO(H) generator, and observed stimulation of catalase and peroxiredoxin (Prx) activities. Previously, we reported that H2O2 challenge increases these activities in wild-type cells and in cells producing the hyperactive mutant H2O2 sensor Ccp1(W191F) but not in Ccp1-knockout cells (ccp1Δ). We find here that the response of ccp1Δ and ccp1(W191F) cells to SIN-1 mirrors that to H2O2, identifying Ccp1 as a sensor of both peroxides. SIN-1 simultaneously releases (•)NO and O2(•-), which react to form ONOO(H), but exposure of the three strains separately to an (•)NO donor (spermine-NONOate) or an O2(•-) generator (paraquat) mainly depresses catalase or Prx activity, whereas co-challenge with the NONOate and paraquat stimulates these activities. Because Ccp1 appears to sense ONOO(H) in cells, we examined its reaction with ONOO(H) in vitro and found that peroxynitrous acid (ONOOH) rapidly (k2>10(6)M(-1)s(-1)) oxidizes purified Ccp1 to an intermediate with spectral and ferrocytochrome-oxidizing properties indistinguishable from those of its well-characterized compound I formed with H2O2. Importantly, the nitrite released from ONOOH is not oxidized to (•)NO2 by Ccp1(׳)s compound I, unlike peroxidases involved in immune defense. Overall, our results reveal that yeast cells mount a common antioxidant response to ONOO(H) and H2O2, with Ccp1 playing a pivotal role as an inorganic peroxide sensor.
Collapse
Affiliation(s)
- Dorival Martins
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada H4B 1R6; PROTEO, the FRQ-NT Network for Research on Protein Function, Structure, and Engineering, Québec, QC, Canada
| | - Iolie Bakas
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada H4B 1R6
| | - Kelly McIntosh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada H4B 1R6
| | - Ann M English
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada H4B 1R6; PROTEO, the FRQ-NT Network for Research on Protein Function, Structure, and Engineering, Québec, QC, Canada.
| |
Collapse
|