1
|
Lei S, Liu C, Zheng TX, Fu W, Huang MZ. The relationship of redox signaling with the risk for atherosclerosis. Front Pharmacol 2024; 15:1430293. [PMID: 39148537 PMCID: PMC11324460 DOI: 10.3389/fphar.2024.1430293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
Oxidative balance plays a pivotal role in physiological homeostasis, and many diseases, particularly age-related conditions, are closely associated with oxidative imbalance. While the strategic role of oxidative regulation in various diseases is well-established, the specific involvement of oxidative stress in atherosclerosis remains elusive. Atherosclerosis is a chronic inflammatory disorder characterized by plaque formation within the arteries. Alterations in the oxidative status of vascular tissues are linked to the onset, progression, and outcome of atherosclerosis. This review examines the role of redox signaling in atherosclerosis, including its impact on risk factors such as dyslipidemia, hyperglycemia, inflammation, and unhealthy lifestyle, along with dysregulation, vascular homeostasis, immune system interaction, and therapeutic considerations. Understanding redox signal transduction and the regulation of redox signaling will offer valuable insights into the pathogenesis of atherosclerosis and guide the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sujuan Lei
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Chen Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Tian-Xiang Zheng
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| | - Wenguang Fu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| | - Mei-Zhou Huang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| |
Collapse
|
2
|
Jüttner AA, Danser AHJ, Roks AJM. Pharmacological developments in antihypertensive treatment through nitric oxide-cGMP modulation. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 94:57-94. [PMID: 35659377 DOI: 10.1016/bs.apha.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Treatment of hypertension until now has been directed at inhibition of vasoconstriction, of cardiac contractility and of blood volume regulation. Despite the arsenal of drugs available for this purpose, the control of target blood pressure is still a difficult goal to reach in outpatients. The nitric oxide-cyclic guanosine monophosphate signaling is one of the most important mediators of vasodilation. It might therefore be a potential and most welcome drug target for optimization of the treatment of hypertension. In this chapter we review the problems that can occur in this signaling system, the attempts that have been made to correct these problems, and those that are still under investigation. Recently developed, clinically safe medicines that are currently approved for other applications, such as myocardial infarction, await to be tested for essential systemic hypertension. We conclude that despite many years of research without translation, stimulation of nitric oxide-cyclic guanosine monophosphate is still a viable strategy in the prevention of the health risk posed by chronic hypertension.
Collapse
Affiliation(s)
- Annika A Jüttner
- Department of Internal Medicine, Division of Vascular Disease and Pharmacology, Erasmus Medical Center, Erasmus University, Rotterdam, The Netherlands
| | - A H Jan Danser
- Department of Internal Medicine, Division of Vascular Disease and Pharmacology, Erasmus Medical Center, Erasmus University, Rotterdam, The Netherlands
| | - Anton J M Roks
- Department of Internal Medicine, Division of Vascular Disease and Pharmacology, Erasmus Medical Center, Erasmus University, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Ataei Ataabadi E, Golshiri K, Jüttner A, Krenning G, Danser AHJ, Roks AJM. Nitric Oxide-cGMP Signaling in Hypertension: Current and Future Options for Pharmacotherapy. Hypertension 2020; 76:1055-1068. [PMID: 32829664 DOI: 10.1161/hypertensionaha.120.15856] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
For the treatment of systemic hypertension, pharmacological intervention in nitric oxide-cyclic guanosine monophosphate signaling is a well-explored but unexploited option. In this review, we present the identified drug targets, including oxidases, mitochondria, soluble guanylyl cyclase, phosphodiesterase 1 and 5, and protein kinase G, important compounds that modulate them, and the current status of (pre)clinical development. The mode of action of these compounds is discussed, and based upon this, the clinical opportunities. We conclude that drugs that directly target the enzymes of the nitric oxide-cyclic guanosine monophosphate cascade are currently the most promising compounds, but that none of these compounds is under investigation as a treatment option for systemic hypertension.
Collapse
Affiliation(s)
- Ehsan Ataei Ataabadi
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands (E.A.A., K.G., A.J., A.H.J.D., A.J.M.R.)
| | - Keivan Golshiri
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands (E.A.A., K.G., A.J., A.H.J.D., A.J.M.R.)
| | - Annika Jüttner
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands (E.A.A., K.G., A.J., A.H.J.D., A.J.M.R.)
| | - Guido Krenning
- Sulfateq B.V., Groningen, the Netherlands (G.K.).,Cardiovascular Regenerative Medicine, Department Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, the Netherlands (G.K.)
| | - A H Jan Danser
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands (E.A.A., K.G., A.J., A.H.J.D., A.J.M.R.)
| | - Anton J M Roks
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands (E.A.A., K.G., A.J., A.H.J.D., A.J.M.R.)
| |
Collapse
|
4
|
Freeman BA, O'Donnell VB, Schopfer FJ. The discovery of nitro-fatty acids as products of metabolic and inflammatory reactions and mediators of adaptive cell signaling. Nitric Oxide 2018; 77:106-111. [PMID: 29742447 DOI: 10.1016/j.niox.2018.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/04/2018] [Indexed: 01/06/2023]
Abstract
Foundational advances in eicosanoid signaling, the free radical biology of oxygen and nitric oxide and mass spectrometry all converged to enable the discovery of nitrated unsaturated fatty acids. Due to the unique biochemical characteristics of fatty acid nitroalkenes, these species undergo rapid and reversible Michael addition of biological nucleophiles such as cysteine, leading to the post-translational modification of low molecular weight and protein thiols. This capability has led to the present understanding that nitro-fatty acid reaction with the alkylation-sensitive cysteine proteome leads to physiologically-beneficial alterations in transcriptional regulatory protein function, gene expression and in vivo rodent model responses to metabolic and inflammatory stress. These findings motivated the preclinical and clinical development of nitro-fatty acids as new drug candidates for treating acute and chronic metabolic and inflammatory disorders.
Collapse
Affiliation(s)
- Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Valerie B O'Donnell
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Manicam C, Ginter N, Li H, Xia N, Goloborodko E, Zadeh JK, Musayeva A, Pfeiffer N, Gericke A. Compensatory Vasodilator Mechanisms in the Ophthalmic Artery of Endothelial Nitric Oxide Synthase Gene Knockout Mice. Sci Rep 2017; 7:7111. [PMID: 28769073 PMCID: PMC5541003 DOI: 10.1038/s41598-017-07768-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/29/2017] [Indexed: 01/02/2023] Open
Abstract
Nitric oxide (NO) generated by endothelial nitric oxide synthase (eNOS) plays an important role in the maintenance of ocular vascular homeostasis. Therefore, perturbations in vascular NO synthesis have been implicated in the pathogenesis of several ocular diseases. We recently reported that eNOS contributes significantly to vasodilation of the mouse ophthalmic artery. Interestingly, dilatory responses were also retained in eNOS gene-deficient mice (eNOS-/-), indicating inherent endothelial adaptive mechanism(s) that act as back-up systems in chronic absence of eNOS to preserve vasorelaxation. Thus, this study endeavoured to identify the compensatory mechanism(s) in the ophthalmic artery of eNOS-/- mice employing isolated arterial segments and pharmacological inhibitors in vitro. Endothelium removal virtually abolished acetylcholine (ACh)-induced vasodilation, suggesting an obligatory involvement of the endothelium in cholinergic control of vascular tone. However, non-NOS and non-cyclooxygenase components compensate for eNOS deficiency via endothelium-derived hyperpolarizing factors (EDHFs). Notably, arachidonic acid-derived metabolites of the 12-lipoxygenase pathway were key mediators in activating the inwardly rectifying potassium channels to compensate for chronic lack of eNOS. Conclusively, endothelium-dependent cholinergic responses of the ophthalmic artery in the eNOS-/- mice are largely preserved and, this vascular bed has the ability to compensate for the loss of normal vasodilator responses solely via EDHFs.
Collapse
Affiliation(s)
- Caroline Manicam
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Natalja Ginter
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Huige Li
- Institute of Pharmacology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ning Xia
- Institute of Pharmacology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Evgeny Goloborodko
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jenia Kouchek Zadeh
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Aytan Musayeva
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
6
|
Trostchansky A, Rubbo H. Anti-inflammatory signaling actions of electrophilic nitro-arachidonic acid in vascular cells and astrocytes. Arch Biochem Biophys 2016; 617:155-161. [PMID: 27720684 DOI: 10.1016/j.abb.2016.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/28/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022]
Abstract
Nitrated derivatives of unsaturated fatty acids (nitro-fatty acids) are being formed and detected in human plasma, cell membranes and tissue, triggering signaling cascades via covalent and reversible post-translational modifications of nucleophilic amino acids in transcriptional regulatory proteins. Arachidonic acid (AA) represents a precursor of potent signaling molecules, i.e., prostaglandins and thromboxanes through enzymatic and non-enzymatic oxidative pathways. Arachidonic acid can be nitrated by reactive nitrogen species leading to the formation of nitro-arachidonic acid (NO2-AA). A critical issue is the influence of NO2-AA on prostaglandin endoperoxide H synthases, modulating inflammatory processes through redirection of AA metabolism and signaling. In this prospective article, we describe the key chemical and biochemical actions of NO2-AA in vascular and astrocytes. This includes the ability of NO2-AA to mediate unique redox signaling anti-inflammatory actions along with its therapeutic potential.
Collapse
Affiliation(s)
- Andrés Trostchansky
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Avda. General Flores 2125, Universidad de la República, Montevideo 11800, Uruguay
| | - Homero Rubbo
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Avda. General Flores 2125, Universidad de la República, Montevideo 11800, Uruguay.
| |
Collapse
|
7
|
Kim HY, Jeong DW, Park HS, Lee TY, Kim HS. Comparison of 12-lipoxygenase expression in vascular smooth muscle cells from old normotensive Wistar-Kyoto rats with spontaneously hypertensive rats. Hypertens Res 2012; 36:65-73. [PMID: 22875070 DOI: 10.1038/hr.2012.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vascular aging and essential hypertension cause similar structural and molecular modifications in the vasculature. The 12-lipoxygenase (LO) pathway of arachidonic acid metabolism is linked to cell growth and the pathology of hypertension. Thus, elevated expression of 12-LO has been observed in vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR). In the present study, we investigated the differences in 12-LO expression and activity between VSMCs from old normotensive Wistar-Kyoto rats (old WKY, 90-week old) and SHR (13-week old). The protein and mRNA expression of basal or angiotensin II (Ang II)-induced 12-LO in old WKY VSMCs were higher than those in SHR VSMCs. The degradation rate of 12-LO mRNA in old WKY VSMCs was slower than that in SHR VSMCs. However, basal or Ang II-induced 12-LO mRNAs in both old WKY and SHR VSMCs decayed more rapidly than that in young WKY (13-week old) VSMCs. Higher expression of 12-LO in old WKY VSMCs than in SHR VSMCs was correlated with the expression level of Ang II subtype 1 receptor (AT(1)R). The reduced levels of nitric oxide (NO) in old WKY and SHR VSMCs compared with young WKY VSMCs were similar, and there was no significant difference in NO production between old WKY and SHR VSMCs transfected with 12-LO siRNA. In addition, in contrast to the proliferation of SHR VSMCs, the proliferation of old WKY VSMCs was not dependent on 12-LO activation. These results suggest that the potential role of 12-LO in normotensive aging vasculature may be different from that in SHR vasculature.
Collapse
Affiliation(s)
- Hye Young Kim
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, South Korea
| | | | | | | | | |
Collapse
|
8
|
Goodwill AG, Frisbee JC. Oxidant stress and skeletal muscle microvasculopathy in the metabolic syndrome. Vascul Pharmacol 2012; 57:150-9. [PMID: 22796585 DOI: 10.1016/j.vph.2012.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/19/2012] [Accepted: 07/04/2012] [Indexed: 01/22/2023]
Abstract
The evolution of the metabolic syndrome in afflicted individuals is, in part, characterized by the development of a severely pro-oxidant state within the vasculature. It has been previously demonstrated by many investigators that this increasingly pro-oxidant state can have severe negative implications for many relevant processes within the vasculature, including the coordination of dilator/constrictor tone or reactivity, the structural adaptations of the vascular wall or distal networks, as well as the integrated regulation of perfusion resistance across and throughout the vascular networks. The purpose of this review article is to present the different sources of oxidant stress within the setting of the metabolic syndrome, the available mechanism for attempts at regulation and the vascular outcomes associated with this condition. It is anticipated that this overview will help readers and investigators to more effectively design experiments and interpret their results within the extremely complicated setting of metabolic syndrome.
Collapse
Affiliation(s)
- Adam G Goodwill
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | | |
Collapse
|
9
|
Abstract
Several apparent paradoxes are evident when one compares mathematical predictions from models of nitric oxide (NO) diffusion and convection in vasculature structures with experimental measurements of NO (or related metabolites) in animal and human studies. Values for NO predicted from mathematical models are generally much lower than in vivo NO values reported in the literature for experiments, specifically with NO microelectrodes positioned at perivascular locations next to different sizes of blood vessels in the microcirculation and NO electrodes inserted into a wide range of tissues supplied by the microcirculation of each specific organ system under investigation. There continues to be uncertainty about the roles of NO scavenging by hemoglobin versus a storage function that may conserve NO, and other signaling targets for NO need to be considered. This review describes model predictions and relevant experimental data with respect to several signaling pathways in the microcirculation that involve NO.
Collapse
|
10
|
Kriska T, Cepura C, Magier D, Siangjong L, Gauthier KM, Campbell WB. Mice lacking macrophage 12/15-lipoxygenase are resistant to experimental hypertension. Am J Physiol Heart Circ Physiol 2012; 302:H2428-38. [PMID: 22467300 DOI: 10.1152/ajpheart.01120.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In mouse arteries, Alox15 [leukocyte-type 12/15-lipoxygenase (LO)] is assumed to regulate vascular function by metabolizing arachidonic acid (AA) to dilator eicosanoids that mediate the endothelium-dependent relaxations to AA and acetylcholine (ACh). We used Alox15(-/-) mice, made by targeted disruption of the Alox15 gene, to characterize its role in the regulation of blood pressure and vascular tone. Systolic blood pressures did not differ between wild-type (WT) and Alox15(-/-) mice between 8-12 wk of age, but Alox15(-/-) mice exhibited resistance toward both N(G)-nitro-L-arginine-methyl ester (L-NAME)- and deoxycorticosterone acetate (DOCA)/high-salt-induced hypertension. ACh relaxed mesenteric arteries and abdominal aortas of WT and Alox15(-/-) mice to an identical extent. The LO inhibitor nordihydroguaiaretic acid attenuated the ACh relaxations by 35% in arteries from both WT and Alox15(-/-) mice. Reverse-phase HPLC analysis of [(14)C]AA metabolites in aorta and peritoneal macrophages (PM) revealed differences. Unlike PM, aorta tissue did not produce detectable amounts of 15-hydroxyeicosatetraenoic acid. Although Alox15 mRNA was detected in aorta, high-resolution gel electrophoresis with immunodetection revealed no Alox15 protein expression. Unlike aorta, Alox15 protein was detected in PM, intestine, fat, lung, spleen, and skin from WT, but not Alox15(-/-), mice. Injection of WT PM, a primary source of Alox15 protein, into Alox15(-/-) mice abolished their resistance toward L-NAME-induced hypertension. On the other hand, WT mice acquired resistance to L-NAME-induced hypertension after depletion of macrophages by clodronate injection. These studies indicate that Alox15 is involved in development of experimental hypertension by altering macrophage functions but not via synthesis of the vasoactive LO metabolites in mouse arteries.
Collapse
Affiliation(s)
- Tamas Kriska
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, 53226, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Gupta KJ, Igamberdiev AU, Manjunatha G, Segu S, Moran JF, Neelawarne B, Bauwe H, Kaiser WM. The emerging roles of nitric oxide (NO) in plant mitochondria. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:520-6. [PMID: 21893247 DOI: 10.1016/j.plantsci.2011.03.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/09/2011] [Accepted: 03/24/2011] [Indexed: 05/23/2023]
Abstract
In recent years nitric oxide (NO) has been recognized as an important signal molecule in plants. Both, reductive and oxidative pathways and different subcellular compartments appear involved in NO production. The reductive pathway uses nitrite as substrate, which is exclusively generated by cytosolic nitrate reductase (NR) and can be converted to NO by the same enzyme. The mitochondrial electron transport chain is another site for nitrite to NO reduction, operating specifically when the normal electron acceptor, O(2), is low or absent. Under these conditions, the mitochondrial NO production contributes to hypoxic survival by maintaining a minimal ATP formation. In contrast, excessive NO production and concomitant nitrosative stress may be prevented by the operation of NO-scavenging mechanisms in mitochondria and cytosol. During pathogen attacks, mitochondrial NO serves as a nitrosylating agent promoting cell death; whereas in symbiotic interactions as in root nodules, the turnover of mitochondrial NO helps in improving the energy status similarly as under hypoxia/anoxia. The contribution of NO turnover during pathogen defense, symbiosis and hypoxic stress is discussed in detail.
Collapse
Affiliation(s)
- Kapuganti J Gupta
- Department of Plant Physiology, University of Rostock, Albert Einstein Str 3, D-10859 Rostock, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Li S, Vana AC, Ribeiro R, Zhang Y. Distinct role of nitric oxide and peroxynitrite in mediating oligodendrocyte toxicity in culture and in experimental autoimmune encephalomyelitis. Neuroscience 2011; 184:107-19. [PMID: 21511012 DOI: 10.1016/j.neuroscience.2011.04.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 03/19/2011] [Accepted: 04/05/2011] [Indexed: 01/24/2023]
Abstract
Nitric oxide has been implicated in the pathogenesis of multiple sclerosis. However, it is still unclear whether nitric oxide plays a protective role or is deleterious. We have previously shown that peroxynitrite, a reaction product of nitric oxide and superoxide, is toxic to mature oligodendrocytes (OLs). The toxicity is mediated by intracellular zinc release, phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), activation of 12-lipoxygenase (12-LOX) and the formation of reactive oxygen species (ROS). In this study, we found that the donors of nitric oxide, dipropylenetriamine NONOate (DPT NONOate) and diethylenetriamine NONOate (DETA NONOate), protected OLs from peroxynitrite or zinc-induced toxicity. The protective mechanisms appear to be attributable to their inhibition of peroxynitrite- or zinc-induced ERK1/2 phosphorylation and 12-LOX activation. In cultures of mature OLs exposed to lipopolysaccharide (LPS), induction of inducible nitric oxide synthase (iNOS) generated nitric oxide and rendered OLs resistant to peroxynitrite-induced toxicity. The protection was eliminated when 1400W, a specific inhibitor of iNOS, was co-applied with LPS. Using MOG35-55-induced experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, we found that nitrotyrosine immunoreactivity, an indicator of peroxynitrite formation, was increased in the spinal cord white matter, which correlated with the loss of mature OLs. Targeted gene deletion of the NADPH oxidase component gp91phox reduced clinical scores, the formation of nitrotyrosine and the loss of mature OLs. These results suggest that blocking the formation specifically of peroxynitrite, rather than nitric oxide, may be a protective strategy against oxidative stress induced toxicity to OLs.
Collapse
Affiliation(s)
- S Li
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Science, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | | | | | | |
Collapse
|
13
|
Dobrian AD, Lieb DC, Cole BK, Taylor-Fishwick DA, Chakrabarti SK, Nadler JL. Functional and pathological roles of the 12- and 15-lipoxygenases. Prog Lipid Res 2010; 50:115-31. [PMID: 20970452 DOI: 10.1016/j.plipres.2010.10.005] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/13/2010] [Accepted: 10/14/2010] [Indexed: 12/25/2022]
Abstract
The 12/15-lipoxygenase enzymes react with fatty acids producing active lipid metabolites that are involved in a number of significant disease states. The latter include type 1 and type 2 diabetes (and associated complications), cardiovascular disease, hypertension, renal disease, and the neurological conditions Alzheimer's disease and Parkinson's disease. A number of elegant studies over the last thirty years have contributed to unraveling the role that lipoxygenases play in chronic inflammation. The development of animal models with targeted gene deletions has led to a better understanding of the role that lipoxygenases play in various conditions. Selective inhibitors of the different lipoxygenase isoforms are an active area of investigation, and will be both an important research tool and a promising therapeutic target for treating a wide spectrum of human diseases.
Collapse
Affiliation(s)
- Anca D Dobrian
- Eastern Virginia Medical School, Department of Physiological Sciences, Lewis Hall, Room 2027, 700 W. Olney Road, Norfolk, VA 23507, United States.
| | | | | | | | | | | |
Collapse
|
14
|
Gardner AM, Cook MR, Gardner PR. Nitric-oxide dioxygenase function of human cytoglobin with cellular reductants and in rat hepatocytes. J Biol Chem 2010; 285:23850-7. [PMID: 20511233 DOI: 10.1074/jbc.m110.132340] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cytoglobin (Cygb) was investigated for its capacity to function as a NO dioxygenase (NOD) in vitro and in hepatocytes. Ascorbate and cytochrome b(5) were found to support a high NOD activity. Cygb-NOD activity shows respective K(m) values for ascorbate, cytochrome b(5), NO, and O(2) of 0.25 mm, 0.3 microm, 40 nm, and approximately 20 microm and achieves a k(cat) of 0.5 s(-1). Ascorbate and cytochrome b(5) reduce the oxidized Cygb-NOD intermediate with apparent second order rate constants of 1000 m(-1) s(-1) and 3 x 10(6) m(-1) s(-1), respectively. In rat hepatocytes engineered to express human Cygb, Cygb-NOD activity shows a similar k(cat) of 1.2 s(-1), a K(m)(NO) of 40 nm, and a k(cat)/K(m)(NO) (k'(NOD)) value of 3 x 10(7) m(-1) s(-1), demonstrating the efficiency of catalysis. NO inhibits the activity at [NO]/[O(2)] ratios >1:500 and limits catalytic turnover. The activity is competitively inhibited by CO, is slowly inactivated by cyanide, and is distinct from the microsomal NOD activity. Cygb-NOD provides protection to the NO-sensitive aconitase. The results define the NOD function of Cygb and demonstrate roles for ascorbate and cytochrome b(5) as reductants.
Collapse
Affiliation(s)
- Anne M Gardner
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
15
|
Inactivation of nitric oxide by cytochrome c oxidase under steady-state oxygen conditions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:371-7. [DOI: 10.1016/j.bbabio.2009.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 11/19/2009] [Accepted: 12/08/2009] [Indexed: 01/17/2023]
|
16
|
Baker PR, Schopfer FJ, O’Donnell VB, Freeman BA. Convergence of nitric oxide and lipid signaling: anti-inflammatory nitro-fatty acids. Free Radic Biol Med 2009; 46:989-1003. [PMID: 19200454 PMCID: PMC2761210 DOI: 10.1016/j.freeradbiomed.2008.11.021] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 11/11/2008] [Accepted: 11/21/2008] [Indexed: 12/25/2022]
Abstract
The signaling mediators nitric oxide ( NO) and oxidized lipids, once viewed to transduce metabolic and inflammatory information via discrete and independent pathways, are now appreciated as interdependent regulators of immune response and metabolic homeostasis. The interactions between these two classes of mediators result in reciprocal control of mediator synthesis that is strongly influenced by the local chemical environment. The relationship between the two pathways extends beyond coregulation of NO and eicosanoid formation to converge via the nitration of unsaturated fatty acids to yield nitro derivatives (NO(2)-FA). These pluripotent signaling molecules are generated in vivo as an adaptive response to oxidative inflammatory conditions and manifest predominantly anti-inflammatory signaling reactions. These actions of NO(2)-FA are diverse, with these species serving as a potential chemical reserve of NO, reacting with cellular nucleophiles to posttranslationally modify protein structure, function, and localization. In this regard these species act as potent endogenous ligands for peroxisome proliferator-activated receptor gamma. Functional consequences of these signaling mechanisms have been shown in multiple model systems, including the inhibition of platelet and neutrophil functions, induction of heme oxygenase-1, inhibition of LPS-induced cytokine release in monocytes, increased insulin sensitivity and glucose uptake in adipocytes, and relaxation of preconstricted rat aortic segments. These observations have propelled further in vitro and in vivo studies of mechanisms of NO(2)-FA signaling and metabolism, highlighting the therapeutic potential of this class of molecules as anti-inflammatory drug candidates.
Collapse
Affiliation(s)
- Paul R.S. Baker
- University of Pittsburgh School of Medicine Department of Pharmacology & Chemical Biology, E1340 Thomas E. Starzl Biomedical Science Tower, 200 Lothrop St, Pittsburgh, PA 15213
- To whom correspondence should be addressed. ;
| | - Francisco J. Schopfer
- University of Pittsburgh School of Medicine Department of Pharmacology & Chemical Biology, E1340 Thomas E. Starzl Biomedical Science Tower, 200 Lothrop St, Pittsburgh, PA 15213
| | - Valerie B. O’Donnell
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Heath park, Cardiff CF14 4XN, United Kingdom
| | - Bruce A. Freeman
- University of Pittsburgh School of Medicine Department of Pharmacology & Chemical Biology, E1340 Thomas E. Starzl Biomedical Science Tower, 200 Lothrop St, Pittsburgh, PA 15213
- To whom correspondence should be addressed. ;
| |
Collapse
|
17
|
Abstract
In low nanomolar concentrations, NO (nitric oxide) functions as a transmitter in brain and other tissues, whereas near-micromolar NO concentrations are associated with toxicity and cell death. Control of the NO concentration, therefore, is critical for proper brain function, but, although its synthesis pathway is well-characterized, the major route of breakdown of NO in brain is unclear. Previous observations indicate that brain cells actively consume NO at a high rate. The mechanism of this consumption was pursued in the present study. NO consumption by a preparation of central glial cells was abolished by cell lysis and recovered by addition of NADPH. NADPH-dependent consumption of NO localized to cell membranes and was inhibited by proteinase K, indicating the involvement of a membrane-bound protein. Purification of this activity yielded CYPOR (cytochrome P450 oxidoreductase). Antibodies against CYPOR inhibited NO consumption by brain membranes and the amount of CYPOR in several cell types correlated with their rate of NO consumption. NO was also consumed by purified CYPOR but this activity was found to depend on the presence of the vitamin E analogue Trolox (6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid), included in the buffer as a precaution against inadvertent NO consumption by lipid peroxidation. In contrast, NO consumption by brain membranes was independent of Trolox. Hence, it appears that, during the purification process, CYPOR becomes separated from a partner needed for NO consumption. Cytochrome P450 inhibitors inhibited NO consumption by brain membranes, making these proteins likely candidates.
Collapse
|
18
|
Halligan KE, Jourd'heuil FL, Jourd'heuil D. Cytoglobin is expressed in the vasculature and regulates cell respiration and proliferation via nitric oxide dioxygenation. J Biol Chem 2009; 284:8539-47. [PMID: 19147491 DOI: 10.1074/jbc.m808231200] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Disposition of the second messenger nitric oxide (NO) in mammalian tissues occurs through multiple pathways including dioxygenation by erythrocyte hemoglobin and red muscle myoglobin. Metabolism by a putative NO dioxygenase activity in non-striated tissues has also been postulated, but the exact nature of this activity is unknown. In the present study, we tested the hypothesis that cytoglobin, a newly discovered hexacoordinated globin, participates in cell-mediated NO consumption. Stable expression of small hairpin RNA targeting cytoglobin in fibroblasts resulted in decreased NO consumption and intracellular nitrate production. These cells were more sensitive to NO-induced inhibition of cell respiration and proliferation, which could be restored by re-expression of human cytoglobin. We also demonstrated cytoglobin expression in adventitial fibroblasts as well as vascular smooth muscle cells from various species including human and found that cytoglobin was expressed in the adventitia and media of intact rat aorta. These results indicate that cytoglobin contributes to cell-mediated NO dioxygenation and represents an important NO sink in the vascular wall.
Collapse
Affiliation(s)
- Katharine E Halligan
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | | | | |
Collapse
|
19
|
Thomas SR, Witting PK, Drummond GR. Redox control of endothelial function and dysfunction: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 2008; 10:1713-65. [PMID: 18707220 DOI: 10.1089/ars.2008.2027] [Citation(s) in RCA: 282] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The endothelium is essential for the maintenance of vascular homeostasis. Central to this role is the production of endothelium-derived nitric oxide (EDNO), synthesized by the endothelial isoform of nitric oxide synthase (eNOS). Endothelial dysfunction, manifested as impaired EDNO bioactivity, is an important early event in the development of various vascular diseases, including hypertension, diabetes, and atherosclerosis. The degree of impairment of EDNO bioactivity is a determinant of future vascular complications. Accordingly, growing interest exists in defining the pathologic mechanisms involved. Considerable evidence supports a causal role for the enhanced production of reactive oxygen species (ROS) by vascular cells. ROS directly inactivate EDNO, act as cell-signaling molecules, and promote protein dysfunction, events that contribute to the initiation and progression of endothelial dysfunction. Increasing data indicate that strategies designed to limit vascular ROS production can restore endothelial function in humans with vascular complications. The purpose of this review is to outline the various ways in which ROS can influence endothelial function and dysfunction, describe the redox mechanisms involved, and discuss approaches for preventing endothelial dysfunction that may highlight future therapeutic opportunities in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Shane R Thomas
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | |
Collapse
|
20
|
Nitric oxide degradation by potato tuber mitochondria: evidence for the involvement of external NAD(P)H dehydrogenases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:470-6. [PMID: 18371295 DOI: 10.1016/j.bbabio.2008.02.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 02/20/2008] [Accepted: 02/26/2008] [Indexed: 12/26/2022]
Abstract
The mechanisms of nitric oxide (NO) synthesis in plants have been extensively investigated. NO degradation can be just as important as its synthesis in controlling steady-state levels of NO. Here, we examined NO degradation in mitochondria isolated from potato tubers and the contribution of the respiratory chain to this process. NO degradation was faster in mitochondria energized with NAD(P)H than with succinate or malate. Oxygen consumption and the inner membrane potential were transiently inhibited by NO in NAD(P)H-energized mitochondria, in contrast to the persistent inhibition seen with succinate. NO degradation was abolished by anoxia and superoxide dismutase, which suggested that NO was consumed by its reaction with superoxide anion (O2(-)). Antimycin-A stimulated and myxothiazol prevented NO consumption in succinate- and malate-energized mitochondria. Although favored by antimycin-A, NAD(P)H-mediated NO consumption was not abolished by myxothiazol, indicating that an additional site of O2(-) generation, besides complex III, stimulated NO degradation. Larger amounts of O2(-) were generated in NAD(P)H- compared to succinate- or malate-energized mitochondria. NAD(P)H-mediated NO degradation and O2(-) production were stimulated by free Ca2+ concentration. Together, these results indicate that Ca2+-dependent external NAD(P)H dehydrogenases, in addition to complex III, contribute to O2(-) production that favors NO degradation in potato tuber mitochondria.
Collapse
|
21
|
Arachidonic Acid metabolites in the cardiovascular system: the role of lipoxygenase isoforms in atherogenesis with particular emphasis on vascular remodeling. J Cardiovasc Pharmacol 2008; 50:609-20. [PMID: 18091576 DOI: 10.1097/fjc.0b013e318159f177] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Vascular remodeling refers to lasting structural alterations in the vessel wall that are initiated in response to external and internal stimuli. These changes are distinct from acute functional responses of blood vessels when challenged by increased blood pressure, altered hemodynamics, or vasoactive mediators. In early atherogenesis, when lesion formation is starting to impact local hemodynamics, the vessel wall responds with outward vascular remodeling to maintain normal blood flow. However, inward remodeling may also occur during the time course of plaque formation, contributing to vascular stenosis. Lipoxygenases form a heterogeneous family of lipid-peroxidizing enzymes, which have been implicated in atherogenesis. Several lines of in vitro and in vivo evidence indicated their involvement in disease development, but the precise function of different lipoxygenase isoforms is still a matter of discussion. Vascular remodeling is an early response during plaque development; therefore, lipoxygenases may be involved in this process. Unfortunately, little is known about the potential role of lipoxygenase isoforms in vascular remodeling. This review will briefly summarize our knowledge of the role of lipoxygenases in vascular biology and will critically review the activities of the 3 most athero-relevant lipoxygenase isoforms in atherogenesis, with particular emphasis on vascular remodeling.
Collapse
|
22
|
Viita H, Markkanen J, Eriksson E, Nurminen M, Kinnunen K, Babu M, Heikura T, Turpeinen S, Laidinen S, Takalo T, Ylä-Herttuala S. 15-Lipoxygenase-1 Prevents Vascular Endothelial Growth Factor A– and Placental Growth Factor–Induced Angiogenic Effects in Rabbit Skeletal Muscles via Reduction in Growth Factor mRNA Levels, NO Bioactivity, and Downregulation of VEGF Receptor 2 Expression. Circ Res 2008; 102:177-84. [DOI: 10.1161/circresaha.107.155556] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human 15-lipoxygenase-1 (15-LO-1) is an oxidizing enzyme capable of producing reactive lipid hydroperoxides. 15-LO-1 and its products have been suggested to be involved in many pathological conditions, such as inflammation, atherogenesis, and carcinogenesis. We used adenovirus-mediated gene transfers to study the effects of 15-LO-1 on vascular endothelial growth factor (VEGF)-A
165
– and placental growth factor (PlGF)-induced angiogenesis in rabbit skeletal muscles. 15-LO-1 significantly decreased all angiogenic effects induced by these growth factors, including capillary perfusion, vascular permeability, vasodilatation, and an increase in capillary number. The effects are attributable to the reduction in the amount of VEGF-A
165
and PlGF transcripts by 15-LO-1, resulting in reduced protein expression. The most likely mediator of the VEGF family–induced capillary vasodilatation is nitric oxide (NO), which is produced by NO synthases. Endothelial NO synthase protein expression and NO synthase activity were significantly induced by VEGF-A
165
, and these inductions were reduced by 15-LO-1. VEGF-A
165
induces its angiogenic effects primarily via vascular endothelial growth factor receptor (VEGFR)2, and also PlGF mediates angiogenic signaling via VEGFR2, even though it binds to VEGFR1. VEGFR2 expression is induced by peroxisome proliferator-activating receptor γ. We showed by quantitative RT-PCR and immunohistochemistry that expression of endogenous rabbit peroxisome proliferator-activating receptor γ and VEGFR2 were significantly increased in the growth factor–transduced muscles, but these inductions were efficiently prevented by 15-LO-1. In conclusion, the results suggest that expression of 15-LO-1 has an efficient antiangiogenic effect in vivo via reduction in growth factor mRNA levels, NO bioactivity, and VEGFR2 expression.
Collapse
Affiliation(s)
- Helena Viita
- From the Department of Biotechnology and Molecular Medicine (H.V., J.M., E.E., M.N., K.K., M.B., T.H., S.T., S.L., T.T., S.Y.-H.), A. I. Virtanen Institute for Molecular Sciences, and Department of Medicine (S.Y.-H.), University of Kuopio; and Gene Therapy Unit (S.Y.-H.), Kuopio University Hospital, Finland
| | - Johanna Markkanen
- From the Department of Biotechnology and Molecular Medicine (H.V., J.M., E.E., M.N., K.K., M.B., T.H., S.T., S.L., T.T., S.Y.-H.), A. I. Virtanen Institute for Molecular Sciences, and Department of Medicine (S.Y.-H.), University of Kuopio; and Gene Therapy Unit (S.Y.-H.), Kuopio University Hospital, Finland
| | - Emmi Eriksson
- From the Department of Biotechnology and Molecular Medicine (H.V., J.M., E.E., M.N., K.K., M.B., T.H., S.T., S.L., T.T., S.Y.-H.), A. I. Virtanen Institute for Molecular Sciences, and Department of Medicine (S.Y.-H.), University of Kuopio; and Gene Therapy Unit (S.Y.-H.), Kuopio University Hospital, Finland
| | - Markku Nurminen
- From the Department of Biotechnology and Molecular Medicine (H.V., J.M., E.E., M.N., K.K., M.B., T.H., S.T., S.L., T.T., S.Y.-H.), A. I. Virtanen Institute for Molecular Sciences, and Department of Medicine (S.Y.-H.), University of Kuopio; and Gene Therapy Unit (S.Y.-H.), Kuopio University Hospital, Finland
| | - Kati Kinnunen
- From the Department of Biotechnology and Molecular Medicine (H.V., J.M., E.E., M.N., K.K., M.B., T.H., S.T., S.L., T.T., S.Y.-H.), A. I. Virtanen Institute for Molecular Sciences, and Department of Medicine (S.Y.-H.), University of Kuopio; and Gene Therapy Unit (S.Y.-H.), Kuopio University Hospital, Finland
| | - Mohan Babu
- From the Department of Biotechnology and Molecular Medicine (H.V., J.M., E.E., M.N., K.K., M.B., T.H., S.T., S.L., T.T., S.Y.-H.), A. I. Virtanen Institute for Molecular Sciences, and Department of Medicine (S.Y.-H.), University of Kuopio; and Gene Therapy Unit (S.Y.-H.), Kuopio University Hospital, Finland
| | - Tommi Heikura
- From the Department of Biotechnology and Molecular Medicine (H.V., J.M., E.E., M.N., K.K., M.B., T.H., S.T., S.L., T.T., S.Y.-H.), A. I. Virtanen Institute for Molecular Sciences, and Department of Medicine (S.Y.-H.), University of Kuopio; and Gene Therapy Unit (S.Y.-H.), Kuopio University Hospital, Finland
| | - Sanna Turpeinen
- From the Department of Biotechnology and Molecular Medicine (H.V., J.M., E.E., M.N., K.K., M.B., T.H., S.T., S.L., T.T., S.Y.-H.), A. I. Virtanen Institute for Molecular Sciences, and Department of Medicine (S.Y.-H.), University of Kuopio; and Gene Therapy Unit (S.Y.-H.), Kuopio University Hospital, Finland
| | - Svetlana Laidinen
- From the Department of Biotechnology and Molecular Medicine (H.V., J.M., E.E., M.N., K.K., M.B., T.H., S.T., S.L., T.T., S.Y.-H.), A. I. Virtanen Institute for Molecular Sciences, and Department of Medicine (S.Y.-H.), University of Kuopio; and Gene Therapy Unit (S.Y.-H.), Kuopio University Hospital, Finland
| | - Teemu Takalo
- From the Department of Biotechnology and Molecular Medicine (H.V., J.M., E.E., M.N., K.K., M.B., T.H., S.T., S.L., T.T., S.Y.-H.), A. I. Virtanen Institute for Molecular Sciences, and Department of Medicine (S.Y.-H.), University of Kuopio; and Gene Therapy Unit (S.Y.-H.), Kuopio University Hospital, Finland
| | - Seppo Ylä-Herttuala
- From the Department of Biotechnology and Molecular Medicine (H.V., J.M., E.E., M.N., K.K., M.B., T.H., S.T., S.L., T.T., S.Y.-H.), A. I. Virtanen Institute for Molecular Sciences, and Department of Medicine (S.Y.-H.), University of Kuopio; and Gene Therapy Unit (S.Y.-H.), Kuopio University Hospital, Finland
| |
Collapse
|
23
|
Palacios-Callender M, Hollis V, Mitchison M, Frakich N, Unitt D, Moncada S. Cytochrome c oxidase regulates endogenous nitric oxide availability in respiring cells: a possible explanation for hypoxic vasodilation. Proc Natl Acad Sci U S A 2007; 104:18508-13. [PMID: 18003892 PMCID: PMC2141807 DOI: 10.1073/pnas.0709440104] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Indexed: 01/07/2023] Open
Abstract
One of the many routes proposed for the cellular inactivation of endogenous nitric oxide (NO) is by the cytochrome c oxidase of the mitochondrial respiratory chain. We have studied this possibility in human embryonic kidney cells engineered to generate controlled amounts of NO. We have used visible light spectroscopy to monitor continuously the redox state of cytochrome c oxidase in an oxygen-tight chamber, at the same time as which we measure cell respiration and the concentrations of oxygen and NO. Pharmacological manipulation of cytochrome c oxidase indicates that this enzyme, when it is in turnover and in its oxidized state, inactivates physiological amounts of NO, thus regulating its intra- and extracellular concentrations. This inactivation is prevented by blocking the enzyme with inhibitors, including NO. Furthermore, when cells generating low concentrations of NO respire toward hypoxia, the redox state of cytochrome c oxidase changes from oxidized to reduced, leading to a decrease in NO inactivation. The resultant increase in NO concentration could explain hypoxic vasodilation.
Collapse
Affiliation(s)
- Miriam Palacios-Callender
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Veronica Hollis
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Miriam Mitchison
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Nanci Frakich
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - David Unitt
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Salvador Moncada
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
24
|
Abstract
Nitric oxide (NO) functions as an intercellular messenger throughout the brain. For this role to be performed efficiently, there must be a mechanism for neutralizing NO, but whether an active biological process exists, or whether NO is lost mainly through diffusion is unclear. To investigate this issue, rat cerebellar slices were exposed to constant levels of NO and the cGMP generated within the slice used as an indicator of NO concentrations therein. NO was about 1000-fold less potent in slices (EC50, 1 microM) than in separated cells from the same tissue (EC50, 1.6 nM), consistent with access of NO to the slice interior being greatly hindered by inactivation. Supporting this interpretation, immunohistochemical analysis indicated a marked concentration gradient of cGMP across the thickness of slices exposed to subsaturating NO concentrations, signifying a marked NO gradient. Several known NO-degrading processes, including reaction with lipid peroxyl radicals, erythrocytes and superoxide ions, were eliminated as contributing factors, indicating a novel mechanism. A diffusion-inactivation model was used to estimate the kinetics of NO consumption by the slices. The best fits to experimental data indicated a Michaelis-Menten-type reaction having a Vmax of 1-2 microM s-1 and a Km of around 10 nM. The rates predict that inactivation would impose a very short half-life (<10 ms) on NO in physiological concentrations (up to 10 nM) and that it would play an important role in shaping the NO concentration profiles when it is synthesized by multiple nearby sites.
Collapse
Affiliation(s)
- C N Hall
- Wolfson Institute for Biomedical Research, University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
25
|
Abstract
Arachidonic acid metabolites are vital for the proper control of renal haemodynamics and, when not properly controlled, can contribute to renal vascular injury and end-stage renal disease. Three major enzymatic pathways, COX (cyclo-oxygenase), CYP450 (cytochrome P450) and LOX (lipoxygenase), are responsible for the metabolism of arachidonic acid metabolites to bioactive eicosanoids. These eicosanoids can dilate or constrict the renal vasculature and maintain vascular resistance in the face of changing vasoactive hormones. Renal vascular generation of eicosanoids is altered in pathophysiological conditions such as hypertension, diabetes, metabolic syndrome and acute renal failure. Experimental evidence supports the concept that altered eicosanoid metabolism contributes to renal haemodynamic alterations and the development and progression of nephropathy. The possible beneficial renal vascular actions of enzymatic inhibitors, eicosanoid analogues and receptor antagonists have been examined in hypertension, diabetes and metabolic syndrome. This review highlights the roles of renal vascular eicosanoids in the pathogenesis of nephropathy and therapeutic targets for renal disease related to hypertension, diabetes, metabolic syndrome and acute renal failure.
Collapse
Affiliation(s)
- John D Imig
- Vascular Biology Center, Department of Physiology, Medical College of Georgia, Augusta, GA 30912, USA.
| |
Collapse
|
26
|
Keynes R, Griffiths C, Hall C, Garthwaite J. Nitric oxide consumption through lipid peroxidation in brain cell suspensions and homogenates. Biochem J 2006; 387:685-94. [PMID: 15579136 PMCID: PMC1134998 DOI: 10.1042/bj20041431] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mechanisms which inactivate NO (nitric oxide) are probably important in governing the physiological and pathological effects of this ubiquitous signalling molecule. Cells isolated from the cerebellum, a brain region rich in the NO signalling pathway, consume NO avidly. This property was preserved in brain homogenates and required both particulate and supernatant fractions. A purified fraction of the particulate component was rich in phospholipids, and NO consumption was inhibited by procedures that inhibited lipid peroxidation, namely a transition metal chelator, the vitamin E analogue Trolox and ascorbate oxidase. The requirement for the supernatant was accounted for by its content of ascorbate which catalyses metal-dependent lipid peroxidation. The NO-degrading activity of the homogenate was mimicked by a representative mixture of brain lipids together with ascorbate and, under these conditions, the lipids underwent peroxidation. In a suspension of cerebellar cells, there was a continuous low level of lipid peroxidation, and consumption of NO by the cells was decreased by approx. 50% by lipid-peroxidation inhibitors. Lipid peroxidation was also abolished when NO was supplied at a continuously low rate (approximately 100 nM/min), which explains why NO consumption by this process is saturable. Part of the activity remaining after the inhibition of lipid peroxidation was accounted for by contaminating red blood cells, but there was also another component whose activity was greatly enhanced when the cells were maintained under air-equilibrated conditions. A similar NO-consuming process was present in cerebellar glial cells grown in tissue culture but not in blood platelets or leucocytes, suggesting a specialized mechanism.
Collapse
Affiliation(s)
- Robert G. Keynes
- Wolfson Institute for Biomedical Research, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K
| | - Charmaine H. Griffiths
- Wolfson Institute for Biomedical Research, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K
| | - Catherine Hall
- Wolfson Institute for Biomedical Research, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K
| | - John Garthwaite
- Wolfson Institute for Biomedical Research, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
27
|
Kühn H, O'Donnell VB. Inflammation and immune regulation by 12/15-lipoxygenases. Prog Lipid Res 2006; 45:334-56. [PMID: 16678271 DOI: 10.1016/j.plipres.2006.02.003] [Citation(s) in RCA: 296] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 01/19/2006] [Accepted: 02/06/2006] [Indexed: 12/22/2022]
Abstract
12/15-Lipoxygenases (12/15-LOX) are members of the LOX family, which are expressed in mammals by monocytes and macrophages following induction by the T helper type 2 cytokines, interleukins-4 and -13. They oxygenate free polyenoic fatty acids but also ester lipids and even complex lipid-protein assemblies such as biomembranes and lipoproteins. The primary oxidation products are either reduced by glutathione peroxidases to corresponding hydroxy derivatives or metabolized into secondary oxidized lipids including leukotrienes, lipoxins and hepoxilins, which act as lipid mediators. Examination of knockout and transgenic animals revealed important roles for 12/15-LOX in inflammatory diseases, including atherosclerosis, cancer, osteoporosis, angiotension II-dependent hypertension and diabetes. In vitro studies suggested 12/15-LOX products as coactivators of peroxisomal proliferator activating-receptors (PPAR), regulators of cytokine generation, and modulators of gene expression related to inflammation resolution. Despite much work in this area, the biochemical mechanisms by which 12/15-LOX regulates physiological and pathological immune cell function are not fully understood. This review will summarize the biochemistry and tissue expression of 12/15-LOX and will describe the current knowledge regarding its immunobiology and regulation of inflammation.
Collapse
Affiliation(s)
- Hartmut Kühn
- Institute of Biochemistry, Monbijoustrasse 2, University Medicine Berlin -- Charité, Germany
| | | |
Collapse
|
28
|
Quijano C, Romero N, Radi R. Tyrosine nitration by superoxide and nitric oxide fluxes in biological systems: modeling the impact of superoxide dismutase and nitric oxide diffusion. Free Radic Biol Med 2005; 39:728-41. [PMID: 16109303 DOI: 10.1016/j.freeradbiomed.2005.04.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Revised: 03/16/2005] [Accepted: 04/18/2005] [Indexed: 10/25/2022]
Abstract
Tyrosine nitration is a posttranslational modification observed in many pathologic states that can be associated with peroxynitrite (ONOO(-)) formation. However, in vitro, peroxynitrite-dependent tyrosine nitration is inhibited when its precursors, superoxide (O(2)*(-)) and nitric oxide ((*)NO), are formed at ratios (O(2)*(-)/(*)NO) different from one, severely questioning the use of 3-nitrotyrosine as a biomarker of peroxynitrite-mediated oxidations. We herein hypothesize that in biological systems the presence of superoxide dismutase (SOD) and the facile transmembrane diffusion of (*)NO preclude accumulation of O(2)*(-) and (*)NO radicals under flux ratios different from one, preventing the secondary reactions that result in the inhibition of 3-nitrotyrosine formation. Using an array of reactions and kinetic constants, computer-assisted simulations were performed in order to assess the flux of 3-nitrotyrosine formation (J(NO(2(-))Y)) during exposure to simultaneous fluxes of superoxide (J(O(2)*(-))) and nitric oxide (J((*)NO)), varying the radical flux ratios (J(O(2)*(-))/ J((*)NO)), in the presence of carbon dioxide. With a basic set of reactions, J(NO(2(-))Y) as a function of radical flux ratios rendered a bell-shape profile, in complete agreement with previous reports. However, when superoxide dismutation by SOD and (*)NO decay due to diffusion out of the compartment were incorporated in the model, a quite different profile of J(NO(2(-))Y) as a function of the radical flux ratio was obtained: despite the fact that nitration yields were much lower, the bell-shape profile was lost and the extent of tyrosine nitration was responsive to increases in either O(2)*(-) or (*)NO, in agreement with in vivo observations. Thus, the model presented herein serves to reconcile the in vitro and in vivo evidence on the role of peroxynitrite in promoting tyrosine nitration.
Collapse
Affiliation(s)
- Celia Quijano
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | | |
Collapse
|
29
|
Clark S, Anning P, Coffey M, Roberts A, Marnett L, O'Donnell V. Depletion of iNOS-derived nitric oxide by prostaglandin H synthase-2 in inflammation-activated J774.2 macrophages through lipohydroperoxidase turnover. Biochem J 2005; 385:815-21. [PMID: 15461587 PMCID: PMC1134758 DOI: 10.1042/bj20041353] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PGHS-2 (prostaglandin H synthase-2) is induced in mammalian cells by pro-inflammatory cytokines in tandem with iNOS [high-output ('inducible') nitric oxide synthase], and is co-localized with iNOS and nitrotyrosine in human atheroma macrophages. Herein, murine J774.2 macrophages incubated with lipopolysaccharide and interferon gamma showed induction of PGHS-2 and generated NO using iNOS that could be completely depleted by 12(S)-HPETE [12(S)-hydroperoxyeicosatetraenoic acid; 2.4 muM] or hydrogen peroxide (500 microM) (0.42+/-0.084 and 0.38+/-0.02 nmol x min(-1) x 10(6) cells(-1) for HPETE and H2O2 respectively). COS-7 cells transiently transfected with human PGHS-2 also showed HPETE- or H2O2-dependent NO decay (0.44+/-0.016 and 0.20+/-0.04 nmol x min(-1) x 10(6) cells(-1) for 2.4 microM HPETE and 500 microM H2O2 respectively). Finally, purified PGHS-2 consumed NO in the presence of HPETE or H2O2 (168 and 140 microM x min(-1) x microM enzyme(-1) for HPETE and H2O2 respectively), in a haem-dependent manner, with 20 nM enzyme consuming up to 4 microM NO. K(m) (app) values for NO and 15(S)-HPETE were 1.7+/-0.2 and 0.45+/-0.16 microM respectively. These data indicate that PGHS-2 catalytically consumes NO during peroxidase turnover and that pro-inflammatory cytokines simultaneously upregulate NO synthesis and degradation pathways in murine macrophages. Catalytic NO consumption by PGHS-2 represents a novel interaction between NO and PGHS-2 that may impact on the biological effects of NO in vascular signalling and inflammation.
Collapse
Affiliation(s)
- Stephen R. Clark
- *Department of Medical Biochemistry and Immunology, School of Medicine, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN, U.K
| | - Peter B. Anning
- *Department of Medical Biochemistry and Immunology, School of Medicine, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN, U.K
| | - Marcus J. Coffey
- *Department of Medical Biochemistry and Immunology, School of Medicine, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN, U.K
| | - Andrew G. Roberts
- *Department of Medical Biochemistry and Immunology, School of Medicine, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN, U.K
| | - Lawrence J. Marnett
- †Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, U.S.A
| | - Valerie B. O'Donnell
- *Department of Medical Biochemistry and Immunology, School of Medicine, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
30
|
Williams PC, Coffey MJ, Coles B, Sanchez S, Morrow JD, Cockcroft JR, Lewis MJ, O'Donnell VB. In vivo aspirin supplementation inhibits nitric oxide consumption by human platelets. Blood 2005; 106:2737-43. [PMID: 15972451 DOI: 10.1182/blood-2005-02-0664] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Antiplatelet therapies improve endothelial function in atherosclerosis, suggesting that platelets regulate vascular nitric oxide (NO) bioactivity in vivo. Herein, washed platelets consumed NO on activation in an aspirin-sensitive manner, and aspirin enhanced platelet NO responses in vitro. To examine whether in vivo aspirin can inhibit platelet NO consumption, a double-blind placebo-controlled study was conducted. After a 2-week nonsteroidal anti-inflammatory drug (NSAID)-free period, healthy men were randomly assigned and administered aspirin (75 mg/d orally) or identical placebo for 14 days, then crossed over to the opposite arm. Following in vivo aspirin, NO consumption by platelets was inhibited 91%. Rate of onset and recovery following aspirin withdrawal was consistent with cyclooxygenase 1 (COX-1) inhibition. In a small substudy, NO consumption by platelets from postmenopausal women was faster in hypercholesterolemics and less sensitive to aspirin (ie, 39% versus 76% inhibition for hypercholesterolemics or normocholesterolemics, respectively). However, 150 mg aspirin/day increased inhibition of NO consumption by platelets of hypercholesterolemics to 80%. Comparisons of platelet COX-1 or -2 expression and urinary 11-dehydro-thromboxane B2 excretion suggested that aspirin was less able to block platelet activation in vivo in hypercholesterolemia. In conclusion, aspirin inhibits NO consumption by platelets from healthy subjects, but its beneficial effects on NO bioactivity may be compromised in some hypercholesterolemic patients.
Collapse
Affiliation(s)
- P Claire Williams
- Department of Medical Biochemistry and Immunology, University of Wales College of Medicine, Heath Park, Cardiff, CF14 4XN, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Anning PB, Coles B, Bermudez-Fajardo A, Martin PEM, Levison BS, Hazen SL, Funk CD, Kühn H, O'Donnell VB. Elevated endothelial nitric oxide bioactivity and resistance to angiotensin-dependent hypertension in 12/15-lipoxygenase knockout mice. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:653-62. [PMID: 15743778 PMCID: PMC1602346 DOI: 10.1016/s0002-9440(10)62287-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
12/15-Lipoxygenase (12/15-LOX) plays a pathogenic role in atherosclerosis. To characterize whether 12/15-LOX also contributes to endothelial dysfunction and hypertension, regulation of vessel tone and angiotensin II (ang II) responses were characterized in mice deficient in 12/15-LOX. There was a twofold increase in the magnitude of l-nitroarginine-methyl ester-inhibitable, acetylcholine-dependent relaxation or phenylephrine-dependent constriction in aortic rings isolated from 12/15-LOX(-/-) mice. Plasma NO metabolites and aortic endothelial NO synthase (eNOS) expression were also elevated twofold. Angiotensin II failed to vasoconstrict 12/15-LOX(-/-) aortic rings in the absence of L-nitroarginine-methyl ester, and ang II impaired acetylcholine-induced relaxation in wild-type, but not 12/15-LOX(-/-) rings. In vivo, 12/15-LOX(-/-) mice had similar basal systolic blood pressure measurements to wild type, however, blood pressure elevations in response to ang II infusion (1.1 mg/kg/day) were significantly attenuated (maximal pressure, 143.4 +/- 4 mmHg versus 122.1 +/- 5.3 mmHg for wild type and 12/15-LOX(-/-), respectively). In contrast, vascular hypertrophic responses to ang II, and ang II type 1 receptor (AT1-R) expression were similar in both strains. This study shows that 12/15-LOX(-/-) mice have increased NO biosynthesis and impaired ang II-dependent vascular responses in vitro and in vivo, suggesting that 12/15-LOX signaling contributes to impaired NO bioactivity in vascular disease in vivo.
Collapse
Affiliation(s)
- Peter B Anning
- Department of Medical Biochemistry and Immunology, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Schopfer FJ, Baker PRS, Giles G, Chumley P, Batthyany C, Crawford J, Patel RP, Hogg N, Branchaud BP, Lancaster JR, Freeman BA. Fatty acid transduction of nitric oxide signaling. Nitrolinoleic acid is a hydrophobically stabilized nitric oxide donor. J Biol Chem 2005; 280:19289-97. [PMID: 15764811 DOI: 10.1074/jbc.m414689200] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The aqueous decay and concomitant release of nitric oxide (*NO) by nitrolinoleic acid (10-nitro-9,12-octadecadienoic acid and 12-nitro-9,12-octadecadienoic acid; LNO2) are reported. Mass spectrometric analysis of reaction products supports a modified Nef reaction as the mechanism accounting for the generation of *NO by the aqueous reactions of fatty acid nitroalkene derivatives. Nitrolinoleic acid is stabilized by an aprotic milieu, with LNO2 decay and *NO release strongly inhibited by phosphatidylcholine/cholesterol liposome membranes and detergents when present at levels above their critical micellar concentrations. The release of *NO from LNO2 was induced by UV photolysis and triiodide-based ozone chemiluminescence reactions currently used to quantify putative protein nitrosothiol and N-nitrosamine derivatives. This reactivity of LNO2 complicates the qualitative and quantitative analysis of biological oxides of nitrogen when applying UV photolysis and triiodide-based analytical systems to biological preparations typically abundant in nitrated fatty acids. The results reveal that nitroalkene derivatives of linoleic acid are pluripotent signaling mediators that act not only via receptor-dependent mechanisms, but also by transducing the signaling actions of *NO via pathways subject to regulation by the relative distribution of LNO2 to hydrophobic versus aqueous microenvironments.
Collapse
Affiliation(s)
- Francisco J Schopfer
- Department of Anesthesiology and Center for Free Radical Biology, University of Alabama at Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Schmidt K, Mayer B. Consumption of nitric oxide by endothelial cells: evidence for the involvement of a NAD(P)H-, flavin- and heme-dependent dioxygenase reaction. FEBS Lett 2005; 577:199-204. [PMID: 15527785 DOI: 10.1016/j.febslet.2004.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2004] [Revised: 10/02/2004] [Accepted: 10/04/2004] [Indexed: 12/17/2022]
Abstract
In the present study, we investigated the mechanism of nitric oxide (NO) inactivation by endothelial cells. All experiments were performed in the presence of superoxide dismutase to minimize the peroxynitrite reaction. Incubation of the NO donor diethylamine/NO adduct with increasing amounts of intact cells led to a progressive decrease of the NO concentration, demonstrating a cell-dependent consumption of NO. In cell homogenates, consumption of NO critically depended on the presence of NADPH or NADH and resulted in the formation of nitrate. Both NO consumption and nitrate formation were largely inhibited by the heme poisons NaCN and phenylhydrazine as well as the flavoenzyme inhibitor diphenylene iodonium. Further characterization of this NO consumption pathway suggests that endothelial cells express a unique membrane-associated enzyme or enzyme system analogous to the bacterial NO dioxygenase that converts NO to nitrate in a NAD(P)H-, flavin- and heme-dependent manner.
Collapse
Affiliation(s)
- Kurt Schmidt
- Department of Pharmacology and Toxicology, Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria.
| | | |
Collapse
|
34
|
Shiva S, Oh JY, Landar AL, Ulasova E, Venkatraman A, Bailey SM, Darley-Usmar VM. Nitroxia: the pathological consequence of dysfunction in the nitric oxide-cytochrome c oxidase signaling pathway. Free Radic Biol Med 2005; 38:297-306. [PMID: 15629859 DOI: 10.1016/j.freeradbiomed.2004.10.037] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Revised: 10/26/2004] [Accepted: 10/27/2004] [Indexed: 12/15/2022]
Abstract
It is now recognized that mitochondria play an integral role in orchestrating the response of the cell to a wide variety of metabolic and environmental stressors. Of particular interest are the interactions of reactive oxygen and nitrogen species with the organelle and their potential regulatory function. The best understood example is the O(2) sensitive binding of NO (nitric oxide) to the heme group in cytochrome c oxidase. We have proposed that this reversible process serves the function of both regulating the formation of hydrogen peroxide from the respiratory chain for the purposes of signal transduction and controlling O(2) gradients in complex organs such as the liver or heart. It now appears that maladaptation in this pathway leads to a mitochondrial dysfunction which has some of the characteristics of hypoxia, such as a deficit in ATP, but occurs in the presence of normal or enhanced levels of O(2). These are the optimal conditions for the formation of reactive nitrogen species (RNS), such as peroxynitrite which lead to the irreversible modification of proteins. We term this unique pathological condition Nitroxia and describe how it may contribute to the pathology of chronic inflammatory diseases using ethanol-dependent hepatotoxicity as an example.
Collapse
Affiliation(s)
- Sruti Shiva
- Department of Pathology, University of Alabama at Birmingham, BMR II, 901 19th Street South, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Hallstrom CK, Gardner AM, Gardner PR. Nitric oxide metabolism in mammalian cells: substrate and inhibitor profiles of a NADPH-cytochrome P450 oxidoreductase-coupled microsomal nitric oxide dioxygenase. Free Radic Biol Med 2004; 37:216-28. [PMID: 15203193 DOI: 10.1016/j.freeradbiomed.2004.04.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 04/20/2004] [Accepted: 04/22/2004] [Indexed: 01/13/2023]
Abstract
Human intestinal Caco-2 cells metabolize and detoxify NO via a dioxygen- and NADPH-dependent, cyanide- and CO-sensitive pathway that yields nitrate. Enzymes catalyzing NO dioxygenation fractionate with membranes and are enriched in microsomes. Microsomal NO metabolism shows apparent KM values for NO, O2, and NADPH of 0.3, 9, and 2 microM, respectively, values similar to those determined for intact or digitonin-permeabilized cells. Similar to cellular NO metabolism, microsomal NO metabolism is superoxide-independent and sensitive to heme-enzyme inhibitors including CO, cyanide, imidazoles, quercetin, and allicin-enriched garlic extract. Selective inhibitors of several cytochrome P450s and heme oxygenase fail to inhibit the activity, indicating limited roles for a subset of microsomal heme enzymes in NO metabolism. Diphenyleneiodonium and cytochrome c(III) inhibit NO metabolism, suggesting a role for the NADPH-cytochrome P450 oxidoreductase (CYPOR). Involvement of CYPOR is demonstrated by the specific inhibition of the NO metabolic activity by inhibitory anti-CYPOR IgG. In toto, the results suggest roles for a microsomal CYPOR-coupled and heme-dependent NO dioxygenase in NO metabolism, detoxification, and signal attenuation in mammalian cells.
Collapse
Affiliation(s)
- Craig K Hallstrom
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, OH 45229, USA
| | | | | |
Collapse
|
36
|
Abstract
Type 2 diabetes is associated with significantly accelerated rates of macrovascular complications such as atherosclerosis. Emerging evidence now indicates that atherosclerosis is an inflammatory disease and that certain inflammatory markers may be key predictors of diabetic atherosclerosis. Proinflammatory cytokines and cellular adhesion molecules expressed by vascular and blood cells during stimulation by growth factors and cytokines seem to play major roles in the pathophysiology of atherosclerosis and diabetic vascular complications. However, more recently, data suggest that inflammatory responses can also be elicited by smaller oxidized lipids that are components of atherogenic oxidized low-density lipoprotein or products of phospholipase activation and arachidonic acid metabolism. These include oxidized lipids of the lipoxygenase and cyclooxygenase pathways of arachidonic acid and linoleic acid metabolism. These lipids have potent growth, vasoactive, chemotactic, oxidative, and proinflammatory properties in vascular smooth muscle cells, endothelial cells, and monocytes. Cellular and animal models indicate that these enzymes are induced under diabetic conditions, have proatherogenic effects, and also mediate the actions of growth factors and cytokines. This review highlights the roles of the inflammatory cyclooxygenase and 12/15-lipoxygenase pathways in the pathogenesis of diabetic vascular disease. Evidence suggests that inflammatory responses in the vasculature can be elicited by small oxidized lipids that are components of oxidized low-density lipoprotein or products of the lipoxygenase and cyclooxygenase pathways of arachidonic and linoleic acid metabolism. This review evaluates these inflammatory and proatherogenic pathways in the pathogenesis of diabetic vascular disease.
Collapse
Affiliation(s)
- Rama Natarajan
- Gonda Diabetes Research Center, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA.
| | | |
Collapse
|
37
|
Abstract
This review is focused on the interplay between two major factors affecting the vascular tree in diabetes, insulin resistance, and hyperglycemia. The implications for vascular function, structure, and the interaction between vascular cells and other tissues by which they are affected under these conditions are reviewed.
Collapse
Affiliation(s)
- Naftali Stern
- Institute of Endocrinology, Metabolism, and Hypertension, Tel Aviv-Sourasky Medical Center, 6 Weizman Street, Tel Aviv 64239, Israel.
| | | |
Collapse
|
38
|
Kim YS, Reddy MA, Lanting L, Adler SG, Natarajan R. Differential behavior of mesangial cells derived from 12/15-lipoxygenase knockout mice relative to control mice11See Editorial by Kasinath, p. 1918. Kidney Int 2003; 64:1702-14. [PMID: 14531803 DOI: 10.1046/j.1523-1755.2003.00286.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND The 12/15-lipoxygenase (12/15-LO) enzyme has been implicated in the pathogenesis of diabetic nephropathy since lipoxygenase products induce cellular hypertrophy and extracellular matrix deposition in mesangial cells. In this study, in order to determine the potential in vivo functional role of 12/15-LO in kidney disease, we compared mouse mesangial cells (MMCs) derived from 12/15-LO knockout mice with those from genetic control wild-type mice. METHODS MMCs were isolated from wild-type and 12/15-LO knockout mice. Cellular growth, activation of mitogen-activated protein kinases (MAPKs), transcription factors, superoxide levels, and fibronectin expression were compared in the two cell types. RESULTS Levels of the 12/15-LO product and protein were lower in MMC from 12/15-LO knockout relative to wild-type. MMCs from 12/15-LO knockout mice grew slower than wild-type cells, and also showed lower rates of tritiated thymidine and leucine incorporation (21% and 15% of wild-type, respectively, P < 0.001). Levels of superoxide and the matrix protein fibronectin were also lower in 12/15-LO knockout mice cells. Serum and angiotensin II (Ang II)-stimulated activities of p38 or ERK1/2 MAPKs, and cyclic adenosine monophosphate (cAMP)-responsive element binding protein (CREB) transcription factor were lower in 12/15-LO knockout relative to wild-type cells. In addition, DNA binding and transcriptional activities of activated protein-1 (AP-1) and CREB were lower in 12/15-LO knockout cells. Furthermore, stable 12/15-LO overexpression in MMC led to reciprocal increase in p38 MAPK activation and fibronectin expression. CONCLUSION The differential activation of oxidant stress, specific signaling pathways, transcription factors, and growth and matrix genes may lead to reduced growth and growth factor responses in 12/15-LO knockout versus wild-type MMCs. These results provide ex vivo functional evidence for the first time that 12/15-LO activation plays a key role in mesangial cell responses associated with renal diseases such as diabetic nephropathy.
Collapse
Affiliation(s)
- Young-Sook Kim
- Gonda Diabetes Research Center, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | | | | | |
Collapse
|
39
|
Reddy MA, Kim YS, Lanting L, Natarajan R. Reduced growth factor responses in vascular smooth muscle cells derived from 12/15-lipoxygenase-deficient mice. Hypertension 2003; 41:1294-300. [PMID: 12707289 DOI: 10.1161/01.hyp.0000069011.18333.08] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biochemical and genetic evidence support the involvement of leukocyte-type 12/15-lipoxygenase enzyme and its products in the atherogenic process. We recently showed that products of the 12/15-lipoxygenase pathway play an important role in mediating hypertrophy, matrix protein production, and inflammatory gene expression in vascular smooth muscle cells (VSMC) through activation of mitogen activated protein kinases and key transcription factors. The current study is aimed at establishing the in vivo role of 12/15-lipoxygenase in VSMC by comparing growth factor-induced responses in VSMC derived from 12/15-lipoxygenase knockout mice versus genetic control wild-type mice. In the lipoxygenase knockout cells, 12/15-lipoxygenase protein was not expressed, and levels of its product, 12(S)-hydroxyeicosatetraenoic acid, were reduced (51% of wild type). Knockout cells exhibited significantly lower rates of growth factor-induced migration, fibronectin production, and incorporation of 3H-thymidine and 3H-leucine (54%, 55%, 61%, and 57% of wild type, respectively). Growth factor-induced superoxide production and p38 mitogen-activated protein kinase activation were also reduced in knockout cells. Serum-stimulated AP-1 transcription factor activation was markedly reduced (50% of wild type), whereas cAMP response element binding protein activation was abrogated in knockout cells. Furthermore, growth factor-induced mRNA expression of immediate early genes and fibronectin were also greatly reduced. These results suggest that the modulation of specific signaling pathways and growth-responsive genes may be responsible for the altered growth factor responses in the lipoxygenase knockout cells. They also demonstrate the important in vivo role of vascular 12/15-lipoxygenase in VSMC growth, migration, and matrix responses associated with hypertension, atherosclerosis, and restenosis.
Collapse
MESH Headings
- Animals
- Arachidonate 12-Lipoxygenase/genetics
- Arachidonate 12-Lipoxygenase/physiology
- Arachidonate 15-Lipoxygenase/genetics
- Arachidonate 15-Lipoxygenase/physiology
- Cell Division
- Cell Movement
- Cells, Cultured
- Cyclic AMP Response Element-Binding Protein/metabolism
- DNA/biosynthesis
- Fibronectins/metabolism
- Growth Substances/pharmacology
- Immediate-Early Proteins/biosynthesis
- Immediate-Early Proteins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Protein Biosynthesis
- RNA, Messenger/biosynthesis
- Superoxides/metabolism
- Transcription Factor AP-1/metabolism
- p38 Mitogen-Activated Protein Kinases
Collapse
Affiliation(s)
- Marpadga A Reddy
- Department of Diabetes, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, Calif 91010, USA
| | | | | | | |
Collapse
|
40
|
Lim DG, Sweeney S, Bloodsworth A, White CR, Chumley PH, Krishna NR, Schopfer F, O'Donnell VB, Eiserich JP, Freeman BA. Nitrolinoleate, a nitric oxide-derived mediator of cell function: synthesis, characterization, and vasomotor activity. Proc Natl Acad Sci U S A 2002; 99:15941-6. [PMID: 12444258 PMCID: PMC138544 DOI: 10.1073/pnas.232409599] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2002] [Indexed: 11/18/2022] Open
Abstract
Nitric oxide (*NO) and *NO-derived reactive species rapidly react with lipids during both autocatalytic and enzymatic oxidation reactions to yield nitrated derivatives that serve as cell signaling molecules. Herein we report the synthesis, purification, characterization, and bioactivity of nitrolinoleate (LNO2). Nitroselenylation of linoleic acid yielded LNO2 that was purified by solvent extraction, silicic acid chromatography, and reverse-phase HPLC. Structural characterization was performed by IR spectroscopy, 15N-NMR, LC-negative ion electrospray mass spectroscopy (MS), and chemiluminescent nitrogen analysis. Quantitative MS analysis of cell and vessel LNO2 metabolism, using L[15N]O2 as an internal standard, revealed that LNO2 is rapidly metabolized by rat aortic smooth muscle (RASM) monolayers and rat thoracic aorta, resulting in nitrite production and up to 3-fold increases in cGMP (ED50 = 30 microM for RASM, 50 microM for aorta). LNO2 induced endothelium-independent relaxation of preconstricted rat aortic rings, which was unaffected by L(G)-nitro-l-arginine methyl ester addition and inhibited by the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazole[4,3-a]quinoxalin-1-one and the *NO scavenger HbO2. These results reveal that synthetic LNO2, identical to lipid derivatives produced biologically by the reaction of *NO and *NO-derived species with oxidizing unsaturated fatty acids (e.g., linoleate), can transduce vascular signaling actions of *NO.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic
- Chromatography, High Pressure Liquid
- Cyclic GMP/metabolism
- Endothelium, Vascular/physiology
- Enzyme Inhibitors/pharmacology
- Fatty Acids, Unsaturated/metabolism
- Free Radical Scavengers/pharmacology
- Guanylate Cyclase/antagonists & inhibitors
- Inflammation
- Linoleic Acids/chemical synthesis
- Linoleic Acids/metabolism
- Linoleic Acids/pharmacology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- NG-Nitroarginine Methyl Ester/pharmacology
- Nitric Oxide/metabolism
- Nitrites/metabolism
- Nitro Compounds/chemical synthesis
- Nitro Compounds/metabolism
- Nitro Compounds/pharmacology
- Oxadiazoles/pharmacology
- Oxidation-Reduction
- Oxyhemoglobins/pharmacology
- Quinoxalines/pharmacology
- Rats
- Spectrometry, Mass, Electrospray Ionization
- Spectrophotometry, Infrared
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Dong Gun Lim
- Departments of Anesthesiology, Biochemistry and Molecular Genetics, Medicine, and UAB Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Noguchi N. Novel insights into the molecular mechanisms of the antiatherosclerotic properties of antioxidants: the alternatives to radical scavenging. Free Radic Biol Med 2002; 33:1480-9. [PMID: 12446205 DOI: 10.1016/s0891-5849(02)01114-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Since the oxidation hypothesis of atherogenesis was first proposed, mechanisms of low density lipoprotein (LDL) oxidation and the biological properties of oxidized LDL have been investigated in depth. The major mechanism for the antiatherogenic effects of antioxidants, especially radical scavenging antioxidants, has been thought to be direct inhibition of LDL oxidation. The recently developed genomic technology has allowed this hypothesis to be addressed more rigorously than relying on the simple chemical properties of these therapeutic agents. Oxidized LDL, which is known to be proatherogenic, induces many categories of genes that have a potential involvement in the development of atherosclerotic lesions. The genes involved in cell growth, survival, adhesion, and inflammatory responses were upregulated through some nuclear receptor-depending pathways in cells exposed to stimulants such as shear stress, TNF-alpha, and oxidized LDL. On the other hand, these transcriptome analyses have shown a novel mechanism underlying phenolic antioxidants contribute to antiatherogenicity by regulating the expression of genes involved in protein degradation and transcriptional pathways. These studies reveal the often-suspected complexity of the atherogenic process and have the potential for novel therapeutic intervention.
Collapse
Affiliation(s)
- Noriko Noguchi
- Department of System Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
42
|
Clark SR, Coffey MJ, Maclean RM, Collins PW, Lewis MJ, Cross AR, O'Donnell VB. Characterization of nitric oxide consumption pathways by normal, chronic granulomatous disease and myeloperoxidase-deficient human neutrophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5889-96. [PMID: 12421972 DOI: 10.4049/jimmunol.169.10.5889] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The detailed mechanisms by which acutely activated leukocytes metabolize NO and regulate its bioactivity are unknown. Therefore, healthy, chronic granulomatous disease (CGD) or myeloperoxidase (MPO)-deficient human neutrophils were examined for their ability to consume NO and attenuate its signaling. fMLP or PMA activation of healthy neutrophils caused NO consumption that was fully blocked by NADPH oxidase inhibition, and was absent in CGD neutrophils. Studies using MPO-deficient neutrophils, enzyme inhibitors, and reconstituted NADPH oxidase ruled out additional potential NO-consuming pathways, including Fenton chemistry, PGH synthase, lipoxygenase, or MPO. In particular, the inability of MPO to consume NO resulted from lack of H(2)O(2) substrate since all superoxide (O(2)(-.) reacted to form peroxynitrite. For healthy or MPO-deficient cells, NO consumption rates were 2- to 4-fold greater than O(2)(-.) generation, significantly faster than expected from 1:1 termination of NO with O(2)(-.). Finally, fMLP or PMA-stimulated NO consumption fully blocked NO-dependent neutrophil cGMP synthesis. These data reveal NADPH oxidase as the central regulator of NO signaling in human leukocytes. In addition, they demonstrate an important functional difference between CGD and either normal or MPO-deficient human neutrophils, namely their inability to metabolize NO which will alter their ability to adhere and migrate in vivo.
Collapse
Affiliation(s)
- Stephen R Clark
- Department of Medical Biochemistry and Immunology, University of Wales College of Medicine, Cardiff, Wales, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
43
|
Reddy MA, Adler SG, Kim YS, Lanting L, Rossi J, Kang SW, Nadler JL, Shahed A, Natarajan R. Interaction of MAPK and 12-lipoxygenase pathways in growth and matrix protein expression in mesangial cells. Am J Physiol Renal Physiol 2002; 283:F985-94. [PMID: 12372774 DOI: 10.1152/ajprenal.00181.2002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The lipoxygenase (LO) pathway of arachidonate metabolism and mitogen-activated protein kinases (MAPKs) can mediate cellular growth and ANG II effects in vascular smooth muscle cells. However, their role in renal mesangial cells (MC) is not very clear. ANG II treatment of rat MC significantly increased 12-LO mRNA expression and formation of the 12-LO product 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE; P < 0.03]. ANG II-induced [(3)H]leucine incorporation was blocked by an LO inhibitor, cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate (P < 0.02). 12(S)-HETE and ANG II directly induced cellular hypertrophy and fibronectin (FN) expression (P < 0.01) to a similar extent. ANG II and 12(S)-HETE led to activation of p38(MAPK) and its target transcription factor cAMP-responsive element-binding protein (CREB). ANG II- and 12(S)-HETE-induced CREB activation and [(3)H]leucine incorporation were blocked by the p38(MAPK) inhibitor SB-202190. A specific molecular inhibitor of rat 12-LO mRNA, namely, a novel ribozyme, could attenuate ANG II-induced FN mRNA. Thus p38(MAPK)-dependent CREB activation may mediate ANG II- and LO product-induced FN expression and cellular growth in rat MC. ANG II effects may be mediated by the LO pathway. These results suggest a novel interaction between LO and p38(MAPK) activation in MC matrix synthesis associated with renal complications.
Collapse
Affiliation(s)
- Marpadga A Reddy
- Department of Diabetes, Beckman Research Institute of the City of Hope, Duarte California 91010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Coffey MJ, Phare SM, Peters-Golden M. Interaction between nitric oxide, reactive oxygen intermediates, and peroxynitrite in the regulation of 5-lipoxygenase metabolism. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1584:81-90. [PMID: 12385890 DOI: 10.1016/s1388-1981(02)00286-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have shown that overnight lipopolysaccharide (LPS) suppresses alveolar macrophage (AM) leukotriene (LT) synthesis mediated in part by induction of inducible nitric oxide synthase (iNOS) and NO production. Here we examined the possibility that reactive oxygen intermediates (ROI) generated by LPS pretreatment contribute to the suppression of 5-lipoxygenase (5-LO) metabolism. Pretreatment of AM with xanthine/xanthine oxidase, which generates high concentrations of ROI, resulted in suppression of LT synthetic capacity. Since NO and ROI reactive species are known to react and form peroxynitrite (ONOO(-)), we examined the effect of ONOO(-) on 5-LO metabolism. Exogenous ONOO(-) caused a dose-dependent suppression of recombinant 5-LO cell-free activity. ONOO(-) also suppressed LT synthesis in intact AM, which was reversed by the ONOO(-) scavenger tetrakis(4-benzoic acid)porphyrin. ONOO(-) treatment also resulted in dose-dependent nitrotyrosination and S-nitrosylation of the recombinant 5-LO enzyme. Since the direct 5-LO inhibitor zileuton prevents the LPS-induced suppression of LT synthesis, we examined if 5-LO itself was the source of ROI. Zileuton reduced ROI generation in LPS-treated cells. These studies identify an important role for ROI and ONOO(-) in the suppression of 5-LO metabolism by LPS.
Collapse
Affiliation(s)
- Michael J Coffey
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical Center, 6301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, MI 48109-0642, USA.
| | | | | |
Collapse
|
45
|
Kuhn H, Walther M, Kuban RJ. Mammalian arachidonate 15-lipoxygenases structure, function, and biological implications. Prostaglandins Other Lipid Mediat 2002; 68-69:263-90. [PMID: 12432923 DOI: 10.1016/s0090-6980(02)00035-7] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lipoxygenases (LOXs) constitute a heterogeneous family of lipid peroxidizing enzymes capable of oxygenating polyunsaturated fatty acids to their corresponding hydroperoxy derivatives. In mammals, LOXs are classified with respect to their positional specificity of arachidonic acid oxygenation into 5-, 8-, 12-, and 15-LOXs. Arachidonate 15-LOXs may be sub-classified into a reticulocyte-type (type-1) and an epidermis-type (type-2) enzyme. Since the leukocyte-type 12-LOXs are very similar to the reticulocyte-type 15-LOXs, these enzymes are designated 12/15-LOXs. Several LOX isoforms, in particular the reticulocyte-type 15-LOX and the human 5-LOX, are well characterized with respect to their structural and functional properties On the other hand, the biological role of most LOX-isozymes including the reticulocyte-type 15-LOC is far from clear. This review is intended to summarize the recent developments in 15-LOX research with particular emphasis to molecular enzymology and regulation of gene expression. In addition, the major hypotheses on the physiological and patho-physiological roles of 15-LOXs will be discussed briefly.
Collapse
Affiliation(s)
- Hartmut Kuhn
- Institute of Biochemistry, University Clinics Charité, Humboldt University, Berlin, Germany.
| | | | | |
Collapse
|
46
|
|
47
|
Kühn H, Borchert A. Regulation of enzymatic lipid peroxidation: the interplay of peroxidizing and peroxide reducing enzymes. Free Radic Biol Med 2002; 33:154-72. [PMID: 12106812 DOI: 10.1016/s0891-5849(02)00855-9] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
For a long time lipid peroxidation has only been considered a deleterious process leading to disruption of biomembranes and thus, to cellular dysfunction. However, when restricted to a certain cellular compartment and tightly regulated, lipid peroxidation may have beneficial effects. Early on during evolution of living organisms special lipid peroxidizing enzymes, called lipoxygenases, appeared and they have been conserved during phylogenesis of plants and animals. In fact, a diverse family of lipoxygenase isoforms has evolved starting from a putative ancient precursor. As with other enzymes, lipoxygenases are regulated on various levels of gene expression and there are endogenous antagonists controlling their cellular activity. Among the currently known mammalian lipoxygenase isoforms only 12/15-lipoxygenases are capable of directly oxygenating ester lipids even when they are bound to membranes and lipoproteins. Thus, these enzymes represent the pro-oxidative part in the cellular metabolism of complex hydroperoxy ester lipids. Its metabolic counterplayer, representing the antioxidative part, appears to be the phospholipid hydroperoxide glutathione peroxidase. This enzyme is unique among glutathione peroxidases because of its capability of reducing ester lipid hydroperoxides. Thus, 12/15-lipoxygenase and phospholipid hydroperoxide glutathione peroxidase constitute a pair of antagonizing enzymes in the metabolism of hydroperoxy ester lipids, and a balanced regulation of the two proteins appears to be of major cell physiological importance. This review is aimed at summarizing the recent developments in the enzymology and molecular biology of 12/15-lipoxygenase and phospholipid hydroperoxide glutathione peroxidase, with emphasis on cytokine-dependent regulation and their regulatory interplay.
Collapse
Affiliation(s)
- Hartmut Kühn
- Institute of Biochemistry, University Clinics Charité, Humboldt University, Berlin, Germany.
| | | |
Collapse
|
48
|
Reddy MA, Thimmalapura PR, Lanting L, Nadler JL, Fatima S, Natarajan R. The oxidized lipid and lipoxygenase product 12(S)-hydroxyeicosatetraenoic acid induces hypertrophy and fibronectin transcription in vascular smooth muscle cells via p38 MAPK and cAMP response element-binding protein activation. Mediation of angiotensin II effects. J Biol Chem 2002; 277:9920-8. [PMID: 11786549 DOI: 10.1074/jbc.m111305200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Evidence suggests that the arachidonic acid metabolite of 12-lipoxygenase, 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE), not only mediates the effects of angiotensin II (AngII), but also has direct effects on hypertrophy and matrix protein production in vascular smooth muscle cells (VSMCs). This study is aimed at identifying the signaling pathways involved in these events. Treatment of porcine VSMCs with 12(S)-HETE led to the activation of Ras and p38 MAPK. It also stimulated phosphorylation, DNA-binding activity, and transactivation of the transcription factor cAMP response element (CRE)-binding protein. In addition, 12(S)-HETE induced transcription from a fibronectin promoter containing multiple CREs. AngII also induced transactivation of CRE-binding protein and transcription from the fibronectin promoter. A specific p38 MAPK inhibitor (SB202190) as well as a dominant-negative Ras mutant (Ras-N17) blocked both 12(S)-HETE and AngII effects. In addition, inhibitors of lipoxygenase also blocked AngII effects. Both 12(S)-HETE and AngII increased cellular hypertrophy with similar potency, and this was significantly blocked by SB202190. Stable overexpression of murine leukocyte-type 12/15-lipoxygenase in VSMCs increased the levels of cell-associated 12(S)-HETE as well as basal activity of both ERK and p38 MAPKs. Furthermore, these 12-lipoxygenase-overexpressing cells displayed significantly greater cellular hypertrophy relative to mock-transfected cells. These results show for the first time that oxidized lipids such as 12(S)-HETE can induce VSMC growth and matrix gene expression and mediate growth factor effects via activation of the Ras-MAPK pathway and key target transcription factors.
Collapse
MESH Headings
- 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/chemistry
- 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/metabolism
- Angiotensin II/metabolism
- Animals
- Cell Nucleus/metabolism
- Cells, Cultured
- Cyclic AMP/metabolism
- Cyclic AMP Response Element-Binding Protein/metabolism
- Enzyme Activation
- Enzyme Inhibitors/pharmacology
- Fibronectins/genetics
- Fibronectins/metabolism
- Hypertrophy
- Imidazoles/pharmacology
- Immunoblotting
- Lipid Metabolism
- Lipoxygenase/metabolism
- Luciferases/metabolism
- Mice
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/cytology
- Oxygen/metabolism
- Phosphorylation
- Promoter Regions, Genetic
- Protein Binding
- Protein Transport
- Pyridines/pharmacology
- Signal Transduction
- Swine
- Time Factors
- Transcription, Genetic
- Transfection
- p38 Mitogen-Activated Protein Kinases
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Marpadga A Reddy
- Gonda Diabetes Center, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | | | | | | | |
Collapse
|
49
|
Griffiths C, Yamini B, Hall C, Garthwaite J. Nitric oxide inactivation in brain by a novel O2-dependent mechanism resulting in the formation of nitrate ions. Biochem J 2002; 362:459-64. [PMID: 11853555 PMCID: PMC1222407 DOI: 10.1042/0264-6021:3620459] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In order for nitric oxide (NO) to function as a biological messenger it has to be inactivated, but little is known of how this is achieved. In cells from the brain, we have recently shown the existence of a powerful NO sink that 'shapes' NO signals for targeting its receptor, soluble guanylate cyclase, whilst simultaneously preventing NO rising to toxic concentrations [Griffiths and Garthwaite (2001) J. Physiol. (Cambridge, U.K.) 536, 855-862]. In the present study, the properties of this sink were investigated further. Inactivation of NO was preserved in rat brain homogenates. In both cerebellar cell suspensions and brain homogenates, NO inactivation required O(2) and, from measurements in homogenates, the principal end-product was NO(-)(3), which is also the main product of endogenously formed NO in vivo. Direct chemical reaction with O(2), superoxide anions or haemoglobin was not responsible. Consumption of NO was, however, inhibited by heat or protease treatment. Pharmacological tests were negative for several candidate enzymes, namely cytochrome c oxidase, H(2)O(2)-dependent haem peroxidases, prostaglandin H synthase, 12/15-lipoxygenase and a flavohaemoglobin-like NO dioxygenase. The capacity of the NO sink in cells was limited because regeneration of the activity was slow (2 h). It is concluded that NO is consumed in the brain through a novel protein, ultimately forming NO(-)(3), and that the slow regeneration of the activity provides a scenario for NO to become toxic.
Collapse
Affiliation(s)
- Charmaine Griffiths
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
50
|
Abstract
Human and rabbit reticulocyte 15-lipoxygenase (15-lipoxygenase-1) and the leukocyte-type 12-lipoxygenases (12/15-lipoxygenases) of pig, beef, mouse and rat constitute a particular subfamily of mammalian lipoxygenases (reticulocyte-type lipoxygenases) with unique properties and functions. They catalyze enzymatic lipid peroxidation in complex biological structures via direct dioxygenation of phospholipids and cholesterol esters of biomembranes and plasma lipoproteins. Moreover, they are a source of free radicals initiating non-enzymatic lipid peroxidation and other oxidative processes. Expression and activity of reticulocyte-type lipoxygenases are highly regulated. Moreover, the susceptibility of intracellular membranes toward these lipoxygenases is controlled and may be increased together with lipoxygenase activity under conditions of oxidative stress. Thus, oxidative stress may favor a concerted package of lipoxygenase-mediated enzymatic and non-enzymatic lipid peroxidation and co-oxidative processes. Reaction of reticulocyte-type lipoxygenases with low-density lipoprotein renders the latter atherogenic and appears to be involved in the formation of atherosclerotic lesions.
Collapse
Affiliation(s)
- Tankred Schewe
- Institut für Physiologische Chemie I, Heinrich-Heine-Universität Düsseldorf, Germany
| |
Collapse
|