1
|
Kim BG, Long J, Dubins DN, Chalikian TV. Ionic Effects on VEGF G-Quadruplex Stability. J Phys Chem B 2016; 120:4963-71. [DOI: 10.1021/acs.jpcb.6b03731] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Byul G. Kim
- Department of Pharmaceutical Sciences, Leslie Dan Faculty
of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Ji Long
- Department of Pharmaceutical Sciences, Leslie Dan Faculty
of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - David N. Dubins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty
of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Tigran V. Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty
of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
2
|
Braunlin W, Völker J, Plum GE, Breslauer KJ. DNA meter: Energy tunable, quantitative hybridization assay. Biopolymers 2016; 99:408-17. [PMID: 23529692 DOI: 10.1002/bip.22213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 11/06/2022]
Abstract
We describe a novel hybridization assay that employs a unique class of energy tunable, bulge loop-containing competitor strands (C*) that hybridize to a probe strand (P). Such initial "pre-binding" of a probe strand modulates its effective "availability" for hybridizing to a target site (T). More generally, the assay described here is based on competitive binding equilibria for a common probe strand (P) between such tunable competitor strands (C*) and a target strand (T). We demonstrate that loop variable, energy tunable families of C*P complexes exhibit enhanced discrimination between targets and mismatched targets, thereby reducing false positives/negatives. We refer to a C*P complex between a C* competitor single strand and the probe strand as a "tuning fork," since the C* strand exhibits branch points (forks) at the duplex-bulge interfaces within the complex. By varying the loop to create families of such "tuning forks," one can construct C*P "energy ladders" capable of resolving small differences within the target that may be of biological/functional consequence. The methodology further allows quantification of target strand concentrations, a determination heretofore not readily available by conventional hybridization assays. The dual ability of this tunable assay to discriminate and quantitate targets provides the basis for developing a technology we refer to as a "DNA Meter." Here we present data that establish proof-of-principle for an in solution version of such a DNA Meter. We envision future applications of this tunable assay that incorporate surface bound/spatially resolved DNA arrays to yield enhanced discrimination and sensitivity.
Collapse
Affiliation(s)
- William Braunlin
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Rd., Piscataway, NJ, 08854; Rational Affinity Devices, LLC
| | | | | | | |
Collapse
|
3
|
Koninti RK, Sappati S, Satpathi S, Gavvala K, Hazra P. Spectroscopy and Dynamics of Cryptolepine in the Nanocavity of Cucurbit[7]uril and DNA. Chemphyschem 2016; 17:506-15. [PMID: 26650669 DOI: 10.1002/cphc.201501011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/07/2015] [Indexed: 02/03/2023]
Affiliation(s)
- Raj Kumar Koninti
- Department of Chemistry; Indian Institute of Science Education and Research (IISER); Pune 411008 Maharashtra India
| | - Subrahmanyam Sappati
- Department of Chemistry; Indian Institute of Science Education and Research (IISER); Pune 411008 Maharashtra India
| | - Sagar Satpathi
- Department of Chemistry; Indian Institute of Science Education and Research (IISER); Pune 411008 Maharashtra India
| | - Krishna Gavvala
- Department of Chemistry; Indian Institute of Science Education and Research (IISER); Pune 411008 Maharashtra India
| | - Partha Hazra
- Department of Chemistry; Indian Institute of Science Education and Research (IISER); Pune 411008 Maharashtra India
| |
Collapse
|
4
|
Koninti RK, Sengupta A, Gavvala K, Ballav N, Hazra P. Loading of an anti-cancer drug onto graphene oxide and subsequent release to DNA/RNA: a direct optical detection. NANOSCALE 2014; 6:2937-44. [PMID: 24477816 DOI: 10.1039/c3nr06081k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Graphene oxide based molecular switching of ellipticine (E) has been utilized to probe its efficient loading onto graphene oxide (GO) and subsequent release to intra-cellular biomolecules like DNA/RNA. The green fluorescence of E switches to blue in GO and switches back to green with polynucleotides. The intensified blue emission of the ellipticine-GO (E-GO) complex with human serum albumin (HSA), switches to a bluish green upon addition of dsDNA. Electron microscopy reveals the formation of distinctive 3D assemblies involving GO and biomolecule(s) probably through non-covalent interactions and this is primarily responsible for the biomolcule(s) assisted fluorescence-switching of E. To our knowledge, such morphological patterning of a GO-DNA complex is very unusual, reported here the first time and could find applications in the fabrication of biomedical devices. Moreover, our approach of direct optical detection of drug loading and releasing is very cheap, appealing and will be useful for clinical trial experiments once the cytotoxicity of GO is duly taken care.
Collapse
Affiliation(s)
- Raj Kumar Koninti
- Department of Chemistry, Mendeleev Block, Indian Institution of Science Education and Research (IISER), Dr Homi Bhabha road, Pashan, Pune, Maharashtra - 411008, India.
| | | | | | | | | |
Collapse
|
5
|
Völker J, Plum GE, Gindikin V, Klump HH, Breslauer KJ. Impact of bulge loop size on DNA triplet repeat domains: Implications for DNA repair and expansion. Biopolymers 2014; 101:1-12. [PMID: 23494673 PMCID: PMC3920904 DOI: 10.1002/bip.22236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 03/05/2013] [Indexed: 11/12/2022]
Abstract
Repetitive DNA sequences exhibit complex structural and energy landscapes, populated by metastable, noncanonical states, that favor expansion and deletion events correlated with disease phenotypes. To probe the origins of such genotype-phenotype linkages, we report the impact of sequence and repeat number on properties of (CNG) repeat bulge loops. We find the stability of duplexes with a repeat bulge loop is controlled by two opposing effects; a loop junction-dependent destabilization of the underlying double helix, and a self-structure dependent stabilization of the repeat bulge loop. For small bulge loops, destabilization of the underlying double helix overwhelms any favorable contribution from loop self-structure. As bulge loop size increases, the stabilizing loop structure contribution dominates. The role of sequence on repeat loop stability can be understood in terms of its impact on the opposing influences of junction formation and loop structure. The nature of the bulge loop affects the thermodynamics of these two contributions differently, resulting in unique differences in repeat size-dependent minima in the overall enthalpy, entropy, and free energy changes. Our results define factors that control repeat bulge loop formation; knowledge required to understand how this helix imperfection is linked to DNA expansion, deletion, and disease phenotypes.
Collapse
Affiliation(s)
- Jens Völker
- Department of Chemistry and Chemical Biology, Rutgers, The
State University of New Jersey, 610 Taylor Rd, Piscataway, NJ 08854
| | - G. Eric Plum
- IBET, Inc., 1507 Chambers Road, Suite 301, Columbus, OH
43212
| | - Vera Gindikin
- Department of Chemistry and Chemical Biology, Rutgers, The
State University of New Jersey, 610 Taylor Rd, Piscataway, NJ 08854
| | - Horst H. Klump
- Department of Molecular and Cell Biology,
University of Cape Town, Private Bag, Rondebosch 7800, South Africa
| | - Kenneth J. Breslauer
- Department of Chemistry and Chemical Biology, Rutgers, The
State University of New Jersey, 610 Taylor Rd, Piscataway, NJ 08854
- The Cancer Institute of New Jersey, New Brunswick,
NJ 08901
| |
Collapse
|
6
|
Völker J, Gindikin V, Klump HH, Plum GE, Breslauer KJ. Energy landscapes of dynamic ensembles of rolling triplet repeat bulge loops: implications for DNA expansion associated with disease states. J Am Chem Soc 2012; 134:6033-44. [PMID: 22397401 PMCID: PMC3318849 DOI: 10.1021/ja3010896] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Indexed: 11/30/2022]
Abstract
DNA repeat domains can form ensembles of canonical and noncanonical states, including stable and metastable DNA secondary structures. Such sequence-induced structural diversity creates complex conformational landscapes for DNA processing pathways, including those triplet expansion events that accompany replication, recombination, and/or repair. Here we demonstrate further levels of conformational complexity within repeat domains. Specifically, we show that bulge loop structures within an extended repeat domain can form dynamic ensembles containing a distribution of loop positions, thereby yielding families of positional loop isomers, which we designate as "rollamers". Our fluorescence, absorbance, and calorimetric data are consistent with loop migration/translocation between sites within the repeat domain ("rollamerization"). We demonstrate that such "rollameric" migration of bulge loops within repeat sequences can invade and disrupt previously formed base-paired domains via an isoenthalpic, entropy-driven process. We further demonstrate that destabilizing abasic lesions alter the loop distributions so as to favor "rollamers" with the lesion positioned at the duplex/loop junction, sites where the flexibility of the abasic "universal hinge" relaxes unfavorable interactions and/or facilitates topological accommodation. Another strategic siting of an abasic site induces directed loop migration toward denaturing domains, a phenomenon that merges destabilizing domains. In the aggregate, our data reveal that dynamic ensembles within repeat domains profoundly impact the overall energetics of such DNA constructs as well as the distribution of states by which they denature/renature. These static and dynamic influences within triplet repeat domains expand the conformational space available for selection and targeting by the DNA processing machinery. We propose that such dynamic ensembles and their associated impact on DNA properties influence pathways that lead to DNA expansion.
Collapse
Affiliation(s)
- Jens Völker
- Department
of Chemistry and
Chemical Biology, Rutgers, The State University of New
Jersey, 610 Taylor Road, Piscataway, New Jersey 08854,
United States
| | - Vera Gindikin
- Department
of Chemistry and
Chemical Biology, Rutgers, The State University of New
Jersey, 610 Taylor Road, Piscataway, New Jersey 08854,
United States
| | - Horst H. Klump
- Department
of Molecular and
Cell Biology, University of Cape Town,
Private Bag, Rondebosch 7800, South Africa
| | - G. Eric Plum
- IBET Inc., 1507 Chambers
Road, Suite 301, Columbus, Ohio 43212, United States
| | - Kenneth J. Breslauer
- Department
of Chemistry and
Chemical Biology, Rutgers, The State University of New
Jersey, 610 Taylor Road, Piscataway, New Jersey 08854,
United States
- The Cancer Institute
of New Jersey, New Brunswick, New Jersey 08901, United
States
| |
Collapse
|
7
|
Shanker N, Dilek O, Mukherjee K, McGee DW, Bane SL. Aurones: small molecule visible range fluorescent probes suitable for biomacromolecules. J Fluoresc 2011; 21:2173-84. [PMID: 21748237 DOI: 10.1007/s10895-011-0919-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 07/04/2011] [Indexed: 10/18/2022]
Abstract
Aurones, derivatives of 2-benylidenebenzofuran-3(2H)-one, are natural products that serve as plant pigments. There have been reports that some of these substances fluoresce, but little information about their optical properties is in the literature. In this report, series of aurone derivatives were synthesized as possible fluorescent probes that can be excited by visible light. We found that an amine substituent shifted the lowest energy absorption band from the near-UV to the visible region of the electromagnetic spectrum. Four amine-substituted aurone derivatives were synthesized to explore the effect of this substituent on the absorption and emission properties of the aurone chromophore. The emission maxima and intensities of the molecules are strongly dependent on the nature of the substituent and the solvent polarity. Overall, the emission intensity increases and the maximum wavelength decreases in less polar solvents; thus, the aurones may be useful probes for hydrophobic sites on biological molecules. A limited investigation with model protein, nucleic acid and fixed cells supports this idea. It is known that the sulfur analog of aurone can undergo photo-induced E/Z isomerization. This possibility was investigated for one of the aminoaurones, which was observed to reversible photoisomerize. The two isomers have similar absorption spectra, but the emission properties are distinct. We conclude that appropriately substituted aurones are potentially useful as biological probes and photoswitches.
Collapse
Affiliation(s)
- Natasha Shanker
- Biologics Development Center, Dr. Reddy's Laboratories Ltd, Bachupally, Hyderabad 500072, Andhra Pradesh, India
| | | | | | | | | |
Collapse
|
8
|
Norris V. Speculations on the initiation of chromosome replication in Escherichia coli: the dualism hypothesis. Med Hypotheses 2011; 76:706-16. [PMID: 21349650 DOI: 10.1016/j.mehy.2011.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Revised: 01/23/2011] [Accepted: 02/01/2011] [Indexed: 10/18/2022]
Abstract
The exact nature of the mechanism that triggers initiation of chromosome replication in the best understood of all organisms, Escherichia coli, remains mysterious. Here, I suggest that this mechanism evolved in response to the problems that arise if chromosome replication does not occur. E. coli is now known to be highly structured. This leads me to propose a mechanism for initiation of replication based on the dynamics of large assemblies of molecules and macromolecules termed hyperstructures. In this proposal, hyperstructures and their constituents are put into two classes, non-equilibrium and equilibrium, that spontaneously separate and that are appropriate for life in either good or bad conditions. Maintaining the right ratio(s) of non-equilibrium to equilibrium hyperstructures is therefore a major challenge for cells. I propose that this maintenance entails a major transfer of material from equilibrium to non-equilibrium hyperstructures once per cell and I further propose that this transfer times the cell cycle. More specifically, I speculate that the dialogue between hyperstructures involves the structuring of water and the condensation of cations and that one of the outcomes of ion condensation on ribosomal hyperstructures and decondensation from the origin hyperstructure is the separation of strands at oriC responsible for triggering initiation of replication. The dualism hypothesis that comes out of these speculations may help integrate models for initiation of replication, chromosome segregation and cell division with the 'prebiotic ecology' scenario of the origins of life.
Collapse
Affiliation(s)
- Vic Norris
- AMMIS Laboratory, EA 3829, Department of Biology, University of Rouen, 76821 Mont Saint Aignan, France.
| |
Collapse
|
9
|
Völker J, Plum G, Klump HH, Breslauer KJ. Energetic coupling between clustered lesions modulated by intervening triplet repeat bulge loops: allosteric implications for DNA repair and triplet repeat expansion. Biopolymers 2010; 93:355-69. [PMID: 19890964 PMCID: PMC3902826 DOI: 10.1002/bip.21343] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Clusters of closely spaced oxidative DNA lesions present challenges to the cellular repair machinery. When located in opposing strands, base excision repair (BER) of such lesions can lead to double strand DNA breaks (DSB). Activation of BER and DSB repair pathways has been implicated in inducing enhanced expansion of triplet repeat sequences. We show here that energy coupling between distal lesions (8oxodG and/or abasic sites) in opposing DNA strands can be modulated by a triplet repeat bulge loop located between the lesion sites. We find this modulation to be dependent on the identity of the lesions (8oxodG vs. abasic site) and the positions of the lesions (upstream vs. downstream) relative to the intervening bulge loop domain. We discuss how such bulge loop-mediated lesion crosstalk might influence repair processes, while favoring DNA expansion, the genotype of triplet repeat diseases.
Collapse
Affiliation(s)
- Jens Völker
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Rd, Piscataway, NJ 08854
| | - G.Eric Plum
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Rd, Piscataway, NJ 08854
- IBET Inc, 1507 Chambers Road, Suite 301, Columbus, OH 43212
| | - Horst H. Klump
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch 7800, South Africa
| | - Kenneth J. Breslauer
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Rd, Piscataway, NJ 08854
- The Cancer Institute of New Jersey, New Brunswick, NJ 08901
| |
Collapse
|
10
|
Kaushik M, Prasad M, Kaushik S, Singh A, Kukreti S. Structural transition from dimeric to tetrameric i-motif, caused by the presence of TAA at the 3â²-end of human telomeric C-rich sequence. Biopolymers 2010; 93:150-60. [DOI: 10.1002/bip.21313] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Zhou J, Wei C, Jia G, Wang X, Feng Z, Li C. Formation of i-motif structure at neutral and slightly alkaline pH. MOLECULAR BIOSYSTEMS 2009; 6:580-6. [PMID: 20174686 DOI: 10.1039/b919600e] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
It is well known that oligonucleotides containing tracts cytosines can form i-motif structures under acidic conditions (pH < 7). However, whether i-motif can be formed under normal physiological cellular conditions (pH 7.0-7.5) is yet no conclusive proof. In the present work, using circular dichroism (CD), UV absorption spectroscopies and native polyacrylamide gel electrophoresis (PAGE), we provided the compelling evidence for the formation of i-motif structures by four cytosine clusters, [C(3)TA(2)](3)C(3) (HT), [C(4)G](3)C(4)TA (RET), C(2)T(3)C(2)T(4)C(2)T(3)C(2) (CTC) and GC(2)GC(3)A(4)C(6)G (Rb), at neutral and slightly alkaline pH at 4 degrees C. Furthermore, for HT, we also supplied the evidence for the formation of i-motif structure by fluorescence resonance energy transfer (FRET) and investigated its folding kinetics. The formation time constants obtained by CD and fluorescence experiments are 214 and 493 s, respectively, indicating that HT can slowly form i-motif structure at pH 7.0 and 4 degrees C. This work implies that i-motif structures may possible form in vivo.
Collapse
Affiliation(s)
- Jun Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | | | | | | | | | | |
Collapse
|
12
|
Völker J, Plum GE, Klump HH, Breslauer KJ. DNA repair and DNA triplet repeat expansion: the impact of abasic lesions on triplet repeat DNA energetics. J Am Chem Soc 2009; 131:9354-60. [PMID: 19566100 PMCID: PMC2705181 DOI: 10.1021/ja902161e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Indexed: 11/29/2022]
Abstract
Enhanced levels of DNA triplet expansion are observed when base excision repair (BER) of oxidative DNA base damage (e.g., 8-oxo-dG) occurs at or near CAG repeat sequences. This observation suggests an interplay between processing mechanisms required for DNA repair and expansion pathways that yield genotypes associated with many neurological/developmental disorders. It has been proposed that DNA expansion involves the transient formation within the triplet repeat domains of non-native slipped DNA structures that are incorrectly processed by the BER machinery of repair during DNA synthesis. We show here that replacement within a triplet repeat bulge loop domain of a guanosine residue by an abasic site, the universal BER intermediate, increases the population of slipped/looped DNA structures relative to the corresponding lesion-free construct. Such abasic lesion-induced energetic enhancement of slipped/looped structures provides a linkage between BER and DNA expansion. We discuss how the BER machinery of repair may be influenced by abasic-induced energetic alterations in the properties of regions proximal to and/or within triplet repeat domains, thereby potentially modulating levels of DNA expansion.
Collapse
|
13
|
Del Toro M, Bucek P, Aviñó A, Jaumot J, González C, Eritja R, Gargallo R. Targeting the G-quadruplex-forming region near the P1 promoter in the human BCL-2 gene with the cationic porphyrin TMPyP4 and with the complementary C-rich strand. Biochimie 2009; 91:894-902. [PMID: 19401211 DOI: 10.1016/j.biochi.2009.04.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 04/15/2009] [Indexed: 02/05/2023]
Abstract
The B-cell lymphoma-2 (bcl-2) gene contains a region that has been implicated in the regulation of bcl-2 gene expression. This region can form G-quadruplex structures in solution [J.X. Dai, T.S. Dexheimer, D. Chen, M. Carver, A. Ambrus, R.A. Jones, D.Z. Yang, An intramolecular G-quadruplex structure with mixed parallel/antiparallel G-strands formed in the human BCL-2 promoter region in solution, J. Am. Chem. Soc. 128 (2006) 1096-1098.]. Here, we examined the acid-base and conformational equilibria of this G-quadruplex-forming region (BCL2G), as well as its interaction with both the porphyrin TMPyP4 and with the complementary C-rich strand. We used molecular absorption and circular dichroism techniques, in tandem with multivariate analysis tools. The results revealed the formation of an interaction complex BCL2G:TMPyP4 with a stoichiometry of 1:2 and an equilibrium constant equal to 5.0 (+/-2.3) x 10(13) M(-2). Addition of the complementary C-rich strand to BCL2G induces the predominant formation of the Watson-Crick double-helix with an equilibrium constant equal to 10(7.7) M(-1) (at pH 7.1). Finally, the pH-induced formation of quadruplex structures from the Watson-Crick double-helix is characterized.
Collapse
Affiliation(s)
- Miquel Del Toro
- Department of Analytical Chemistry, University of Barcelona, Marti i Franques 1-11, E-08028 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
DNA energy landscapes via calorimetric detection of microstate ensembles of metastable macrostates and triplet repeat diseases. Proc Natl Acad Sci U S A 2008; 105:18326-30. [PMID: 19015511 DOI: 10.1073/pnas.0810376105] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Biopolymers exhibit rough energy landscapes, thereby allowing biological processes to access a broad range of kinetic and thermodynamic states. In contrast to proteins, the energy landscapes of nucleic acids have been the subject of relatively few experimental investigations. In this study, we use calorimetric and spectroscopic observables to detect, resolve, and selectively enrich energetically discrete ensembles of microstates within metastable DNA structures. Our results are consistent with metastable, "native" DNA states being composed of an ensemble of discrete and kinetically stable microstates of differential stabilities, rather than exclusively being a single, discrete thermodynamic species. This conceptual construct is important for understanding the linkage between biopolymer conformational/configurational space and biological function, such as in protein folding, allosteric control of enzyme activity, RNA and DNA folding and function, DNA structure and biological regulation, etc. For the specific DNA sequences and structures studied here, the demonstration of discrete, kinetically stable microstates potentially has biological consequences for understanding the development and onset of DNA expansion and triplet repeat diseases.
Collapse
|
15
|
Tóth K, Sedlák E, Sprinzl M, Zoldák G. Flexibility and enzyme activity of NADH oxidase from Thermus thermophilus in the presence of monovalent cations of Hofmeister series. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:789-95. [PMID: 18339331 DOI: 10.1016/j.bbapap.2008.01.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 01/26/2008] [Accepted: 01/29/2008] [Indexed: 11/25/2022]
Abstract
Recently, we have shown that anions of Hofmeister series affect the enzyme activity through modulation of flexibility of its active site. The enzyme activity vs. anion position in Hofmeister series showed an unusual bell-shaped dependence. In the present work, six monovalent cations (Na(+), Gdm(+), NH(4)(+), Li(+), K(+) and Cs(+)) of Hofmeister series with chloride as a counterion have been studied in relation to activity and stability of flavoprotein NADH oxidase from Thermus thermophilus (NOX). With the exception of strongly chaotropic guanidinium cation, cations are significantly less effective in promoting the Hofmeister effect than anions mainly due to repulsive interactions of positive charges around the active site. Thermal denaturations of NOX reveal unfavorable electrostatic interaction at the protein surface that may be shielded to different extent by salts. Michaelis-Menten constants for NADH, accessibility of the active site as reflected by Stern-Volmer constants and activity of NOX at high cation concentrations (1-2 M) show bell-shaped dependences on cation position in Hofmeister series. Our analysis indicates that in the presence of kosmotropic cations the enzyme is more stable and possibly more rigid than in the presence of chaotropic cations. Molecular dynamic (MD) simulations of NOX showed that active site switches between open and closed conformations [J. Hritz, G. Zoldak, E. Sedlak, Cofactor assisted gating mechanism in the active site of NADH oxidase from Thermus thermophilus, Proteins 64 (2006) 465-476]. Enzyme activity, as well as substrate binding, can be regulated by the salt mediated perturbation of the balance between open and closed forms. We propose that compensating effect of accessibility and flexibility of the enzyme active site leads to bell-shaped dependence of the investigated parameters.
Collapse
Affiliation(s)
- Kamil Tóth
- Department of Biochemistry, Faculty of Sciences P. J. Safárik University, Kosice, Slovakia
| | | | | | | |
Collapse
|
16
|
Saxena S, Bansal A, Kukreti S. Structural polymorphism exhibited by a homopurine.homopyrimidine sequence found at the right end of human c-jun protooncogene. Arch Biochem Biophys 2008; 471:95-108. [PMID: 18262488 DOI: 10.1016/j.abb.2008.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 01/15/2008] [Accepted: 01/19/2008] [Indexed: 11/17/2022]
Abstract
Homopurine.homopyrimidine (Pu.Py) tracts are likely to play important biological role in eukaryotes. Using circular dichroism, UV-thermal denaturation and gel electrophoresis, we have analyzed the structural polymorphism of a 21-bp Pu.Py DNA segment within human c-jun protooncogene 3'-region, a potential target for triplex formation. Results show that below physiological pH and in the presence of Na+/K+ with Mg2+ the duplex is destabilized/disproportionated, resulting in strand mediated structural transitions to the self-associated structures of G- and C-rich strands separately, identified as G-quadruplex and i-motif species. A significant differential behavior of the monovalent cations was observed, accordingly the presence of Na+ in acidic as well as neutral pH facilitated the duplex formation, while K+ favored the formation of self-associated structures. In Na+ and Mg2+, under acidic and neutral pH conditions, the duplex displayed triphasic and biphasic melting profiles, respectively. This self-association property of oligonucleotides might limit their use as duplex targets in triplex formation. Study is also relevant for understanding structural and biological properties of DNA sequence containing homopurine tracts.
Collapse
Affiliation(s)
- Sarika Saxena
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi (North Campus), Delhi 110007, India
| | | | | |
Collapse
|
17
|
Völker J, Klump HH, Breslauer KJ. The energetics of i-DNA tetraplex structures formed intermolecularly by d(TC5) and intramolecularly by d[(C5T3)3C5]. Biopolymers 2007; 86:136-47. [PMID: 17330895 DOI: 10.1002/bip.20712] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cytosine-rich DNA at low pH adopts an antiparallel tetraplex structure via the intercalation of two partially protonated, parallel stranded duplexes. This intriguing structural motif has been named i-DNA. We have used a combination of spectroscopic and calorimetric techniques to characterize the properties of an intermolecular i-DNA formed by d(TC(5)) and an intramolecular i-DNA formed by d[(C(5)T(3))(3)C(5)]. Our measurements reveal that both i-DNA complexes are enthalpically stabilized by 6.5-7.0 kcal/mol(base) and entropically destabilized by 20 cal/mol(base)/K. These values are about 50% larger than the corresponding enthalpy and entropy values per base for Watson and Crick duplexes and for Hoogsteen triplexes, while being similar to per base enthalpy and entropy values reported for G-quadruplexes. Our data also reveal a positive heat capacity change between 20 and 30 cal/mol(base)/K, values similar to that reported for polymeric Watson & Crick DNA duplexes. Solution-dependent studies reveal the overall thermal and thermodynamic stability of i-DNA complexes to be dictated by an interplay between pH and ionic strength. Based on the thermodynamic data measured, we discuss the feasibility of i-DNA formation in the context of conventional DNA sequences, while commenting on potential roles for this structural motif in biological regulatory mechanisms.
Collapse
Affiliation(s)
- Jens Völker
- Department of Chemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
18
|
Abstract
Liquid water is a highly versatile material. Although it is formed from the tiniest of molecules, it can shape and control biomolecules. The hydrogen-bonding properties of water are crucial to this versatility, as they allow water to execute an intricate three-dimensional 'ballet', exchanging partners while retaining complex order and enduring effects. Water can generate small active clusters and macroscopic assemblies, which can both transmit information on different scales.
Collapse
Affiliation(s)
- Martin Chaplin
- Department of Applied Science, London South Bank University, Borough Road, London SE1 0AA, UK.
| |
Collapse
|
19
|
Alberti P, Bourdoncle A, Saccà B, Lacroix L, Mergny JL. DNA nanomachines and nanostructures involving quadruplexes. Org Biomol Chem 2006; 4:3383-91. [PMID: 17036128 DOI: 10.1039/b605739j] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA is an attractive component for molecular recognition, because of its self-assembly properties. Its three-dimensional structure can differ markedly from the classical double helix. For example, DNA or RNA strands carrying guanine or cytosine stretches associate into four-stranded structures called G-quadruplexes or i-DNA, respectively. Since 2002, several groups have described nanomachines that take advantage of this structural polymorphism. We first introduce the unusual structures that are involved in these devices (i.e., i-DNA and G-quadruplexes) and then describe the opening and closing steps that allow cycling. A quadruplex-duplex molecular machine is then presented in detail, together with the rules that govern its formation, its opening/closing kinetics and the various technical and physico-chemical parameters that play a role in the efficiency of this device. Finally, we review the few examples of nanostructures that involve quadruplexes.
Collapse
Affiliation(s)
- Patrizia Alberti
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle USM503, INSERM U565, CNRS UMR 5153, 43 rue Cuvier, 75231, Paris cedex 05, France.
| | | | | | | | | |
Collapse
|
20
|
Abstract
Molecular interactions are the language that molecules use to communicate recognition, binding, and regulation, events central to biological control mechanisms. Traditionally, such interactions involve direct, atom-to-atom, noncovalent contacts, or indirect contacts bridged by relatively fixed solvent molecules. Here we discuss a third class of molecular communication that, to date, has received less experimental attention, namely solvent-mediated communication between noncontacting macromolecules. This form of communication can be understood in terms of fundamental, well-established principles (coupled equilibria and linkage thermodynamics) that govern interactions between individual polymers and their solutions. In contrast to simple solutions used in laboratory studies, biological systems contain a multitude of nominally noninteracting biopolymers within the same solution environment. The exquisite control of biological function requires some form of communication between many of these solution components, even in the absence of direct and/or indirect contacts. Such communication must be considered when describing potential mechanisms of biological regulation.
Collapse
Affiliation(s)
- Jens Völker
- Department of Chemistry and Chemical Biology, Rutgers-The State University of New Jersey, Piscataway, New Jersey 08854-8087, USA.
| | | |
Collapse
|
21
|
Gatenby RA, Frieden BR. Information dynamics in carcinogenesis and tumor growth. Mutat Res 2004; 568:259-73. [PMID: 15542113 DOI: 10.1016/j.mrfmmm.2004.04.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 12/09/2003] [Accepted: 04/17/2004] [Indexed: 10/26/2022]
Abstract
The storage and transmission of information is vital to the function of normal and transformed cells. We use methods from information theory and Monte Carlo theory to analyze the role of information in carcinogenesis. Our analysis demonstrates that, during somatic evolution of the malignant phenotype, the accumulation of genomic mutations degrades intracellular information. However, the degradation is constrained by the Darwinian somatic ecology in which mutant clones proliferate only when the mutation confers a selective growth advantage. In that environment, genes that normally decrease cellular proliferation, such as tumor suppressor or differentiation genes, suffer maximum information degradation. Conversely, those that increase proliferation, such as oncogenes, are conserved or exhibit only gain of function mutations. These constraints shield most cellular populations from catastrophic mutator-induced loss of the transmembrane entropy gradient and, therefore, cell death. The dynamics of constrained information degradation during carcinogenesis cause the tumor genome to asymptotically approach a minimum information state that is manifested clinically as dedifferentiation and unconstrained proliferation. Extreme physical information (EPI) theory demonstrates that altered information flow from cancer cells to their environment will manifest in-vivo as power law tumor growth with an exponent of size 1.62. This prediction is based only on the assumption that tumor cells are at an absolute information minimum and are capable of "free field" growth that is, they are unconstrained by external biological parameters. The prediction agrees remarkably well with several studies demonstrating power law growth in small human breast cancers with an exponent of 1.72+/-0.24. This successful derivation of an analytic expression for cancer growth from EPI alone supports the conceptual model that carcinogenesis is a process of constrained information degradation and that malignant cells are minimum information systems. EPI theory also predicts that the estimated age of a clinically observed tumor is subject to a root-mean square error of about 30%. This is due to information loss and tissue disorganization and probably manifests as a randomly variable lag phase in the growth pattern that has been observed experimentally. This difference between tumor size and age may impose a fundamental limit on the efficacy of screening based on early detection of small tumors. Independent of the EPI analysis, Monte Carlo methods are applied to predict statistical tumor growth due to perturbed information flow from the environment into transformed cells. A "simplest" Monte Carlo model is suggested by the findings in the EPI approach that tumor growth arises out of a minimally complex mechanism. The outputs of large numbers of simulations show that (a) about 40% of the populations do not survive the first two-generations due to mutations in critical gene segments; but (b) those that do survive will experience power law growth identical to the predicted rate obtained from the independent EPI approach. The agreement between these two very different approaches to the problem strongly supports the idea that tumor cells regress to a state of minimum information during carcinogenesis, and that information dynamics are integrally related to tumor development and growth.
Collapse
Affiliation(s)
- Robert A Gatenby
- Department of Radiology, University of Arizona, Tucson, AZ 85724, USA.
| | | |
Collapse
|
22
|
Völker J, Makube N, Plum GE, Klump HH, Breslauer KJ. Conformational energetics of stable and metastable states formed by DNA triplet repeat oligonucleotides: implications for triplet expansion diseases. Proc Natl Acad Sci U S A 2002; 99:14700-5. [PMID: 12417759 PMCID: PMC137482 DOI: 10.1073/pnas.222519799] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have embedded the hexameric triplet repeats (CAG)(6) and (CTG)(6) between two (GC)(3) domains to produce two 30-mer hairpins with the sequences d[(GC)(3)(CAG)(6)(GC)(3)] and d[(GC)(3)(CTG)(6)(GC)(3)]. This construct reduces the conformational space available to these repetitive DNA sequences. We find that the (CAG)(6) and (CTG)(6) repeats form stable, ordered, single-stranded structures. These structures are stabilized at 62 degrees C by an average enthalpy per base of 1.38 kcal.mol(-1) for the CAG triplet and 2.87 kcal.mol(-1) for the CTG triplet, while being entropically destabilized by 3.50 cal.K(-1).mol(-1) for the CAG triplet and 7.6 cal.K(-1).mol(-1) for the CTG triplet. Remarkably, these values correspond, respectively, to 1/3 (for CAG) and 2/3 (for CTG) of the enthalpy and entropy per base values associated with Watson-Crick base pairs. We show that the presence of the loop structure kinetically inhibits duplex formation from the two complementary 30-mer hairpins, even though the duplex is the thermodynamically more stable state. Duplex formation, however, does occur at elevated temperatures. We propose that this thermally induced formation of a more stable duplex results from thermal disruption of the single-stranded order, thereby allowing the complementary domains to associate (perhaps via "kissing hairpins"). Our melting profiles show that, once duplex formation has occurred, the hairpin intermediate state cannot be reformed, consistent with our interpretation of kinetically trapped hairpin structures. The duplex formed by the two complementary oligonucleotides does not have any unusual optical or thermodynamic properties. By contrast, the very stable structures formed by the individual single-stranded triplet repeat sequences are thermally and thermodynamically unusual. We discuss this stable, triplet repeat, single-stranded structure and its interconversion with duplex in terms of triplet expansion diseases.
Collapse
Affiliation(s)
- J Völker
- Department of Chemistry and Chemical Biology, Rutgers, State University of New Jersey, 610 Taylor Road, Piscataway 08854, USA
| | | | | | | | | |
Collapse
|
23
|
Völker J, Klump HH, Manning GS, Breslauer KJ. Counterion association with native and denatured nucleic acids: an experimental approach. J Mol Biol 2001; 310:1011-25. [PMID: 11501992 DOI: 10.1006/jmbi.2001.4841] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The melting temperature of the poly(dA) . poly(dT) double helix is exquisitely sensitive to salt concentration, and the helix-to-coil transition is sharp. Modern calorimetric instrumentation allows this transition to be detected and characterized with high precision at extremely low duplex concentrations. We have taken advantage of these properties to show that this duplex can be used as a sensitive probe to detect and to characterize the influence of other solutes on solution properties. We demonstrate how the temperature associated with poly(dA) . poly(dT) melting can be used to define the change in bulk solution cation concentration imparted by the presence of other duplex and triplex solutes, in both their native and denatured states. We use this information to critically evaluate features of counterion condensation theory, as well as to illustrate "crosstalk" between different, non-contacting solute molecules. Specifically, we probe the melting of a synthetic homopolymer, poly(dA) . poly(dT), in the presence of excess genomic salmon sperm DNA, or in the presence of one of two synthetic RNA polymers (the poly(rA) . poly(rU) duplex or the poly(rU) . poly(rA) . poly(rU) triplex). We find that these additions cause a shift in the melting temperature of poly(dA) . poly(dT), which is proportional to the concentration of the added polymer and dependent on its conformational state (B versus A, native versus denatured, and triplex versus duplex). To a first approximation, the magnitude of the observed tm shift does not depend significantly on whether the added polymer is RNA or DNA, but it does depend on the number of strands making up the helix of the added polymer. We ascribe the observed changes in melting temperature of poly(dA) . poly(dT) to the increase in ionic strength of the bulk solution brought about by the presence of the added nucleic acid and its associated counterions. We refer to this communication between non-contacting biopolymers in solution as solvent-mediated crosstalk. By comparison with a known standard curve of tm versus log[Na+] for poly(dA) . poly(dT), we estimate the magnitude of the apparent change in ionic strength resulting from the presence of the bulk nucleic acid, and we compare these results with predictions from theory. We find that current theoretical considerations correctly predict the direction of the t(m) shift (the melting temperature increases), while overestimating its magnitude. Specifically, we observe an apparent increase in ionic strength equal to 5% of the concentration of the added duplex DNA or RNA (in mol phosphate), and an additional apparent increase of about 9.5 % of the nucleic acid concentration (mol phosphate) upon denaturation of the added DNA or RNA, yielding a total apparent increase of 14.5 %. For the poly(rU) . poly(rA) . poly(rU) triplex, the total apparent increase in ionic strength corresponds to about 13.6% of the amount of added triplex (moles phosphate). The effect we observe is due to coupled equilibria between the solute molecules mediated by modulations in cation concentration induced by the presence and/or the transition of one of the solute molecules. We note that our results are general, so one can use a different solute probe sensitive to proton binding to characterize subtle changes in solution pH induced by the presence of another solute in solution. We discuss some of the broader implications of these measurements/results in terms of nucleic acid melting in multicomponent systems, in terms of probing counterion environments, and in terms of potential regulatory mechanisms.
Collapse
Affiliation(s)
- J Völker
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway 08854, USA
| | | | | | | |
Collapse
|