1
|
Doke AA, Jha SK. Identification of a Hidden, Highly Aggregation-Prone Intermediate of Full-Length TDP-43 That Triggers its Misfolding and Amyloid Aggregation. Biochemistry 2024. [PMID: 39530145 DOI: 10.1021/acs.biochem.4c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In cells, TDP-43 is a crucial protein that can form harmful amyloid aggregates linked to fatal and incurable human neurodegenerative disorders. Normally, TDP-43 exists in a smaller soluble native state that prevents aggregation. However, aging and stress can destabilize this native state, leading to the formation of disease-causing amyloid aggregates via the formation of partially unfolded, high-energy intermediates with a greater tendency to aggregate. These intermediates are crucial in the early stages of amyloid formation and are challenging to study due to their low stability. Understanding the structure of these early aggregation-prone states of TDP-43 is essential for designing effective treatments for TDP-43 proteinopathies. Targeting these initial intermediates could be more effective than focusing on fully formed amyloid aggregates. By disrupting the aggregation process at this early stage, we may be able to prevent the progression of diseases related to TDP-43 aggregation. Hence, we decided to uncover the hidden, high-energy intermediates in equilibrium with the native states of TDP-43 by modulating the thermodynamic stability of the soluble native dimer (N form) and monomeric molten globular state (MG form) of full-length TDP-43. The thermodynamic modulation performed in the current study successfully revealed the highly aggregation-prone intermediate of full-length TDP-43, i.e., PUF. Moreover, we observed that along with high aggregation propensity, the aggregation kinetics and mechanisms of PUF differ from previously identified intermediates of full-length TDP-43 (the MG and I forms). The information regarding the initial aggregation-prone state of full-length TDP-43 could lead to therapies for amyloid diseases by halting early protein aggregation.
Collapse
Affiliation(s)
- Abhilasha A Doke
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Pillai M, Jha SK. Conformational Enigma of TDP-43 Misfolding in Neurodegenerative Disorders. ACS OMEGA 2024; 9:40286-40297. [PMID: 39372031 PMCID: PMC11447851 DOI: 10.1021/acsomega.4c04119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/25/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024]
Abstract
Misfolding and aggregation of the protein remain some of the most common phenomena observed in neurodegeneration. While there exist multiple neurodegenerative disorders characterized by accumulation of distinct proteins, what remains particularly interesting is the ability of these proteins to undergo a conformational change to form aggregates. TDP-43 is one such nucleic acid binding protein whose misfolding is associated with many neurogenerative diseases including amyotrophic lateral sclerosis (ALS) and fronto-temporal lobar degeneration (FTLD). TDP-43 protein assumes several different conformations and oligomeric states under the diseased condition. In this review, we explore the intrinsic relationship between the conformational variability of TDP-43 protein, with a particular focus on the RRM domains, and its propensity to undergo aggregation. We further emphasize the probable mechanism behind the formation of these conformations and suggest a potential diagnostic and therapeutic strategy in the context of these conformational states of the protein.
Collapse
Affiliation(s)
- Meenakshi Pillai
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Song J. Molecular Mechanisms of Phase Separation and Amyloidosis of ALS/FTD-linked FUS and TDP-43. Aging Dis 2024; 15:2084-2112. [PMID: 38029395 PMCID: PMC11346406 DOI: 10.14336/ad.2023.1118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/18/2023] [Indexed: 12/01/2023] Open
Abstract
FUS and TDP-43, two RNA-binding proteins from the heterogeneous nuclear ribonucleoprotein family, have gained significant attention in the field of neurodegenerative diseases due to their association with amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). They possess folded domains for binding ATP and various nucleic acids including DNA and RNA, as well as substantial intrinsically disordered regions (IDRs) including prion-like domains (PLDs) and RG-/RGG-rich regions. They play vital roles in various cellular processes, including transcription, splicing, microRNA maturation, RNA stability and transport and DNA repair. In particular, they are key components for forming ribonucleoprotein granules and stress granules (SGs) through homotypic or heterotypic liquid-liquid phase separation (LLPS). Strikingly, liquid-like droplets formed by FUS and TDP-43 may undergo aging to transform into less dynamic assemblies such as hydrogels, inclusions, and amyloid fibrils, which are the pathological hallmarks of ALS and FTD. This review aims to synthesize and consolidate the biophysical knowledge of the sequences, structures, stability, dynamics, and inter-domain interactions of FUS and TDP-43 domains, so as to shed light on the molecular mechanisms underlying their liquid-liquid phase separation (LLPS) and amyloidosis. The review further delves into the mechanisms through which ALS-causing mutants of the well-folded hPFN1 disrupt the dynamics of LLPS of FUS prion-like domain, providing key insights into a potential mechanism for misfolding/aggregation-prone proteins to cause neurodegenerative diseases and aging by gain of functions. With better understanding of different biophysical aspects of FUS and TDP-43, the ultimate goal is to develop drugs targeting LLPS and amyloidosis, which could mediate protein homeostasis within cells and lead to new treatments for currently intractable diseases, particularly neurodegenerative diseases such as ALS, FTD and aging. However, the study of membrane-less organelles and condensates is still in its infancy and therefore the review also highlights key questions that require future investigation.
Collapse
|
4
|
Bai D, Deng F, Jia Q, Ou K, Wang X, Hou J, Zhu L, Guo M, Yang S, Jiang G, Li S, Li XJ, Yin P. Pathogenic TDP-43 accelerates the generation of toxic exon1 HTT in Huntington's disease knock-in mice. Aging Cell 2024:e14325. [PMID: 39185703 DOI: 10.1111/acel.14325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Huntington's disease (HD) is caused by a CAG repeat expansion in exon1 of the HTT gene that encodes a polyglutamine tract in huntingtin protein. The formation of HTT exon1 fragments with an expanded polyglutamine repeat has been implicated as a key step in the pathogenesis of HD. It was reported that the CAG repeat length-dependent aberrant splicing of exon1 HTT results in a short polyadenylated mRNA that is translated into an exon1 HTT protein. Under normal conditions, TDP-43 is predominantly found in the nucleus, where it regulates gene expression. However, in various pathological conditions, TDP-43 is mislocalized in the cytoplasm. By investigating HD knock-in mice, we explore whether the pathogenic TDP-43 in the cytoplasm contributes to HD pathogenesis, through expressing the cytoplasmic TDP-43 without nuclear localization signal. We found that the cytoplasmic TDP-43 is increased in the HD mouse brain and that its mislocalization could deteriorate the motor and gait behavior. Importantly, the cytoplasmic TDP-43, via its binding to the intron1 sequence (GU/UG)n of the mouse Htt pre-mRNA, promotes the transport of exon1-intron1 Htt onto ribosome, resulting in the aberrant generation of exon1 Htt. Our findings suggest that cytoplasmic TDP-43 contributes to HD pathogenesis via its binding to and transport of nuclear un-spliced mRNA to the ribosome for the generation of a toxic protein product.
Collapse
Affiliation(s)
- Dazhang Bai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Fuyu Deng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
- Shenzhen Institute for Drug Control, Shenzhen Testing Center of Medical Devices, In Vitro Diagnostic Reagents Testing Department, Shenzhen, Guangdong, China
| | - Qingqing Jia
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
| | - Kaili Ou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
| | - Xiang Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
| | - Junqi Hou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
| | - Longhong Zhu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
| | - Mingwei Guo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
| | - Su Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shihua Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
| | - Xiao-Jiang Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
| | - Peng Yin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Lim LZ, Song J. NMR Dynamic View of the Stabilization of the WW4 Domain by Neutral NaCl and Kosmotropic Na 2SO 4 and NaH 2PO 4. Int J Mol Sci 2024; 25:9091. [PMID: 39201778 PMCID: PMC11354479 DOI: 10.3390/ijms25169091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
The Hofmeister series categorizes ions based on their effects on protein stability, yet the microscopic mechanism remains a mystery. In this series, NaCl is neutral, Na2SO4 and Na2HPO4 are kosmotropic, while GdmCl and NaSCN are chaotropic. This study employs CD and NMR to investigate the effects of NaCl, Na2SO4, and Na2HPO4 on the conformation, stability, binding, and backbone dynamics (ps-ns and µs-ms time scales) of the WW4 domain with a high stability and accessible side chains at concentrations ≤ 200 mM. The results indicated that none of the three salts altered the conformation of WW4 or showed significant binding to the four aliphatic hydrophobic side chains. NaCl had no effect on its thermal stability, while Na2SO4 and Na2HPO4 enhanced the stability by ~5 °C. Interestingly, NaCl only weakly interacted with the Arg27 amide proton, whereas Na2SO4 bound to Arg27 and Phe31 amide protons with Kd of 32.7 and 41.6 mM, respectively. Na2HPO4, however, bound in a non-saturable manner to Trp9, His24, and Asn36 amide protons. While the three salts had negligible effects on ps-ns backbone dynamics, NaCl and Na2SO4 displayed no effect while Na2HPO4 significantly increased the µs-ms backbone dynamics. These findings, combined with our recent results with GdmCl and NaSCN, suggest a microscopic mechanism for the Hofmeister series. Additionally, the data revealed a lack of simple correlation between thermodynamic stability and backbone dynamics, most likely due to enthalpy-entropy compensation. Our study rationalizes the selection of chloride and phosphate as the primary anions in extracellular and intracellular spaces, as well as polyphosphate as a primitive chaperone in certain single-cell organisms.
Collapse
Affiliation(s)
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
6
|
Lim LZ, Song J. NMR Dynamic View of the Destabilization of WW4 Domain by Chaotropic GdmCl and NaSCN. Int J Mol Sci 2024; 25:7344. [PMID: 39000450 PMCID: PMC11242413 DOI: 10.3390/ijms25137344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
GdmCl and NaSCN are two strong chaotropic salts commonly used in protein folding and stability studies, but their microscopic mechanisms remain enigmatic. Here, by CD and NMR, we investigated their effects on conformations, stability, binding and backbone dynamics on ps-ns and µs-ms time scales of a 39-residue but well-folded WW4 domain at salt concentrations ≤200 mM. Up to 200 mM, both denaturants did not alter the tertiary packing of WW4, but GdmCl exerted more severe destabilization than NaSCN. Intriguingly, GdmCl had only weak binding to amide protons, while NaSCN showed extensive binding to both hydrophobic side chains and amide protons. Neither denaturant significantly affected the overall ps-ns backbone dynamics, but they distinctively altered µs-ms backbone dynamics. This study unveils that GdmCl and NaSCN destabilize a protein before the global unfolding occurs with differential binding properties and µs-ms backbone dynamics, implying the absence of a simple correlation between thermodynamic stability and backbone dynamics of WW4 at both ps-ns and µs-ms time scales.
Collapse
Affiliation(s)
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
7
|
Tsekrekou M, Giannakou M, Papanikolopoulou K, Skretas G. Protein aggregation and therapeutic strategies in SOD1- and TDP-43- linked ALS. Front Mol Biosci 2024; 11:1383453. [PMID: 38855322 PMCID: PMC11157337 DOI: 10.3389/fmolb.2024.1383453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with severe socio-economic impact. A hallmark of ALS pathology is the presence of aberrant cytoplasmic inclusions composed of misfolded and aggregated proteins, including both wild-type and mutant forms. This review highlights the critical role of misfolded protein species in ALS pathogenesis, particularly focusing on Cu/Zn superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP-43), and emphasizes the urgent need for innovative therapeutic strategies targeting these misfolded proteins directly. Despite significant advancements in understanding ALS mechanisms, the disease remains incurable, with current treatments offering limited clinical benefits. Through a comprehensive analysis, the review focuses on the direct modulation of the misfolded proteins and presents recent discoveries in small molecules and peptides that inhibit SOD1 and TDP-43 aggregation, underscoring their potential as effective treatments to modify disease progression and improve clinical outcomes.
Collapse
Affiliation(s)
- Maria Tsekrekou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Maria Giannakou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Papanikolopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
- Institute for Bio-innovation, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
| |
Collapse
|
8
|
Song J. Adenosine Triphosphate: The Primordial Molecule That Controls Protein Homeostasis and Shapes the Genome-Proteome Interface. Biomolecules 2024; 14:500. [PMID: 38672516 PMCID: PMC11048592 DOI: 10.3390/biom14040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Adenosine triphosphate (ATP) acts as the universal energy currency that drives various biological processes, while nucleic acids function to store and transmit genetic information for all living organisms. Liquid-liquid phase separation (LLPS) represents the common principle for the formation of membrane-less organelles (MLOs) composed of proteins rich in intrinsically disordered regions (IDRs) and nucleic acids. Currently, while IDRs are well recognized to facilitate LLPS through dynamic and multivalent interactions, the precise mechanisms by which ATP and nucleic acids affect LLPS still remain elusive. This review summarizes recent NMR results on the LLPS of human FUS, TDP-43, and the viral nucleocapsid (N) protein of SARS-CoV-2, as modulated by ATP and nucleic acids, revealing the following: (1) ATP binds to folded domains overlapping with nucleic-acid-binding interfaces; (2) ATP and nucleic acids interplay to biphasically modulate LLPS by competitively binding to overlapping pockets of folded domains and Arg/Lys within IDRs; (3) ATP energy-independently induces protein folding with the highest efficiency known so far. As ATP likely emerged in the prebiotic monomeric world, while LLPS represents a pivotal mechanism to concentrate and compartmentalize rare molecules for forming primordial cells, ATP appears to control protein homeostasis and shape genome-proteome interfaces throughout the evolutionary trajectory, from prebiotic origins to modern cells.
Collapse
Affiliation(s)
- Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
9
|
Salaikumaran M, Gopal PP. Rational Design of TDP-43 Derived α-Helical Peptide Inhibitors: An In Silico Strategy to Prevent TDP-43 Aggregation in Neurodegenerative Disorders. ACS Chem Neurosci 2024; 15:1096-1109. [PMID: 38466778 PMCID: PMC10959110 DOI: 10.1021/acschemneuro.3c00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/21/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
TDP-43, an essential RNA/DNA-binding protein, is central to the pathology of neurodegenerative diseases, such as amyotrophic lateral sclerosis and frontotemporal dementia. Pathological mislocalization and aggregation of TDP-43 disrupt RNA splicing, mRNA stability, and mRNA transport, thereby impairing neuronal function and survival. The formation of amyloid-like TDP-43 filaments is largely facilitated by the destabilization of an α-helical segment within the disordered C-terminal region. In this study, we hypothesized that preventing the destabilization of the α-helical domain could potentially halt the growth of these pathological filaments. To explore this, we utilized a range of in silico techniques to design and evaluate peptide-based therapeutics that bind to pathological TDP-43 amyloid-like filament crystal structures and resist β sheet conversion. Our computational approaches, including biophysical and secondary structure property prediction, molecular docking, 3D structure prediction, and molecular dynamics simulations, were used to assess the structure, stability, and binding affinity of these peptides in relation to pathological TDP-43 filaments. The results of our in silico analyses identified a selection of promising peptides which displayed a stable α-helical structure, exhibited an increased number of intramolecular hydrogen bonds within the helical domain, and demonstrated high binding affinities for pathological TDP-43 amyloid-like filaments. Molecular dynamics simulations provided further support for the structural and thermodynamic stability of these peptides, as they exhibited lower root-mean-square deviation and more favorable free energy landscapes over 300 ns. These findings establish α-helical propensity peptides as potential lead molecules for the development of novel therapeutics against TDP-43 aggregation. This structure-based computational approach for the rational design of peptide inhibitors opens a new direction in the search for effective interventions for ALS, FTD, and other related neurodegenerative diseases. The peptides identified as the most promising candidates in this study are currently subject to further testing and validation through both in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Muthu
Raj Salaikumaran
- Department
of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| | - Pallavi P. Gopal
- Department
of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, United States
- Program
in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, Connecticut 06520-8055, United States
| |
Collapse
|
10
|
Zhu L, Deng F, Bai D, Hou J, Jia Q, Zhang C, Ou K, Li S, Li XJ, Yin P. Loss of TDP-43 mediates severe neurotoxicity by suppressing PJA1 gene transcription in the monkey brain. Cell Mol Life Sci 2024; 81:16. [PMID: 38194085 PMCID: PMC11072099 DOI: 10.1007/s00018-023-05066-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/19/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024]
Abstract
The nuclear loss and cytoplasmic accumulation of TDP-43 (TAR DNA/RNA binding protein 43) are pathological hallmarks of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Previously, we reported that the primate-specific cleavage of TDP-43 accounts for its cytoplasmic mislocalization in patients' brains. This prompted us to investigate further whether and how the loss of nuclear TDP-43 mediates neuropathology in primate brain. In this study, we report that TDP-43 knockdown at the similar effectiveness, induces more damage to neuronal cells in the monkey brain than rodent mouse. Importantly, the loss of TDP-43 suppresses the E3 ubiquitin ligase PJA1 expression in the monkey brain at transcriptional level, but yields an opposite upregulation of PJA1 in the mouse brain. This distinct effect is due to the species-dependent binding of nuclear TDP-43 to the unique promoter sequences of the PJA1 genes. Further analyses reveal that the reduction of PJA1 accelerates neurotoxicity, whereas overexpressing PJA1 diminishes neuronal cell death by the TDP-43 knockdown in vivo. Our findings not only uncover a novel primate-specific neurotoxic contribution to the loss of function theory of TDP-43 proteinopathy, but also underscore a potential therapeutic approach of PJA1 to the loss of nuclear TDP-43.
Collapse
Affiliation(s)
- Longhong Zhu
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Fuyu Deng
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Dazhang Bai
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, 637000, China
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Junqi Hou
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Qingqing Jia
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Chen Zhang
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Kaili Ou
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- Ministry of Education Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
- Ministry of Education Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| | - Peng Yin
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
- Ministry of Education Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
11
|
Lim L, Kang J, Song J. Extreme diversity of 12 cations in folding ALS-linked hSOD1 unveils novel hSOD1-dependent mechanisms for Fe 2+/Cu 2+-induced cytotoxicity. Sci Rep 2023; 13:19868. [PMID: 37964005 PMCID: PMC10645853 DOI: 10.1038/s41598-023-47338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/12/2023] [Indexed: 11/16/2023] Open
Abstract
153-Residue copper-zinc superoxide dismutase 1 (hSOD1) is the first gene whose mutation was linked to FALS. To date, > 180 ALS-causing mutations have been identified within hSOD1, yet the underlying mechanism still remains mysterious. Mature hSOD1 is exceptionally stable constrained by a disulfide bridge to adopt a Greek-key β-barrel fold that accommodates copper/zinc cofactors. Conversely, nascent hSOD1 is unfolded and susceptible to aggregation and amyloid formation, requiring Zn2+ to initiate folding to a coexistence of folded and unfolded states. Recent studies demonstrate mutations that disrupt Zn2+-binding correlate with their ability to form toxic aggregates. Therefore, to decode the role of cations in hSOD1 folding provides not only mechanistic insights, but may bear therapeutic implications for hSOD1-linked ALS. Here by NMR, we visualized the effect of 12 cations: 8 essential for humans (Na+, K+, Ca2+, Zn2+, Mg2+, Mn2+, Cu2+, Fe2+), 3 mimicking zinc (Ni2+, Cd2+, Co2+), and environmentally abundant Al3+. Surprisingly, most cations, including Zn2+-mimics, showed negligible binding or induction for folding of nascent hSOD1. Cu2+ exhibited extensive binding to the unfolded state but led to severe aggregation. Unexpectedly, for the first time Fe2+ was deciphered to have Zn2+-like folding-inducing capacity. Zn2+ was unable to induce folding of H80S/D83S-hSOD1, while Fe2+ could. In contrast, Zn2+ could trigger folding of G93A-hSOD1, but Fe2+ failed. Notably, pre-existing Fe2+ disrupted the Zn2+-induced folding of G93A-hSOD1. Comparing with the ATP-induced folded state, our findings delineate that hSOD1 maturation requires: (1) intrinsic folding capacity encoded by the sequence; (2) specific Zn2+-coordination; (3) disulfide formation and Cu-load catalyzed by hCCS. This study unveils a previously-unknown interplay of cations in governing the initial folding of hSOD1, emphasizing the pivotal role of Zn2+ in hSOD1-related ALS and implying new hSOD1-dependent mechanisms for Cu2+/Fe2+-induced cytotoxicity, likely relevant to aging and other diseases.
Collapse
Affiliation(s)
- Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Republic of Singapore
| | - Jian Kang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Republic of Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Republic of Singapore.
| |
Collapse
|
12
|
Salaikumaran MR, Gopal PP. Rational Design of TDP-43 Derived α-Helical Peptide Inhibitors: an In-Silico Strategy to Prevent TDP-43 Aggregation in Neurodegenerative Disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564235. [PMID: 37961353 PMCID: PMC10635017 DOI: 10.1101/2023.10.26.564235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
TDP-43, an essential RNA/DNA-binding protein, is central to the pathology of neurodegenerative diseases such as Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Pathological mislocalization and aggregation of TDP-43 disrupts RNA splicing, mRNA stability, and mRNA transport, thereby impairing neuronal function and survival. The formation of amyloid-like TDP-43 filaments is largely facilitated by the destabilization of an α-helical segment within the disordered C-terminal region. In this study, we hypothesized that preventing the destabilization of the α-helical domain could potentially halt the growth of these pathological filaments. To explore this, we utilized a range of in-silico techniques to design and evaluate peptide-based therapeutics. Various pathological TDP-43 amyloid-like filament crystal structures were selected for their potential to inhibit the binding of additional TDP-43 monomers to the growing filaments. Our computational approaches included biophysical and secondary structure property prediction, molecular docking, 3D structure prediction, and molecular dynamics simulations. Through these techniques, we were able to assess the structure, stability, and binding affinity of these peptides in relation to pathological TDP-43 filaments. The results of our in-silico analyses identified a selection of promising peptides, which displayed a stable α-helical structure, exhibited an increased number of intramolecular hydrogen bonds within the helical domain, and demonstrated high binding affinities for pathological TDP-43 amyloid-like filaments. Additionally, molecular dynamics simulations provided further support for the stability of these peptides, as they exhibited lower root mean square deviations in their helical propensity over 100ns. These findings establish α-helical propensity peptides as potential lead molecules for the development of novel therapeutics against TDP-43 aggregation. This structure-based computational approach for rational design of peptide inhibitors opens a new direction in the search for effective interventions for ALS, FTD, and other related neurodegenerative diseases. The peptides identified as the most promising candidates in this study are currently subject to further testing and validation through both in vitro and in vivo experiments.
Collapse
|
13
|
Gimenez J, Spalloni A, Cappelli S, Ciaiola F, Orlando V, Buratti E, Longone P. TDP-43 Epigenetic Facets and Their Neurodegenerative Implications. Int J Mol Sci 2023; 24:13807. [PMID: 37762112 PMCID: PMC10530927 DOI: 10.3390/ijms241813807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023] Open
Abstract
Since its initial involvement in numerous neurodegenerative pathologies in 2006, either as a principal actor or as a cofactor, new pathologies implicating transactive response (TAR) DNA-binding protein 43 (TDP-43) are regularly emerging also beyond the neuronal system. This reflects the fact that TDP-43 functions are particularly complex and broad in a great variety of human cells. In neurodegenerative diseases, this protein is often pathologically delocalized to the cytoplasm, where it irreversibly aggregates and is subjected to various post-translational modifications such as phosphorylation, polyubiquitination, and cleavage. Until a few years ago, the research emphasis has been focused particularly on the impacts of this aggregation and/or on its widely described role in complex RNA splicing, whether related to loss- or gain-of-function mechanisms. Interestingly, recent studies have strengthened the knowledge of TDP-43 activity at the chromatin level and its implication in the regulation of DNA transcription and stability. These discoveries have highlighted new features regarding its own transcriptional regulation and suggested additional mechanistic and disease models for the effects of TPD-43. In this review, we aim to give a comprehensive view of the potential epigenetic (de)regulations driven by (and driving) this multitask DNA/RNA-binding protein.
Collapse
Affiliation(s)
- Juliette Gimenez
- Molecular Neurobiology Laboratory, Experimental Neuroscience, IRCCS Fondazione Santa Lucia (FSL), 00143 Rome, Italy; (A.S.); (P.L.)
| | - Alida Spalloni
- Molecular Neurobiology Laboratory, Experimental Neuroscience, IRCCS Fondazione Santa Lucia (FSL), 00143 Rome, Italy; (A.S.); (P.L.)
| | - Sara Cappelli
- Molecular Pathology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (S.C.); (E.B.)
| | - Francesca Ciaiola
- Molecular Neurobiology Laboratory, Experimental Neuroscience, IRCCS Fondazione Santa Lucia (FSL), 00143 Rome, Italy; (A.S.); (P.L.)
- Department of Systems Medicine, University of Roma Tor Vergata, 00133 Rome, Italy
| | - Valerio Orlando
- KAUST Environmental Epigenetics Program, Biological Environmental Sciences and Engineering Division BESE, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Emanuele Buratti
- Molecular Pathology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (S.C.); (E.B.)
| | - Patrizia Longone
- Molecular Neurobiology Laboratory, Experimental Neuroscience, IRCCS Fondazione Santa Lucia (FSL), 00143 Rome, Italy; (A.S.); (P.L.)
| |
Collapse
|
14
|
Kang J, Lim L, Song J. ATP induces folding of ALS-causing C71G-hPFN1 and nascent hSOD1. Commun Chem 2023; 6:186. [PMID: 37670116 PMCID: PMC10480188 DOI: 10.1038/s42004-023-00997-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
ALS-causing C71G-hPFN1 coexists in both folded and unfolded states, while nascent hSOD1 is unfolded. So far, the mechanisms underlying their ALS-triggering potential remain enigmatic. Here we show by NMR that ATP completely converts C71G-hPFN1 into the folded state at a 1:2 ratio, while inducing nascent hSOD1 into two co-existing states at a 1:8 ratio. Surprisingly, the inducing capacity of ATP comes from its triphosphate, but free triphosphate triggers aggregation. The inducing capacity ranks as: ATP = ATPP = PPP > ADP = AMP-PNP = AMP-PCP = PP, while AMP, adenosine, P, and NaCl show no conversion. Mechanistically, ATP and triphosphate appear to enhance the intrinsic folding capacity encoded in the sequences, as unveiled by comparing conformations and dynamics of ATP- and Zn2+-induced hSOD1 folded states. Our study provides a mechanism for the finding that some single-cell organisms employ polyphosphates as primordial chaperones, and sheds light on the enigma of age-related onset of familial ALS and risk increase of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Kang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260, Singapore
| | - Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260, Singapore.
| |
Collapse
|
15
|
Patni D, Jha SK. Thermodynamic modulation of folding and aggregation energy landscape by DNA binding of functional domains of TDP-43. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140916. [PMID: 37061152 DOI: 10.1016/j.bbapap.2023.140916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
TDP-43 is a vital nucleic acid binding protein which forms stress-induced aberrant aggregates in around 97% cases of ALS, a fatal neurodegenerative disease. The functional tandem RRM domain of the protein (TDP-43tRRM) has been shown to undergo amyloid-like aggregation under stress in a pH-dependent fashion. However, the underlying thermodynamic and molecular basis of aggregation and how the energy landscape of folding, stability, and aggregation are coupled and modulated by nucleic acid binding is poorly understood. Here, we show that the pH stress thermodynamically destabilizes the native protein and systematically populates the unfolded-like aggregation-prone molecules which leads to amyloid-like aggregation. We observed that specific DNA binding inhibits aggregation and populates native-like compact monomeric state even under low-pH stress as measured by circular dichroism, ANS binding, size exclusion chromatography, and transmission electron microscopy. We show that DNA-binding thermodynamically stabilizes and populates the native state even under stress and reduces the population of unfolded-like aggregation-prone molecules which leads to systematic aggregation inhibition. Our results suggest that thermodynamic modulation of the folding and aggregation energy landscape by nucleic-acid-like molecules could be a promising approach for effective therapeutic intervention in TDP-43-associated proteinopathies.
Collapse
Affiliation(s)
- Divya Patni
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
16
|
Arnold FJ, Nguyen AD, Bedlack RS, Bennett CL, La Spada AR. Intercellular transmission of pathogenic proteins in ALS: Exploring the pathogenic wave. Neurobiol Dis 2023:106218. [PMID: 37394036 DOI: 10.1016/j.nbd.2023.106218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023] Open
Abstract
In patients with amyotrophic lateral sclerosis (ALS), disease symptoms and pathology typically spread in a predictable spatiotemporal pattern beginning at a focal site of onset and progressing along defined neuroanatomical tracts. Like other neurodegenerative diseases, ALS is characterized by the presence of protein aggregates in postmortem patient tissue. Cytoplasmic, ubiquitin-positive aggregates of TDP-43 are observed in approximately 97% of sporadic and familial ALS patients, while SOD1 inclusions are likely specific to cases of SOD1-ALS. Additionally, the most common subtype of familial ALS, caused by a hexanucleotide repeat expansion in the first intron of the C9orf72 gene (C9-ALS), is further characterized by the presence of aggregated dipeptide repeat proteins (DPRs). As we will describe, cell-to-cell propagation of these pathological proteins tightly correlates with the contiguous spread of disease. While TDP-43 and SOD1 are capable of seeding protein misfolding and aggregation in a prion-like manner, C9orf72 DPRs appear to induce (and transmit) a 'disease state' more generally. Multiple mechanisms of intercellular transport have been described for all of these proteins, including anterograde and retrograde axonal transport, extracellular vesicle secretion, and macropinocytosis. In addition to neuron-to-neuron transmission, transmission of pathological proteins occurs between neurons and glia. Given that the spread of ALS disease pathology corresponds with the spread of symptoms in patients, the various mechanisms by which ALS-associated protein aggregates propagate through the central nervous system should be closely examined.
Collapse
Affiliation(s)
- F J Arnold
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - A D Nguyen
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - R S Bedlack
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - C L Bennett
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - A R La Spada
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; Departments of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; Department of Neurology, University of California, Irvine, Irvine, CA, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA; UCI Center for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
17
|
Bai D, Zhu L, Jia Q, Duan X, Chen L, Wang X, Hou J, Jiang G, Yang S, Li S, Li XJ, Yin P. Loss of TDP-43 promotes somatic CAG repeat expansion in Huntington's disease knock-in mice. Prog Neurobiol 2023:102484. [PMID: 37315918 DOI: 10.1016/j.pneurobio.2023.102484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/26/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
TAR binding protein 43 (TDP-43) is normally present in the nucleus but mislocalized in the cytoplasm in a number of neurodegenerative diseases including Huntington's disease (HD). The nuclear loss of TDP-43 impairs gene transcription and regulation. However, it remains to be investigated whether loss of TDP-43 influences trinucleotide CAG repeat expansion in the HD gene, a genetic cause for HD. Here we report that CRISPR/Cas9 mediated-knock down of endogenous TDP-43 in the striatum of HD knock-in mice promoted CAG repeat expansion, accompanied by the increased expression of the DNA mismatch repair genes, Msh3 and Mlh1, which have been reported to increase trinucleotide repeat instability. Furthermore, suppressing Msh3 and Mlh1 by CRISPR/Cas9 targeting diminished the CAG repeat expansion. These findings suggest that nuclear TDP-43 deficiency may dysregulate the expression of DNA mismatch repair genes, leading to CAG repeat expansion and contributing to the pathogenesis of CAG repeat diseases. DATA AVAILABILITY: The key data supporting the findings of this study are presented within the article and the Supplemental Information. The RNA sequencing reported in this paper can be found at https://doi.org/10.6084/m9.figshare.22639429.
Collapse
Affiliation(s)
- Dazhang Bai
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632; Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of neurological diseases, North Sichuan Medical College, Nanchong, China, 637000
| | - Longhong Zhu
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632
| | - Qingqing Jia
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632
| | - Xuezhi Duan
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632
| | - Laiqiang Chen
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632
| | - Xiang Wang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632
| | - Junqi Hou
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632
| | - Guohui Jiang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632; Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of neurological diseases, North Sichuan Medical College, Nanchong, China, 637000
| | - Su Yang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632.
| | - Peng Yin
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632.
| |
Collapse
|
18
|
Kang J, Lim L, Song J. ALS-causing hPFN1 mutants differentially disrupt LLPS of FUS prion-like domain. Biochem Biophys Res Commun 2023; 664:35-42. [PMID: 37130459 DOI: 10.1016/j.bbrc.2023.04.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/27/2023] [Indexed: 05/04/2023]
Abstract
hPFN1 mutations including C71G cause ALS by gain of toxicity but the mechanism still remains unknown. Stress granules (SGs) are formed by phase separation of the prion-like domain (PLD) of RNA-binding proteins including FUS, whose inclusion was also associated with ALS. C71G-hPFN1 triggers seed-dependent co-aggregation with FUS/TDP-43 to manifest the prion-like propagandation but its biophysical basis remains unexplored. Here by DIC imaging we first showed that three hPFN1 mutants have differential capacity in disrupting the dynamics of liquid droplets formed by phase separation of FUS prion-like domain (PLD). C71G-hPFN1 co-exists with the folded and unfolded states, thus allowing to simultaneously characterize conformations, hydrodynamics and dynamics of the interactions of both states with the phase separated FUS PLD by NMR. The results reveal that the folded state is not significantly affected while by contrast, the unfolded state has extensive interactions with FUS PLD. As a consequence, the dynamics of FUS liquid droplets become significantly reduced. Such interactions might act to recruit C71G-hPFN1 into the droplets, thus leading to the increase of the local concentrations and subsequent co-aggregation of C71G-hPFN1 with FUS. Our study sheds the first light on the biophysical basis by which hPFN1 mutants gain toxicity to cause ALS. As other aggregation-prone proteins have no fundamental difference from hPFN1 mutants, aggregation-prone proteins might share a common capacity in disrupting phase separation responsible for organizing various membrane-less organelles. As such, the mechanism for C71G-hPFN1 might also be utilized by other aggregation-prone proteins for gain of toxicity to trigger diseases and aging.
Collapse
Affiliation(s)
- Jian Kang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | - Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore.
| |
Collapse
|
19
|
Doke AA, Jha SK. Shapeshifter TDP-43: Molecular mechanism of structural polymorphism, aggregation, phase separation and their modulators. Biophys Chem 2023; 295:106972. [PMID: 36812677 DOI: 10.1016/j.bpc.2023.106972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
TDP-43 is a nucleic acid-binding protein that performs physiologically essential functions and is known to undergo phase separation and aggregation during stress. Initial observations have shown that TDP-43 forms heterogeneous assemblies, including monomer, dimer, oligomers, aggregates, phase-separated assemblies, etc. However, the significance of each assembly of TDP-43 concerning its function, phase separation, and aggregation is poorly known. Furthermore, how different assemblies of TDP-43 are related to each other is unclear. In this review, we focus on the various assemblies of TDP-43 and discuss the plausible origin of the structural heterogeneity of TDP-43. TDP-43 is involved in multiple physiological processes like phase separation, aggregation, prion-like seeding, and performing physiological functions. However, the molecular mechanism behind the physiological process performed by TDP-43 is not well understood. The current review discusses the plausible molecular mechanism of phase separation, aggregation, and prion-like propagation of TDP-43.
Collapse
Affiliation(s)
- Abhilasha A Doke
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
20
|
Shenoy J, Lends A, Berbon M, Bilal M, El Mammeri N, Bertoni M, Saad A, Morvan E, Grélard A, Lecomte S, Theillet FX, Buell AK, Kauffmann B, Habenstein B, Loquet A. Structural polymorphism of the low-complexity C-terminal domain of TDP-43 amyloid aggregates revealed by solid-state NMR. Front Mol Biosci 2023; 10:1148302. [PMID: 37065450 PMCID: PMC10095165 DOI: 10.3389/fmolb.2023.1148302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Aberrant aggregation of the transactive response DNA-binding protein (TDP-43) is associated with several lethal neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal dementia. Cytoplasmic neuronal inclusions of TDP-43 are enriched in various fragments of the low-complexity C-terminal domain and are associated with different neurotoxicity. Here we dissect the structural basis of TDP-43 polymorphism using magic-angle spinning solid-state NMR spectroscopy in combination with electron microscopy and Fourier-transform infrared spectroscopy. We demonstrate that various low-complexity C-terminal fragments, namely TDP-13 (TDP-43300–414), TDP-11 (TDP-43300–399), and TDP-10 (TDP-43314–414), adopt distinct polymorphic structures in their amyloid fibrillar state. Our work demonstrates that the removal of less than 10% of the low-complexity sequence at N- and C-termini generates amyloid fibrils with comparable macroscopic features but different local structural arrangement. It highlights that the assembly mechanism of TDP-43, in addition to the aggregation of the hydrophobic region, is also driven by complex interactions involving low-complexity aggregation-prone segments that are a potential source of structural polymorphism.
Collapse
Affiliation(s)
- Jayakrishna Shenoy
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Alons Lends
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Mélanie Berbon
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Muhammed Bilal
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Nadia El Mammeri
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Mathilde Bertoni
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Ahmad Saad
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Estelle Morvan
- University Bordeaux, CNRS, INSERM, IECB, UAR 3033, Pessac, France
| | - Axelle Grélard
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Sophie Lecomte
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - François-Xavier Theillet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-surYvette Cedex, France
| | - Alexander K. Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Brice Kauffmann
- University Bordeaux, CNRS, INSERM, IECB, UAR 3033, Pessac, France
| | - Birgit Habenstein
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
- *Correspondence: Birgit Habenstein, ; Antoine Loquet,
| | - Antoine Loquet
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
- *Correspondence: Birgit Habenstein, ; Antoine Loquet,
| |
Collapse
|
21
|
Herrera MG, Amundarain MJ, Santos J. Biophysical evaluation of the oligomerization and conformational properties of the N-terminal domain of TDP-43. Arch Biochem Biophys 2023; 737:109533. [PMID: 36740035 DOI: 10.1016/j.abb.2023.109533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/08/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
TDP-43 is an RNA-binding protein that presents four domains comprising an N-terminal region, two RNA recognition motifs and a C-terminal region. The N-terminal domain (NTD) has a relevant role in the oligomerization and splicing activity of TDP-43. In this work, we have expressed, purified and biophysically characterized the region that includes residues 1 to 102 that contains the nuclear localization signal (residues 80-102, NLS). Furthermore, we have evaluated the oligomerization equilibrium for this protein fragment. Also, we have determined changes in the tertiary structure and its stability in a broad range of pH values by means of different spectroscopic methods. Additionally, we compared this fragment with the one that lacks the NLS employing experimental and computational methods. Finally, we evaluated the motion of dimeric forms to get insights into the conformational flexibility of this TDP-43 module in an oligomeric state. Our results suggest that this domain has a conformational plasticity in the vicinity of the single tryptophan of this domain (Trp68), which is enhanced by the presence of the nuclear localization signal. All these results help to understand the molecular features of the NTD of TDP-43.
Collapse
Affiliation(s)
- Maria Georgina Herrera
- Faculty of Exact and Natural Sciences, Institute of Biosciences, Biotechnology and Translational Biology (iB3), University of Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina; Institute of Biochemistry and Pathobiochemistry, Ruhr-Universität Bochum, Gebäude MA 2/143, Universitätsstraße 150, 44801, Bochum, Germany.
| | - Maria Julia Amundarain
- Faculty of Chemistry, OCIII, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Javier Santos
- Faculty of Exact and Natural Sciences, Institute of Biosciences, Biotechnology and Translational Biology (iB3), University of Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| |
Collapse
|
22
|
Dang M, Li T, Song J. ATP and nucleic acids competitively modulate LLPS of the SARS-CoV2 nucleocapsid protein. Commun Biol 2023; 6:80. [PMID: 36681763 PMCID: PMC9862227 DOI: 10.1038/s42003-023-04480-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
SARS-CoV-2 nucleocapsid (N) protein with very low mutation rates is the only structural protein which not only functions to package viral genomic RNA, but also manipulates host-cell machineries, thus representing a key target for drug development. Recent discovery of its liquid-liquid phase separation (LLPS) opens up a new direction for developing anti-SARS-CoV-2 strategies/drugs. However, so far the high-resolution mechanism of its LLPS still remains unknown. Here by DIC and NMR characterization, we have demonstrated: 1) nucleic acids modulate LLPS by dynamic and multivalent interactions over both folded NTD/CTD and Arg/Lys residues within IDRs; 2) ATP with concentrations > mM in all living cells but absent in viruses not only binds NTD/CTD, but also Arg residues within IDRs with a Kd of 2.8 mM; and 3) ATP dissolves nucleic-acid-induced LLPS by competitively displacing nucleic acid from binding the protein. Our study deciphers that the essential binding of N protein with nucleic acid and its LLPS are targetable by small molecules including ATP, which is emerging as a cellular factor controlling the host-SARS-CoV-2 interaction. Fundamentally, our results imply that the mechanisms of LLPS of IDR-containing proteins mediated by ATP and nucleic acids appear to be highly conserved from human to virus.
Collapse
Affiliation(s)
- Mei Dang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore, Singapore
| | - Tongyang Li
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore, Singapore.
| |
Collapse
|
23
|
Arg/Lys-containing IDRs are cryptic binding domains for ATP and nucleic acids that interplay to modulate LLPS. Commun Biol 2022; 5:1315. [PMID: 36450893 PMCID: PMC9712531 DOI: 10.1038/s42003-022-04293-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Most membrane-less organelles (MLOs) formed by LLPS contain both nucleic acids and IDR-rich proteins. Currently while IDRs are well-recognized to drive LLPS, nucleic acids are thought to exert non-specific electrostatic/salt effects. TDP-43 functions by binding RNA/ssDNA and its LLPS was characterized without nucleic acids to be driven mainly by PLD-oligomerization, which may further transit into aggregation characteristic of various neurodegenerative diseases. Here by NMR, we discovered unexpectedly for TDP-43 PLD: 1) ssDNAs drive and then dissolve LLPS by multivalently and specifically binding Arg/Lys. 2) LLPS is driven by nucleic-acid-binding coupled with PLD-oligomerization. 3) ATP and nucleic acids universally interplay in modulating LLPS by competing for binding Arg/Lys. However, the unique hydrophobic region within PLD renders LLPS to exaggerate into aggregation. The study not only unveils the first residue-resolution mechanism of the nucleic-acid-driven LLPS of TDP-43 PLD, but also decodes a general principle that not just TDP-43 PLD, all Arg/Lys-containing IDRs are cryptic nucleic-acid-binding domains that may phase separate upon binding nucleic acids. Strikingly, ATP shares a common mechanism with nucleic acids in binding IDRs, thus emerging as a universal mediator for interactions between IDRs and nucleic acids, which may underlie previously-unrecognized roles of ATP at mM in physiology and pathology.
Collapse
|
24
|
Luo J, Harrison PM. Evolution of sequence traits of prion-like proteins linked to amyotrophic lateral sclerosis (ALS). PeerJ 2022; 10:e14417. [PMID: 36415860 PMCID: PMC9676014 DOI: 10.7717/peerj.14417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
Prions are proteinaceous particles that can propagate an alternative conformation to further copies of the same protein. They have been described in mammals, fungi, bacteria and archaea. Furthermore, across diverse organisms from bacteria to eukaryotes, prion-like proteins that have similar sequence characters are evident. Such prion-like proteins have been linked to pathomechanisms of amyotrophic lateral sclerosis (ALS) in humans, in particular TDP43, FUS, TAF15, EWSR1 and hnRNPA2. Because of the desire to study human disease-linked proteins in model organisms, and to gain insights into the functionally important parts of these proteins and how they have changed across hundreds of millions of years of evolution, we analyzed how the sequence traits of these five proteins have evolved across eukaryotes, including plants and metazoa. We discover that the RNA-binding domain architecture of these proteins is deeply conserved since their emergence. Prion-like regions are also deeply and widely conserved since the origination of the protein families for FUS, TAF15 and EWSR1, and since the last common ancestor of metazoa for TDP43 and hnRNPA2. Prion-like composition is uncommon or weak in any plant orthologs observed, however in TDP43 many plant proteins have equivalent regions rich in other amino acids (namely glycine and tyrosine and/or serine) that may be linked to stress granule recruitment. Deeply conserved low-complexity domains are identified that likely have functional significance.
Collapse
|
25
|
Tamaki Y, Urushitani M. Molecular Dissection of TDP-43 as a Leading Cause of ALS/FTLD. Int J Mol Sci 2022; 23:ijms232012508. [PMID: 36293362 PMCID: PMC9604209 DOI: 10.3390/ijms232012508] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
TAR DNA binding protein 43 (TDP-43) is a DNA/RNA binding protein involved in pivotal cellular functions, especially in RNA metabolism. Hyperphosphorylated and ubiquitinated TDP-43-positive neuronal cytoplasmic inclusions are identified in the brain and spinal cord in most cases of amyotrophic lateral sclerosis (ALS) and a substantial proportion of frontotemporal lobar degeneration (FTLD) cases. TDP-43 dysfunctions and cytoplasmic aggregation seem to be the central pathogenicity in ALS and FTLD. Therefore, unraveling both the physiological and pathological mechanisms of TDP-43 may enable the exploration of novel therapeutic strategies. This review highlights the current understanding of TDP-43 biology and pathology, describing the cellular processes involved in the pathogeneses of ALS and FTLD, such as post-translational modifications, RNA metabolism, liquid–liquid phase separation, proteolysis, and the potential prion-like propagation propensity of the TDP-43 inclusions.
Collapse
Affiliation(s)
- Yoshitaka Tamaki
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Makoto Urushitani
- Department of Neurology, Shiga University of Medical Science, Otsu 520-2192, Japan
- Correspondence:
| |
Collapse
|
26
|
Tran NN, Lee BH. Functional implication of ubiquitinating and deubiquitinating mechanisms in TDP-43 proteinopathies. Front Cell Dev Biol 2022; 10:931968. [PMID: 36158183 PMCID: PMC9500471 DOI: 10.3389/fcell.2022.931968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/23/2022] [Indexed: 11/15/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in which motor neurons in spinal cord and motor cortex are progressively lost. About 15% cases of ALS also develop the frontotemporal dementia (FTD), in which the frontotemporal lobar degeneration (FTLD) occurs in the frontal and temporal lobes of the brain. Among the pathologic commonalities in ALS and FTD is ubiquitin-positive cytoplasmic aggregation of TDP-43 that may reflect both its loss-of-function and gain-of-toxicity from proteostasis impairment. Deep understanding of how protein quality control mechanisms regulate TDP-43 proteinopathies still remains elusive. Recently, a growing body of evidence indicates that ubiquitinating and deubiquitinating pathways are critically engaged in the fate decision of aberrant or pathological TDP-43 proteins. E3 ubiquitin ligases coupled with deubiquitinating enzymes may influence the TDP-43-associated proteotoxicity through diverse events, such as protein stability, translocation, and stress granule or inclusion formation. In this article, we recapitulate our current understanding of how ubiquitinating and deubiquitinating mechanisms can modulate TDP-43 protein quality and its pathogenic nature, thus shedding light on developing targeted therapies for ALS and FTD by harnessing protein degradation machinery.
Collapse
Affiliation(s)
- Non-Nuoc Tran
- Department of New Biology, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Byung-Hoon Lee
- Department of New Biology, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
- Department of New Biology Research Center (NBRC), Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
- *Correspondence: Byung-Hoon Lee,
| |
Collapse
|
27
|
Yin P, Bai D, Deng F, Zhang C, Jia Q, Zhu L, Chen L, Li B, Guo X, Ye J, Tan Z, Wang L, Li S, Li XJ. SQSTM1-mediated clearance of cytoplasmic mutant TARDBP/TDP-43 in the monkey brain. Autophagy 2022; 18:1955-1968. [PMID: 34936539 PMCID: PMC9466617 DOI: 10.1080/15548627.2021.2013653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
The cytoplasmic accumulation and aggregates of TARDBP/TDP-43 (TAR DNA binding protein) are a pathological hallmark in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. We previously reported that the primate specific cleavage of TARDBP accounts for its cytoplasmic mislocalization in the primate brains, prompting us to further investigate how the cytoplasmic TARDBP mediates neuropathology. Here we reported that cytoplasmic mutant TARDBP reduced SQSTM1 expression selectively in the monkey brain, when compared with the mouse brain, by inducing SQSTM1 mRNA instability via its binding to the unique 3'UTR sequence (GU/UG)n of the primate SQSTM1 transcript. Overexpression of SQSTM1 could diminish the cytoplasmic C-terminal TARDBP accumulation in the monkey brain by augmenting macroautophagy/autophagy activity. Our findings provide additional clues for the pathogenesis of cytoplasmic TARDBP and a potential therapy for mutant TARDBP-mediated neuropathology.
Collapse
Affiliation(s)
- Peng Yin
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Dazhang Bai
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Fuyu Deng
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Chen Zhang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Qingqing Jia
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Longhong Zhu
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Laiqiang Chen
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Bang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Xiangyu Guo
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Jianmeng Ye
- Guangdong Landao Biotechnology Co. Ltd, Guangzhou, China
| | - Zhiqiang Tan
- Department of Medical Imaging, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lu Wang
- Department of Medical Imaging, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
28
|
Conversion of the Native N-Terminal Domain of TDP-43 into a Monomeric Alternative Fold with Lower Aggregation Propensity. Molecules 2022; 27:molecules27134309. [PMID: 35807552 PMCID: PMC9268139 DOI: 10.3390/molecules27134309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 11/17/2022] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) forms intraneuronal cytoplasmic inclusions associated with amyotrophic lateral sclerosis and ubiquitin-positive frontotemporal lobar degeneration. Its N-terminal domain (NTD) can dimerise/oligomerise with the head-to-tail arrangement, which is essential for function but also favours liquid-liquid phase separation and inclusion formation of full-length TDP-43. Using various biophysical approaches, we identified an alternative conformational state of NTD in the presence of Sulfobetaine 3-10 (SB3-10), with higher content of α-helical structure and tryptophan solvent exposure. NMR shows a highly mobile structure, with partially folded regions and β-sheet content decrease, with a concomitant increase of α-helical structure. It is monomeric and reverts to native oligomeric NTD upon SB3-10 dilution. The equilibrium GdnHCl-induced denaturation shows a cooperative folding and a somewhat lower conformational stability. When the aggregation processes were compared with and without pre-incubation with SB3-10, but at the identical final SB3-10 concentration, a slower aggregation was found in the former case, despite the reversible attainment of the native conformation in both cases. This was attributed to protein monomerization and oligomeric seeds disruption by the conditions promoting the alternative conformation. Overall, the results show a high plasticity of TDP-43 NTD and identify strategies to monomerise TDP-43 NTD for methodological and biomedical applications.
Collapse
|
29
|
Doke AA, Jha SK. Effect of In Vitro Solvation Conditions on Inter- and Intramolecular Assembly of Full-Length TDP-43. J Phys Chem B 2022; 126:4799-4813. [PMID: 35758053 DOI: 10.1021/acs.jpcb.2c02203] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cellular stress is a major cause of neurodegenerative diseases. In particular, in amyotrophic lateral sclerosis (ALS), around 90% of the cases are believed to occur due to aggregation and misfolding of TDP-43 protein in neurons due to aging and chronic environmental stress. However, the physicochemical basis of how TDP-43 senses the change in solvation conditions during stress and misfolds remains very poorly understood. We show here that the full-length human TDP-43 can exist in equilibrium with multiple structural states. The equilibrium between these states is highly sensitive to changes in solvation conditions. We show that upon thermal and pH stress, amyloidogenic oligomers can form amyloid-like fibrils. However, the internal structure of the fibril depends upon the physicochemical nature of stress. Our results present a physical basis of the effect of solvation conditions on inter- and intramolecular assembly formation of TDP-43 and reconcile why the nature and the internal structure of the aggregated form have been found to be different when extracted from the brain of different ALS patients.
Collapse
Affiliation(s)
- Abhilasha A Doke
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
30
|
Krause LJ, Herrera MG, Winklhofer KF. The Role of Ubiquitin in Regulating Stress Granule Dynamics. Front Physiol 2022; 13:910759. [PMID: 35694405 PMCID: PMC9174786 DOI: 10.3389/fphys.2022.910759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Stress granules (SGs) are dynamic, reversible biomolecular condensates, which assemble in the cytoplasm of eukaryotic cells under various stress conditions. Formation of SGs typically occurs upon stress-induced translational arrest and polysome disassembly. The increase in cytoplasmic mRNAs triggers the formation of a protein-RNA network that undergoes liquid-liquid phase separation when a critical interaction threshold has been reached. This adaptive stress response allows a transient shutdown of several cellular processes until the stress is removed. During the recovery from stress, SGs disassemble to re-establish cellular activities. Persistent stress and disease-related mutations in SG components favor the formation of aberrant SGs that are impaired in disassembly and prone to aggregation. Recently, posttranslational modifications of SG components have been identified as major regulators of SG dynamics. Here, we summarize new insights into the role of ubiquitination in affecting SG dynamics and clearance and discuss implications for neurodegenerative diseases linked to aberrant SG formation.
Collapse
Affiliation(s)
- Laura J. Krause
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- RESOLV Cluster of Excellence, Ruhr University Bochum, Bochum, Germany
| | - Maria G. Herrera
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Konstanze F. Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- RESOLV Cluster of Excellence, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
31
|
Li R, Singh R, Kashav T, Yang C, Sharma RD, Lynn AM, Prasad R, Prakash A, Kumar V. Computational Insights of Unfolding of N-Terminal Domain of TDP-43 Reveal the Conformational Heterogeneity in the Unfolding Pathway. Front Mol Neurosci 2022; 15:822863. [PMID: 35548668 PMCID: PMC9083116 DOI: 10.3389/fnmol.2022.822863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
TDP-43 proteinopathies is a disease hallmark that characterizes amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). The N-terminal domain of TDP-43 (NTD) is important to both TDP-43 physiology and TDP-43 proteinopathy. However, its folding and dimerization process is still poorly characterized. In the present study, we have investigated the folding/unfolding of NTD employing all-atom molecular dynamics (MD) simulations in 8 M dimethylsulfoxide (DMSO) at high temperatures. The MD results showed that the unfolding of the NTD at high temperature evolves through the formation of a number of conformational states differing in their stability and free energy. The presence of structurally heterogeneous population of intermediate ensembles was further characterized by the different extents of solvent exposure of Trp80 during unfolding. We suggest that these non-natives unfolded intermediate ensembles may facilitate NTD oligomerization and subsequently TDP-43 oligomerization, which might lead to the formation of irreversible pathological aggregates, characteristics of disease pathogenesis.
Collapse
Affiliation(s)
- Ruiting Li
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, China
| | - Ruhar Singh
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Tara Kashav
- Department of Life Science, Central University of South Bihar, Gaya, India
| | - ChunMin Yang
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, China
| | - Ravi Datta Sharma
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, India
| | - Andrew M. Lynn
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rajendra Prasad
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health (AIISH), Amity University Haryana, Gurgaon, India
- *Correspondence: Vijay Kumar Amresh Prakash
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences (AINN), Amity University, Noida, India
- *Correspondence: Vijay Kumar Amresh Prakash
| |
Collapse
|
32
|
Hassan MN, Nabi F, Khan AN, Hussain M, Siddiqui WA, Uversky VN, Khan RH. The amyloid state of proteins: A boon or bane? Int J Biol Macromol 2022; 200:593-617. [PMID: 35074333 DOI: 10.1016/j.ijbiomac.2022.01.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/05/2022]
Abstract
Proteins and their aggregation is significant field of research due to their association with various conformational maladies including well-known neurodegenerative diseases like Alzheimer's (AD), Parkinson's (PD), and Huntington's (HD) diseases. Amyloids despite being given negative role for decades are also believed to play a functional role in bacteria to humans. In this review, we discuss both facets of amyloid. We have shed light on AD, which is one of the most common age-related neurodegenerative disease caused by accumulation of Aβ fibrils as extracellular senile plagues. We also discuss PD caused by the aggregation and deposition of α-synuclein in form of Lewy bodies and neurites. Other amyloid-associated diseases such as HD and amyotrophic lateral sclerosis (ALS) are also discussed. We have also reviewed functional amyloids that have various biological roles in both prokaryotes and eukaryotes that includes formation of biofilm and cell attachment in bacteria to hormone storage in humans, We discuss in detail the role of Curli fibrils' in biofilm formation, chaplins in cell attachment to peptide hormones, and Pre-Melansomal Protein (PMEL) roles. The disease-related and functional amyloids are compared with regard to their structural integrity, variation in regulation, and speed of forming aggregates and elucidate how amyloids have turned from foe to friend.
Collapse
Affiliation(s)
- Md Nadir Hassan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Asra Nasir Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Murtaza Hussain
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Waseem A Siddiqui
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Vladimir N Uversky
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, 10 Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy 11 of Sciences", Pushchino, Moscow Region 142290, Russia; Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College 13 of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
33
|
Sequence-specific RNA recognition by an RGG motif connects U1 and U2 snRNP for spliceosome assembly. Proc Natl Acad Sci U S A 2022; 119:2114092119. [PMID: 35101980 PMCID: PMC8833184 DOI: 10.1073/pnas.2114092119] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 01/14/2023] Open
Abstract
In mammals, the structural basis for the interaction between U1 and U2 small nuclear ribonucleoproteins (snRNPs) during the early steps of splicing is still elusive. The binding of the ubiquitin-like (UBL) domain of SF3A1 to the stem-loop 4 of U1 snRNP (U1-SL4) contributes to this interaction. Here, we determined the 3D structure of the complex between the UBL of SF3A1 and U1-SL4 RNA. Our crystallography, NMR spectroscopy, and cross-linking mass spectrometry data show that SF3A1-UBL recognizes, sequence specifically, the GCG/CGC RNA stem and the apical UUCG tetraloop of U1-SL4. In vitro and in vivo mutational analyses support the observed intermolecular contacts and demonstrate that the carboxyl-terminal arginine-glycine-glycine-arginine (RGGR) motif of SF3A1-UBL binds sequence specifically by inserting into the RNA major groove. Thus, the characterization of the SF3A1-UBL/U1-SL4 complex expands the repertoire of RNA binding domains and reveals the capacity of RGG/RG motifs to bind RNA in a sequence-specific manner.
Collapse
|
34
|
Dang M, Lim L, Roy A, Song J. Myricetin Allosterically Inhibits the Dengue NS2B-NS3 Protease by Disrupting the Active and Locking the Inactive Conformations. ACS OMEGA 2022; 7:2798-2808. [PMID: 35097276 PMCID: PMC8793048 DOI: 10.1021/acsomega.1c05569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/31/2021] [Indexed: 05/22/2023]
Abstract
The dengue NS2B-NS3 protease existing in equilibrium between the active and inactive forms is essential for virus replication, thus representing a key drug target. Here, myricetin, a plant flavonoid, was characterized to noncompetitively inhibit the dengue protease. Further NMR study identified the protease residues perturbed by binding to myricetin, which were utilized to construct the myricetin-protease complexes. Strikingly, in the active form, myricetin binds to a new allosteric site (AS2) far away from the active site pocket and the allosteric site (AS1) for binding curcumin, while in the inactive form, it binds to both AS1 and AS2. To decipher the mechanism for the allosteric inhibition by myricetin, we conducted molecular dynamics simulations on different forms of dengue NS2B-NS3 proteases. Unexpectedly, the binding of myricetin to AS2 is sufficient to disrupt the active conformation by displacing the characteristic NS2B C-terminal β-hairpin from the active site pocket. By contrast, the binding of myricetin to AS1 and AS2 results in locking the inactive conformation. Therefore, myricetin represents the first small molecule, which allosterically inhibits the dengue protease by both disrupting the active conformation and locking the inactive conformation. The results enforce the notion that a global allosteric network exists in the dengue NS2B-NS3 protease, which is susceptible to allosteric inhibition by small molecules such as myricetin and curcumin. As myricetin has been extensively used as a food additive, it might be directly utilized to fight the dengue infections and as a promising starting material for further design of potent allosteric inhibitors.
Collapse
|
35
|
Genetic architecture of motor neuron diseases. J Neurol Sci 2021; 434:120099. [PMID: 34965490 DOI: 10.1016/j.jns.2021.120099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022]
Abstract
Motor neuron diseases (MNDs) are rare and frequently fatal neurological disorders in which motor neurons within the brainstem and spinal cord regions slowly die. MNDs are primarily caused by genetic mutations, and > 100 different mutant genes in humans have been discovered thus far. Given the fact that many more MND-related genes have yet to be discovered, the growing body of genetic evidence has offered new insights into the diverse cellular and molecular mechanisms involved in the aetiology and pathogenesis of MNDs. This search may aid in the selection of potential candidate genes for future investigation and, eventually, may open the door to novel interventions to slow down disease progression. In this review paper, we have summarized detailed existing research findings of different MNDs, such as amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), spinal bulbar muscle atrophy (SBMA) and hereditary spastic paraplegia (HSP) in relation to their complex genetic architecture.
Collapse
|
36
|
Parkin beyond Parkinson’s Disease—A Functional Meaning of Parkin Downregulation in TDP-43 Proteinopathies. Cells 2021; 10:cells10123389. [PMID: 34943897 PMCID: PMC8699658 DOI: 10.3390/cells10123389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Parkin and PINK1 are key regulators of mitophagy, an autophagic pathway for selective elimination of dysfunctional mitochondria. To this date, parkin depletion has been associated with recessive early onset Parkinson’s disease (PD) caused by loss-of-function mutations in the PARK2 gene, while, in sporadic PD, the activity and abundance of this protein can be compromised by stress-related modifications. Intriguingly, research in recent years has shown that parkin depletion is not limited to PD but is also observed in other neurodegenerative diseases—especially those characterized by TDP-43 proteinopathies, such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Here, we discuss the evidence of parkin downregulation in these disease phenotypes, its emerging connections with TDP-43, and its possible functional implications.
Collapse
|
37
|
Structural basis of anti-SARS-CoV-2 activity of HCQ: specific binding to N protein to disrupt its interaction with nucleic acids and LLPS. QRB DISCOVERY 2021. [PMID: 37529681 PMCID: PMC10392676 DOI: 10.1017/qrd.2021.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
SARS-CoV-2 nucleocapsid (N) protein plays the essential roles in key steps of the viral life cycle, thus representing a top drug target. Functionality of N protein including liquid–liquid phase separation (LLPS) depends on its interaction with nucleic acids. Only the variants with N proteins functional in binding nucleic acids might survive and spread in evolution and indeed, the residues critical for binding nucleic acids are highly conserved. Hydroxychloroquine (HCQ) was shown to prevent the transmission in a large-scale clinical study in Singapore but so far, no specific SARS-CoV-2 protein was experimentally identified to be targeted by HCQ. Here by NMR, we unambiguously decode that HCQ specifically binds NTD and CTD of N protein with Kd of 112.1 and 57.1 μM, respectively to inhibit their interaction with nucleic acid, as well as to disrupt LLPS. Most importantly, HCQ-binding residues are identical in SARS-CoV-2 variants and therefore HCQ is likely effective to different variants. The results not only provide a structural basis for the anti-SARS-CoV-2 activity of HCQ, but also renders HCQ to be the first known drug capable of targeting LLPS. Furthermore, the unique structure of the HCQ-CTD complex suggests a promising strategy for design of better anti-SARS-CoV-2 drugs from HCQ.
Collapse
|
38
|
Strategies in the design and development of (TAR) DNA-binding protein 43 (TDP-43) binding ligands. Eur J Med Chem 2021; 225:113753. [PMID: 34388383 DOI: 10.1016/j.ejmech.2021.113753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/16/2021] [Accepted: 08/05/2021] [Indexed: 01/09/2023]
Abstract
The human transactive responsive (TAR) DNA-binding protein 43 (TDP-43) is involved in a number of physiological processes in the body. Its primary function involves RNA regulation. The TDP-43 protein is also involved in many diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Alzheimer's disease (AD), Parkinson's disease (PD) and even cancers. These TDP-43 mediated diseases are collectively called as TDP-43 proteinopathies. Intense research in the last decade has increased our understanding on TDP-43 structure and function in biology. The three-dimensional structures of TDP-43 domains such as N-terminal domain (NTD), RNA-recognition motif-1 (RRM1), RNA-recognition motif-2 (RRM2) and the C-terminal domain (CTD) or low-complexity domain (LCD) have been solved. These structures have yielded insights into novel binding sites and pockets at various TDP-43 domains, which can be targeted by designing a diverse library of ligands including small molecules, peptides and oligonucleotides as molecular tools to (i) study TDP-43 function, (ii) develop novel diagnostic agents and (iii) discover disease-modifying therapies to treat TDP-43 proteinopathies. This review provides a summary on recent progress in the development of TDP-43 binding ligands and uses the solved structures of various TDP-43 domains to investigate putative ligand binding regions that can be exploited to discover novel molecular probes to modulate TDP-43 structure and function.
Collapse
|
39
|
Francois-Moutal L, Scott DD, Khanna M. Direct targeting of TDP-43, from small molecules to biologics: the therapeutic landscape. RSC Chem Biol 2021; 2:1158-1166. [PMID: 34458829 PMCID: PMC8341936 DOI: 10.1039/d1cb00110h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
Tar DNA binding (TDP)-43 proteinopathy, typically described as cytoplasmic accumulation of highly modified and misfolded TDP-43 molecules, is characteristic of several neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS) and limbic-predominant age-related TDP-43 encephalopathy (LATE). TDP-43 proposed proteinopathies include homeostatic imbalance between nuclear and cytoplasmic localization, aggregation of ubiquitinated and hyper-phosphorylated TDP-43, and an increase in protein truncation of cytoplasmic TDP-43. Given the therapeutic interest of targeting TDP-43, this review focuses on the current landscape of strategies, ranging from biologics to small molecules, that directly target TDP-43. Antibodies, peptides and compounds have been designed or found to recognize specific TDP-43 sequences but alleviate TDP-43 toxicity through different mechanisms. While two antibodies described here were able to induce degradation of pathological TDP-43, the peptides and small molecules were primarily designed to reduce aggregation of TDP-43. Furthermore, we discuss promising emerging therapeutic targets.
Collapse
Affiliation(s)
- Liberty Francois-Moutal
- Department of Pharmacology, College of Medicine, University of Arizona 1501 North Campbell Drive, P.O. Box 245050 Tucson AZ 85724 USA +520-626-2204 +520-626-2147
- Center of Innovation in Brain Science Tucson AZ 85721 USA
| | - David Donald Scott
- Department of Pharmacology, College of Medicine, University of Arizona 1501 North Campbell Drive, P.O. Box 245050 Tucson AZ 85724 USA +520-626-2204 +520-626-2147
- Center of Innovation in Brain Science Tucson AZ 85721 USA
| | - May Khanna
- Department of Pharmacology, College of Medicine, University of Arizona 1501 North Campbell Drive, P.O. Box 245050 Tucson AZ 85724 USA +520-626-2204 +520-626-2147
- Center of Innovation in Brain Science Tucson AZ 85721 USA
- Bio5 Institute, University of Arizona Tucson USA
| |
Collapse
|
40
|
Liu W, Li C, Shan J, Wang Y, Chen G. Insights into the aggregation mechanism of RNA recognition motif domains in TDP-43: a theoretical exploration. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210160. [PMID: 34457335 PMCID: PMC8371369 DOI: 10.1098/rsos.210160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/19/2021] [Indexed: 05/10/2023]
Abstract
The transactive response DNA-binding protein 43 (TDP-43) is associated with several diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) due to pathogenic aggregations. In this work, we examined the dimer, tetramer and hexamer models built from the RRM domains of TDP-43 using molecular dynamics simulations in combination with the protein-protein docking. Our results showed that the formations of the dimer models are mainly achieved by the interactions of the RRM1 domains. The parallel β-sheet layers between the RRM1 domains provide most of the binding sites in these oligomer models, and thus play an important role in the aggregation process. The approaching of the parallel β-sheet layers from small oligomer models gradually expand to large ones through the allosteric communication between the α1/α2 helices of the RRM1 domains, which maintains the binding affinities and interactions in the larger oligomer models. Using the repeatable-superimposing method based on the tetramer models, we proposed a new aggregation mechanism of RRM domains in TDP-43, which could well characterize the formation of the large aggregation models with the repeated, helical and rope-like structures. These new insights help to understand the amyloid-like aggregation phenomena of TDP-43 protein in ALS and FTLD diseases.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Chaoqun Li
- Hebei Key Laboratory of Heterocyclic Compounds, College of Chemistry, Chemical Engineering and Materials, Handan University, Handan 056005, Hebei Province, People's Republic of China
| | - Jiankai Shan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Yan Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Guangju Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
41
|
Patni D, Jha SK. Protonation-Deprotonation Switch Controls the Amyloid-like Misfolding of Nucleic-Acid-Binding Domains of TDP-43. J Phys Chem B 2021; 125:8383-8394. [PMID: 34318672 DOI: 10.1021/acs.jpcb.1c03262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nutrient starvation stress acidifies the cytosol and leads to the formation of large protein assemblies and misfolded aggregates. However, how starvation stress is sensed at the molecular level and leads to protein misfolding is poorly understood. TDP-43 is a vital protein, which, under stress-like conditions, associates with stress granule proteins via its functional nucleic-acid-binding domains (TDP-43tRRM) and misfolds to form aberrant aggregates. Here, we show that the monomeric N form of TDP-43tRRM forms a misfolded amyloid-like protein assembly, β form, in a pH-dependent manner and identified the critical protein side-chain residue whose protonation triggers its misfolding. We systematically mutated the three buried ionizable residues, D105, H166, and H256, to neutral amino acids to block the pH-dependent protonation-deprotonation titration of their side chain and studied their effect on the N-to-β transition. We observed that D105A and H256Q resembled TDP-43tRRM in their pH-dependent misfolding behavior. However, H166Q retains the N-like secondary structure under low-pH conditions and does not show pH-dependent misfolding to the β form. These results indicate that H166 is the critical side-chain residue whose protonation triggers the misfolding of TDP-43tRRM and shed light on how stress-induced misfolding of proteins during neurodegeneration could begin from site-specific triggers.
Collapse
Affiliation(s)
- Divya Patni
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
42
|
Song J. Adenosine triphosphate energy-independently controls protein homeostasis with unique structure and diverse mechanisms. Protein Sci 2021; 30:1277-1293. [PMID: 33829608 PMCID: PMC8197423 DOI: 10.1002/pro.4079] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023]
Abstract
Proteins function in the crowded cellular environments with high salt concentrations, thus facing tremendous challenges of misfolding/aggregation which represents a pathological hallmark of aging and an increasing spectrum of human diseases. Recently, intrinsically disordered regions (IDRs) were recognized to drive liquid-liquid phase separation (LLPS), a common principle for organizing cellular membraneless organelles (MLOs). ATP, the universal energy currency for all living cells, mysteriously has concentrations of 2-12 mM, much higher than required for its previously-known functions. Only recently, ATP was decoded to behave as a biological hydrotrope to inhibit protein LLPS and aggregation at mM. We further revealed that ATP also acts as a bivalent binder, which not only biphasically modulates LLPS driven by IDRs of human and viral proteins, but also bind to the conserved nucleic-acid-binding surfaces of the folded proteins. Most unexpectedly, ATP appears to act as a hydration mediator to antagonize the crowding-induced destabilization as well as to enhance folding of proteins without significant binding. Here, this review focuses on summarizing the results of these biophysical studies and discussing their implications in an evolutionary context. By linking triphosphate with unique hydration property to adenosine, ATP appears to couple the ability for establishing hydrophobic, π-π, π-cation and electrostatic interactions to the capacity in mediating hydration of proteins, which is at the heart of folding, dynamics, stability, phase separation and aggregation. Consequently, ATP acquired a category of functions at ~mM to energy-independently control protein homeostasis with diverse mechanisms, thus implying a link between cellular ATP concentrations and protein-aggregation diseases.
Collapse
Affiliation(s)
- Jianxing Song
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingaporeSingapore
| |
Collapse
|
43
|
Dang M, Lim L, Kang J, Song J. ATP biphasically modulates LLPS of TDP-43 PLD by specifically binding arginine residues. Commun Biol 2021; 4:714. [PMID: 34112944 PMCID: PMC8192790 DOI: 10.1038/s42003-021-02247-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
Mysteriously neurons maintain ATP concentrations of ~3 mM but whether ATP modulates TDP-43 LLPS remains completely unexplored. Here we characterized the effect of ATP on LLPS of TDP-43 PLD and seven mutants by DIC and NMR. The results revealed: 1) ATP induces and subsequently dissolves LLPS of TDP-43 PLD by specifically binding Arg saturated at 1:100. 2) ATP modifies the conformation-specific electrostatic property beyond just imposing screening effect. 3) Reversibility of LLPS of TDP-43 PLD and further exaggeration into aggregation appear to be controlled by a delicate network composed of both attractive and inhibitory interactions. Results together establish that ATP might be a universal but specific regulator for most, if not all, R-containing intrinsically-disordered regions by altering physicochemical properties, conformations, dynamics, LLPS and aggregation. Under physiological conditions, TDP-43 is highly bound with ATP and thus inhibited for LLPS, highlighting a central role of ATP in cell physiology, pathology and aging. Dang Mei et al. use NMR and microscopy approaches to examine how ATP impacts the liquid-liquid phase separation (LLPS) of prion-like domains in TDP-43, a RNA-binding protein that is implicated in ALS and other neurological disorders. Their results suggest that ATP specifically binds to a subset of TDP-43 arginine residues at a particular molar ratio to modulate LLPS, and provides insight into how ATP affects the LLPS of biomolecular systems.
Collapse
Affiliation(s)
- Mei Dang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jian Kang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
44
|
Eck RJ, Kraemer BC, Liachko NF. Regulation of TDP-43 phosphorylation in aging and disease. GeroScience 2021; 43:1605-1614. [PMID: 34032984 PMCID: PMC8492835 DOI: 10.1007/s11357-021-00383-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
Insoluble inclusions of phosphorylated TDP-43 occur in disease-affected neurons of most patients with amyotrophic lateral sclerosis (ALS) and about half of patients with frontotemporal lobar degeneration (FTLD-TDP). Phosphorylated TDP-43 potentiates a number of neurotoxic effects including reduced liquid-liquid phase separation dynamicity, changes in splicing, cytoplasmic mislocalization, and aggregation. Accumulating evidence suggests a balance of kinase and phosphatase activities control TDP-43 phosphorylation. Dysregulation of these processes may lead to an increase in phosphorylated TDP-43, ultimately contributing to neurotoxicity and neurodegeneration in disease. Here we summarize the evolving understanding of major regulators of TDP-43 phosphorylation as well as downstream consequences of their activities. Interventions restoring kinase and phosphatase balance may be a generalizable therapeutic strategy for all TDP-43 proteinopathies including ALS and FTLD-TDP.
Collapse
Affiliation(s)
- Randall J Eck
- Neuroscience Graduate Program, University of Washington, Seattle, WA, 98195, USA.,Geriatric Research Education and Clinical Center, Seattle Veterans Affairs Puget Sound Health Care System, 1660 South Columbian Way, Seattle, WA, 98108, USA
| | - Brian C Kraemer
- Neuroscience Graduate Program, University of Washington, Seattle, WA, 98195, USA.,Geriatric Research Education and Clinical Center, Seattle Veterans Affairs Puget Sound Health Care System, 1660 South Columbian Way, Seattle, WA, 98108, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, 98104, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, 98195, USA.,Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, 98104, USA
| | - Nicole F Liachko
- Geriatric Research Education and Clinical Center, Seattle Veterans Affairs Puget Sound Health Care System, 1660 South Columbian Way, Seattle, WA, 98108, USA. .,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, 98104, USA.
| |
Collapse
|
45
|
Buratti E. Trends in Understanding the Pathological Roles of TDP-43 and FUS Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:243-267. [PMID: 33433879 DOI: 10.1007/978-3-030-51140-1_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Following the discovery of TDP-43 and FUS involvement in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD), the major challenge in the field has been to understand their physiological functions, both in normal and disease conditions. The hope is that this knowledge will improve our understanding of disease and lead to the development of effective therapeutic options. Initially, the focus has been directed at characterizing the role of these proteins in the control of RNA metabolism, because the main function of TDP-43 and FUS is to bind coding and noncoding RNAs to regulate their life cycle within cells. As a result, we now have an in-depth picture of the alterations that occur in RNA metabolism following their aggregation in various ALS/FTLD models and, to a somewhat lesser extent, in patients' brains. In parallel, progress has been made with regard to understanding how aggregation of these proteins occurs in neurons, how it can spread in different brain regions, and how these changes affect various metabolic cellular pathways to result in neuronal death. The aim of this chapter will be to provide a general overview of the trending topics in TDP-43 and FUS investigations and to highlight what might represent the most promising avenues of research in the years to come.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
46
|
van Rooij J, Mol MO, Melhem S, van der Wal P, Arp P, Paron F, Donker Kaat L, Seelaar H, Miedema SSM, Oshima T, Eggen BJL, Uitterlinden A, van Meurs J, van Kesteren RE, Smit AB, Buratti E, van Swieten JC. Somatic TARDBP variants as a cause of semantic dementia. Brain 2020; 143:3827-3841. [PMID: 33155043 PMCID: PMC7805802 DOI: 10.1093/brain/awaa317] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/13/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
The aetiology of late-onset neurodegenerative diseases is largely unknown. Here we investigated whether de novo somatic variants for semantic dementia can be detected, thereby arguing for a more general role of somatic variants in neurodegenerative disease. Semantic dementia is characterized by a non-familial occurrence, early onset (<65 years), focal temporal atrophy and TDP-43 pathology. To test whether somatic variants in neural progenitor cells during brain development might lead to semantic dementia, we compared deep exome sequencing data of DNA derived from brain and blood of 16 semantic dementia cases. Somatic variants observed in brain tissue and absent in blood were validated using amplicon sequencing and digital PCR. We identified two variants in exon one of the TARDBP gene (L41F and R42H) at low level (1-3%) in cortical regions and in dentate gyrus in two semantic dementia brains, respectively. The pathogenicity of both variants is supported by demonstrating impaired splicing regulation of TDP-43 and by altered subcellular localization of the mutant TDP-43 protein. These findings indicate that somatic variants may cause semantic dementia as a non-hereditary neurodegenerative disease, which might be exemplary for other late-onset neurodegenerative disorders.
Collapse
Affiliation(s)
- Jeroen van Rooij
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Merel O Mol
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Shamiram Melhem
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Pelle van der Wal
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Pascal Arp
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Francesca Paron
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Laura Donker Kaat
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Harro Seelaar
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Suzanne S M Miedema
- Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
| | - Takuya Oshima
- Department of Biomedical Sciences of Cells and Systems, section Molecular Neurobiology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells and Systems, section Molecular Neurobiology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - André Uitterlinden
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Joyce van Meurs
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ronald E van Kesteren
- Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
| | - August B Smit
- Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - John C van Swieten
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
47
|
Mollasalehi N, Francois-Moutal L, Scott DD, Tello JA, Williams H, Mahoney B, Carlson JM, Dong Y, Li X, Miranda VG, Gokhale V, Wang W, Barmada SJ, Khanna M. An Allosteric Modulator of RNA Binding Targeting the N-Terminal Domain of TDP-43 Yields Neuroprotective Properties. ACS Chem Biol 2020; 15:2854-2859. [PMID: 33044808 DOI: 10.1021/acschembio.0c00494] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, we targeted the N-terminal domain (NTD) of transactive response (TAR) DNA binding protein (TDP-43), which is implicated in several neurodegenerative diseases. In silico docking of 50K compounds to the NTD domain of TDP-43 identified a small molecule (nTRD22) that is bound to the N-terminal domain. Interestingly, nTRD22 caused allosteric modulation of the RNA binding domain (RRM) of TDP-43, resulting in decreased binding to RNA in vitro. Moreover, incubation of primary motor neurons with nTRD22 induced a reduction of TDP-43 protein levels, similar to TDP-43 RNA binding-deficient mutants and supporting a disruption of TDP-43 binding to RNA. Finally, nTRD22 mitigated motor impairment in a Drosophila model of amyotrophic lateral sclerosis. Our findings provide an exciting way of allosteric modulation of the RNA-binding region of TDP-43 through the N-terminal domain.
Collapse
Affiliation(s)
- Niloufar Mollasalehi
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center of Innovation in Brain Science, Tucson, Arizona 85721, United States
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0041, United States
| | - Liberty Francois-Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center of Innovation in Brain Science, Tucson, Arizona 85721, United States
| | - David D. Scott
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center of Innovation in Brain Science, Tucson, Arizona 85721, United States
| | - Judith A. Tello
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center of Innovation in Brain Science, Tucson, Arizona 85721, United States
| | - Haley Williams
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center of Innovation in Brain Science, Tucson, Arizona 85721, United States
| | - Brendan Mahoney
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Jacob M. Carlson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center of Innovation in Brain Science, Tucson, Arizona 85721, United States
| | - Yue Dong
- Arizona Center for Drug Discovery, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
- Pharmacology and Toxicology Department, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Xingli Li
- Department of Neurology, University of Michigan Health System, Ann Arbor, Michigan 48109, United States
| | - Victor G. Miranda
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center of Innovation in Brain Science, Tucson, Arizona 85721, United States
| | - Vijay Gokhale
- Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Wei Wang
- Arizona Center for Drug Discovery, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
- Pharmacology and Toxicology Department, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Sami J. Barmada
- Department of Neurology, University of Michigan Health System, Ann Arbor, Michigan 48109, United States
| | - May Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center of Innovation in Brain Science, Tucson, Arizona 85721, United States
| |
Collapse
|
48
|
McAlary L, Chew YL, Lum JS, Geraghty NJ, Yerbury JJ, Cashman NR. Amyotrophic Lateral Sclerosis: Proteins, Proteostasis, Prions, and Promises. Front Cell Neurosci 2020; 14:581907. [PMID: 33328890 PMCID: PMC7671971 DOI: 10.3389/fncel.2020.581907] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of the motor neurons that innervate muscle, resulting in gradual paralysis and culminating in the inability to breathe or swallow. This neuronal degeneration occurs in a spatiotemporal manner from a point of onset in the central nervous system (CNS), suggesting that there is a molecule that spreads from cell-to-cell. There is strong evidence that the onset and progression of ALS pathology is a consequence of protein misfolding and aggregation. In line with this, a hallmark pathology of ALS is protein deposition and inclusion formation within motor neurons and surrounding glia of the proteins TAR DNA-binding protein 43, superoxide dismutase-1, or fused in sarcoma. Collectively, the observed protein aggregation, in conjunction with the spatiotemporal spread of symptoms, strongly suggests a prion-like propagation of protein aggregation occurs in ALS. In this review, we discuss the role of protein aggregation in ALS concerning protein homeostasis (proteostasis) mechanisms and prion-like propagation. Furthermore, we examine the experimental models used to investigate these processes, including in vitro assays, cultured cells, invertebrate models, and murine models. Finally, we evaluate the therapeutics that may best prevent the onset or spread of pathology in ALS and discuss what lies on the horizon for treating this currently incurable disease.
Collapse
Affiliation(s)
- Luke McAlary
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Yee Lian Chew
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Jeremy Stephen Lum
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Nicholas John Geraghty
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Justin John Yerbury
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Neil R. Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
49
|
Lim L, Dang M, Roy A, Kang J, Song J. Curcumin Allosterically Inhibits the Dengue NS2B-NS3 Protease by Disrupting Its Active Conformation. ACS OMEGA 2020; 5:25677-25686. [PMID: 33073093 PMCID: PMC7557217 DOI: 10.1021/acsomega.0c00039] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/17/2020] [Indexed: 05/19/2023]
Abstract
Flaviviruses including dengue virus and Zika virus encode a unique two-component NS2B-NS3 protease essential for maturation/infectivity, thus representing a key target for designing antiflavivirus drugs. Here, for the first time, by NMR and molecular docking, we reveal that curcumin allosterically inhibits the dengue protease by binding to a cavity with no overlap with the active site. Further molecular dynamics simulations decode that the binding of curcumin leads to unfolding/displacing the characteristic β-hairpin of the C-terminal NS2B and consequently disrupting the closed (active) conformation of the protease. Our study identified a cavity most likely conserved in all flaviviral NS2B-NS3 proteases, which could thus serve as a therapeutic target for the discovery/design of small-molecule allosteric inhibitors. Moreover, as curcumin has been used as a food additive for thousands of years in many counties, it can be directly utilized to fight the flaviviral infections and as a promising starting for further design of potent allosteric inhibitors.
Collapse
|
50
|
Insight into the Folding and Dimerization Mechanisms of the N-Terminal Domain from Human TDP-43. Int J Mol Sci 2020; 21:ijms21176259. [PMID: 32872449 PMCID: PMC7504384 DOI: 10.3390/ijms21176259] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is a 414-residue long nuclear protein whose deposition into intraneuronal insoluble inclusions has been associated with the onset of amyotrophic lateral sclerosis (ALS) and other diseases. This protein is physiologically a homodimer, and dimerization occurs through the N-terminal domain (NTD), with a mechanism on which a full consensus has not yet been reached. Furthermore, it has been proposed that this domain is able to affect the formation of higher molecular weight assemblies. Here, we purified this domain and carried out an unprecedented characterization of its folding/dimerization processes in solution. Exploiting a battery of biophysical approaches, ranging from FRET to folding kinetics, we identified a head-to-tail arrangement of the monomers within the dimer. We found that folding of NTD proceeds through the formation of a number of conformational states and two parallel pathways, while a subset of molecules refold slower, due to proline isomerism. The folded state appears to be inherently prone to form high molecular weight assemblies. Taken together, our results indicate that NTD is inherently plastic and prone to populate different conformations and dimeric/multimeric states, a structural feature that may enable this domain to control the assembly state of TDP-43.
Collapse
|