1
|
Makiuchi T, Saito-Nakano Y, Nozaki T. Evidence of γ-secretase complex involved in the regulation of intramembrane proteolysis in Entamoeba histolytica. Parasitol Int 2024; 103:102925. [PMID: 39048023 DOI: 10.1016/j.parint.2024.102925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
Presenilins (PSNs) are multifunctional membrane proteins involved in signal transduction, lysosomal acidification, and certain physiological processes related to mitochondria. The aspartic protease activity of PSN and the formation of a γ-secretase complex with other subunits such as nicastrin (NCT) are required for the biological functions. Although PSN is widely conserved in eukaryotes, most studies on PSN were conducted in metazoans. Homologous genes for PSN and NCT (EhPSN and EhNCT, respectively) are encoded in the genome of Entamoeba histolytica, however, their functions remain unknown. In this study, we showed that EhPSN and EhNCT form a complex on the cell membrane, demonstrating that the parasite possesses γ-secretase. The predicted structure of EhPSN was similar to the human homolog, demonstrated by the crystal structure, and phylogenetic analysis indicated good conservation between EhPSN and human PSN, supporting the premise that EhPSN functions as a subunit of γ-secretase. By contrast, EhNCT appears to have undergone remarkable structural changes during its evolution. Blue native-polyacrylamide gel electrophoresis combined with western blotting indicated that a 150-kDa single band contains both EhPSN (estimated molecular size: 47-kDa) and EhNCT (64-kDa), suggesting that the complex also contains other unknown components or post-translational modifications. Coimmunoprecipitation from amebic lysates also confirmed that EhPSN and EhNCT formed a complex. Indirect immunofluorescence analysis revealed that the complex localized to the plasma membrane. Moreover, EhPSN exhibited protease activity, which was suppressed by a γ-secretase inhibitor. This is the first report of a γ-secretase complex in protozoan parasites.
Collapse
Affiliation(s)
- Takashi Makiuchi
- Department of Infectious Diseases, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Prabha S, Sajad M, Hasan GM, Islam A, Imtaiyaz Hassan M, Thakur SC. Recent advancement in understanding of Alzheimer's disease: Risk factors, subtypes, and drug targets and potential therapeutics. Ageing Res Rev 2024; 101:102476. [PMID: 39222668 DOI: 10.1016/j.arr.2024.102476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease (AD) is a significant neocortical degenerative disorder characterized by the progressive loss of neurons and secondary alterations in white matter tracts. Understanding the risk factors and mechanisms underlying AD is crucial for developing effective treatments. The risk factors associated with AD encompass a wide range of variables, including gender differences, family history, and genetic predispositions. Additionally, environmental factors such as air pollution and lifestyle-related conditions like cardiovascular disease, gut pathogens, and liver pathology contribute substantially to the development and progression of AD and its subtypes. This review provides current update and deeper insights into the role of diverse risk factors, categorizing AD into its distinct subtypes and elucidating their specific pathophysiological mechanisms. Unlike previous studies that often focus on isolated aspects of AD, our review integrates these factors to offer a comprehensive understanding of the disease. Furthermore, the review explores a variety of drug targets linked to the neuropathology of different AD subtypes, highlighting the potential for targeted therapeutic interventions. We further discussed the novel therapeutic options and categorized them according to their targets. The roles of different drug targets were comprehensively studied, and the mechanism of action of their inhibitors was discussed in detail. By comprehensively covering the interplay of risk factors, subtype differentiation, and drug targets, this review provides a deeper understanding of AD and suggests directions for future research and therapeutic strategies.
Collapse
Affiliation(s)
- Sneh Prabha
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohd Sajad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Sonu Chand Thakur
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
3
|
Behrens HM, Spielmann T. Identification of domains in Plasmodium falciparum proteins of unknown function using DALI search on AlphaFold predictions. Sci Rep 2024; 14:10527. [PMID: 38719885 PMCID: PMC11079077 DOI: 10.1038/s41598-024-60058-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Plasmodium falciparum, the causative agent of malaria, poses a significant global health challenge, yet much of its biology remains elusive. A third of the genes in the P. falciparum genome lack annotations regarding their function, impeding our understanding of the parasite's biology. In this study, we employ structure predictions and the DALI search algorithm to analyse proteins encoded by uncharacterized genes in the reference strain 3D7 of P. falciparum. By comparing AlphaFold predictions to experimentally determined protein structures in the Protein Data Bank, we found similarities to known domains in 353 proteins of unknown function, shedding light on their potential functions. The lowest-scoring 5% of similarities were additionally validated using the size-independent TM-align algorithm, confirming the detected similarities in 88% of the cases. Notably, in over 70 P. falciparum proteins the presence of domains resembling heptatricopeptide repeats, which are typically involvement in RNA binding and processing, was detected. This suggests this family, which is important in transcription in mitochondria and apicoplasts, is much larger in Plasmodium parasites than previously thought. The results of this domain search provide a resource to the malaria research community that is expected to inform and enable experimental studies.
Collapse
Affiliation(s)
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany.
| |
Collapse
|
4
|
Luan H, Li X, Zhang W, Luan T. Thermal proteome profiling unveils protein targets of deoxycholic acid in living neuronal cells. ADVANCED BIOTECHNOLOGY 2023; 1:7. [PMID: 39883374 PMCID: PMC11727579 DOI: 10.1007/s44307-023-00007-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 01/31/2025]
Abstract
Bile acids, synthesized in the liver and modified by the gut microbiota, play vital roles in various physiological processes. The dysregulation of bile acids has been extensively documented in patients with neurodegenerative diseases. However, limited attention has been given to the protein targets associated with microbiota-derived bile acids in neurological diseases. To address this knowledge gap, we conducted comprehensive thermal proteomic analyses to elucidate and comprehend the protein targets affected by microbiota-derived bile acids. Our investigation identified sixty-five unique proteins in SH-SY5Y neuronal cells as potential targets of deoxycholic acid (DCA), a primary component of the bile acid pool originating from the gut microbiota. Notably, Nicastrin and Casein kinase 1 epsilon stood out among these proteins. We found that DCA, through its interaction with the Nicastrin subunit of γ-secretase, significantly contributed to the formation of amyloid beta, a key hallmark in the pathology of neurodegenerative diseases. In summary, our findings provide crucial insights into the intricate interplay between microbiota-derived bile acids and the pathogenesis of neurodegenerative diseases, thereby shedding light on potential therapeutic targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Hemi Luan
- Department of Biomedical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Xuan Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wenyong Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tiangang Luan
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China.
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Banerjee S, Manisha C, Bharathi J J, Kumar AP, Justin A, Ramanathan M. Structural dynamics and catalytic modulations of Aβ regulating enzymes as future outlook for Alzheimer's. Biochem Biophys Res Commun 2022; 631:1-8. [PMID: 36162324 DOI: 10.1016/j.bbrc.2022.09.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022]
Abstract
Aβ cascade hypothesis being considered most evident event in AD pathology and even today it holds good. Dysregulation of catalytic events of Aβ regulating enzymes can possibly cause faulty Aβ trafficking; inequity of Aβ formation and clearance resulting in misfolded protein accumulation, neurodegeneration and cognitive impairment. Many novel approaches have been made on this pathway to discover new molecules, unfortunately couldn't reach the terminal phases of clinical trials. Over decades, studies have been more focused on enzyme chemistry and explored the relationship between structural features and catalytic function of Aβ regulating enzymes. However, the modulations of catalytic mechanisms of those enzymes have not been imposed so far to reduce the Aβ load. Hence, in this review, we have critically detailed the knowledge of basic structural dynamics and possible catalytic modulations of enzymes responsible for Aβ formation and clearance that will impart new perspectives in drug discovery process.
Collapse
Affiliation(s)
- Sayani Banerjee
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, 643 001, India
| | - Chennu Manisha
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, 643 001, India
| | - Jeyaram Bharathi J
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, 643 001, India
| | - Ashwini Prem Kumar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, 643 001, India
| | - Antony Justin
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, 643 001, India.
| | - Muthiah Ramanathan
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, Tamil Nadu, 641 004, India
| |
Collapse
|
6
|
Mintoff D, Pace NP, Borg I. Interpreting the spectrum of gamma-secretase complex missense variation in the context of hidradenitis suppurativa—An in-silico study. Front Genet 2022; 13:962449. [PMID: 36118898 PMCID: PMC9478468 DOI: 10.3389/fgene.2022.962449] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Hidradenitis suppurativa (HS) is a disease of the pilosebaceous unit characterized by recurrent nodules, abscesses and draining tunnels with a predilection to intertriginous skin. The pathophysiology of HS is complex. However, it is known that inflammation and hyperkeratinization at the hair follicle play crucial roles in disease manifestation. Genetic and environmental factors are considered the main drivers of these two pathophysiological processes. Despite a considerable proportion of patients having a positive family history of disease, only a minority of patients suffering from HS have been found to harbor monogenic variants which segregate to affected kindreds. Most of these variants are in the ɣ secretase complex (GSC) protein-coding genes. In this manuscript, we set out to characterize the burden of missense pathogenic variants in healthy reference population using large scale genomic dataset thereby providing a standard for comparing genomic variation in GSC protein-coding genes in the HS patient cohort.
Collapse
Affiliation(s)
- Dillon Mintoff
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Nikolai P. Pace
- Centre for Molecular Biology and Biobanking, University of Malta, Msida, Malta
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- *Correspondence: Nikolai P. Pace,
| | - Isabella Borg
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Centre for Molecular Biology and Biobanking, University of Malta, Msida, Malta
- Department of Pathology, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
7
|
Restrepo LJ, DePew AT, Moese ER, Tymanskyj SR, Parisi MJ, Aimino MA, Duhart JC, Fei H, Mosca TJ. γ-secretase promotes Drosophila postsynaptic development through the cleavage of a Wnt receptor. Dev Cell 2022; 57:1643-1660.e7. [PMID: 35654038 DOI: 10.1016/j.devcel.2022.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/06/2022] [Accepted: 05/10/2022] [Indexed: 12/27/2022]
Abstract
Developing synapses mature through the recruitment of specific proteins that stabilize presynaptic and postsynaptic structure and function. Wnt ligands signaling via Frizzled (Fz) receptors play many crucial roles in neuronal and synaptic development, but whether and how Wnt and Fz influence synaptic maturation is incompletely understood. Here, we show that Fz2 receptor cleavage via the γ-secretase complex is required for postsynaptic development and maturation. In the absence of γ-secretase, Drosophila neuromuscular synapses fail to recruit postsynaptic scaffolding and cytoskeletal proteins, leading to behavioral deficits. Introducing presenilin mutations linked to familial early-onset Alzheimer's disease into flies leads to synaptic maturation phenotypes that are identical to those seen in null alleles. This conserved role for γ-secretase in synaptic maturation and postsynaptic development highlights the importance of Fz2 cleavage and suggests that receptor processing by proteins linked to neurodegeneration may be a shared mechanism with aspects of synaptic development.
Collapse
Affiliation(s)
- Lucas J Restrepo
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Alison T DePew
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Elizabeth R Moese
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Stephen R Tymanskyj
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Michael J Parisi
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Michael A Aimino
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Juan Carlos Duhart
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Hong Fei
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Timothy J Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA.
| |
Collapse
|
8
|
Pace NP, Mintoff D, Borg I. The Genomic Architecture of Hidradenitis Suppurativa-A Systematic Review. Front Genet 2022; 13:861241. [PMID: 35401657 PMCID: PMC8986338 DOI: 10.3389/fgene.2022.861241] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
Hidradenitis suppurativa is a chronic, suppurative condition of the pilosebaceous unit manifesting as painful nodules, abscesses, and sinus tracts mostly in, but not limited to, intertriginous skin. Great strides have been made at elucidating the pathophysiology of hidradenitis suppurativa, which appears to be the product of hyperkeratinization and inflammation brought about by environmental factors and a genetic predisposition. The identification of familial hidradenitis suppurativa has sparked research aimed at identifying underlying pathogenic variants in patients who harbor them. The objective of this review is to provide a broad overview of the role of genetics in various aspects of hidradenitis suppurativa, specifically the pathophysiology, diagnosis, and clinical application.
Collapse
Affiliation(s)
- Nikolai Paul Pace
- Center for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Dillon Mintoff
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Department of Dermatology, Mater Dei Hospital, Msida, Malta
| | - Isabella Borg
- Center for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Department of Pathology, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
9
|
Small molecules targeting γ-secretase and their potential biological applications. Eur J Med Chem 2022; 232:114169. [DOI: 10.1016/j.ejmech.2022.114169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 12/14/2022]
|
10
|
Li WH, Gan LH, Ma FF, Feng RL, Wang J, Li YH, Sun YY, Wang YJ, Diao X, Qian FY, Wen TQ. Deletion of Dcf1 Reduces Amyloid-β Aggregation and Mitigates Memory Deficits. J Alzheimers Dis 2021; 81:1181-1194. [PMID: 33896839 DOI: 10.3233/jad-200619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease. One of the pathologies of AD is the accumulation of amyloid-β (Aβ) to form senile plaques, leading to a decline in cognitive ability and a lack of learning and memory. However, the cause leading to Aβ aggregation is not well understood. Dendritic cell factor 1 (Dcf1) shows a high expression in the entorhinal cortex neurons and neurofibrillary tangles in AD patients. OBJECTIVE Our goal is to investigate the effect of Dcf1 on Aβ aggregation and memory deficits in AD development. METHODS The mouse and Drosophila AD model were used to test the expression and aggregation of Aβ, senile plaque formation, and pathological changes in cognitive behavior during dcf1 knockout and expression. We finally explored possible drug target effects through intracerebroventricular delivery of Dcf1 antibodies. RESULTS Deletion of Dcf1 resulted in decreased Aβ42 level and deposition, and rescued AMPA Receptor (GluA2) levels in the hippocampus of APP-PS1-AD mice. In Aβ42 AD Drosophila, the expression of Dcf1 in Aβ42 AD flies aggravated the formation and accumulation of senile plaques, significantly reduced its climbing ability and learning-memory. Data analysis from all 20 donors with and without AD patients aged between 80 and 90 indicated a high-level expression of Dcf1 in the temporal neocortex. Dcf1 contributed to Aβ aggregation by UV spectroscopy assay. Intracerebroventricular delivery of Dcf1 antibodies in the hippocampus reduced the area of senile plaques and reversed learning and memory deficits in APP-PS1-AD mice. CONCLUSION Dcf1 causes Aβ-plaque accumulation, inhibiting dcf1 expression could potentially offer therapeutic avenues.
Collapse
Affiliation(s)
- Wei-Hao Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Lin-Hua Gan
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Fang-Fang Ma
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Rui-Li Feng
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yan-Hui Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yang-Yang Sun
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Ya-Jiang Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xin Diao
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Fei-Yang Qian
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Tie-Qiao Wen
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
11
|
Fosciclopirox suppresses growth of high-grade urothelial cancer by targeting the γ-secretase complex. Cell Death Dis 2021; 12:562. [PMID: 34059639 PMCID: PMC8166826 DOI: 10.1038/s41419-021-03836-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022]
Abstract
Ciclopirox (CPX) is an FDA-approved topical antifungal agent that has demonstrated preclinical anticancer activity in a number of solid and hematologic malignancies. Its clinical utility as an oral anticancer agent, however, is limited by poor oral bioavailability and gastrointestinal toxicity. Fosciclopirox, the phosphoryloxymethyl ester of CPX (Ciclopirox Prodrug, CPX-POM), selectively delivers the active metabolite, CPX, to the entire urinary tract following parenteral administration. We characterized the activity of CPX-POM and its major metabolites in in vitro and in vivo preclinical models of high-grade urothelial cancer. CPX inhibited cell proliferation, clonogenicity and spheroid formation, and increased cell cycle arrest at S and G0/G1 phases. Mechanistically, CPX suppressed activation of Notch signaling. Molecular modeling and cellular thermal shift assays demonstrated CPX binding to γ-secretase complex proteins Presenilin 1 and Nicastrin, which are essential for Notch activation. To establish in vivo preclinical proof of principle, we tested fosciclopirox in the validated N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) mouse bladder cancer model. Once-daily intraperitoneal administration of CPX-POM for four weeks at doses of 235 mg/kg and 470 mg/kg significantly decreased bladder weight, a surrogate for tumor volume, and resulted in a migration to lower stage tumors in CPX-POM treated animals. This was coupled with a reduction in the proliferation index. Additionally, there was a reduction in Presenilin 1 and Hes-1 expression in the bladder tissues of CPX-POM treated animals. Following the completion of the first-in-human Phase 1 trial (NCT03348514), the pharmacologic activity of fosciclopirox is currently being characterized in a Phase 1 expansion cohort study of muscle-invasive bladder cancer patients scheduled for cystectomy (NCT04608045) as well as a Phase 2 trial of newly diagnosed and recurrent urothelial cancer patients scheduled for transurethral resection of bladder tumors (NCT04525131).
Collapse
|
12
|
Celastrol and Triptolide Suppress Stemness in Triple Negative Breast Cancer: Notch as a Therapeutic Target for Stem Cells. Biomedicines 2021; 9:biomedicines9050482. [PMID: 33924995 PMCID: PMC8146582 DOI: 10.3390/biomedicines9050482] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Triple negative breast cancer (TNBC) is observed in ~15% of breast cancers and results in poor survival and increased distant metastases. Within the tumor are present a small portion of cancer stem cells that drive tumorigenesis and metastasis. In this study, we aimed to elucidate whether the two natural compounds, celastrol and triptolide, inhibit stemness in TNBC. MDA-MB-231, BT20, and a patient-derived primary cells (PD-TNBC) were used in the study. Mammosphere assay was performed to assess the stemness. Both celastrol and triptolide treatment suppressed mammosphere formation. Furthermore, the compound suppressed expression of cancer stem cell marker proteins DCLK1, ALDH1, and CD133. Notch signaling plays a critical role in stem cells renewal. Both celastrol or triptolide reduced Notch -1 activation and expression of its downstream target proteins HES-1 and HEY-1. However, when NICD 1 was ectopically overexpressed in the cells, it partially rescued proliferation and mammosphere formation of the cells, supporting the role of notch signaling. Together, these data demonstrate that targeting stem cells and the notch signaling pathway may be an effective strategy for curtailing TNBC progression.
Collapse
|
13
|
Gadhave K, Gehi BR, Kumar P, Xue B, Uversky VN, Giri R. The dark side of Alzheimer's disease: unstructured biology of proteins from the amyloid cascade signaling pathway. Cell Mol Life Sci 2020; 77:4163-4208. [PMID: 31894361 PMCID: PMC11104979 DOI: 10.1007/s00018-019-03414-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/17/2019] [Accepted: 12/04/2019] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a leading cause of age-related dementia worldwide. Despite more than a century of intensive research, we are not anywhere near the discovery of a cure for this disease or a way to prevent its progression. Among the various molecular mechanisms proposed for the description of the pathogenesis and progression of AD, the amyloid cascade hypothesis, according to which accumulation of a product of amyloid precursor protein (APP) cleavage, amyloid β (Aβ) peptide, induces pathological changes in the brain observed in AD, occupies a unique niche. Although multiple proteins have been implicated in this amyloid cascade signaling pathway, their structure-function relationships are mostly unexplored. However, it is known that two major proteins related to AD pathology, Aβ peptide, and microtubule-associated protein tau belong to the category of intrinsically disordered proteins (IDPs), which are the functionally important proteins characterized by a lack of fixed, ordered three-dimensional structure. IDPs and intrinsically disordered protein regions (IDPRs) play numerous vital roles in various cellular processes, such as signaling, cell cycle regulation, macromolecular recognition, and promiscuous binding. However, the deregulation and misfolding of IDPs may lead to disturbed signaling, interactions, and disease pathogenesis. Often, molecular recognition-related IDPs/IDPRs undergo disorder-to-order transition upon binding to their biological partners and contain specific disorder-based binding motifs, known as molecular recognition features (MoRFs). Knowing the intrinsic disorder status and disorder-based functionality of proteins associated with amyloid cascade signaling pathway may help to untangle the mechanisms of AD pathogenesis and help identify therapeutic targets. In this paper, we have used multiple computational tools to evaluate the presence of intrinsic disorder and MoRFs in 27 proteins potentially relevant to the amyloid cascade signaling pathway. Among these, BIN1, APP, APOE, PICALM, PSEN1 and CD33 were found to be highly disordered. Furthermore, their disorder-based binding regions and associated short linear motifs have also been identified. These findings represent important foundation for the future research, and experimental characterization of disordered regions in these proteins is required to better understand their roles in AD pathogenesis.
Collapse
Affiliation(s)
- Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | | | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Bin Xue
- Department of Cell Biology, Microbiology and Molecular Biology, School of Natural Sciences and Mathematics, College of Arts and Sciences, University of South Florida, Tampa, FL, 33620, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33620, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia.
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India.
| |
Collapse
|
14
|
Hitzenberger M, Götz A, Menig S, Brunschweiger B, Zacharias M, Scharnagl C. The dynamics of γ-secretase and its substrates. Semin Cell Dev Biol 2020; 105:86-101. [DOI: 10.1016/j.semcdb.2020.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/18/2022]
|
15
|
Escamilla-Ayala A, Wouters R, Sannerud R, Annaert W. Contribution of the Presenilins in the cell biology, structure and function of γ-secretase. Semin Cell Dev Biol 2020; 105:12-26. [DOI: 10.1016/j.semcdb.2020.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/06/2020] [Accepted: 02/17/2020] [Indexed: 01/25/2023]
|
16
|
Liu X, Zhao J, Zhang Y, Ubarretxena-Belandia I, Forth S, Lieberman RL, Wang C. Substrate-Enzyme Interactions in Intramembrane Proteolysis: γ-Secretase as the Prototype. Front Mol Neurosci 2020; 13:65. [PMID: 32508589 PMCID: PMC7248309 DOI: 10.3389/fnmol.2020.00065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/03/2020] [Indexed: 11/15/2022] Open
Abstract
Intramembrane-cleaving proteases (I-CLiPs) catalyze the hydrolysis of peptide bonds within the transmembrane regions of membrane protein substrates, releasing bioactive fragments that play roles in many physiological and pathological processes. Based on their catalytic mechanism and nucleophile, I-CLiPs are classified into metallo, serine, aspartyl, and glutamyl proteases. Presenilin is the most prominent among I-CLiPs, as the catalytic subunit of γ-secretase (GS) complex responsible for cleaving the amyloid precursor protein (APP) and Notch, as well as many other membrane substrates. Recent cryo-electron microscopy (cryo-EM) structures of GS provide new details on how presenilin recognizes and cleaves APP and Notch. First, presenilin transmembrane helix (TM) 2 and 6 are dynamic. Second, upon binding to GS, the substrate TM helix is unwound from the C-terminus, resulting in an intermolecular β-sheet between the substrate and presenilin. The transition of the substrate C-terminus from α-helix to β-sheet is proposed to expose the scissile peptide bond in an extended conformation, leaving it susceptible to protease cleavage. Despite the astounding new insights in recent years, many crucial questions remain unanswered regarding the inner workings of γ-secretase, however. Key unanswered questions include how the enzyme recognizes and recruits substrates, how substrates are translocated from an initial docking site to the active site, how active site aspartates recruit and coordinate catalytic water, and the nature of the mechanisms of processive trimming of the substrate and product release. Answering these questions will have important implications for drug discovery aimed at selectively reducing the amyloid load in Alzheimer's disease (AD) with minimal side effects.
Collapse
Affiliation(s)
- Xinyue Liu
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jing Zhao
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY, United States
| | - Iban Ubarretxena-Belandia
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Scott Forth
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Raquel L. Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
17
|
Jung S, Hyun J, Nah J, Han J, Kim SH, Park J, Oh Y, Gwon Y, Moon S, Jo DG, Jung YK. SERP1 is an assembly regulator of γ-secretase in metabolic stress conditions. Sci Signal 2020; 13:13/623/eaax8949. [PMID: 32184288 DOI: 10.1126/scisignal.aax8949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The enzyme γ-secretase generates β-amyloid (Aβ) peptides by cleaving amyloid protein precursor (APP); the aggregation of these peptides is associated with Alzheimer's disease (AD). Despite the development of various γ-secretase regulators, their clinical use is limited by coincident disruption of other γ-secretase-regulated substrates, such as Notch. Using a genome-wide functional screen of γ-secretase activity in cells and a complementary DNA expression library, we found that SERP1 is a previously unknown γ-secretase activator that stimulates Aβ generation in cells experiencing endoplasmic reticulum (ER) stress, such as is seen with diabetes. SERP1 interacted with a subcomplex of γ-secretase (APH1A/NCT) through its carboxyl terminus to enhance the assembly and, consequently, the activity of the γ-secretase holoenzyme complex. In response to ER stress, SERP1 preferentially recruited APP rather than Notch into the γ-secretase complex and enhanced the subcellular localization of the complex into lipid rafts, increasing Aβ production. Moreover, SERP1 abundance, γ-secretase assembly, and Aβ production were increased both in cells exposed to high amounts of glucose and in diabetic AD model mice. Conversely, Aβ production was decreased by knocking down SERP1 in cells or in the hippocampi of mice. Compared to postmortem samples from control individuals, those from patients with AD showed increased SERP1 expression in the hippocampus and parietal lobe. Together, our findings suggest that SERP1 is an APP-biased regulator of γ-secretase function in the context of cell stress, providing a possible molecular explanation for the link between diabetes and sporadic AD.
Collapse
Affiliation(s)
- Sunmin Jung
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Junho Hyun
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jihoon Nah
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jonghee Han
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Seo-Hyun Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jaesang Park
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Yoonseo Oh
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Youngdae Gwon
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Seowon Moon
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Yong-Keun Jung
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| |
Collapse
|
18
|
Cai T, Tomita T. Structure-activity relationship of presenilin in γ-secretase-mediated intramembrane cleavage. Semin Cell Dev Biol 2020; 105:102-109. [PMID: 32171519 DOI: 10.1016/j.semcdb.2020.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/12/2023]
Abstract
Genetic research on familial cases of Alzheimer disease have identified presenilin (PS) as an important membrane protein in the pathomechanism of this disease. PS is the catalytic subunit of γ-secretase, which is responsible for the generation of amyloid-β peptide deposited in the brains of Alzheimer disease patients. γ-Secretase is an atypical protease composed of four membrane proteins (i.e., presenilin, nicastrin, anterior pharynx defective-1 (Aph-1), and presenilin enhancer-2 (Pen-2)) and mediates intramembrane proteolysis. Numerous investigations have been conducted toward understanding the structural features of γ-secretase components as well as the cleavage mechanism of γ-secretase. In this review, we summarize our current understanding of the structure and activity relationship of the γ-secretase complex.
Collapse
Affiliation(s)
- Tetsuo Cai
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
19
|
Integrated structural and evolutionary analysis reveals common mechanisms underlying adaptive evolution in mammals. Proc Natl Acad Sci U S A 2020; 117:5977-5986. [PMID: 32123117 DOI: 10.1073/pnas.1916786117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Understanding the molecular basis of adaptation to the environment is a central question in evolutionary biology, yet linking detected signatures of positive selection to molecular mechanisms remains challenging. Here we demonstrate that combining sequence-based phylogenetic methods with structural information assists in making such mechanistic interpretations on a genomic scale. Our integrative analysis shows that positively selected sites tend to colocalize on protein structures and that positively selected clusters are found in functionally important regions of proteins, indicating that positive selection can contravene the well-known principle of evolutionary conservation of functionally important regions. This unexpected finding, along with our discovery that positive selection acts on structural clusters, opens previously unexplored strategies for the development of better models of protein evolution. Remarkably, proteins where we detect the strongest evidence of clustering belong to just two functional groups: Components of immune response and metabolic enzymes. This gives a coherent picture of pathogens and xenobiotics as important drivers of adaptive evolution of mammals.
Collapse
|
20
|
Abstract
γ-Secretase is a membrane-embedded protease complex, with presenilin as the catalytic component containing two transmembrane aspartates in the active site. With more than 90 known substrates, the γ-secretase complex is considered "the proteasome of the membrane", with central roles in biology and medicine. The protease carries out hydrolysis within the lipid bilayer to cleave the transmembrane domain of the substrate multiple times before releasing secreted products. For many years, elucidation of γ-secretase structure and function largely relied on small-molecule probes and mutagenesis. Recently, however, advances in cryo-electron microscopy have led to the first detailed structures of the protease complex. Two new reports of structures of γ-secretase bound to membrane protein substrates provide great insight into the nature of substrate recognition and how Alzheimer's disease-causing mutations in presenilin might alter substrate binding and processing. These new structures offer a powerful platform for elucidating enzyme mechanisms, deciphering effects of disease-causing mutations, and advancing Alzheimer's disease drug discovery.
Collapse
Affiliation(s)
- Michael S Wolfe
- Department of Medicinal Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| |
Collapse
|
21
|
Zhang DF, Xu M, Bi R, Yao YG. Genetic Analyses of Alzheimer's Disease in China: Achievements and Perspectives. ACS Chem Neurosci 2019; 10:890-901. [PMID: 30698408 DOI: 10.1021/acschemneuro.8b00435] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Since 2010, the Chinese have become one of the most aged populations in the world, leading to a severe burden of neurodegenerative disorders. Alzheimer's disease (AD) is the most prevalent neurodegenerative disease and has a high genetic heritability. In the past two decades, numerous genetic analyses, from linkage analyses and candidate gene studies to genome-wide association studies (GWASs) and next-generation sequencing studies, have identified dozens of AD susceptibility or causal genes. These studies have provided a comprehensive genetic view and contributed to the understanding of the pathological and molecular mechanisms of the disease. However, most of the recognized AD genetic risk factors have been reported in studies based on European populations or populations of European ancestry, and data about the genetics of AD from other populations has been very limited. As China has the largest AD population in the world and because of the remarkable genetic differences between the East and the West, deciphering the genetic basis and molecular mechanism in Chinese patients with AD may add key points to the full characterization of AD. In this review, we present an overview of the current state of AD genetic research in China, with an emphasis on genome-level studies. We also describe the challenges and opportunities for future advances, especially for in-depth collaborations, brain bank construction, and primate animal modeling. There is an urgent need to promote public awareness and increase our collaborations and data sharing.
Collapse
Affiliation(s)
- Deng-Feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Min Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Kunming Institute of Zoology−Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
22
|
Steiner H, Fukumori A, Tagami S, Okochi M. Making the final cut: pathogenic amyloid-β peptide generation by γ-secretase. Cell Stress 2018; 2:292-310. [PMID: 31225454 PMCID: PMC6551803 DOI: 10.15698/cst2018.11.162] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alzheimer´s disease (AD) is a devastating neurodegenerative disease of the elderly population. Genetic evidence strongly suggests that aberrant generation and/or clearance of the neurotoxic amyloid-β peptide (Aβ) is triggering the disease. Aβ is generated from the amyloid precursor protein (APP) by the sequential cleavages of β- and γ-secretase. The latter cleavage by γ-secretase, a unique and fascinating four-component protease complex, occurs in the APP transmembrane domain thereby releasing Aβ species of 37-43 amino acids in length including the longer, highly pathogenic peptides Aβ42 and Aβ43. The lack of a precise understanding of Aβ generation as well as of the functions of other γ-secretase substrates has been one factor underlying the disappointing failure of γ-secretase inhibitors in clinical trials, but on the other side also been a major driving force for structural and in depth mechanistic studies on this key AD drug target in the past few years. Here we review recent breakthroughs in our understanding of how the γ-secretase complex recognizes substrates, of how it binds and processes β-secretase cleaved APP into different Aβ species, as well as the progress made on a question of outstanding interest, namely how clinical AD mutations in the catalytic subunit presenilin and the γ-secretase cleavage region of APP lead to relative increases of Aβ42/43. Finally, we discuss how the knowledge emerging from these studies could be used to therapeutically target this enzyme in a safe way.
Collapse
Affiliation(s)
- Harald Steiner
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians-University Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Akio Fukumori
- Department of Aging Neurobiology, National Center for Geriatrics and Gerontology, Obu & Department of Mental Health Promotion, Osaka University Graduate School of Medicine, Toyonaka, Japan
| | - Shinji Tagami
- Neuropsychiatry, Department of Integrated Medicine, Division of Internal Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masayasu Okochi
- Neuropsychiatry, Department of Integrated Medicine, Division of Internal Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
23
|
Devi S, Yadav R, Chanana P, Arya R. Fighting the Cause of Alzheimer's and GNE Myopathy. Front Neurosci 2018; 12:669. [PMID: 30374284 PMCID: PMC6196280 DOI: 10.3389/fnins.2018.00669] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
Age is the common risk factor for both neurodegenerative and neuromuscular diseases. Alzheimer disease (AD), a neurodegenerative disorder, causes dementia with age progression while GNE myopathy (GNEM), a neuromuscular disorder, causes muscle degeneration and loss of muscle motor movement with age. Individuals with mutations in presenilin or amyloid precursor protein (APP) gene develop AD while mutations in GNE (UDP N-acetylglucosamine 2 epimerase/N-acetyl Mannosamine kinase), key sialic acid biosynthesis enzyme, cause GNEM. Although GNEM is characterized with degeneration of muscle cells, it is shown to have similar disease hallmarks like aggregation of Aβ and accumulation of phosphorylated tau and other misfolded proteins in muscle cell similar to AD. Similar impairment in cellular functions have been reported in both disorders such as disruption of cytoskeletal network, changes in glycosylation pattern, mitochondrial dysfunction, oxidative stress, upregulation of chaperones, unfolded protein response in ER, autophagic vacuoles, cell death, and apoptosis. Interestingly, AD and GNEM are the two diseases with similar phenotypic condition affecting neuron and muscle, respectively, resulting in entirely different pathology. This review represents a comparative outlook of AD and GNEM that could lead to target common mechanism to find a plausible therapeutic for both the diseases.
Collapse
Affiliation(s)
| | - Rashmi Yadav
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Pratibha Chanana
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ranjana Arya
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
24
|
Allosteric Modulation of Intact γ-Secretase Structural Dynamics. Biophys J 2018; 113:2634-2649. [PMID: 29262358 DOI: 10.1016/j.bpj.2017.10.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/26/2017] [Accepted: 10/10/2017] [Indexed: 12/20/2022] Open
Abstract
As a protease complex involved in the cleavage of amyloid precursor proteins that lead to the formation of amyloid β fibrils implicated in Alzheimer's disease, γ-secretase is an important target for developing therapeutics against Alzheimer's disease. γ-secretase is composed of four subunits: nicastrin (NCT) in the extracellular (EC) domain, presenilin-1 (PS1), anterior pharynx defective 1, and presenilin enhancer 2 in the transmembrane (TM) domain. NCT and PS1 play important roles in binding amyloid β precursor proteins and modulating PS1 catalytic activity. Yet, the molecular mechanisms of coupling between substrate/modulator binding and catalytic activity remain to be elucidated. Recent determination of intact human γ-secretase cryo-electron microscopy structure has opened the way for a detailed investigation of the structural dynamics of this complex. Our analysis, based on a membrane-coupled anisotropic network model, reveals two types of NCT motions, bending and twisting, with respect to PS1. These underlie the fluctuations between the "open" and "closed" states of the lid-like NCT with respect to a hydrophilic loop 1 (HL1) on PS1, thus allowing or blocking access of the substrate peptide (EC portion) to HL1 and to the neighboring helix TM2. In addition to this alternating access mechanism, fluctuations in the volume of the PS1 central cavity facilitate the exposure of the catalytic site for substrate cleavage. Druggability simulations show that γ-secretase presents several hot spots for either orthosteric or allosteric inhibition of catalytic activity, consistent with experimental data. In particular, a hinge region at the interface between the EC and TM domains, near the interlobe groove of NCT, emerges as an allo-targeting site that would impact the coupling between HL1/TM2 and the catalytic pocket, opening, to our knowledge, new avenues for structure-based design of novel allosteric modulators of γ-secretase protease activity.
Collapse
|
25
|
Johnson DS, Li YM, Pettersson M, St George-Hyslop PH. Structural and Chemical Biology of Presenilin Complexes. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024067. [PMID: 28320827 PMCID: PMC5710098 DOI: 10.1101/cshperspect.a024067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The presenilin proteins are the catalytic subunits of a tetrameric complex containing presenilin 1 or 2, anterior pharynx defective 1 (APH1), nicastrin, and PEN-2. Other components such as TMP21 may exist in a subset of specialized complexes. The presenilin complex is the founding member of a unique class of aspartyl proteases that catalyze the γ, ɛ, ζ site cleavage of the transmembrane domains of Type I membrane proteins including amyloid precursor protein (APP) and Notch. Here, we detail the structural and chemical biology of this unusual enzyme. Taken together, these studies suggest that the complex exists in several conformations, and subtle long-range (allosteric) shifts in the conformation of the complex underpin substrate access to the catalytic site and the mechanism of action for allosteric inhibitors and modulators. Understanding the mechanics of these shifts will facilitate the design of γ-secretase modulator (GSM) compounds that modulate the relative efficiency of γ, ɛ, ζ site cleavage and/or substrate specificity.
Collapse
Affiliation(s)
- Douglas S. Johnson
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Martin Pettersson
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139
| | - Peter H. St George-Hyslop
- Cambridge Institute for Medical Research, Wellcome Trust MRC Building, Addenbrookes Hospital, Cambridge CB2 0XY, United Kingdom,Tanz Centre for Research in Neurodegenerative Diseases and Departments of Medicine, Laboratory Medicine and Pathobiology, and Medical Biophysics, University of Toronto, Toronto, Ontario M5T 2S8, Canada
| |
Collapse
|
26
|
Aguayo-Ortiz R, Chávez-García C, Straub JE, Dominguez L. Characterizing the structural ensemble of γ-secretase using a multiscale molecular dynamics approach. Chem Sci 2017; 8:5576-5584. [PMID: 28970936 PMCID: PMC5618787 DOI: 10.1039/c7sc00980a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/05/2017] [Indexed: 11/21/2022] Open
Abstract
γ-Secretase is an intramembrane-cleaving aspartyl protease that plays an essential role in the processing of a variety of integral membrane proteins. Its role in the ultimate cleavage step in the processing of amyloid precursor protein to form amyloid-β (Aβ) peptide makes it an important therapeutic target in Alzheimer's disease research. Significant recent advances have been made in structural studies of this critical membrane protein complex. However, details of the mechanism of activation of the enzyme complex remain unclear. Using a multiscale computational modeling approach, combining multiple coarse-grained microsecond dynamic trajectories with all-atom models, the structure and two conformational states of the γ-secretase complex were evaluated. The transition between enzymatic state 1 and state 2 is shown to critically depend on the protonation states of the key catalytic residues Asp257 and Asp385 in the active site domain. The active site formation, related to our γ-secretase state 2, is observed to involve a concerted movement of four transmembrane helices from the catalytic subunit, resulting in the required localization of the catalytic residues. Global analysis of the structural ensemble of the enzyme complex was used to identify collective fluctuations important to the mechanism of substrate recognition and demonstrate that the corresponding fluctuations observed were uncorrelated with structural changes associated with enzyme activation. Overall, this computational study provides essential insight into the role of structure and dynamics in the activation and function of γ-secretase.
Collapse
Affiliation(s)
- Rodrigo Aguayo-Ortiz
- Departamento de Fisicoquímica , Facultad de Química , Universidad Nacional Autónoma de México , Mexico City , 04510 , Mexico .
| | - Cecilia Chávez-García
- Departamento de Fisicoquímica , Facultad de Química , Universidad Nacional Autónoma de México , Mexico City , 04510 , Mexico .
| | - John E Straub
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , USA
| | - Laura Dominguez
- Departamento de Fisicoquímica , Facultad de Química , Universidad Nacional Autónoma de México , Mexico City , 04510 , Mexico .
| |
Collapse
|
27
|
Abstract
γ-secretase, a membrane-embedded aspartate protease, catalyzes peptide bond hydrolysis of a large variety of type I integral membrane proteins exemplified by amyloid precursor protein (APP). Cleavage of APP leads to formation of β-amyloid plaque, which is a hallmark of Alzheimer's disease (AD). Over 200 AD-associated mutations are mapped to presenilin 1 (PS1), the catalytic component of γ-secretase. In the past three years, several cryo-electron microscopy (cryo-EM) structures of human γ-secretase have been determined at near atomic resolutions. Here we summarize the methods involved and discuss structural features of γ-secretase and the associated functional insights.
Collapse
Affiliation(s)
- Guanghui Yang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Rui Zhou
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
28
|
Gu K, Li Q, Lin H, Zhu J, Mo J, He S, Lu X, Jiang X, Sun H. Gamma secretase inhibitors: a patent review (2013 - 2015). Expert Opin Ther Pat 2017; 27:851-866. [PMID: 28350212 DOI: 10.1080/13543776.2017.1313231] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Gamma secretase (GS) is an intricate and multi-subunits complex, and it can cut various transmembrane proteins. Now it is a therapeutic target for a number of diseases. However, due to some side effects, the clinical development of GSI is not successful. Therefore, searching for effective GSIs has become a key point in drug discovery. Areas covered: This review discusses the structure and function of GS and various types of GSIs. And this article seeks to give an overview of the patents or applications published from 2013 to 2015 in which novel chemical classes are claimed to inhibit the GS. Expert opinion: Firstly, further understanding the structure and function of GS to elucidate the disease mechanism and develop AD therapies is urgent. Secondly, if the bioequivalence, pharmacokinetics and selectivity can be improved greatly, some failed clinical inhibitors still can become the promising compounds for clinical trials. Thirdly, some weaknesses are exposed during the development of GSI, especially the insufficient potency, low brain penetration and poor selectivity. Finally, to find potent and selective GSI is the major direction in future. Moreover, to find new indications and dosing regimens in a trial of GSIs also can be seen as new ways.
Collapse
Affiliation(s)
- Kai Gu
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Qi Li
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Hongzhi Lin
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Jie Zhu
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Jun Mo
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Siyu He
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Xin Lu
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Xueyang Jiang
- b Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing , China
| | - Haopeng Sun
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
29
|
High-efficient production and biophysical characterisation of nicastrin and its interaction with APPC100. Sci Rep 2017; 7:44297. [PMID: 28276527 PMCID: PMC5343570 DOI: 10.1038/srep44297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/06/2017] [Indexed: 01/06/2023] Open
Abstract
Nicastrin, the largest member among the four components of the γ-secretase complex, has been identified to be the substrate recognizer for the proteolytic activity of the complex. Here we report that full-length human nicastrin (hNCT) can be obtained by heterologous expression in E. coli. Milligram quantities of the target protein are purified in a two-step purification protocol using affinity chromatography followed by SEC. The FOS-choline 14 purified tetrameric hNCT exhibits a proper folding with 31% α-helix and 23% β-sheet content. Thermal stability studies reveal stable secondary and tertiary structure of the detergent purified hNCT. A physical interaction between nicastrin and the γ-secretase substrate APPC100 confirmed the functionality of hNCT as a substrate recognizer.
Collapse
|
30
|
Affiliation(s)
- Rodrigo Aguayo-Ortiz
- Departamento de Fisicoquímica; Universidad Nacional Autónoma de México; Ciudad de México 04510 México
| | - Laura Dominguez
- Departamento de Fisicoquímica; Universidad Nacional Autónoma de México; Ciudad de México 04510 México
| |
Collapse
|
31
|
Bursavich MG, Harrison BA, Blain JF. Gamma Secretase Modulators: New Alzheimer's Drugs on the Horizon? J Med Chem 2016; 59:7389-409. [PMID: 27007185 DOI: 10.1021/acs.jmedchem.5b01960] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The rapidly aging population desperately requires new therapies for Alzheimer's disease. Despite years of pharmaceutical research, limited clinical success has been realized, with several failed disease modification therapies in recent years. On the basis of compelling genetic evidence, the pharmaceutical industry has put a large emphasis on brain beta amyloid (Aβ) either through its removal via antibodies or by targeting the proteases responsible for its production. In this Perspective, we focus on the development of small molecules that improve the activity of one such protease, gamma secretase, through an allosteric binding site to preferentially increase the concentration of the shorter non-amyloidogenic Aβ species. After a few early failures due to poor drug-like properties, the industry is now on the cusp of delivering gamma secretase modulators for clinical proof-of-mechanism studies that combine potency and efficacy with improved drug-like properties such as lower cLogP, high central nervous system multiparameter optimization scores, and high sp(3) character.
Collapse
Affiliation(s)
- Matthew G Bursavich
- FORUM Pharmaceuticals , 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Bryce A Harrison
- FORUM Pharmaceuticals , 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Jean-François Blain
- FORUM Pharmaceuticals , 225 Second Avenue, Waltham, Massachusetts 02451, United States
| |
Collapse
|
32
|
Elad N, De Strooper B, Lismont S, Hagen W, Veugelen S, Arimon M, Horré K, Berezovska O, Sachse C, Chávez-Gutiérrez L. The dynamic conformational landscape of gamma-secretase. J Cell Sci 2016; 128:589-98. [PMID: 25501811 PMCID: PMC4311135 DOI: 10.1242/jcs.164384] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The structure and function of the gamma-secretase proteases are of great interest because of their crucial roles in cellular and disease processes. We established a novel purification protocol for the gamma-secretase complex that involves a conformation- and complex-specific nanobody, yielding highly pure and active enzyme. Using single particle electron microscopy, we analyzed the gamma-secretase structure and its conformational variability. Under steady-state conditions, the complex adopts three major conformations, which differ in overall compactness and relative position of the nicastrin ectodomain. Occupancy of the active or substrate-binding sites by inhibitors differentially stabilizes subpopulations of particles with compact conformations, whereas a mutation linked to familial Alzheimer disease results in enrichment of extended-conformation complexes with increased flexibility. Our study presents the csecretase complex as a dynamic population of interconverting conformations, involving rearrangements at the nanometer scale and a high level of structural interdependence between subunits. The fact that protease inhibition or clinical mutations, which affect amyloid beta (Abeta) generation, enrich for particular subpopulations of conformers indicates the functional relevance of the observed dynamic changes, which are likely to be instrumental for highly allosteric behavior of the enzyme.
Collapse
Affiliation(s)
- Nadav Elad
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium
- Center of Human Genetics, University Hospitals Leuven & Department of Human Genetics, KU Leuven, and Leuven Research Institute for Neuroscience and Disease (LIND), 3000 Leuven, Belgium
| | - Bart De Strooper
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium
- Center of Human Genetics, University Hospitals Leuven & Department of Human Genetics, KU Leuven, and Leuven Research Institute for Neuroscience and Disease (LIND), 3000 Leuven, Belgium
- UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Authors for correspondence (; ; )
| | - Sam Lismont
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium
- Center of Human Genetics, University Hospitals Leuven & Department of Human Genetics, KU Leuven, and Leuven Research Institute for Neuroscience and Disease (LIND), 3000 Leuven, Belgium
| | - Wim Hagen
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse1, 69117 Heidelberg, Germany
| | - Sarah Veugelen
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium
- Center of Human Genetics, University Hospitals Leuven & Department of Human Genetics, KU Leuven, and Leuven Research Institute for Neuroscience and Disease (LIND), 3000 Leuven, Belgium
| | - Muriel Arimon
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Katrien Horré
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium
- Center of Human Genetics, University Hospitals Leuven & Department of Human Genetics, KU Leuven, and Leuven Research Institute for Neuroscience and Disease (LIND), 3000 Leuven, Belgium
| | - Oksana Berezovska
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse1, 69117 Heidelberg, Germany
| | - Carsten Sachse
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse1, 69117 Heidelberg, Germany
- Authors for correspondence (; ; )
| | - Lucía Chávez-Gutiérrez
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium
- Center of Human Genetics, University Hospitals Leuven & Department of Human Genetics, KU Leuven, and Leuven Research Institute for Neuroscience and Disease (LIND), 3000 Leuven, Belgium
- Authors for correspondence (; ; )
| |
Collapse
|
33
|
Zhang X, Sullivan E, Scimeca M, Wu X, Li YM, Sisodia SS. Evidence That the "Lid" Domain of Nicastrin Is Not Essential for Regulating γ-Secretase Activity. J Biol Chem 2016; 291:6748-53. [PMID: 26887941 DOI: 10.1074/jbc.c115.701649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Indexed: 11/06/2022] Open
Abstract
Understanding of the structure of the γ-secretase complex consisting of presenilin (PS), anterior pharynx-defective 1 (APH-1), nicastrin (NCT), and presenilin enhancer 2 (PEN-2) is of significant therapeutic interest for the design of γ-secretase modulators for Alzheimer disease. The structure of γ-secretase revealed by cryo-EM approaches suggested a substrate binding mechanism for NCT, a bilobar structure that involved rotation of the two lobes around a central pivot and opening of a "lid" region that facilitates substrate recruitment. To validate this proposal, we expressed NCT that lacks the lid entirely, or a variety of NCT variants that harbor mutations at highly conserved residues in the lid region inNCT-deficient cells, and then assessed their impact on γ-secretase assembly, activity, and stability. In addition, we assessed the impact of mutating a critical residue proposed to be a pivot around which the two lobes of NCT rotate. Our results show that neither the mutations on the lid tested here nor the entire lid deletion has any significant impact on γ-secretase assembly, activity, and stability, and that NCT with the mutation of the proposed pivot rescues γ-secretase activity inNCT-deficient cells in a manner indistinguishable from WT NCT. These findings indicate that the NCT lid is not an essential element necessary for γ-secretase assembly, activity, and stability, and that rotation of the two lobes appears not to be a prerequisite for substrate binding and γ-secretase function.
Collapse
Affiliation(s)
- Xulun Zhang
- From the Department of Neurobiology, The University of Chicago, Chicago, Illinois 60637 and
| | - Eric Sullivan
- From the Department of Neurobiology, The University of Chicago, Chicago, Illinois 60637 and
| | - Maggie Scimeca
- From the Department of Neurobiology, The University of Chicago, Chicago, Illinois 60637 and
| | - Xianzhong Wu
- the Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| | - Yue-Ming Li
- the Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| | - Sangram S Sisodia
- From the Department of Neurobiology, The University of Chicago, Chicago, Illinois 60637 and
| |
Collapse
|
34
|
Structural biology of intramembrane proteases: mechanistic insights from rhomboid and S2P to γ-secretase. Curr Opin Struct Biol 2016; 37:97-107. [PMID: 26811996 DOI: 10.1016/j.sbi.2015.12.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/14/2015] [Accepted: 12/28/2015] [Indexed: 12/21/2022]
Abstract
Intramembrane proteases catalyze hydrolysis of peptide bond within the lipid bilayer and play a key role in a variety of cellular processes. These membrane-embedded enzymes comprise four major classes: rhomboid serine proteases, site-2 metalloproteases, Rce1-type glutamyl proteases, and aspartyl proteases exemplified by signal peptide peptidase and γ-secretase. In the past several years, three-dimensional structures of representative members of these four classes of intramembrane protease have been reported at atomic resolutions, which reveal distinct protein folds and active site configurations. These structures, together with structure-guided biochemical analyses, shed light on the working mechanisms of water access and substrate entry. In this review, we discuss the shared as well as unique features of these intramembrane proteases, with a focus on presenilin-the catalytic component of γ-secretase.
Collapse
|
35
|
Li Y, Liew LSY, Li Q, Kang C. Structure of the transmembrane domain of human nicastrin-a component of γ-secretase. Sci Rep 2016; 6:19522. [PMID: 26776682 PMCID: PMC4726005 DOI: 10.1038/srep19522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/09/2015] [Indexed: 02/04/2023] Open
Abstract
Nicastrin is the largest component of γ-secretase that is an intramembrane protease important in the development of Alzheimer's disease. Nicastrin contains a large extracellular domain, a single transmembrane (TM) domain, and a short C-terminus. Its TM domain is important for the γ-secretase complex formation. Here we report nuclear magnetic resonance (NMR) studies of the TM and C-terminal regions of human nicastrin in both sodium dodecyl sulfate (SDS) and dodecylphosphocholine (DPC) micelles. Structural study and dynamic analysis reveal that the TM domain is largely helical and stable under both SDS and DPC micelles with its N-terminal region undergoing intermediate time scale motion. The TM helix contains a hydrophilic patch that is important for TM-TM interactions. The short C-terminus is not structured in solution and a region formed by residues V697-A702 interacts with the membrane, suggesting that these residues may play a role in the γ-secretase complex formation. Our study provides structural insight into the function of the nicastrin TM domain and the C-terminus in γ-secretase complex.
Collapse
Affiliation(s)
- Yan Li
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore, 138669 Singapore
| | - Lynette Sin Yee Liew
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore, 138669 Singapore
| | - Qingxin Li
- Institute of Chemical &Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, 138669 Singapore
| | - CongBao Kang
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore, 138669 Singapore
| |
Collapse
|
36
|
Xiao X, He Y, Li C, Zhang X, Xu H, Wang B. Nicastrin mutations in familial acne inversa impact keratinocyte proliferation and differentiation through the Notch and phosphoinositide 3-kinase/AKT signalling pathways. Br J Dermatol 2016; 174:522-32. [PMID: 26473517 DOI: 10.1111/bjd.14223] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Acne inversa (AI) is a chronic inflammatory skin disease with an autosomal dominant inheritance pattern. Mutations of the gene encoding nicastrin (NCSTN), a cofactor subunit of γ-secretase, are responsible for familial AI. However, whether deficiency of nicastrin is functionally implicated in the biological behaviours of human keratinocytes and related molecular mechanisms remains unknown. OBJECTIVES To study alterations of biological traits and related signalling pathways modulated by nicastrin knockdown in keratinocytes. METHODS A human immortalized keratinocyte cell line (HaCaT) was treated with efficient small interfering (si)RNA-targeted NCSTN. Cell proliferation was measured by CCK-8 assay; cell-cycle and cell apoptosis analyses were detected by flow cytometry. Microarray analysis was applied to uncover impacts of NCSTN silencing on whole-genome expression of HaCaT cells. Altered signalling pathways were further confirmed by real-time polymerase chain reaction, Western blotting and immunohistochemistry in both HaCaT cells and lesions of a patient with AI with NCSTN mutation. RESULTS NCSTN knockdown in HaCaT cells impaired γ-secretase activity, leading to increased cell proliferation and S-phase population. Microarray data also showed that numerous genes and pathways implicated in proliferation and differentiation of keratinocytes were statistically changed. Among these genes, expression levels of several Notch pathway molecules, known as γ-secretase substrates, were validated to be significantly attenuated in both nicastrin-silencing HaCaT cells and the lesion of the patient. Furthermore, a remarkable elevation of expression of phosphoinositide 3-kinase (PI3K), AKT and its activated form pAKT was illustrated in siRNA-treated HaCaT cells. CONCLUSIONS Deficiency of the NCSTN in familial AI may regulate proliferation and differentiation of keratinocytes mainly through the Notch and PI3K/AKT signalling pathways.
Collapse
Affiliation(s)
- X Xiao
- Institute of Dermatology, Chinese Academy of Medical Sciences, St 12 Jiangwangmiao, Nanjing, Jiangsu, 210042, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, St 12 Jiangwangmiao, Nanjing, Jiangsu, 210042, China
| | - Y He
- Institute of Dermatology, Chinese Academy of Medical Sciences, St 12 Jiangwangmiao, Nanjing, Jiangsu, 210042, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, St 12 Jiangwangmiao, Nanjing, Jiangsu, 210042, China
| | - C Li
- Institute of Dermatology, Chinese Academy of Medical Sciences, St 12 Jiangwangmiao, Nanjing, Jiangsu, 210042, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, St 12 Jiangwangmiao, Nanjing, Jiangsu, 210042, China
| | - X Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences, St 12 Jiangwangmiao, Nanjing, Jiangsu, 210042, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, St 12 Jiangwangmiao, Nanjing, Jiangsu, 210042, China
| | - H Xu
- Institute of Dermatology, Chinese Academy of Medical Sciences, St 12 Jiangwangmiao, Nanjing, Jiangsu, 210042, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, St 12 Jiangwangmiao, Nanjing, Jiangsu, 210042, China
| | - B Wang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, St 12 Jiangwangmiao, Nanjing, Jiangsu, 210042, China.,Institute of Plastic Surgery, Chinese Academy of Medical Sciences, St 33 Ba-Da-Chu Road, Beijing, 100144, China
| |
Collapse
|
37
|
Nicastrin functions to sterically hinder γ-secretase-substrate interactions driven by substrate transmembrane domain. Proc Natl Acad Sci U S A 2015; 113:E509-18. [PMID: 26699478 DOI: 10.1073/pnas.1512952113] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
γ-Secretase is an intramembrane-cleaving protease that processes many type-I integral membrane proteins within the lipid bilayer, an event preceded by shedding of most of the substrate's ectodomain by α- or β-secretases. The mechanism by which γ-secretase selectively recognizes and recruits ectodomain-shed substrates for catalysis remains unclear. In contrast to previous reports that substrate is actively recruited for catalysis when its remaining short ectodomain interacts with the nicastrin component of γ-secretase, we find that substrate ectodomain is entirely dispensable for cleavage. Instead, γ-secretase-substrate binding is driven by an apparent tight-binding interaction derived from substrate transmembrane domain, a mechanism in stark contrast to rhomboid--another family of intramembrane-cleaving proteases. Disruption of the nicastrin fold allows for more efficient cleavage of substrates retaining longer ectodomains, indicating that nicastrin actively excludes larger substrates through steric hindrance, thus serving as a molecular gatekeeper for substrate binding and catalysis.
Collapse
|
38
|
Goedert M. NEURODEGENERATION. Alzheimer's and Parkinson's diseases: The prion concept in relation to assembled Aβ, tau, and α-synuclein. Science 2015; 349:1255555. [PMID: 26250687 DOI: 10.1126/science.1255555] [Citation(s) in RCA: 683] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pathological assembly of Aβ, tau, and α-synuclein is at the heart of Alzheimer's and Parkinson's diseases. Extracellular deposits of Aβ and intraneuronal tau inclusions define Alzheimer's disease, whereas intracellular inclusions of α-synuclein make up the Lewy pathology of Parkinson's disease. Most cases of disease are sporadic, but some are inherited in a dominant manner. Mutations frequently occur in the genes encoding Aβ, tau, and α-synuclein. Overexpression of these mutant proteins can give rise to disease-associated phenotypes. Protein assembly begins in specific regions of the brain during the process of Alzheimer's and Parkinson's diseases, from where it spreads to other areas.
Collapse
Affiliation(s)
- Michel Goedert
- Laboratory of Molecular Biology, Medical Research Council, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
39
|
Abstract
Dysfunction of the intramembrane protease γ-secretase is thought to cause Alzheimer's disease, with most mutations derived from Alzheimer's disease mapping to the catalytic subunit presenilin 1 (PS1). Here we report an atomic structure of human γ-secretase at 3.4 Å resolution, determined by single-particle cryo-electron microscopy. Mutations derived from Alzheimer's disease affect residues at two hotspots in PS1, each located at the centre of a distinct four transmembrane segment (TM) bundle. TM2 and, to a lesser extent, TM6 exhibit considerable flexibility, yielding a plastic active site and adaptable surrounding elements. The active site of PS1 is accessible from the convex side of the TM horseshoe, suggesting considerable conformational changes in nicastrin extracellular domain after substrate recruitment. Component protein APH-1 serves as a scaffold, anchoring the lone transmembrane helix from nicastrin and supporting the flexible conformation of PS1. Ordered phospholipids stabilize the complex inside the membrane. Our structure serves as a molecular basis for mechanistic understanding of γ-secretase function.
Collapse
|
40
|
López AR, Dimitrov M, Gerber H, Braman V, Hacker DL, Wurm FM, Fraering PC. Production of active glycosylation-deficient γ-secretase complex for crystallization studies. Biotechnol Bioeng 2015; 112:2516-26. [PMID: 26059427 DOI: 10.1002/bit.25675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD)-associated γ-secretase is a ubiquitously expressed multi-subunit protease complex embedded in the lipid bilayer of cellular compartments including endosomes and the plasma membrane. Although γ-secretase is of crucial interest for AD drug discovery, its atomic structure remains unresolved. γ-Secretase assembly and maturation is a multistep process, which includes extensive glycosylation on nicastrin (NCT), the only γ-secretase subunit having a large extracellular domain. These posttranslational modifications lead to protein heterogeneity that likely prevents the three-dimensional (3D) crystallization of the protease complex. To overcome this issue, we have engineered a Chinese hamster ovary (CHO) cell line deficient in complex sugar modifications (CHO lec1) to overexpress the four subunits of γ-secretase as a functional complex. We purified glycosylation-deficient γ-secretase from this recombinant cell line (CL1-9) and fully glycosylated γ-secretase from a recombinant CHO DG44-derived cell line (SS20). We characterized both complexes biochemically and pharmacologically in vitro. Interestingly, we found that the complex oligosaccharides, which largely decorate the extracellular domain of fully glycosylated NCT, are not involved in the proper assembly and maturation of the complex, and are dispensable for the specific generation, in physiological ratios, of the amyloid precursor protein (APP) cleavage products. In conclusion, we propose a novel bioengineering approach for the production of functional glycosylation-deficient γ-secretase, which may be suitable for crystallization studies. We expect that these findings will contribute both to solving the high-resolution 3D structure of γ-secretase and to structure-based drug discovery for AD.
Collapse
Affiliation(s)
- Andrés Ricardo López
- Laboratory of Molecular and Cellular Biology of Alzheimer's Disease, Brain Mind Institute and School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH1015 Lausanne, Switzerland
| | - Mitko Dimitrov
- Laboratory of Molecular and Cellular Biology of Alzheimer's Disease, Brain Mind Institute and School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH1015 Lausanne, Switzerland
| | - Hermeto Gerber
- Laboratory of Molecular and Cellular Biology of Alzheimer's Disease, Brain Mind Institute and School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH1015 Lausanne, Switzerland
| | - Virginie Braman
- Laboratory of Molecular and Cellular Biology of Alzheimer's Disease, Brain Mind Institute and School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH1015 Lausanne, Switzerland
| | - David L Hacker
- Laboratory for Cellular Biotechnology, Institute of Bioengineering and School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH1015 Lausanne, Switzerland
| | - Florian M Wurm
- Laboratory for Cellular Biotechnology, Institute of Bioengineering and School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH1015 Lausanne, Switzerland
| | - Patrick C Fraering
- Laboratory of Molecular and Cellular Biology of Alzheimer's Disease, Brain Mind Institute and School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH1015 Lausanne, Switzerland.
| |
Collapse
|
41
|
Barse L, Bocchetta M. Non-small-cell lung carcinoma: role of the Notch signaling pathway. LUNG CANCER (AUCKLAND, N.Z.) 2015; 6:43-53. [PMID: 28210150 PMCID: PMC5217522 DOI: 10.2147/lctt.s60329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Notch signaling plays a pivotal role during embryogenesis. It regulates three fundamental processes: lateral inhibition, boundary formation, and lineage specification. During post-natal life, Notch receptors and ligands control critical cell fate decisions both in compartments that are undergoing differentiation and in pluripotent progenitor cells. First recognized as a potent oncogene in certain lymphoblastic leukemias and mesothelium-derived tissue, the role of Notch signaling in epithelial, solid tumors has been far more controversial. The overall consequence of Notch signaling and which form of the Notch receptor drives malignancy in humans is deeply debated. Most likely, this is due to the high degree of context-dependent effects of Notch signaling. More recently, it has been discovered that Notch (especially Notch-1) can exert different, even opposite effects in the same tissue under differing microenvironmental conditions. Further complicating the understanding of Notch receptors is the recently discovered role for non-canonical Notch signaling. Additionally, the most frequent Notch signaling antagonists used in biological systems have been inhibitors of the transmembrane protease complex γ-secretase, which itself processes a plethora of class one transmembrane proteins and thus cannot be considered a Notch-specific upstream regulator. Here we review the available empirical evidence gathered in recent years concerning Notch receptors and ligands in non-small-cell lung carcinoma (NSCLC). Although an overview of the field reveals seemingly contradicting results, we propose that Notch signaling can be exploited as a therapeutic target in NSCLC and represents a promising complement to the current arsenal utilized to combat this malignancy, particularly in targeting NSCLC tissues under specific environmental conditions, such as hypoxia.
Collapse
Affiliation(s)
- Levi Barse
- Department of Pathology, Oncology Institute, Loyola University Chicago, Maywood, IL, USA
| | - Maurizio Bocchetta
- Department of Pathology, Oncology Institute, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
42
|
Lim A, Moussavi Nik SH, Ebrahimie E, Lardelli M. Analysis of nicastrin gene phylogeny and expression in zebrafish. Dev Genes Evol 2015; 225:171-8. [PMID: 25940938 DOI: 10.1007/s00427-015-0500-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 04/24/2015] [Indexed: 11/24/2022]
Abstract
NICASTRIN is a component of the aspartyl protease γ-secretase complex which is involved in intramembranous cleavage of type I transmembrane proteins, notably the Notch receptor proteins and the AMYLOID BETA A4 PRECURSOR PROTEIN (APP). This study aimed to characterize the orthologue of the human NICASTRIN (NCSTN) gene in zebrafish, an advantageous model organism for the study of human disease. Zebrafish Nicastrin protein was predicted to possess the conserved glutamate 333 residue and DYIGS motif of human NCSTN that are important for substrate recognition/processing in γ-secretase. Quantitative real-time RT-PCR revealed the profile of relative zebrafish nicastrin (ncstn) transcript levels in embryos at different times during development and in adult tissues. The analysis of synteny conservation revealed local rearrangements of ncstn and another gene, mpz, relative to copa, and pex19. In situ hybridization showed higher relative levels of ncstn transcripts in the developing brain and otic vesicles of embryos at 24 and 48 h post fertilization, respectively. Our observations are consistent with a role for Ncstn protein in Notch signaling within the proliferative ventricular zone of the developing central nervous system.
Collapse
Affiliation(s)
- Anne Lim
- Alzheimer's disease Genetics Laboratory, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia,
| | | | | | | |
Collapse
|
43
|
Abstract
The four-component intramembrane protease γ-secretase is intricately linked to the development of Alzheimer's disease. Despite recent structural advances, the transmembrane segments (TMs) of γ-secretase remain to be specifically assigned. Here we report a 3D structure of human γ-secretase at 4.32-Å resolution, determined by single-particle, electron cryomicroscopy in the presence of digitonin and with a T4 lysozyme fused to the amino terminus of presenilin 1 (PS1). The overall structure of this human γ-secretase is very similar to that of wild-type γ-secretase determined in the presence of amphipols. The 20 TMs are unambiguously assigned to the four components, revealing principles of subunit assembly. Within the transmembrane region, PS1 is centrally located, with its amino-terminal fragment (NTF) packing against Pen-2 and its carboxyl-terminal fragment (CTF) interacting with Aph-1. The only TM of nicastrin associates with Aph-1 at the thick end of the TM horseshoe, and the extracellular domain of nicastrin directly binds Pen-2 at the thin end. TM6 and TM7 in PS1, which harbor the catalytic aspartate residues, are located on the convex side of the TM horseshoe. This structure serves as an important framework for understanding the function and mechanism of γ-secretase.
Collapse
|
44
|
Abstract
Since determination of the myoglobin structure in 1957, X-ray crystallography, as the anchoring tool of structural biology, has played an instrumental role in deciphering the secrets of life. Knowledge gained through X-ray crystallography has fundamentally advanced our views on cellular processes and greatly facilitated development of modern medicine. In this brief narrative, I describe my personal understanding of the evolution of structural biology through X-ray crystallography-using as examples mechanistic understanding of protein kinases and integral membrane proteins-and comment on the impact of technological development and outlook of X-ray crystallography.
Collapse
Affiliation(s)
- Yigong Shi
- Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
45
|
Cleavage of amyloid precursor protein by an archaeal presenilin homologue PSH. Proc Natl Acad Sci U S A 2015; 112:3344-9. [PMID: 25733893 DOI: 10.1073/pnas.1502150112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aberrant cleavage of amyloid precursor protein (APP) by γ-secretase contributes to the development of Alzheimer's disease. More than 200 disease-derived mutations have been identified in presenilin (the catalytic subunit of γ-secretase), making modulation of γ-secretase activity a potentially attractive therapeutic opportunity. Unfortunately, the technical challenges in dealing with intact γ-secretase have hindered discovery of modulators and demand a convenient substitute approach. Here we report that, similar to γ-secretase, the archaeal presenilin homolog PSH faithfully processes the substrate APP C99 into Aβ42, Aβ40, and Aβ38. The molar ratio of the cleavage products Aβ42 over Aβ40 by PSH is nearly identical to that by γ-secretase. The proteolytic activity of PSH is specifically suppressed by presenilin-specific inhibitors. Known modulators of γ-secretase also modulate PSH similarly in terms of the Aβ42/Aβ40 ratio. Structural analysis reveals association of a known γ-secretase inhibitor with PSH between its two catalytic aspartate residues. These findings identify PSH as a surrogate protease for the screening of agents that may regulate the protease activity and the cleavage preference of γ-secretase.
Collapse
|
46
|
Kang Y, Melcher K, Xu HE. The cryo-electron microscopy structure of γ-Secretase: towards complex assembly, substrate recognition and a catalytic mechanism. Natl Sci Rev 2015; 2:4-5. [PMID: 26090270 PMCID: PMC4467836 DOI: 10.1093/nsr/nwu081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yanyong Kang
- Laboratory of Structural Sciences, Van Andel Research Institute, USA
| | - Karsten Melcher
- Laboratory of Structural Sciences, Van Andel Research Institute, USA
| | - H. Eric Xu
- Laboratory of Structural Sciences, Van Andel Research Institute, USA
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| |
Collapse
|
47
|
Gertsik N, Chiu D, Li YM. Complex regulation of γ-secretase: from obligatory to modulatory subunits. Front Aging Neurosci 2015; 6:342. [PMID: 25610395 PMCID: PMC4285130 DOI: 10.3389/fnagi.2014.00342] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/09/2014] [Indexed: 11/29/2022] Open
Abstract
γ-Secretase is a four subunit, 19-pass transmembrane enzyme that cleaves amyloid precursor protein (APP), catalyzing the formation of amyloid beta (Aβ) peptides that form amyloid plaques, which contribute to Alzheimer’s disease (AD) pathogenesis. γ-Secretase also cleaves Notch, among many other type I transmembrane substrates. Despite its seemingly promiscuous enzymatic capacity, γ-secretase activity is tightly regulated. This regulation is a function of many cellular entities, including but not limited to the essential γ-secretase subunits, nonessential (modulatory) subunits, and γ-secretase substrates. Regulation is also accomplished by an array of cellular events, such as presenilin (active subunit of γ-secretase) endoproteolysis and hypoxia. In this review we discuss how γ-secretase is regulated with the hope that an advanced understanding of these mechanisms will aid in the development of effective therapeutics for γ-secretase-associated diseases like AD and Notch-addicted cancer.
Collapse
Affiliation(s)
- Natalya Gertsik
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center New York, NY, USA ; Biochemistry and Molecular Biology Program, Weill Graduate School of Medical Sciences of Cornell University New York, NY, USA
| | - Danica Chiu
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center New York, NY, USA ; Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University New York, NY, USA
| | - Yue-Ming Li
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center New York, NY, USA ; Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University New York, NY, USA
| |
Collapse
|
48
|
Li Y, Bohm C, Dodd R, Chen F, Qamar S, Schmitt-Ulms G, Fraser PE, St George-Hyslop PH. Structural biology of presenilin 1 complexes. Mol Neurodegener 2014; 9:59. [PMID: 25523933 PMCID: PMC4326451 DOI: 10.1186/1750-1326-9-59] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/12/2014] [Indexed: 11/17/2022] Open
Abstract
The presenilin genes were first identified as the site of missense mutations causing early onset autosomal dominant familial Alzheimer's disease. Subsequent work has shown that the presenilin proteins are the catalytic subunits of a hetero-tetrameric complex containing APH1, nicastrin and PEN-2. This complex (variously termed presenilin complex or gamma-secretase complex) performs an unusual type of proteolysis in which the transmembrane domains of Type I proteins are cleaved within the hydrophobic compartment of the membrane. This review describes some of the molecular and structural biology of this unusual enzyme complex. The presenilin complex is a bilobed structure. The head domain contains the ectodomain of nicastrin. The base domain contains a central cavity with a lateral cleft that likely provides the route for access of the substrate to the catalytic cavity within the centre of the base domain. There are reciprocal allosteric interactions between various sites in the complex that affect its function. For instance, binding of Compound E, a peptidomimetic inhibitor to the PS1 N-terminus, induces significant conformational changes that reduces substrate binding at the initial substrate docking site, and thus inhibits substrate cleavage. However, there is a reciprocal allosteric interaction between these sites such that prior binding of the substrate to the initial docking site paradoxically increases the binding of the Compound E peptidomimetic inhibitor. Such reciprocal interactions are likely to form the basis of a gating mechanism that underlies access of substrate to the catalytic site. An increasingly detailed understanding of the structural biology of the presenilin complex is an essential step towards rational design of substrate- and/or cleavage site-specific modulators of presenilin complex function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peter H St George-Hyslop
- Cambridge Institute for Medical Research, Wellcome Trust MRC Building, Addenbrookes Hospital, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
49
|
Zhang X, Li Y, Xu H, Zhang YW. The γ-secretase complex: from structure to function. Front Cell Neurosci 2014; 8:427. [PMID: 25565961 PMCID: PMC4263104 DOI: 10.3389/fncel.2014.00427] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 11/27/2014] [Indexed: 12/21/2022] Open
Abstract
One of the most critical pathological features of Alzheimer’s disease (AD) is the accumulation of β-amyloid (Aβ) peptides that form extracellular senile plaques in the brain. Aβ is derived from β-amyloid precursor protein (APP) through sequential cleavage by β- and γ-secretases. γ-secretase is a high molecular weight complex minimally composed of four components: presenilins (PS), nicastrin, anterior pharynx defective 1 (APH-1), and presenilin enhancer 2 (PEN-2). In addition to APP, γ-secretase also cleaves many other type I transmembrane (TM) protein substrates. As a crucial enzyme for Aβ production, γ-secretase is an appealing therapeutic target for AD. Here, we summarize current knowledge on the structure and function of γ-secretase, as well as recent progress in developing γ-secretase targeting drugs for AD treatment.
Collapse
Affiliation(s)
- Xian Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University Xiamen, FJ, China
| | - Yanfang Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University Xiamen, FJ, China
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University Xiamen, FJ, China ; Degenerative Disease Research Program, Sanford-Burnham Medical Research Institute La Jolla, CA, USA
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University Xiamen, FJ, China
| |
Collapse
|
50
|
Zhang X, Hoey R, Koide A, Dolios G, Paduch M, Nguyen P, Wu X, Li Y, Wagner SL, Wang R, Koide S, Sisodia SS. A synthetic antibody fragment targeting nicastrin affects assembly and trafficking of γ-secretase. J Biol Chem 2014; 289:34851-61. [PMID: 25352592 DOI: 10.1074/jbc.m114.609636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The γ-secretase complex, composed of presenilin, nicastrin (NCT), anterior pharynx-defective 1 (APH-1), and presenilin enhancer 2 (PEN-2), is assembled in a highly regulated manner and catalyzes the intramembranous proteolysis of many type I membrane proteins, including Notch and amyloid precursor protein. The Notch family of receptors plays important roles in cell fate specification during development and in adult tissues, and aberrant hyperactive Notch signaling causes some forms of cancer. γ-Secretase-mediated processing of Notch at the cell surface results in the generation of the Notch intracellular domain, which associates with several transcriptional coactivators involved in nuclear signaling events. On the other hand, γ-secretase-mediated processing of amyloid precursor protein leads to the production of amyloid β (Aβ) peptides that play an important role in the pathogenesis of Alzheimer disease. We used a phage display approach to identify synthetic antibodies that specifically target NCT and expressed them in the single-chain variable fragment (scFv) format in mammalian cells. We show that expression of a NCT-specific scFv clone, G9, in HEK293 cells decreased the production of the Notch intracellular domain but not the production of amyloid β peptides that occurs in endosomal and recycling compartments. Biochemical studies revealed that scFvG9 impairs the maturation of NCT by associating with immature forms of NCT and, consequently, prevents its association with the other components of the γ-secretase complex, leading to degradation of these molecules. The reduced cell surface levels of mature γ-secretase complexes, in turn, compromise the intramembranous processing of Notch.
Collapse
Affiliation(s)
| | - Robert Hoey
- Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
| | - Akiko Koide
- Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
| | - Georgia Dolios
- the Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Marcin Paduch
- Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
| | - Phuong Nguyen
- the Department of Neurosciences, University of California, San Diego School of Medicine, La Jolla, California 92093, and
| | - Xianzhong Wu
- Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| | - Yueming Li
- Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| | - Steven L Wagner
- the Department of Neurosciences, University of California, San Diego School of Medicine, La Jolla, California 92093, and
| | - Rong Wang
- the Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Shohei Koide
- Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
| | | |
Collapse
|