1
|
Ma C, Coffinet S, Lipp JS, Hinrichs KU, Zhang C. Marine Group II Euryarchaeota Contribute to the Archaeal Lipid Pool in Northwestern Pacific Ocean Surface Waters. Front Microbiol 2020; 11:1034. [PMID: 32582055 PMCID: PMC7291766 DOI: 10.3389/fmicb.2020.01034] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022] Open
Abstract
Planktonic archaea include predominantly Marine Group I Thaumarchaeota (MG I) and Marine Group II Euryarchaeota (MG II), which play important roles in the oceanic carbon cycle. MG I produce specific lipids called isoprenoid glycerol dibiphytanyl glycerol tetraethers (GDGTs), which are being used in the sea surface temperature proxy named TEX86. Although MG II may be the most abundant planktonic archaeal group in surface water, their lipid composition remains poorly characterized because of the lack of cultured representatives. Circumstantial evidence from previous studies of marine suspended particulate matter suggests that MG II may produce both GDGTs and archaeol-based lipids. In this study, integration of the 16S rRNA gene quantification and sequencing and lipid analysis demonstrated that MG II contributed significantly to the pool of archaeal tetraether lipids in samples collected from MG II-dominated surface waters of the Northwestern Pacific Ocean (NWPO). The archaeal lipid composition in MG II-dominated NWPO waters differed significantly from that of known MG I cultures, containing relatively more 2G-OH-, 2G- and 1G- GDGTs, especially in their acyclic form. Lipid composition in NWPO waters was also markedly different from MG I-dominated surface water samples collected in the East China Sea. GDGTs from MG II-dominated samples seemed to respond to temperature similarly to GDGTs from the MG I-dominated samples, which calls for further study using pure cultures to determine the exact impact of MG II on GDGT-based proxies.
Collapse
Affiliation(s)
- Cenling Ma
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Sarah Coffinet
- Organic Geochemistry Group, MARUM Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Julius S Lipp
- Organic Geochemistry Group, MARUM Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Kai-Uwe Hinrichs
- Organic Geochemistry Group, MARUM Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
2
|
Besseling MA, Hopmans EC, Bale NJ, Schouten S, Damsté JSS, Villanueva L. The absence of intact polar lipid-derived GDGTs in marine waters dominated by Marine Group II: Implications for lipid biosynthesis in Archaea. Sci Rep 2020; 10:294. [PMID: 31941956 PMCID: PMC6962369 DOI: 10.1038/s41598-019-57035-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 12/19/2019] [Indexed: 11/09/2022] Open
Abstract
The marine pelagic archaeal community is dominated by three major groups, the marine group I (MGI) Thaumarchaeota, and the marine groups II and III (MGII and MGIII) Euryarchaeota. Studies of both MGI cultures and the environment have shown that the MGI core membrane lipids are predominantly composed of glycerol dibiphytanyl glycerol tetraether (GDGT) lipids and the diether lipid archaeol. However, there are no cultured representatives of MGII and III archaea and, therefore, both their membrane lipid composition and potential contribution to the marine archaeal lipid pool remain unknown. Here, we show that GDGTs present in suspended particulate matter of the (sub)surface waters of the North Atlantic Ocean and the coastal North Sea are derived from MGI archaea, and that MGII archaea do not significantly contribute to the pool of GDGTs and archaeol. This implies, in contrast to previous suggestions, that their lipids do not affect the widely used sea surface temperature proxy TEX86. These findings also indicate that MGII archaea are not able to produce any known archaeal lipids, implying that our understanding of the evolution of membrane lipid biosynthesis in Archaea is far from complete.
Collapse
Affiliation(s)
- Marc A Besseling
- NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University., P.O. Box 59, NL-1790, AB Den Burg, The Netherlands.
| | - Ellen C Hopmans
- NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University., P.O. Box 59, NL-1790, AB Den Burg, The Netherlands
| | - Nicole J Bale
- NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University., P.O. Box 59, NL-1790, AB Den Burg, The Netherlands
| | - Stefan Schouten
- NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University., P.O. Box 59, NL-1790, AB Den Burg, The Netherlands.,Utrecht University, Faculty of Geosciences, P.O. Box 80.021, 3508 TA, Utrecht, The Netherlands
| | - Jaap S Sinninghe Damsté
- NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University., P.O. Box 59, NL-1790, AB Den Burg, The Netherlands.,Utrecht University, Faculty of Geosciences, P.O. Box 80.021, 3508 TA, Utrecht, The Netherlands
| | - Laura Villanueva
- NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University., P.O. Box 59, NL-1790, AB Den Burg, The Netherlands
| |
Collapse
|
3
|
GDGT cyclization proteins identify the dominant archaeal sources of tetraether lipids in the ocean. Proc Natl Acad Sci U S A 2019; 116:22505-22511. [PMID: 31591189 DOI: 10.1073/pnas.1909306116] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Glycerol dibiphytanyl glycerol tetraethers (GDGTs) are distinctive archaeal membrane-spanning lipids with up to eight cyclopentane rings and/or one cyclohexane ring. The number of rings added to the GDGT core structure can vary as a function of environmental conditions, such as changes in growth temperature. This physiological response enables cyclic GDGTs preserved in sediments to be employed as proxies for reconstructing past global and regional temperatures and to provide fundamental insights into ancient climate variability. Yet, confidence in GDGT-based paleotemperature proxies is hindered by uncertainty concerning the archaeal communities contributing to GDGT pools in modern environments and ambiguity in the environmental and physiological factors that affect GDGT cyclization in extant archaea. To properly constrain these uncertainties, a comprehensive understanding of GDGT biosynthesis is required. Here, we identify 2 GDGT ring synthases, GrsA and GrsB, essential for GDGT ring formation in Sulfolobus acidocaldarius Both proteins are radical S-adenosylmethionine proteins, indicating that GDGT cyclization occurs through a free radical mechanism. In addition, we demonstrate that GrsA introduces rings specifically at the C-7 position of the core GDGT lipid, while GrsB cyclizes at the C-3 position, suggesting that cyclization patterns are differentially controlled by 2 separate enzymes and potentially influenced by distinct environmental factors. Finally, phylogenetic analyses of the Grs proteins reveal that marine Thaumarchaeota, and not Euryarchaeota, are the dominant source of cyclized GDGTs in open ocean settings, addressing a major source of uncertainty in GDGT-based paleotemperature proxy applications.
Collapse
|
4
|
Sollai M, Villanueva L, Hopmans EC, Keil RG, Sinninghe Damsté JS. Archaeal Sources of Intact Membrane Lipid Biomarkers in the Oxygen Deficient Zone of the Eastern Tropical South Pacific. Front Microbiol 2019; 10:765. [PMID: 31031734 PMCID: PMC6470261 DOI: 10.3389/fmicb.2019.00765] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 03/26/2019] [Indexed: 11/13/2022] Open
Abstract
Archaea are ubiquitous in the modern ocean where they are involved in the carbon and nitrogen biogeochemical cycles. However, the majority of Archaea remain uncultured. Archaeal specific membrane intact polar lipids (IPLs) are biomarkers of the presence and abundance of living cells. They comprise archaeol and glycerol dibiphytanyl glycerol tetraethers (GDGTs) attached to various polar headgroups. However, little is known of the IPLs of uncultured marine Archaea, complicating their use as biomarkers. Here, we analyzed suspended particulate matter (SPM) obtained in high depth resolution from a coastal and open ocean site in the eastern tropical South Pacific (ETSP) oxygen deficient zone (ODZ) with the aim of determining possible biological sources of archaeal IPL by comparing their composition by Ultra High Pressure Liquid Chromatography coupled to high resolution mass spectrometry with the archaeal diversity by 16S rRNA gene amplicon sequencing and their abundance by quantitative PCR. Thaumarchaeotal Marine Group I (MGI) closely related to Ca. Nitrosopelagicus and Nitrosopumilus dominated the oxic surface and upper ODZ water together with Marine Euryarchaeota Group II (MGII). High relative abundance of hexose phosphohexose- (HPH) crenarchaeol, the specific biomarker for living Thaumarchaeota, and HPH-GDGT-0, dihexose- (DH) GDGT-3 and -4 were detected in these water masses. Within the ODZ, DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaea) of the Woesearchaeota DHVE-6 group and Marine Euryarchaeota Group III (MGIII) were present together with a higher proportion of archaeol-based IPLs, which were likely made by MGIII, since DPANN archaea are supposedly unable to synthesize their own IPLs and possibly have a symbiotic or parasitic partnership with MGIII. Finally, in deep suboxic/oxic waters a different MGI population occurred with HPH-GDGT-1, -2 and DH-GDGT-0 and -crenarchaeol, indicating that here MGI synthesize membranes with IPLs in a different relative abundance which could be attributed to the different detected population or to an environmental adaptation. Our study sheds light on the complex archaeal community of one of the most prominent ODZs and on the IPL biomarkers they potentially synthesize.
Collapse
Affiliation(s)
- Martina Sollai
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Microbiology and Biogeochemistry, Utrecht University, Den Burg, Netherlands
| | - Laura Villanueva
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Microbiology and Biogeochemistry, Utrecht University, Den Burg, Netherlands
| | - Ellen C Hopmans
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Microbiology and Biogeochemistry, Utrecht University, Den Burg, Netherlands
| | - Richard G Keil
- School of Oceanography, University of Washington, Seattle, WA, United States
| | - Jaap S Sinninghe Damsté
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Microbiology and Biogeochemistry, Utrecht University, Den Burg, Netherlands.,Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
5
|
Abstract
Archaea are ubiquitous and abundant members of the marine plankton. Once thought of as rare organisms found in exotic extremes of temperature, pressure, or salinity, archaea are now known in nearly every marine environment. Though frequently referred to collectively, the planktonic archaea actually comprise four major phylogenetic groups, each with its own distinct physiology and ecology. Only one group-the marine Thaumarchaeota-has cultivated representatives, making marine archaea an attractive focus point for the latest developments in cultivation-independent molecular methods. Here, we review the ecology, physiology, and biogeochemical impact of the four archaeal groups using recent insights from cultures and large-scale environmental sequencing studies. We highlight key gaps in our knowledge about the ecological roles of marine archaea in carbon flow and food web interactions. We emphasize the incredible uncultivated diversity within each of the four groups, suggesting there is much more to be done.
Collapse
Affiliation(s)
- Alyson E Santoro
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California 93106, USA;
| | | | | |
Collapse
|
6
|
Sollai M, Villanueva L, Hopmans EC, Reichart G, Sinninghe Damsté JS. A combined lipidomic and 16S rRNA gene amplicon sequencing approach reveals archaeal sources of intact polar lipids in the stratified Black Sea water column. GEOBIOLOGY 2019; 17:91-109. [PMID: 30281902 PMCID: PMC6586073 DOI: 10.1111/gbi.12316] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/02/2018] [Accepted: 08/21/2018] [Indexed: 05/25/2023]
Abstract
Archaea are important players in marine biogeochemical cycles, and their membrane lipids are useful biomarkers in environmental and geobiological studies. However, many archaeal groups remain uncultured and their lipid composition unknown. Here, we aim to expand the knowledge on archaeal lipid biomarkers and determine the potential sources of those lipids in the water column of the euxinic Black Sea. The archaeal community was evaluated by 16S rRNA gene amplicon sequencing and by quantitative PCR. The archaeal intact polar lipids (IPLs) were investigated by ultra-high-pressure liquid chromatography coupled to high-resolution mass spectrometry. Our study revealed both a complex archaeal community and large changes with water depth in the IPL assemblages. In the oxic/upper suboxic waters (<105 m), the archaeal community was dominated by marine group (MG) I Thaumarchaeota, coinciding with a higher relative abundance of hexose phosphohexose crenarchaeol, a known marker for Thaumarchaeota. In the suboxic waters (80-110 m), MGI Nitrosopumilus sp. dominated and produced predominantly monohexose glycerol dibiphytanyl glycerol tetraethers (GDGTs) and hydroxy-GDGTs. Two clades of MGII Euryarchaeota were present in the oxic and upper suboxic zones in much lower abundances, preventing the detection of their specific IPLs. In the deep sulfidic waters (>110 m), archaea belonging to the DPANN Woesearchaeota, Bathyarchaeota, and ANME-1b clades dominated. Correlation analyses suggest that the IPLs GDGT-0, GDGT-1, and GDGT-2 with two phosphatidylglycerol (PG) head groups and archaeol with a PG, phosphatidylethanolamine, and phosphatidylserine head groups were produced by ANME-1b archaea. Bathyarchaeota represented 55% of the archaea in the deeper part of the euxinic zone and likely produces archaeol with phospho-dihexose and hexose-glucuronic acid head groups.
Collapse
Affiliation(s)
- Martina Sollai
- Departments of Marine Microbiology and Biogeochemistry and Ocean SystemsNIOZ Royal Netherlands Institute for Sea Researchand Utrecht UniversityDen BurgThe Netherlands
| | - Laura Villanueva
- Departments of Marine Microbiology and Biogeochemistry and Ocean SystemsNIOZ Royal Netherlands Institute for Sea Researchand Utrecht UniversityDen BurgThe Netherlands
| | - Ellen C. Hopmans
- Departments of Marine Microbiology and Biogeochemistry and Ocean SystemsNIOZ Royal Netherlands Institute for Sea Researchand Utrecht UniversityDen BurgThe Netherlands
| | - Gert‐Jan Reichart
- Departments of Marine Microbiology and Biogeochemistry and Ocean SystemsNIOZ Royal Netherlands Institute for Sea Researchand Utrecht UniversityDen BurgThe Netherlands
- Department of Earth SciencesFaculty of GeosciencesUniversity of UtrechtUtrechtThe Netherlands
| | - Jaap S. Sinninghe Damsté
- Departments of Marine Microbiology and Biogeochemistry and Ocean SystemsNIOZ Royal Netherlands Institute for Sea Researchand Utrecht UniversityDen BurgThe Netherlands
- Department of Earth SciencesFaculty of GeosciencesUniversity of UtrechtUtrechtThe Netherlands
| |
Collapse
|
7
|
Wang JX, Xie W, Zhang YG, Meador TB, Zhang CL. Evaluating Production of Cyclopentyl Tetraethers by Marine Group II Euryarchaeota in the Pearl River Estuary and Coastal South China Sea: Potential Impact on the TEX 86 Paleothermometer. Front Microbiol 2017; 8:2077. [PMID: 29163386 PMCID: PMC5671491 DOI: 10.3389/fmicb.2017.02077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/10/2017] [Indexed: 11/21/2022] Open
Abstract
TEX86 [TetraEther indeX of glycerol dialkyl glycerol tetraethers (GDGTs) with 86 carbon atoms] has been widely applied to reconstruct (paleo-) sea surface temperature. Marine Group I (MG-I) Thaumarchaeota were thought to be the primary source of GDGTs constituting the TEX86 formula; however, recent research has suggested that Marine Group II (MG-II) Euryarchaeota may also contribute significantly to the GDGT pool in the ocean. Little is known regarding the potential impact of MG-II Euryarchaeota-derived GDGTs on TEX86 values recorded in marine sediments. In this study, we assessed the relationship between distributions of GDGTs and MG-II Euryarchaeota and evaluated its potential effect on the TEX86 proxy. Lipid and DNA analyses were performed on suspended particulate matter and surface sediments collected along a salinity gradient from the lower Pearl River (river water) and its estuary (mixing water) to the coastal South China Sea (SCS, seawater). TEX86-derived temperatures from the water column and surface sediments were significantly correlated and both were lower than satellite-based temperatures. The ring index (RI) values in these environments were higher than predicted from the calculated TEX86-RI correlation, indicating that the GDGT pool in the water column of the PR estuary and coastal SCS comprises relatively more cyclopentane rings, which thereby altered TEX86 values. Furthermore, the abundance of MG-II Euryarchaeota 16S rRNA gene in the mixing water was two to three orders of magnitude higher than those observed in the river or seawater. Significant linear correlations were observed between the gene abundance ratio of MG-II Euryarchaeota to total archaea and the fractional abundance of GDGTs with cyclopentane rings. Collectively, these results suggest that MG-II Euryarchaeota likely produce a large proportion of GDGTs with 1–4 cyclopentane moieties, which may bias TEX86 values in the water column and sediments. As such, valid interpretation of TEX86 values in the sediment record, particularly in coastal oceans, should consider the contribution from MG-II Euryarchaeota.
Collapse
Affiliation(s)
- Jin-Xiang Wang
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.,Department of Marine Sciences, University of Georgia, Athens, GA, United States
| | - Wei Xie
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Yi Ge Zhang
- Department of Oceanography, Texas A&M University, College Station, TX, United States
| | - Travis B Meador
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Chuanlun L Zhang
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China.,Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
8
|
Cleary DFR, Polónia ARM. Bacterial and archaeal communities inhabiting mussels, sediment and water in Indonesian anchialine lakes. Antonie Van Leeuwenhoek 2017; 111:237-257. [PMID: 29027059 DOI: 10.1007/s10482-017-0944-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/13/2017] [Indexed: 11/24/2022]
Abstract
Anchialine lakes are a globally rare and unique ecosystem consisting of saline lakes surrounded by land and isolated from the surrounding marine environment. These lakes host a unique flora and fauna including numerous endemic species. Relatively few studies have, however, studied the prokaryote communities present in these lakes and compared them with the surrounding 'open water' marine environment. In the present study, we used a 16S rRNA gene barcoded pyrosequencing approach to examine prokaryote (Bacteria and Archaea) composition in three distinct biotopes (sediment, water and the mussel Brachidontes sp.) inhabiting four habitats, namely, three marine lakes and the surrounding marine environment of Berau, Indonesia. Biotope and habitat proved significant predictors of variation in bacterial and archaeal composition and higher taxon abundance. Most bacterial sequences belonged to OTUs assigned to the Proteobacteria. Compared to sediment and water, mussels had relatively high abundances of the classes Mollicutes and Epsilonproteobacteria. Most archaeal sequences, in turn, belonged to OTUs assigned to the Crenarchaeota with the relative abundance of crenarchaeotes highest in mussel samples. For both Bacteria and Archaea, the main variation in composition was between water samples on the one hand and sediment and mussel samples on the other. Sediment and mussels also shared much more OTUs than either shared with water. Abundant bacterial OTUs in mussels were related to organisms previously obtained from corals, oysters and the deepsea mussel Bathymodiolus manusensis. Abundant archaeal OTUs in mussels, in contrast, were closely related to organisms previously obtained from sediment.
Collapse
Affiliation(s)
- D F R Cleary
- CESAM and Department of Biology, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - A R M Polónia
- CESAM and Department of Biology, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
9
|
Han D, Nam SI, Kim JH, Stein R, Niessen F, Joe YJ, Park YH, Hur HG. Inference on Paleoclimate Change Using Microbial Habitat Preference in Arctic Holocene Sediments. Sci Rep 2017; 7:9652. [PMID: 28851886 PMCID: PMC5575242 DOI: 10.1038/s41598-017-08757-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/19/2017] [Indexed: 12/11/2022] Open
Abstract
The present study combines data of microbial assemblages with high-resolution paleoceanographic records from Core GC1 recovered in the Chukchi Sea. For the first time, we have demonstrated that microbial habitat preferences are closely linked to Holocene paleoclimate records, and found geological, geochemical, and microbiological evidence for the inference of the sulphate-methane transition zone (SMTZ) in the Chukchi Sea. In Core GC1, the layer of maximum crenarchaeol concentration was localized surrounding the SMTZ. The vertically distributed predominant populations of Gammaproteobacteria and Marine Group II Euryarchaeota (MG-II) were consistent with patterns of the known global SMTZs. MG-II was the most prominent archaeal group, even within the layer of elevated concentrations of crenarchaeol, an archaeal lipid biomarker most commonly used for Marine Group I Thaumarchaeota (MG-I). The distribution of MG-I and MG-II in Core GC1, as opposed to the potential contribution of MG-I to the marine tetraether lipid pool, suggests that the application of glycerol dibiphytanyl glycerol tetraethers (GDGT)-based proxies needs to be carefully considered in the subsurface sediments owing to the many unknowns of crenarchaeol. In conclusion, microbiological profiles integrated with geological records seem to be useful for tracking microbial habitat preference, which reflect climate-triggered changes from the paleodepositional environment.
Collapse
Affiliation(s)
- Dukki Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Seung-Il Nam
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea.
| | - Ji-Hoon Kim
- Petroleum and Marine Research Division, Korea Institute of Geosciences and Mineral Resources, 124 Gwahang-no Yuseong-gu, Daejeon, 34131, Republic of Korea
| | - Ruediger Stein
- Alfred Wegener Institute (AWI) Helmholtz Centre for Polar and Marine Research, Am Alten Hafen 26, Bremerhaven, 27568, Germany.,Department of Geosciences (FB5), Klagenfurter Str. 4, University of Bremen, 28359, Bremen, Germany
| | - Frank Niessen
- Alfred Wegener Institute (AWI) Helmholtz Centre for Polar and Marine Research, Am Alten Hafen 26, Bremerhaven, 27568, Germany
| | - Young Jin Joe
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Yu-Hyeon Park
- Division of Earth Environmental System, Pusan National University, Busan, 609-735, Republic of Korea
| | - Hor-Gil Hur
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
10
|
Elling FJ, Könneke M, Nicol GW, Stieglmeier M, Bayer B, Spieck E, de la Torre JR, Becker KW, Thomm M, Prosser JI, Herndl GJ, Schleper C, Hinrichs KU. Chemotaxonomic characterisation of the thaumarchaeal lipidome. Environ Microbiol 2017; 19:2681-2700. [PMID: 28419726 DOI: 10.1111/1462-2920.13759] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 11/28/2022]
Abstract
Thaumarchaeota are globally distributed and abundant microorganisms occurring in diverse habitats and thus represent a major source of archaeal lipids. The scope of lipids as taxonomic markers in microbial ecological studies is limited by the scarcity of comparative data on the membrane lipid composition of cultivated representatives, including the phylum Thaumarchaeota. Here, we comprehensively describe the core and intact polar lipid (IPL) inventory of ten ammonia-oxidising thaumarchaeal cultures representing all four characterized phylogenetic clades. IPLs of these thaumarchaeal strains are generally similar and consist of membrane-spanning, glycerol dibiphytanyl glycerol tetraethers with monoglycosyl, diglycosyl, phosphohexose and hexose-phosphohexose headgroups. However, the relative abundances of these IPLs and their core lipid compositions differ systematically between the phylogenetic subgroups, indicating high potential for chemotaxonomic distinction of thaumarchaeal clades. Comparative lipidomic analyses of 19 euryarchaeal and crenarchaeal strains suggested that the lipid methoxy archaeol is synthesized exclusively by Thaumarchaeota and may thus represent a diagnostic lipid biomarker for this phylum. The unprecedented diversity of the thaumarchaeal lipidome with 118 different lipids suggests that membrane lipid composition and adaptation mechanisms in Thaumarchaeota are more complex than previously thought and include unique lipids with as yet unresolved properties.
Collapse
Affiliation(s)
- Felix J Elling
- Organic Geochemistry Group, MARUM - Center for Marine Environmental Sciences & Department of Geosciences, University of Bremen, Bremen, 28359, Germany
| | - Martin Könneke
- Organic Geochemistry Group, MARUM - Center for Marine Environmental Sciences & Department of Geosciences, University of Bremen, Bremen, 28359, Germany.,Marine Archaea Group, MARUM - Center for Marine Environmental Sciences & Department of Geosciences, University of Bremen, Bremen, 28359, Germany
| | - Graeme W Nicol
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, 69134, Ecully, France
| | | | - Barbara Bayer
- Limnology and Bio-Oceanography, Center of Ecology, University of Vienna, Vienna, 1090, Austria
| | - Eva Spieck
- Biocenter Klein Flottbek, Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, 22609, Germany
| | - José R de la Torre
- Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Kevin W Becker
- Organic Geochemistry Group, MARUM - Center for Marine Environmental Sciences & Department of Geosciences, University of Bremen, Bremen, 28359, Germany
| | - Michael Thomm
- Lehrstuhl für Mikrobiologie und Archaeenzentrum, Universität Regensburg, Regensburg, 93053, Germany
| | - James I Prosser
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, Aberdeen, AB24 3UU, UK
| | - Gerhard J Herndl
- Limnology and Bio-Oceanography, Center of Ecology, University of Vienna, Vienna, 1090, Austria.,Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, 1790 AB Den Burg, Texel, The Netherlands
| | | | - Kai-Uwe Hinrichs
- Organic Geochemistry Group, MARUM - Center for Marine Environmental Sciences & Department of Geosciences, University of Bremen, Bremen, 28359, Germany
| |
Collapse
|
11
|
Rush D, Sinninghe Damsté JS. Lipids as paleomarkers to constrain the marine nitrogen cycle. Environ Microbiol 2017; 19:2119-2132. [PMID: 28142226 PMCID: PMC5516240 DOI: 10.1111/1462-2920.13682] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 11/30/2022]
Abstract
Global climate is, in part, regulated by the effect of microbial processes on biogeochemical cycling. The nitrogen cycle, in particular, is driven by microorganisms responsible for the fixation and loss of nitrogen, and the reduction‐oxidation transformations of bio‐available nitrogen. Within marine systems, nitrogen availability is often the limiting factor in the growth of autotrophic organisms, intrinsically linking the nitrogen and carbon cycles. In order to elucidate the state of these cycles in the past, and help envisage present and future variability, it is essential to understand the specific microbial processes responsible for transforming bio‐available nitrogen species. As most microorganisms are soft‐bodied and seldom leave behind physical fossils in the sedimentary record, recalcitrant lipid biomarkers are used to unravel microbial processes in the geological past. This review emphasises the recent advances in marine nitrogen cycle lipid biomarkers, underlines the missing links still needed to fully elucidate past shifts in this biogeochemically‐important cycle, and provides examples of biomarker applications in the geological past.
Collapse
Affiliation(s)
- Darci Rush
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, Den Burg, P.O. Box 59 1790 AB, The Netherlands.,School of Civil Engineering and Geosciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, United Kingdom
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, Den Burg, P.O. Box 59 1790 AB, The Netherlands.,Department of Earth Sciences, Faculty of Geosciences, Utrecht University, TA Utrecht, P.O. Box 80.121, 3508, The Netherlands
| |
Collapse
|
12
|
Zhang CL, Xie W, Martin-Cuadrado AB, Rodriguez-Valera F. Marine Group II Archaea, potentially important players in the global ocean carbon cycle. Front Microbiol 2015; 6:1108. [PMID: 26528260 PMCID: PMC4602124 DOI: 10.3389/fmicb.2015.01108] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/25/2015] [Indexed: 11/26/2022] Open
Abstract
Marine Group (MG) I (currently known as Thaumarchaeota) and MG II Archaea were first reported over two decades ago. While significant progress has been made on MG I microbiology and ecology, the progress on MG II has been noticeably slower. The common understanding is that while MG I mainly function as chemolithoautotrophs and occur predominantly in the deep ocean, MG II reside mostly in the photic zone and live heterotrophically. Studies to date have shown that MG II are abundant in the marine aquatic environment and display great seasonal and spatial variation and phylogenetic diversity. They also show unique patterns of organic carbon degradation and their energy requirements may be augmented by light in the photic zone. However, no pure culture of MG II has been obtained and thus their precise ecological role remains elusive.
Collapse
Affiliation(s)
- Chuanlun L Zhang
- State Key Laboratory of Marine Geology, Tongji University Shanghai, China
| | - Wei Xie
- State Key Laboratory of Marine Geology, Tongji University Shanghai, China
| | | | | |
Collapse
|
13
|
Meador TB, Bowles M, Lazar CS, Zhu C, Teske A, Hinrichs KU. The archaeal lipidome in estuarine sediment dominated by members of the Miscellaneous Crenarchaeotal Group. Environ Microbiol 2015; 17:2441-58. [PMID: 25403417 DOI: 10.1111/1462-2920.12716] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/08/2014] [Indexed: 11/27/2022]
Abstract
The anoxic sediments of the White Oak River estuary comprise a distinctive sulfate-methane transition zone (SMTZ) and natural enrichment of the archaea affiliated with the Miscellaneous Crenarchaeotal Group (MCG). Archaeal biphytanes were generally depleted in (13) C, with δ(13) C values being less than -35‰, indicative of production by active sedimentary archaeal populations. Multivariate analysis of the downcore distributions of 63 lipid biomarkers identified three major groups of lipids that were enriched in the surface, SMTZ or subsurface depths. Intact polar lipids with phosphatidylglycerol headgroups and glycerol dibiphytanyl glycerol tetraethers containing one, two or three cyclopentane rings were enriched at the base of the SMTZ and likely represent the accumulated product of a small but active ANME-1 community. The recently identified butanetriol dibiphytanyl glycerol tetraethers (BDGT), which increased relatively to other lipids with depth, were correlated with the relative abundance of MCG in archaeal 16S rRNA clone libraries, and were (13) C depleted throughout the depth profile, suggesting BDGT lipids as putative biomarkers of an MCG community that may either be autotrophic or feeding on (13) C-depleted organic substrates transported by porewater.
Collapse
Affiliation(s)
- Travis B Meador
- MARUM Center for Marine Environmental Sciences, Department of Geosciences, University of Bremen, Bremen, Germany
| | - Marshall Bowles
- MARUM Center for Marine Environmental Sciences, Department of Geosciences, University of Bremen, Bremen, Germany
| | - Cassandre S Lazar
- MARUM Center for Marine Environmental Sciences, Department of Geosciences, University of Bremen, Bremen, Germany.,Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chun Zhu
- MARUM Center for Marine Environmental Sciences, Department of Geosciences, University of Bremen, Bremen, Germany
| | - Andreas Teske
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kai-Uwe Hinrichs
- MARUM Center for Marine Environmental Sciences, Department of Geosciences, University of Bremen, Bremen, Germany
| |
Collapse
|
14
|
Reply to Schouten et al.: Marine Group II planktonic Euryarchaeota are significant contributors to tetraether lipids in the ocean. Proc Natl Acad Sci U S A 2014; 111:E4286. [PMID: 25239231 DOI: 10.1073/pnas.1416736111] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|