1
|
Elvers BJ, Fischer C, Schulzke C. Dynamics and Coordination of a P 2N 2 Ligand - from Twisted Conformation to Chelation. Chemistry 2024; 30:e202304103. [PMID: 38372510 DOI: 10.1002/chem.202304103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
Based on their general spacial flexibility, their Lewis and Brønsted basicity, and ability to mimic second sphere effects the 1,5-diaza-3,7-diphosphacyclooctane ligand family and their complexes have regained substantial scientific interest. It was now possible to structurally analyze a recently reported member of this family with p-tolyl and t-butyl substituents on P and N, respectively, (P2 p-tolN2 tBu). Notably, the ligand crystallizes with a 'twisted' backbone. This compound is the very first of its kind to have been unambiguously characterized with regard to its chemical and molecular structure as being in this conformation. A temperature-dependent NMR study provides insight into the molecular dynamics of two isomers in solution, which are most likely also both twisted, as judged by the observed limited reactivity. Despite the in principle unfavorable conformation of the free ligand, it was successfully chelated to tungsten and molybdenum centers in mononuclear carbonyl complexes. The ligand, a derivative thereof and four new complexes were comprehensively characterized and analyzed in comparison. This includes single crystal XRD molecular structures of P2 p-tolN2 tBu and all four complexes. P2 p-tolN2 tBu, regardless of its twisted conformation, is able to coordinate to metal centers given that enough energy (heat) for a conformational change is provided.
Collapse
Affiliation(s)
- Benedict J Elvers
- Bioinorganic Chemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Christian Fischer
- Bioinorganic Chemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Carola Schulzke
- Bioinorganic Chemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| |
Collapse
|
2
|
Fasano A, Baffert C, Schumann C, Berggren G, Birrell JA, Fourmond V, Léger C. Kinetic Modeling of the Reversible or Irreversible Electrochemical Responses of FeFe-Hydrogenases. J Am Chem Soc 2024; 146:1455-1466. [PMID: 38166210 DOI: 10.1021/jacs.3c10693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The enzyme FeFe-hydrogenase catalyzes H2 evolution and oxidation at an active site that consists of a [4Fe-4S] cluster bridged to a [Fe2(CO)3(CN)2(azadithiolate)] subsite. Previous investigations of its mechanism were mostly conducted on a few "prototypical" FeFe-hydrogenases, such as that from Chlamydomonas reinhardtii(Cr HydA1), but atypical hydrogenases have recently been characterized in an effort to explore the diversity of this class of enzymes. We aim at understanding why prototypical hydrogenases are active in either direction of the reaction in response to a small deviation from equilibrium, whereas the homologous enzyme from Thermoanaerobacter mathranii (Tam HydS) shows activity only under conditions of very high driving force, a behavior that was referred to as "irreversible catalysis". We follow up on previous spectroscopic studies and recent developments in the kinetic modeling of bidirectional reactions to investigate and compare the catalytic cycles of Cr HydA1 and Tam HydS under conditions of direct electron transfer with an electrode. We compare the hypothetical catalytic cycles described in the literature, and we show that the observed changes in catalytic activity as a function of potential, pH, and H2 concentration can be explained with the assumption that the same catalytic mechanism applies. This helps us identify which variations in properties of the catalytic intermediates give rise to the distinct "reversible" or "irreversible" catalytic behaviors.
Collapse
Affiliation(s)
- Andrea Fasano
- Laboratoire de Bioénergétique et Ingénierie des Protéines. CNRS, Aix Marseille Université, UMR, 7281 Marseille, France
| | - Carole Baffert
- Laboratoire de Bioénergétique et Ingénierie des Protéines. CNRS, Aix Marseille Université, UMR, 7281 Marseille, France
| | - Conrad Schumann
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Gustav Berggren
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - James A Birrell
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K
| | - Vincent Fourmond
- Laboratoire de Bioénergétique et Ingénierie des Protéines. CNRS, Aix Marseille Université, UMR, 7281 Marseille, France
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines. CNRS, Aix Marseille Université, UMR, 7281 Marseille, France
| |
Collapse
|
3
|
Guria S, Dolui D, Das C, Ghorai S, Vishal V, Maiti D, Lahiri GK, Dutta A. Energy-efficient CO 2/CO interconversion by homogeneous copper-based molecular catalysts. Nat Commun 2023; 14:6859. [PMID: 37891216 PMCID: PMC10611766 DOI: 10.1038/s41467-023-42638-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Facile conversion of CO2 to commercially viable carbon feedstocks offer a unique way to adopt a net-zero carbon scenario. Synthetic CO2-reducing catalysts have rarely exhibited energy-efficient and selective CO2 conversion. Here, the carbon monoxide dehydrogenase (CODH) enzyme blueprint is imitated by a molecular copper complex coordinated by redox-active ligands. This strategy has unveiled one of the rarest examples of synthetic molecular complex-driven reversible CO2 reduction/CO oxidation catalysis under regulated conditions, a hallmark of natural enzymes. The inclusion of a proton-exchanging amine groups in the periphery of the copper complex provides the leeway to modulate the biases of catalysts toward CO2 reduction and CO oxidation in organic and aqueous media. The detailed spectroelectrochemical analysis confirms the synchronous participation of copper and redox-active ligands along with the peripheral amines during this energy-efficient CO2 reduction/CO oxidation. This finding can be vital in abating the carbon footprint-free in multiple industrial processes.
Collapse
Affiliation(s)
- Somnath Guria
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Dependu Dolui
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Chandan Das
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Santanu Ghorai
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Vikram Vishal
- Earth Sciences Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
- National Center of Excellence in Carbon Capture and Utilization, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
- UrjanovaC Private Limited, Powai, Mumbai, 400076, India
| | - Debabrata Maiti
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
- National Center of Excellence in Carbon Capture and Utilization, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Goutam Kumar Lahiri
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Arnab Dutta
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
- National Center of Excellence in Carbon Capture and Utilization, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
- UrjanovaC Private Limited, Powai, Mumbai, 400076, India.
| |
Collapse
|
4
|
Reuillard B, Costentin C, Artero V. Deciphering Reversible Homogeneous Catalysis of the Electrochemical H 2 Evolution and Oxidation: Role of Proton Relays and Local Concentration Effects. Angew Chem Int Ed Engl 2023; 62:e202302779. [PMID: 37073946 DOI: 10.1002/anie.202302779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 04/20/2023]
Abstract
Nickel bisdiphosphine complexes bearing pendant amines form a unique series of catalysts (so-called DuBois' catalysts) capable of bidirectional/reversible electrocatalytic oxidation and production of dihydrogen. This unique behaviour is directly linked to the presence of proton relays installed close to the metal center. We report here for the arginine derivative [Ni(P2 Cy N2 Arg )2 ]6+ on a mechanistic model and its kinetic treatment that may apply to all DuBois' catalysts and show that it allows for a good fit of experimental data measured at different pH values, catalyst concentrations and partial hydrogen pressures. The bidirectionality of catalysis results from balanced equilibria related to hydrogen uptake/evolution on one side and (metal)-hydride installation/capture on the other side, both controlled by concentration effects resulting from the presence of proton relays and connected by two square schemes corresponding to proton-coupled electron transfer processes. We show that the catalytic bias is controlled by the kinetic of the H2 uptake/evolution step. Reversibility does not require that the energy landscape be flat, with redox transitions occurring at potentials up to 250 mV away for the equilibrium potential, although such large deviations from a flat energy landscape can negatively impacts the rate of catalysis when coupled with slow interfacial electron transfer kinetics.
Collapse
Affiliation(s)
| | | | - Vincent Artero
- Univ Grenoble Alpes, CNRS, CEA, IRIG, LCBM, 38000, Grenoble, France
| |
Collapse
|
5
|
Barrio J, Pedersen A, Favero S, Luo H, Wang M, Sarma SC, Feng J, Ngoc LTT, Kellner S, Li AY, Jorge Sobrido AB, Titirici MM. Bioinspired and Bioderived Aqueous Electrocatalysis. Chem Rev 2023; 123:2311-2348. [PMID: 36354420 PMCID: PMC9999430 DOI: 10.1021/acs.chemrev.2c00429] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/12/2022]
Abstract
The development of efficient and sustainable electrochemical systems able to provide clean-energy fuels and chemicals is one of the main current challenges of materials science and engineering. Over the last decades, significant advances have been made in the development of robust electrocatalysts for different reactions, with fundamental insights from both computational and experimental work. Some of the most promising systems in the literature are based on expensive and scarce platinum-group metals; however, natural enzymes show the highest per-site catalytic activities, while their active sites are based exclusively on earth-abundant metals. Additionally, natural biomass provides a valuable feedstock for producing advanced carbonaceous materials with porous hierarchical structures. Utilizing resources and design inspiration from nature can help create more sustainable and cost-effective strategies for manufacturing cost-effective, sustainable, and robust electrochemical materials and devices. This review spans from materials to device engineering; we initially discuss the design of carbon-based materials with bioinspired features (such as enzyme active sites), the utilization of biomass resources to construct tailored carbon materials, and their activity in aqueous electrocatalysis for water splitting, oxygen reduction, and CO2 reduction. We then delve in the applicability of bioinspired features in electrochemical devices, such as the engineering of bioinspired mass transport and electrode interfaces. Finally, we address remaining challenges, such as the stability of bioinspired active sites or the activity of metal-free carbon materials, and discuss new potential research directions that can open the gates to the implementation of bioinspired sustainable materials in electrochemical devices.
Collapse
Affiliation(s)
- Jesús Barrio
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Angus Pedersen
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Silvia Favero
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Hui Luo
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Mengnan Wang
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Saurav Ch. Sarma
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Jingyu Feng
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Linh Tran Thi Ngoc
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Simon Kellner
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Alain You Li
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Ana Belén Jorge Sobrido
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Maria-Magdalena Titirici
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1
Katahira, Aobaku, Sendai, Miyagi980-8577, Japan
| |
Collapse
|
6
|
Salamatian AA, Bren KL. Bioinspired and biomolecular catalysts for energy conversion and storage. FEBS Lett 2023; 597:174-190. [PMID: 36331366 DOI: 10.1002/1873-3468.14533] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Metalloenzymes are remarkable for facilitating challenging redox transformations with high efficiency and selectivity. In the area of alternative energy, scientists aim to capture these properties in bioinspired and engineered biomolecular catalysts for the efficient and fast production of fuels from low-energy feedstocks such as water and carbon dioxide. In this short review, efforts to mimic biological catalysts for proton reduction and carbon dioxide reduction are highlighted. Two important recurring themes are the importance of the microenvironment of the catalyst active site and the key role of proton delivery to the active site in achieving desired reactivity. Perspectives on ongoing and future challenges are also provided.
Collapse
Affiliation(s)
| | - Kara L Bren
- Department of Chemistry, University of Rochester, NY, USA
| |
Collapse
|
7
|
Wiedner ES, Appel AM, Raugei S, Shaw WJ, Bullock RM. Molecular Catalysts with Diphosphine Ligands Containing Pendant Amines. Chem Rev 2022; 122:12427-12474. [PMID: 35640056 DOI: 10.1021/acs.chemrev.1c01001] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pendant amines play an invaluable role in chemical reactivity, especially for molecular catalysts based on earth-abundant metals. As inspired by [FeFe]-hydrogenases, which contain a pendant amine positioned for cooperative bifunctionality, synthetic catalysts have been developed to emulate this multifunctionality through incorporation of a pendant amine in the second coordination sphere. Cyclic diphosphine ligands containing two amines serve as the basis for a class of catalysts that have been extensively studied and used to demonstrate the impact of a pendant base. These 1,5-diaza-3,7-diphosphacyclooctanes, now often referred to as "P2N2" ligands, have profound effects on the reactivity of many catalysts. The resulting [Ni(PR2NR'2)2]2+ complexes are electrocatalysts for both the oxidation and production of H2. Achieving the optimal benefit of the pendant amine requires that it has suitable basicity and is properly positioned relative to the metal center. In addition to the catalytic efficacy demonstrated with [Ni(PR2NR'2)2]2+ complexes for the oxidation and production of H2, catalysts with diphosphine ligands containing pendant amines have also been demonstrated for several metals for many different reactions, both in solution and immobilized on surfaces. The impact of pendant amines in catalyst design continues to expand.
Collapse
|
8
|
Affiliation(s)
| | - Brian R. James
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Treviño RE, Shafaat HS. Protein-based models offer mechanistic insight into complex nickel metalloenzymes. Curr Opin Chem Biol 2022; 67:102110. [PMID: 35101820 DOI: 10.1016/j.cbpa.2021.102110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 11/03/2022]
Abstract
There are ten nickel enzymes found across biological systems, each with a distinct active site and reactivity that spans reductive, oxidative, and redox-neutral processes. We focus on the reductive enzymes, which catalyze reactions that are highly germane to the modern-day climate crisis: [NiFe] hydrogenase, carbon monoxide dehydrogenase, acetyl coenzyme A synthase, and methyl coenzyme M reductase. The current mechanistic understanding of each enzyme system is reviewed along with existing knowledge gaps, which are addressed through the development of protein-derived models, as described here. This opinion is intended to highlight the advantages of using robust protein scaffolds for modeling multiscale contributions to reactivity and inspire the development of novel artificial metalloenzymes for other small molecule transformations.
Collapse
Affiliation(s)
- Regina E Treviño
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
10
|
Rajeshwaree B, Ali A, Mir AQ, Grover J, Lahiri GK, Dutta A, Maiti D. Group 6 transition metal-based molecular complexes for sustainable catalytic CO2 activation. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01378e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CO2 activation is one of the key steps towards CO2 mitigation. In this context, the group 6 transition metal-based molecular catalysts can lead the way.
Collapse
Affiliation(s)
- B. Rajeshwaree
- Chemistry Department, IIT Bombay, Powai, Mumbai-400076, India
| | - Afsar Ali
- Chemistry Discipline, IIT Gandhinagar, Palaj, Gandhinagar-382355, India
| | - Ab Qayoom Mir
- Chemistry Discipline, IIT Gandhinagar, Palaj, Gandhinagar-382355, India
| | - Jagrit Grover
- Chemistry Department, IIT Bombay, Powai, Mumbai-400076, India
| | | | - Arnab Dutta
- Chemistry Department, IIT Bombay, Powai, Mumbai-400076, India
- Interdisciplinary Programme in Climate Studies, IIT Bombay, Powai, Mumbai-400076, India
| | - Debabrata Maiti
- Chemistry Department, IIT Bombay, Powai, Mumbai-400076, India
- Interdisciplinary Programme in Climate Studies, IIT Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
11
|
Ghedjatti A, Coutard N, Calvillo L, Granozzi G, Reuillard B, Artero V, Guetaz L, Lyonnard S, Okuno H, Chenevier P. How do H 2 oxidation molecular catalysts assemble onto carbon nanotube electrodes? A crosstalk between electrochemical and multi-physical characterization techniques. Chem Sci 2021; 12:15916-15927. [PMID: 35024115 PMCID: PMC8672770 DOI: 10.1039/d1sc05168g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/19/2021] [Indexed: 01/27/2023] Open
Abstract
Molecular catalysts show powerful catalytic efficiency and unsurpassed selectivity in many reactions of interest. As their implementation in electrocatalytic devices requires their immobilization onto a conductive support, controlling the grafting chemistry and its impact on their distribution at the surface of this support within the catalytic layer is key to enhancing and stabilizing the current they produce. This study focuses on molecular bioinspired nickel catalysts for hydrogen oxidation, bound to carbon nanotubes, a conductive support with high specific area. We couple advanced analysis by transmission electron microscopy (TEM), for direct imaging of the catalyst layer on individual nanotubes, and small angle neutron scattering (SANS), for indirect observation of structural features in a relevant aqueous medium. Low-dose TEM imaging shows a homogeneous, mobile coverage of catalysts, likely as a monolayer coating the nanotubes, while SANS unveils a regular nanostructure in the catalyst distribution on the surface with agglomerates that could be imaged by TEM upon aging. Together, electrochemistry, TEM and SANS analyses allowed drawing an unprecedented and intriguing picture with molecular catalysts evenly distributed at the nanoscale in two different populations required for optimal catalytic performance. How do efficient hydrogen-oxidation molecular electrocatalysts connect onto their carbon nanotube conductive support? A coupled neutron scattering SANS and STEM electron microscopy study to observe soft active matter organizing on 3D nanosurfaces.![]()
Collapse
Affiliation(s)
- Ahmed Ghedjatti
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 38000 Grenoble France.,Univ. Grenoble Alpes, CEA, IRIG, MEM, LEMMA 38000 Grenoble France.,Univ. Grenoble Alpes, CEA, CNRS, IRIG, SYMMES 38000 Grenoble France
| | - Nathan Coutard
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 38000 Grenoble France
| | - Laura Calvillo
- Department of Chemical Sciences, University of Padova Via F. Marzolo 1 Padova 35131 Italy
| | - Gaetano Granozzi
- Department of Chemical Sciences, University of Padova Via F. Marzolo 1 Padova 35131 Italy
| | - Bertrand Reuillard
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 38000 Grenoble France
| | - Vincent Artero
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 38000 Grenoble France
| | - Laure Guetaz
- Univ. Grenoble Alpes, CEA, LITEN, DTNM 38000 Grenoble France
| | | | - Hanako Okuno
- Univ. Grenoble Alpes, CEA, IRIG, MEM, LEMMA 38000 Grenoble France
| | | |
Collapse
|
12
|
Laureanti JA, Su Q, Shaw WJ. A protein scaffold enables hydrogen evolution for a Ni-bisdiphosphine complex. Dalton Trans 2021; 50:15754-15759. [PMID: 34704584 DOI: 10.1039/d1dt03295j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An artificial metalloenzyme acting as a functional biomimic of hydrogenase enzymes was activated by assembly via covalent attachment of the molecular complex, [Ni(PNglycineP)2]2-, within a structured protein scaffold. Electrocatalytic H2 production was observed from pH 3.0 to 10.0 for the artificial enzyme, while no electrocatalytic activity was observed for similar [Ni(PNP)2]2+ systems.
Collapse
Affiliation(s)
- Joseph A Laureanti
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | - Qiwen Su
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | - Wendy J Shaw
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| |
Collapse
|
13
|
Schild J, Reuillard B, Morozan A, Chenevier P, Gravel E, Doris E, Artero V. Approaching Industrially Relevant Current Densities for Hydrogen Oxidation with a Bioinspired Molecular Catalytic Material. J Am Chem Soc 2021; 143:18150-18158. [PMID: 34677065 DOI: 10.1021/jacs.1c07093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Integration of efficient platinum-group-metal (PGM)-free catalysts to fuel cells and electrolyzers is a prerequisite to their large-scale deployment. Here, we describe the development of a molecular-based anode for the hydrogen oxidation reaction (HOR) through noncovalent integration of a DuBois type Ni bioinspired molecular catalyst at the surface of a carbon nanotube modified gas diffusion layer. This mild immobilization strategy enabled us to gain high control over the loading in catalytic sites. Additionally, through the adjustment of the hydration level of the active layer, a new record current density of 214 ± 20 mA cm-2 could be reached at 0.4 V vs RHE with the PGM-free anode, at 25 °C. Near industrially relevant current densities were obtained at 55 °C with 150 ± 20 and 395 ± 30 mA cm-2 at 0.1 and 0.4 V overpotentials, respectively. These results further demonstrate the relevance of such molecular approaches for the development of electrocatalytic platforms for energy conversion.
Collapse
Affiliation(s)
- Jérémy Schild
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs F-38054 Grenoble Cedex, France.,Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Bertrand Reuillard
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs F-38054 Grenoble Cedex, France
| | - Adina Morozan
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs F-38054 Grenoble Cedex, France
| | - Pascale Chenevier
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, SyMMES, 17 rue des Martyrs, F-38054 Grenoble Cedex, France
| | - Edmond Gravel
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Eric Doris
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Vincent Artero
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs F-38054 Grenoble Cedex, France
| |
Collapse
|
14
|
Ruiz AC, Damodaran KK, Suman SG. Towards a selective synthetic route for cobalt amino acid complexes and their application in ring opening polymerization of rac-lactide. RSC Adv 2021; 11:16326-16338. [PMID: 35479168 PMCID: PMC9030263 DOI: 10.1039/d1ra02909f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/15/2023] Open
Abstract
Catalysts based on cobalt amino acids and 2,2 bipyridine (bipy) present an attractive and cost-effective alternative as ring opening polymerization catalysts, yet this system remains underexplored despite the advantageous coordination properties of amino acids and bipy as ligands combined with the variety of accessible oxidation states and coordination geometries of cobalt. Here, metal complexes of type [Co(aa)2(bipy)] with amino acids (aa: glycine, leucine and threonine) as ligands are reported. The complexes were characterized spectroscopically (IR, UV-vis and 1H, 13C NMR for diamagnetic species), and by MS spectrometry and elemental analysis. The data reveal that the 2,2 bipyridine acts as a neutral bidentate donor coordinating to the metal ion through two nitrogen atoms and the amino acid acts as a bidentate ligand coordinating through the carboxylate and amino group forming a stable five membered ring and a pseudo-octahedral geometry around the Co center. The activity of the complexes for the ring opening polymerization (ROP) of rac-lactide is presented. The complexes are effective initiators for the ROP of rac-lactide (K obs = 9.05 × 10-4 s-1) at 100 : 1 [rac-lactide] : [catalyst] 1 M overall concentration of lactide in toluene at 403 K.
Collapse
Affiliation(s)
- Andrés Castro Ruiz
- Science Institute, University of Iceland Dunhagi 3, 107 Reykjavik Iceland
| | | | - Sigridur G Suman
- Science Institute, University of Iceland Dunhagi 3, 107 Reykjavik Iceland
| |
Collapse
|
15
|
Abstract
We describe as 'reversible' a bidirectional catalyst that allows a reaction to proceed at a significant rate in response to even a small departure from equilibrium, resulting in fast and energy-efficient chemical transformation. Examining the relation between reaction rate and thermodynamic driving force is the basis of electrochemical investigations of redox reactions, which can be catalysed by metallic surfaces and biological or synthetic molecular catalysts. This relation has also been discussed in the context of biological energy transduction, regarding the function of biological molecular machines that harness chemical reactions to do mechanical work. This Perspective describes mean-field kinetic modelling of these three types of systems - surface catalysts, molecular catalysts of redox reactions and molecular machines - with the goal of unifying concepts in these different fields. We emphasize that reversibility should be distinguished from other figures of merit, such as rate or directionality, before its design principles can be identified and used to engineer synthetic catalysts.
Collapse
|
16
|
Ali A, Prakash D, Majumder P, Ghosh S, Dutta A. Flexible Ligand in a Molecular Cu Electrocatalyst Unfurls Bidirectional O 2/H 2O Conversion in Water. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Afsar Ali
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj 382355, India
| | - Divyansh Prakash
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj 382355, India
| | - Piyali Majumder
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj 382355, India
| | - Soumya Ghosh
- Tata Institute of Fundamental Research (TIFR), Hyderabad, Telengana 500046, India
| | - Arnab Dutta
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj 382355, India
- Chemistry Department, Indian Institute of Technology Bombay, Powai 400076, India
| |
Collapse
|
17
|
Costentin C. Molecular Catalysis of Electrochemical Reactions. Overpotential and Turnover Frequency: Unidirectional and Bidirectional Systems. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00744] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cyrille Costentin
- Département de Chimie Moléculaire, Université Grenoble-Alpes, CNRS, UMR 5250, 38000 Grenoble, France
- Université de Paris, 75013 Paris, France
| |
Collapse
|
18
|
DiPrimio DJ, Holland PL. Repurposing metalloproteins as mimics of natural metalloenzymes for small-molecule activation. J Inorg Biochem 2021; 219:111430. [PMID: 33873051 DOI: 10.1016/j.jinorgbio.2021.111430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
Artificial metalloenzymes (ArMs) consist of an unnatural metal or cofactor embedded in a protein scaffold, and are an excellent platform for applying the concepts of protein engineering to catalysis. In this Focused Review, we describe the application of ArMs as simple, tunable artificial models of the active sites of complex natural metalloenzymes for small-molecule activation. In this sense, ArMs expand the strategies of synthetic model chemistry to protein-based supporting ligands with potential for participation from the second coordination sphere. We focus specifically on ArMs that are structural, spectroscopic, and functional models of enzymes for activation of small molecules like CO, CO2, O2, N2, and NO, as well as production/consumption of H2. These ArMs give insight into the identities and roles of metalloenzyme structural features within and near the cofactor. We give examples of ArM work relevant to hydrogenases, acetyl-coenzyme A synthase, superoxide dismutase, heme oxygenases, nitric oxide reductase, methyl-coenzyme M reductase, copper-O2 enzymes, and nitrogenases.
Collapse
Affiliation(s)
- Daniel J DiPrimio
- Department of Chemistry, Yale University, New Haven, CT, 06520, United States
| | - Patrick L Holland
- Department of Chemistry, Yale University, New Haven, CT, 06520, United States.
| |
Collapse
|
19
|
Abstract
Efficient electrocatalytic energy conversion requires the devices to function reversibly, i.e. deliver a significant current at minimal overpotential. Redox-active films can effectively embed and stabilise molecular electrocatalysts, but mediated electron transfer through the film typically makes the catalytic response irreversible. Here, we describe a redox-active film for bidirectional (oxidation or reduction) and reversible hydrogen conversion, consisting of [FeFe] hydrogenase embedded in a low-potential, 2,2’-viologen modified hydrogel. When this catalytic film served as the anode material in a H2/O2 biofuel cell, an open circuit voltage of 1.16 V was obtained - a benchmark value near the thermodynamic limit. The same film also acted as a highly energy efficient cathode material for H2 evolution. We explained the catalytic properties using a kinetic model, which shows that reversibility can be achieved despite intermolecular electron transfer being slower than catalysis. This understanding of reversibility simplifies the design principles of highly efficient and stable bioelectrocatalytic films, advancing their implementation in energy conversion.
Collapse
|
20
|
Amanullah S, Saha P, Nayek A, Ahmed ME, Dey A. Biochemical and artificial pathways for the reduction of carbon dioxide, nitrite and the competing proton reduction: effect of 2nd sphere interactions in catalysis. Chem Soc Rev 2021; 50:3755-3823. [DOI: 10.1039/d0cs01405b] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reduction of oxides and oxoanions of carbon and nitrogen are of great contemporary importance as they are crucial for a sustainable environment.
Collapse
Affiliation(s)
- Sk Amanullah
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Paramita Saha
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhijit Nayek
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Md Estak Ahmed
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhishek Dey
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| |
Collapse
|
21
|
Dolui D, Mir AQ, Dutta A. Probing the peripheral role of amines in photo- and electrocatalytic H 2 production by molecular cobalt complexes. Chem Commun (Camb) 2020; 56:14841-14844. [PMID: 33174879 DOI: 10.1039/d0cc05786j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The incorporation of amine functionality in the periphery of a synthetic cobaloxime core induces excellent photo-(TON 180) and electrocatalytic H2 production (TOF 4330 s-1) in aqueous solution. The primary amine group displays a superior influence on the catalysis compared to a secondary amine group with an analogous cobaloxime template.
Collapse
Affiliation(s)
- Dependu Dolui
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj 382355, India.
| | - Ab Qayoom Mir
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj 382355, India.
| | - Arnab Dutta
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj 382355, India. and Chemistry Department, Indian Institute of Technology Bombay, Powai 400076, India
| |
Collapse
|
22
|
Karasik AA, Heinicke JW, Balueva AS, Thede G, Jones PG, Sinyashin OG. Pt‐ and Pd‐Complexes with Acyclic and Heterocyclic
P
‐Hydroxyaryl‐Substituted
N
‐Phosphanylmethyl Amino Acids RP(CH
2
NHR')
2
and (RPCH
2
NR'CH
2
)
2
– Evaluation of (P
^
O)M Chelate Formation. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andrey A. Karasik
- A.E. Arbuzov Institute of Organic and Physical Chemistry of Kazan Scientific Center of Russian Academy of Science Arbuzov Str. 8 420088 Kazan Russia
| | - Joachim W. Heinicke
- Institut für Biochemie Universität Greifswald Felix‐Hausdorff‐Str. 4 17487 Greifswald Germany
| | - Anna S. Balueva
- A.E. Arbuzov Institute of Organic and Physical Chemistry of Kazan Scientific Center of Russian Academy of Science Arbuzov Str. 8 420088 Kazan Russia
| | - Gabriele Thede
- Institut für Biochemie Universität Greifswald Felix‐Hausdorff‐Str. 4 17487 Greifswald Germany
| | - Peter G. Jones
- Institut für Anorganische und Analytische Chemie Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Oleg G. Sinyashin
- A.E. Arbuzov Institute of Organic and Physical Chemistry of Kazan Scientific Center of Russian Academy of Science Arbuzov Str. 8 420088 Kazan Russia
| |
Collapse
|
23
|
Abstract
From the understanding of biological processes and metalloenzymes to the development of inorganic catalysts, electro- and photocatalytic systems for fuel generation have evolved considerably during the last decades. Recently, organic and hybrid organic systems have emerged to challenge the classical inorganic structures through their enormous chemical diversity and modularity that led earlier to their success in organic (opto)electronics. This Minireview describes recent advances in the design of synthetic organic architectures and promising strategies toward (solar) fuel synthesis, highlighting progress on materials from organic ligands and chromophores to conjugated polymers and covalent organic frameworks.
Collapse
Affiliation(s)
- Julien Warnan
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Department ChemieTechnische Universität MünchenLichtenbergstraße 485747GarchingGermany
| | - Erwin Reisner
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
24
|
Prasad P, Selvan D, Chakraborty S. Biosynthetic Approaches towards the Design of Artificial Hydrogen-Evolution Catalysts. Chemistry 2020; 26:12494-12509. [PMID: 32449989 DOI: 10.1002/chem.202001338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Indexed: 11/07/2022]
Abstract
Hydrogen is a clean and sustainable form of fuel that can minimize our heavy dependence on fossil fuels as the primary energy source. The need of finding greener ways to generate H2 gas has ignited interest in the research community to synthesize catalysts that can produce H2 by the reduction of H+ . The natural H2 producing enzymes hydrogenases have served as an inspiration to produce catalytic metal centers akin to these native enzymes. In this article we describe recent advances in the design of a unique class of artificial hydrogen evolving catalysts that combine the features of the active site metal(s) surrounded by a polypeptide component. The examples of these biosynthetic catalysts discussed here include i) assemblies of synthetic cofactors with native proteins; ii) peptide-appended synthetic complexes; iii) substitution of native cofactors with non-native cofactors; iv) metal substitution from rubredoxin; and v) a reengineered Cu storage protein into a Ni binding protein. Aspects of key design considerations in the construction of these artificial biocatalysts and insights gained into their chemical reactivity are discussed.
Collapse
Affiliation(s)
- Pallavi Prasad
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, 38677, USA
| | - Dhanashree Selvan
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, 38677, USA
| | - Saumen Chakraborty
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
25
|
Tuning the reactivity of cobalt-based H2 production electrocatalysts via the incorporation of the peripheral basic functionalities. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213335] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Affiliation(s)
- Julien Warnan
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Department Chemie Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Erwin Reisner
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
27
|
Dolui D, Khandelwal S, Majumder P, Dutta A. The odyssey of cobaloximes for catalytic H 2 production and their recent revival with enzyme-inspired design. Chem Commun (Camb) 2020; 56:8166-8181. [PMID: 32555820 DOI: 10.1039/d0cc03103h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cobaloxime complexes gained attention for their intrinsic ability of catalytic H2 production despite their initial emergence as a vitamin B12 model. The simple, robust, and synthetically manoeuvrable cobaloxime core represents a model catalyst molecule for the investigation of optimal conditions for both photo- and electrocatalytic H2 production catalytic assemblies. Cobaloxime is one of the rare catalysts that finds equal applications in the analysis of homogeneous and heterogeneous catalytic conditions. However, the poor aqueous solubility and long-term instability of cobaloximes have severely impeded their growth. Lately, interest in the cobaloxime-based catalysts has been resuscitated with the rational use of extended enzymatic features. This unique enzyme-inspired catalyst design strategy has instigated the formation of a new genre of cobaloxime molecules that exhibit enhanced photo- and electrocatalytic H2 evolution with improved aqueous and air stability.
Collapse
Affiliation(s)
- Dependu Dolui
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj 382355, India
| | | | | | | |
Collapse
|
28
|
Soficheva OS, Nesterova AA, Dobrynin AB, Zueva EM, Heinicke JW, Sinyashin OG, Yakhvarov DG. The effect of N-substituent on the relative thermodynamic stability of unionized and zwitterionic forms of α-diphenylphosphino-α-amino acids. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.07.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Zee DZ, Nippe M, King AE, Chang CJ, Long JR. Tuning Second Coordination Sphere Interactions in Polypyridyl–Iron Complexes to Achieve Selective Electrocatalytic Reduction of Carbon Dioxide to Carbon Monoxide. Inorg Chem 2020; 59:5206-5217. [DOI: 10.1021/acs.inorgchem.0c00455] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | - Michael Nippe
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | | | | | | |
Collapse
|
30
|
Reuillard B, Blanco M, Calvillo L, Coutard N, Ghedjatti A, Chenevier P, Agnoli S, Otyepka M, Granozzi G, Artero V. Noncovalent Integration of a Bioinspired Ni Catalyst to Graphene Acid for Reversible Electrocatalytic Hydrogen Oxidation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5805-5811. [PMID: 31912737 PMCID: PMC7009173 DOI: 10.1021/acsami.9b18922] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Efficient heterogeneous catalysis of hydrogen oxidation reaction (HOR) by platinum group metal (PGM)-free catalysts in proton-exchange membrane (PEM) fuel cells represents a significant challenge toward the development of a sustainable hydrogen economy. Here, we show that graphene acid (GA) can be used as an electrode scaffold for the noncovalent immobilization of a bioinspired nickel bis-diphosphine HOR catalyst. The highly functionalized structure of this material and optimization of the electrode-catalyst assembly sets new benchmark electrocatalytic performances for heterogeneous molecular HOR, with current densities above 30 mA cm-2 at 0.4 V versus reversible hydrogen electrode in acidic aqueous conditions and at room temperature. This study also shows the great potential of GA for catalyst loading improvement and porosity management within nanostructured electrodes toward achieving high current densities with a noble-metal free molecular catalyst.
Collapse
Affiliation(s)
- Bertrand Reuillard
- Univ. Grenoble
Alpes, CEA, CNRS, IRIG, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| | - Matías Blanco
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Laura Calvillo
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Nathan Coutard
- Univ. Grenoble
Alpes, CEA, CNRS, IRIG, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| | - Ahmed Ghedjatti
- Univ. Grenoble
Alpes, CEA, CNRS, IRIG, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| | - Pascale Chenevier
- Univ. Grenoble Alpes, CEA,
CNRS, IRIG, SYMMES, F-38000 Grenoble, France
| | - Stefano Agnoli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Michal Otyepka
- Regional Centre
of Advanced Technologies and Materials, Department of Physical Chemistry, Palacký University Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Gaetano Granozzi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Vincent Artero
- Univ. Grenoble
Alpes, CEA, CNRS, IRIG, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| |
Collapse
|
31
|
Materna KL, Lalaoui N, Laureanti JA, Walsh AP, Rimgard BP, Lomoth R, Thapper A, Ott S, Shaw WJ, Tian H, Hammarström L. Using Surface Amide Couplings to Assemble Photocathodes for Solar Fuel Production Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4501-4509. [PMID: 31872996 DOI: 10.1021/acsami.9b19003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A facile surface amide-coupling method was examined to attach dye and catalyst molecules to silatrane-decorated NiO electrodes. Using this method, electrodes with a push-pull dye were assembled and characterized by photoelectrochemistry and transient absorption spectroscopy. The dye-sensitized electrodes exhibited hole injection into NiO and good photoelectrochemical stability in water, highlighting the stability of the silatrane anchoring group and the amide linkage. The amide-coupling protocol was further applied to electrodes that contain a molecular proton reduction catalyst for use in photocathode architectures. Evidence for catalyst reduction was observed during photoelectrochemical measurements and via femtosecond-transient absorption spectroscopy demonstrating the possibility for application in photocathodes.
Collapse
Affiliation(s)
- Kelly L Materna
- Department of Chemistry-Ångström Laboratories , Uppsala University , P.O. Box 523, Uppsala SE75120 , Sweden
| | - Noémie Lalaoui
- Department of Chemistry-Ångström Laboratories , Uppsala University , P.O. Box 523, Uppsala SE75120 , Sweden
| | - Joseph A Laureanti
- Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Aaron P Walsh
- Ferro Corporation , Penn Yan , New York 14527 , United States
| | - Belinda Pettersson Rimgard
- Department of Chemistry-Ångström Laboratories , Uppsala University , P.O. Box 523, Uppsala SE75120 , Sweden
| | - Reiner Lomoth
- Department of Chemistry-Ångström Laboratories , Uppsala University , P.O. Box 523, Uppsala SE75120 , Sweden
| | - Anders Thapper
- Department of Chemistry-Ångström Laboratories , Uppsala University , P.O. Box 523, Uppsala SE75120 , Sweden
| | - Sascha Ott
- Department of Chemistry-Ångström Laboratories , Uppsala University , P.O. Box 523, Uppsala SE75120 , Sweden
| | - Wendy J Shaw
- Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Haining Tian
- Department of Chemistry-Ångström Laboratories , Uppsala University , P.O. Box 523, Uppsala SE75120 , Sweden
| | - Leif Hammarström
- Department of Chemistry-Ångström Laboratories , Uppsala University , P.O. Box 523, Uppsala SE75120 , Sweden
| |
Collapse
|
32
|
Trogadas P, Coppens MO. Nature-inspired electrocatalysts and devices for energy conversion. Chem Soc Rev 2020; 49:3107-3141. [DOI: 10.1039/c8cs00797g] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A NICE approach for the design of nature-inspired electrocatalysts and electrochemical devices for energy conversion.
Collapse
Affiliation(s)
- Panagiotis Trogadas
- EPSRC “Frontier Engineering” Centre for Nature Inspired Engineering & Department of Chemical Engineering
- University College London
- London
- UK
| | - Marc-Olivier Coppens
- EPSRC “Frontier Engineering” Centre for Nature Inspired Engineering & Department of Chemical Engineering
- University College London
- London
- UK
| |
Collapse
|
33
|
Ash PA, Kendall-Price SET, Vincent KA. Unifying Activity, Structure, and Spectroscopy of [NiFe] Hydrogenases: Combining Techniques To Clarify Mechanistic Understanding. Acc Chem Res 2019; 52:3120-3131. [PMID: 31675209 DOI: 10.1021/acs.accounts.9b00293] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Achieving a unified understanding of the mechanism of a multicenter redox enzyme such as [NiFe] hydrogenase is complicated by difficulties in reconciling information obtained by using different techniques and on samples in different physical forms. Measurements of the activity of the enzyme, and of factors which perturb activity, are generally carried out using biochemical assays in solution or with electrode-immobilized enzymes using protein film electrochemistry (PFE). Conversely, spectroscopy aimed at reporting on features of the metalloclusters in the enzyme, such as electron paramagnetic resonance (EPR) or X-ray absorption spectroscopy (XAS), is often conducted on frozen samples and is thus difficult to relate to catalytically relevant states as information about turnover and activity has been lost. To complicate matters further, most of our knowledge of the atomic-level structure of metalloenzymes comes from X-ray diffraction studies in the solid, crystalline state, which are again difficult to link to turnover conditions. Taking [NiFe] hydrogenases as our case study, we show here how it is possible to apply infrared (IR) spectroscopic sampling approaches to unite direct spectroscopic study with catalytic turnover. Using a method we have named protein film IR electrochemistry (PFIRE), we reveal the steady-state distribution of intermediates during catalysis and identify catalytic "bottlenecks" introduced by site-directed mutagenesis. We also show that it is possible to study dynamic transitions between active site states of enzymes in single crystals, uniting solid state and solution spectroscopic information. In all of these cases, the spectroscopic data complement and enhance interpretation of purely activity-based measurements by providing direct chemical insight that is otherwise hidden. The [NiFe] hydrogenases possess a bimetallic [NiFe] active site, coordinated by CO and CN- ligands, linked to the protein via bridging and terminal cysteine sulfur ligands, as well as an electron relay chain of iron sulfur clusters. Infrared spectroscopy is ideal for probing hydrogenases because the CO and CN- ligands are strong IR absorbers, but the suite of IR-based approaches we describe here will be equally valuable in studying substrate- or intermediate-bound states of other metalloenzymes where key mechanistic questions remain open, such as nitrogenase, formate dehydrogenase, or carbon monoxide dehydrogenase. We therefore hope that this Account will encourage future studies which unify information from different techniques across bioinorganic chemistry.
Collapse
Affiliation(s)
- Philip A. Ash
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
- School of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | | | - Kylie A. Vincent
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| |
Collapse
|
34
|
Schneider CR, Lewis LC, Shafaat HS. The good, the neutral, and the positive: buffer identity impacts CO 2 reduction activity by nickel(ii) cyclam. Dalton Trans 2019; 48:15810-15821. [PMID: 31560360 PMCID: PMC6843992 DOI: 10.1039/c9dt03114f] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Development of new synthetic catalysts for CO2 reduction has been a central focus of chemical research efforts towards mitigating rising global carbon dioxide levels. In parallel with generating new molecular systems, characterization and benchmarking of these compounds across well-defined catalytic conditions are essential. Nickel(ii) cyclam is known to be an active catalyst for CO2 reduction to CO. The degree of selectivity and activity has been found to differ widely across electrodes used and upon modification of the ligand environment, though without a molecular-level understanding of this variation. Moreover, while proton transfer is key for catalytic activity, the effects of varying the nature of the proton donor remain unclear. In this work, a systematic investigation of the electrochemical and light-driven catalytic behaviour of nickel(ii) cyclam under different aqueous reaction conditions has been performed. The activity and selectivity are seen to vary widely depending on the nature of the buffering agent, even at a constant pH, highlighting the importance of proton transfer for catalysis. Buffer binding to the nickel center is negatively correlated with selectivity, and cationic buffers show high levels of selectivity and activity. These results are discussed in the context of molecular design principles for developing increasingly efficient and selective catalysts. Moreover, identifying these key contributors towards activity has implications for understanding the role of the conserved secondary coordination environments in naturally occurring CO2-reducing enzymes, including carbon monoxide dehydrogenase and formate dehydrogenase.
Collapse
Affiliation(s)
- Camille R Schneider
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Luke C Lewis
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH, USA.
| | - Hannah S Shafaat
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA and Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
35
|
Dolui D, Khandelwal S, Shaik A, Gaat D, Thiruvenkatam V, Dutta A. Enzyme-Inspired Synthetic Proton Relays Generate Fast and Acid-Stable Cobalt-Based H2 Production Electrocatalysts. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02953] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | | | - Deepika Gaat
- Chemistry Department, Uka Tarsadia University, Bardoli, Gujarat 394350, India
| | | | | |
Collapse
|
36
|
Yao C, Zhang T, Zhou C, Huang KW. Interrogating the steric outcome during H 2 heterolysis: in-plane steric effects in the regioselective protonation of the PN 3P-pincer ligand. Dalton Trans 2019; 48:12817-12821. [PMID: 31403641 DOI: 10.1039/c9dt03003d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
H2 heterolysis to generate well-defined nickel hydride-proton complexes was achieved by the 2nd generation PN3P-pincer nickel platform. The regioselective protonation in the ligand framework was demonstrated for the first time to highlight the importance of in-plane hindrance during the H2 splitting process.
Collapse
Affiliation(s)
- Changguang Yao
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Tonghuan Zhang
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia. and Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Chunhui Zhou
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Kuo-Wei Huang
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
37
|
Slater JW, Marguet SC, Gray ME, Monaco HA, Sotomayor M, Shafaat HS. Power of the Secondary Sphere: Modulating Hydrogenase Activity in Nickel-Substituted Rubredoxin. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01720] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jeffrey W. Slater
- The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Sean C. Marguet
- The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Michelle E. Gray
- The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Haleigh A. Monaco
- The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Marcos Sotomayor
- The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Hannah S. Shafaat
- The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
38
|
Fourmond V, Wiedner ES, Shaw WJ, Léger C. Understanding and Design of Bidirectional and Reversible Catalysts of Multielectron, Multistep Reactions. J Am Chem Soc 2019; 141:11269-11285. [PMID: 31283209 DOI: 10.1021/jacs.9b04854] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Some enzymes, including those that are involved in the activation of small molecules such as H2 or CO2, can be wired to electrodes and function in either direction of the reaction depending on the electrochemical driving force and display a significant rate at very small deviations from the equilibrium potential. We call the former property "bidirectionality" and the latter "reversibility". This performance sets very high standards for chemists who aim at designing synthetic electrocatalysts. Only recently, in the particular case of the hydrogen production/evolution reaction, has it been possible to produce inorganic catalysts that function bidirectionally, with an even smaller number that also function reversibly. This raises the question of how to engineer such desirable properties in other synthetic catalysts. Here we introduce the kinetic modeling of bidirectional two-electron-redox reactions in the case of molecular catalysts and enzymes that are either attached to an electrode or diffusing in solution in the vicinity of an electrode. We emphasize that trying to discuss bidirectionality and reversibility in relation to a single redox potential leads to an impasse: the catalyst undergoes two redox transitions, and therefore two catalytic potentials must be defined, which may depart from the two potentials measured in the absence of catalysis. The difference between the two catalytic potentials defines the reversibility; the difference between their average value and the equilibrium potential defines the directionality (also called "preference", or "bias"). We describe how the sequence of events in the bidirectional catalytic cycle can be elucidated on the basis of the voltammetric responses. Further, we discuss the design principles of bidirectionality and reversibility in terms of thermodynamics and kinetics and conclude that neither bidirectionality nor reversibility requires that the catalytic energy landscape be flat. These theoretical findings are illustrated by previous results obtained with nickel diphosphine molecular catalysts and hydrogenases. In particular, analysis of the nickel catalysts highlights the fact that reversible catalysis can be achieved by catalysts that follow complex mechanisms with branched reaction pathways.
Collapse
Affiliation(s)
- Vincent Fourmond
- Aix Marseille Université , CNRS, BIP UMR 7281 , Marseille , France
| | - Eric S Wiedner
- Pacific Northwest National Laboratory , P.O. Box 999, K2-57, Richland , Washington 99352 , United States
| | - Wendy J Shaw
- Pacific Northwest National Laboratory , P.O. Box 999, K2-57, Richland , Washington 99352 , United States
| | - Christophe Léger
- Aix Marseille Université , CNRS, BIP UMR 7281 , Marseille , France
| |
Collapse
|
39
|
Selvan D, Prasad P, Farquhar ER, Shi Y, Crane S, Zhang Y, Chakraborty S. Redesign of a Copper Storage Protein into an Artificial Hydrogenase. ACS Catal 2019; 9:5847-5859. [PMID: 31341700 DOI: 10.1021/acscatal.9b00360] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report the construction of an artificial hydrogenase (ArH) by reengineering a Cu storage protein (Cspl) into a Ni-binding protein (NBP) employing rational metalloprotein design. The hypothesis driven design approach involved deleting existing Cu sites of Csp1 and identification of a target tetrathiolate Ni binding site within the protein scaffold followed by repacking the hydrophobic core. Guided by modeling, the NBP was expressed and purified in high purity. NBP is a well-folded and stable construct displaying native-like unfolding behavior. Spectroscopic and computational studies indicated that the NBP bound nickel in a distorted square planar geometry that validated the design. Ni(II)-NBP is active for photo-induced H2 evolution following a reductive quenching mechanism. Ni(II)-NBP catalyzed H+ reduction to H2 gas electrochemically as well. Analysis of the catalytic voltammograms established a proton-coupled electron transfer (PCET) mechanism. Electrolysis studies confirmed H2 evolution with quantitative Faradaic yields. Our studies demonstrate an important scope of rational metalloprotein design that allows imparting functions into protein scaffolds that have natively not evolved to possess the same function of the target metalloprotein constructs.
Collapse
Affiliation(s)
- Dhanashree Selvan
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Pallavi Prasad
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Erik R. Farquhar
- Case Western Reserve University Center for Synchrotron Biosciences, NSLS-II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Yelu Shi
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, New Jersey 07030, United States
| | - Skyler Crane
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, New Jersey 07030, United States
| | - Saumen Chakraborty
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
40
|
Dutta A, Shaw WJ. Chemical Method for Evaluating Catalytic Turnover Frequencies (TOF) of Moderate to Slow H 2 Oxidation Electrocatalysts. Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Arnab Dutta
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Wendy J. Shaw
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
41
|
Dalle K, Warnan J, Leung JJ, Reuillard B, Karmel IS, Reisner E. Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chem Rev 2019; 119:2752-2875. [PMID: 30767519 PMCID: PMC6396143 DOI: 10.1021/acs.chemrev.8b00392] [Citation(s) in RCA: 440] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 12/31/2022]
Abstract
The synthesis of renewable fuels from abundant water or the greenhouse gas CO2 is a major step toward creating sustainable and scalable energy storage technologies. In the last few decades, much attention has focused on the development of nonprecious metal-based catalysts and, in more recent years, their integration in solid-state support materials and devices that operate in water. This review surveys the literature on 3d metal-based molecular catalysts and focuses on their immobilization on heterogeneous solid-state supports for electro-, photo-, and photoelectrocatalytic synthesis of fuels in aqueous media. The first sections highlight benchmark homogeneous systems using proton and CO2 reducing 3d transition metal catalysts as well as commonly employed methods for catalyst immobilization, including a discussion of supporting materials and anchoring groups. The subsequent sections elaborate on productive associations between molecular catalysts and a wide range of substrates based on carbon, quantum dots, metal oxide surfaces, and semiconductors. The molecule-material hybrid systems are organized as "dark" cathodes, colloidal photocatalysts, and photocathodes, and their figures of merit are discussed alongside system stability and catalyst integrity. The final section extends the scope of this review to prospects and challenges in targeting catalysis beyond "classical" H2 evolution and CO2 reduction to C1 products, by summarizing cases for higher-value products from N2 reduction, C x>1 products from CO2 utilization, and other reductive organic transformations.
Collapse
Affiliation(s)
| | | | - Jane J. Leung
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Bertrand Reuillard
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Isabell S. Karmel
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Erwin Reisner
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
42
|
Khandelwal S, Zamader A, Nagayach V, Dolui D, Mir AQ, Dutta A. Inclusion of Peripheral Basic Groups Activates Dormant Cobalt-Based Molecular Complexes for Catalytic H2 Evolution in Water. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04640] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shikha Khandelwal
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Afridi Zamader
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Vivek Nagayach
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Dependu Dolui
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Ab Qayoom Mir
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Arnab Dutta
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
- Center for Sustainable Development, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| |
Collapse
|
43
|
Yang X, Gianetti TL, Wörle MD, van Leest NP, de Bruin B, Grützmacher H. A low-valent dinuclear ruthenium diazadiene complex catalyzes the oxidation of dihydrogen and reversible hydrogenation of quinones. Chem Sci 2019; 10:1117-1125. [PMID: 30774909 PMCID: PMC6346631 DOI: 10.1039/c8sc02864h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/01/2018] [Indexed: 12/27/2022] Open
Abstract
The dinuclear ruthenium complex [Ru2H(μ-H)(Me2dad)(dbcot)2] contains a 1,4-dimethyl-diazabuta-1,3-diene (Me2dad) as a non-innocent bridging ligand between the metal centers to give a [Ru2(Me2dad)] core. In addition, each ruthenium is bound to one dibenzo[a,e]cyclooctatetraene (dbcot) ligand. This Ru dimer converts H2 to protons and electrons. It also catalyzes reversibly under mild conditions the selective hydrogenation of vitamins K2 and K3 to their corresponding hydroquinone equivalents without affecting the C[double bond, length as m-dash]C double bonds. Mechanistic studies suggest that the [Ru2(Me2dad)] moiety, like hydrogenases, reacts with H2 and releases electrons and protons stepwise.
Collapse
Affiliation(s)
- Xiuxiu Yang
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 1 , 8093 Zürich , Switzerland .
| | - Thomas L Gianetti
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 1 , 8093 Zürich , Switzerland .
- Department of Chemistry and Biochemistry , The University of Arizona , Tucson , Arizona 85721 , USA .
| | - Michael D Wörle
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 1 , 8093 Zürich , Switzerland .
| | - Nicolaas P van Leest
- Van't Hoff Institute for Molecular Sciences (HIMS) , University of Amsterdam (UvA) , Science Park 904 , 1098 XH Amsterdam , The Netherlands
| | - Bas de Bruin
- Van't Hoff Institute for Molecular Sciences (HIMS) , University of Amsterdam (UvA) , Science Park 904 , 1098 XH Amsterdam , The Netherlands
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 1 , 8093 Zürich , Switzerland .
| |
Collapse
|
44
|
Wang JW, Liu WJ, Zhong DC, Lu TB. Nickel complexes as molecular catalysts for water splitting and CO2 reduction. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2017.12.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Thammavongsy Z, Mercer IP, Yang JY. Promoting proton coupled electron transfer in redox catalysts through molecular design. Chem Commun (Camb) 2019; 55:10342-10358. [DOI: 10.1039/c9cc05139b] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mini-review on using the secondary coordination sphere to facilitate multi-electron, multi-proton catalysis.
Collapse
Affiliation(s)
| | - Ian P. Mercer
- Department of Chemistry
- University of California
- Irvine
- USA
| | - Jenny Y. Yang
- Department of Chemistry
- University of California
- Irvine
- USA
| |
Collapse
|
46
|
Walsh AP, Laureanti JA, Katipamula S, Chambers G, Priyadarshani N, Lense S, Bays JT, Linehan JC, Shaw WJ. Evaluating the impacts of amino acids in the second and outer coordination spheres of Rh-bis(diphosphine) complexes for CO2 hydrogenation. Faraday Discuss 2019; 215:123-140. [DOI: 10.1039/c8fd00164b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The influence of a biologically inspired second and outer coordination sphere on Rh-bis(diphosphine) CO2 hydrogenation catalysts was explored.
Collapse
Affiliation(s)
- Aaron P. Walsh
- Physical and Computational Sciences Directorate
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Joseph A. Laureanti
- Physical and Computational Sciences Directorate
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Sriram Katipamula
- Physical and Computational Sciences Directorate
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Geoffrey M. Chambers
- Physical and Computational Sciences Directorate
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Nilusha Priyadarshani
- Physical and Computational Sciences Directorate
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Sheri Lense
- Physical and Computational Sciences Directorate
- Pacific Northwest National Laboratory
- Richland
- USA
| | - J. Timothy Bays
- Physical and Computational Sciences Directorate
- Pacific Northwest National Laboratory
- Richland
- USA
| | - John C. Linehan
- Physical and Computational Sciences Directorate
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Wendy J. Shaw
- Physical and Computational Sciences Directorate
- Pacific Northwest National Laboratory
- Richland
- USA
| |
Collapse
|
47
|
Bergamini G, Natali M. Homogeneous vs. heterogeneous catalysis for hydrogen evolution by a nickel(ii) bis(diphosphine) complex. Dalton Trans 2019; 48:14653-14661. [DOI: 10.1039/c9dt02846c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A nickel(ii) bis(diphosphine) complex bearing carboxylic acid groups has been tested as a catalyst for hydrogen evolution under different conditions.
Collapse
Affiliation(s)
- Giovanni Bergamini
- Department of Chemical and Pharmaceutical Sciences
- University of Ferrara
- Ferrara
- Italy
| | - Mirco Natali
- Department of Chemical and Pharmaceutical Sciences
- University of Ferrara
- Ferrara
- Italy
| |
Collapse
|
48
|
Affiliation(s)
- Normen Peulecke
- Leibniz Institute for Catalysis at the University of Rostock 18059 Rostock Germany
| | - Dmitry G. Yakhvarov
- Arbuzov Institute of Organic and Physical Chemistry of FRC Kazan Scientific Center of RAS Russia
| | - Joachim W. Heinicke
- Institut für Biochemie Universität Greifswald Felix‐Hausdorff‐Str. 4 17487 Greifswald Germany
| |
Collapse
|
49
|
|
50
|
Slater JW, Marguet SC, Monaco HA, Shafaat HS. Going beyond Structure: Nickel-Substituted Rubredoxin as a Mechanistic Model for the [NiFe] Hydrogenases. J Am Chem Soc 2018; 140:10250-10262. [PMID: 30016865 DOI: 10.1021/jacs.8b05194] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jeffrey W. Slater
- The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Sean C. Marguet
- The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Haleigh A. Monaco
- The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Hannah S. Shafaat
- The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|