1
|
Gu X, Li D, Wu P, Zhang C, Cui X, Shang D, Ma R, Liu J, Sun N, He J. Revisiting the CXCL13/CXCR5 axis in the tumor microenvironment in the era of single-cell omics: Implications for immunotherapy. Cancer Lett 2024; 605:217278. [PMID: 39332588 DOI: 10.1016/j.canlet.2024.217278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
As one of the important members of the family of chemokines and their receptors, the CXCL13/CXCR5 axis is involved in follicle formation in normal lymphoid tissues and the establishment of somatic cavity immunity under physiological conditions, as well as being associated with a wide range of infectious, autoimmune, and tumoral diseases. Here in this review, we focus on its role in tumors. Traditional studies have found the axis to be both pro- and anti-tumorigenic, involving a variety of immune cells, including the tumor cells themselves and those in the tumor microenvironment (TME), and the prognostic significance of this axis is clinical context-dependent. With the development of techniques at the single-cell level, we were able to explain in detail the status of the CXCL13/CXCR5 axis in the TME based on real clinical samples and found that it involves a range of crucial intrinsic anti-tumor immune processes in the TME and is therefore important in tumor immunotherapy. We summarize the cellular subsets, physiological functions, and prognostic significance associated with this axis in the most promising immune checkpoint inhibitor (ICI) therapies of the day and summarize possible therapeutic ideas based on this axis. As with any TME study, the most important takeaway is that the complexity of the CXCL13/CXCR5 axis in TME suggests the importance of personalized therapy in tumor therapy.
Collapse
Affiliation(s)
- Xuanyu Gu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dongyu Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peng Wu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xinyu Cui
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dexin Shang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ruijie Ma
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jingjing Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
2
|
Vecchiotti D, Clementi L, Cornacchia E, Di Vito Nolfi M, Verzella D, Capece D, Zazzeroni F, Angelucci A. Evidence of the Link between Stroma Remodeling and Prostate Cancer Prognosis. Cancers (Basel) 2024; 16:3215. [PMID: 39335188 PMCID: PMC11430343 DOI: 10.3390/cancers16183215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Prostate cancer (PCa), the most commonly diagnosed cancer in men worldwide, is particularly challenging for oncologists when a precise prognosis needs to be established. Indeed, the entire clinical management in PCa has important drawbacks, generating an intense debate concerning the possibility to individuate molecular biomarkers able to avoid overtreatment in patients with pathological indolent cancers. To date, the paradigmatic change in the view of cancer pathogenesis prompts to look for prognostic biomarkers not only in cancer epithelial cells but also in the tumor microenvironment. PCa ecology has been defined with increasing details in the last few years, and a number of promising key markers associated with the reactive stroma are now available. Here, we provide an updated description of the most biologically significant and cited prognosis-oriented microenvironment biomarkers derived from the main reactive processes during PCa pathogenesis: tissue adaptations, inflammatory response and metabolic reprogramming. Proposed biomarkers include factors involved in stromal cell differentiation, cancer-normal cell crosstalk, angiogenesis, extracellular matrix remodeling and energy metabolism.
Collapse
Affiliation(s)
- Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Letizia Clementi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Emanuele Cornacchia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
3
|
Guo T, Xu J. Cancer-associated fibroblasts: a versatile mediator in tumor progression, metastasis, and targeted therapy. Cancer Metastasis Rev 2024; 43:1095-1116. [PMID: 38602594 PMCID: PMC11300527 DOI: 10.1007/s10555-024-10186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/31/2024] [Indexed: 04/12/2024]
Abstract
Tumor microenvironment (TME) has been demonstrated to play a significant role in tumor initiation, progression, and metastasis. Cancer-associated fibroblasts (CAFs) are the major component of TME and exhibit heterogeneous properties in their communication with tumor cells. This heterogeneity of CAFs can be attributed to various origins, including quiescent fibroblasts, mesenchymal stem cells (MSCs), adipocytes, pericytes, endothelial cells, and mesothelial cells. Moreover, single-cell RNA sequencing has identified diverse phenotypes of CAFs, with myofibroblastic CAFs (myCAFs) and inflammatory CAFs (iCAFs) being the most acknowledged, alongside newly discovered subtypes like antigen-presenting CAFs (apCAFs). Due to these heterogeneities, CAFs exert multiple functions in tumorigenesis, cancer stemness, angiogenesis, immunosuppression, metabolism, and metastasis. As a result, targeted therapies aimed at the TME, particularly focusing on CAFs, are rapidly developing, fueling the promising future of advanced tumor-targeted therapy.
Collapse
Affiliation(s)
- Tianchen Guo
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Junfen Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
4
|
Khan A, Zhang Y, Ma N, Shi J, Hou Y. NF-κB role on tumor proliferation, migration, invasion and immune escape. Cancer Gene Ther 2024:10.1038/s41417-024-00811-6. [PMID: 39033218 DOI: 10.1038/s41417-024-00811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Nuclear factor kappa-B (NF-κB) is a nuclear transcription factor that plays a key factor in promoting inflammation, which can lead to the development of cancer in a long-lasting inflammatory environment. The activation of NF-κB is essential in the initial phases of tumor development and progression, occurring in both pre-malignant cells and cells in the microenvironment such as phagocytes, T cells, and B cells. In addition to stimulating angiogenesis, inhibiting apoptosis, and promoting the growth of tumor cells, NF-κB activation also causes the epithelial-mesenchymal transition, and tumor immune evasion. Therapeutic strategies that focus on immune checkpoint molecules have revolutionized cancer treatment by enabling the immune system to activate immunological responses against tumor cells. This review focused on understanding the NF-κB signaling pathway in the context of cancer.
Collapse
Affiliation(s)
- Afrasyab Khan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, The People's Republic of China
| | - Yao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, The People's Republic of China
| | - Ningna Ma
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, The People's Republic of China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, The People's Republic of China
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, The People's Republic of China.
| |
Collapse
|
5
|
Li Z, Lin A, Gao Z, Jiang A, Xiong M, Song J, Liu Z, Cheng Q, Zhang J, Luo P. B-cell performance in chemotherapy: Unravelling the mystery of B-cell therapeutic potential. Clin Transl Med 2024; 14:e1761. [PMID: 38997802 PMCID: PMC11245406 DOI: 10.1002/ctm2.1761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/02/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND AND MAIN BODY The anti-tumour and tumour-promoting roles of B cells in the tumour microenvironment (TME) have gained considerable attention in recent years. As essential orchestrators of humoral immunity, B cells potentially play a crucial role in anti-tumour therapies. Chemotherapy, a mainstay in cancer treatment, influences the proliferation and function of diverse B-cell subsets and their crosstalk with the TME. Modulating B-cell function by targeting B cells or their associated cells may enhance chemotherapy efficacy, presenting a promising avenue for future targeted therapy investigations. CONCLUSION This review explores the intricate interplay between chemotherapy and B cells, underscoring the pivotal role of B cells in chemotherapy treatment. We summarise promising B-cell-related therapeutic targets, illustrating the immense potential of B cells in anti-tumour therapy. Our work lays a theoretical foundation for harnessing B cells in chemotherapy and combination strategies for cancer treatment. KEY POINTS Chemotherapy can inhibit B-cell proliferation and alter subset distributions and functions, including factor secretion, receptor signalling, and costimulation. Chemotherapy can modulate complex B-cell-T-cell interactions with variable effects on anti-tumour immunity. Targeting B-cell surface markers or signalling improves chemotherapy responses, blocks immune evasion and inhibits tumour growth. Critical knowledge gaps remain regarding B-cell interactions in TME, B-cell chemoresistance mechanisms, TLS biology, heterogeneity, spatial distributions, chemotherapy drug selection and B-cell targets that future studies should address.
Collapse
Affiliation(s)
- Zizhuo Li
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhifei Gao
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Minying Xiong
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiapeng Song
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Deng J, Yuan S, Pan W, Li Q, Chen Z. Nanotherapy to Reshape the Tumor Microenvironment: A New Strategy for Prostate Cancer Treatment. ACS OMEGA 2024; 9:26878-26899. [PMID: 38947792 PMCID: PMC11209918 DOI: 10.1021/acsomega.4c03055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024]
Abstract
Prostate cancer (PCa) is the second most common cancer in males worldwide. Androgen deprivation therapy (ADT) is the primary treatment method used for PCa. Although more effective androgen synthesis and antiandrogen inhibitors have been developed for clinical practice, hormone resistance increases the incidence of ADT-insensitive prostate cancer and poor prognoses. The tumor microenvironment (TME) has become a research hotspot with efforts to identify treatment targets based on the characteristics of the TME to improve prognosis. Herein, we introduce the basic characteristics of the PCa TME and the side effects of traditional prostate cancer treatments. We further highlight the emergence of novel nanotherapy strategies, their therapeutic mechanisms, and their effects on the PCa microenvironment. With further research, clinical applications of nanotherapy for PCa are expected in the near future. Collectively, this Review provides a valuable resource regarding the various nanotherapy types, demonstrating their broad clinical prospects to improve the quality of life in patients with PCa.
Collapse
Affiliation(s)
- Juan Deng
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
- The
First Clinical College of Guangdong Medical University, Zhanjiang, 524023, China
| | - Shaofei Yuan
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| | - Wenjie Pan
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| | - Qimeng Li
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| | - Zhonglin Chen
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| |
Collapse
|
7
|
Kaushal JB, Raut P, Muniyan S, Siddiqui JA, Alsafwani ZW, Seshacharyulu P, Nair SS, Tewari AK, Batra SK. Racial disparity in prostate cancer: an outlook in genetic and molecular landscape. Cancer Metastasis Rev 2024:10.1007/s10555-024-10193-8. [PMID: 38902476 DOI: 10.1007/s10555-024-10193-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/04/2024] [Indexed: 06/22/2024]
Abstract
Prostate cancer (PCa) incidence, morbidity, and mortality rates are significantly impacted by racial disparities. Despite innovative therapeutic approaches and advancements in prevention, men of African American (AA) ancestry are at a higher risk of developing PCa and have a more aggressive and metastatic form of the disease at the time of initial PCa diagnosis than other races. Research on PCa has underlined the biological and molecular basis of racial disparity and emphasized the genetic aspect as the fundamental component of racial inequality. Furthermore, the lower enrollment rate, limited access to national-level cancer facilities, and deferred treatment of AA men and other minorities are hurdles in improving the outcomes of PCa patients. This review provides the most up-to-date information on various biological and molecular contributing factors, such as the single nucleotide polymorphisms (SNPs), mutational spectrum, altered chromosomal loci, differential gene expression, transcriptome analysis, epigenetic factors, tumor microenvironment (TME), and immune modulation of PCa racial disparities. This review also highlights future research avenues to explore the underlying biological factors contributing to PCa disparities, particularly in men of African ancestry.
Collapse
Affiliation(s)
- Jyoti B Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Pratima Raut
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Zahraa W Alsafwani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Sujit S Nair
- Department of Urology and the Tisch Cancer Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ashutosh K Tewari
- Department of Urology and the Tisch Cancer Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA.
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA.
- Division of Urology, Department of Surgery, University of Nebraska Medical Center, Omaha, NE-68198, USA.
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE-68198, USA.
| |
Collapse
|
8
|
Turizo-Smith AD, Córdoba-Hernandez S, Mejía-Guarnizo LV, Monroy-Camacho PS, Rodríguez-García JA. Inflammation and cancer: friend or foe? Front Pharmacol 2024; 15:1385479. [PMID: 38799159 PMCID: PMC11117078 DOI: 10.3389/fphar.2024.1385479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Chronic inflammation plays a crucial role in the onset and progression of pathologies like neurodegenerative and cardiovascular diseases, diabetes, and cancer, since tumor development and chronic inflammation are linked, sharing common signaling pathways. At least 20% of breast and colorectal cancers are associated with chronic inflammation triggered by infections, irritants, or autoimmune diseases. Obesity, chronic inflammation, and cancer interconnection underscore the importance of population-based interventions in maintaining healthy body weight, to disrupt this axis. Given that the dietary inflammatory index is correlated with an increased risk of cancer, adopting an anti-inflammatory diet supplemented with nutraceuticals may be useful for cancer prevention. Natural products and their derivatives offer promising antitumor activity with favorable adverse effect profiles; however, the development of natural bioactive drugs is challenging due to their variability and complexity, requiring rigorous research processes. It has been shown that combining anti-inflammatory products, such as non-steroidal anti-inflammatory drugs (NSAIDs), corticosteroids, and statins, with plant-derived products demonstrate clinical utility as accessible adjuvants to traditional therapeutic approaches, with known safety profiles. Pharmacological approaches targeting multiple proteins involved in inflammation and cancer pathogenesis emerge as a particularly promising option. Given the systemic and multifactorial nature of inflammation, comprehensive strategies are essential for long term success in cancer therapy. To gain insights into carcinogenic phenomena and discover diagnostic or clinically relevant biomarkers, is pivotal to understand genetic variability, environmental exposure, dietary habits, and TME composition, to establish therapeutic approaches based on molecular and genetic analysis. Furthermore, the use of endocannabinoid, cannabinoid, and prostamide-type compounds as potential therapeutic targets or biomarkers requires further investigation. This review aims to elucidate the role of specific etiological agents and mediators contributing to persistent inflammatory reactions in tumor development. It explores potential therapeutic strategies for cancer treatment, emphasizing the urgent need for cost-effective approaches to address cancer-associated inflammation.
Collapse
Affiliation(s)
- Andrés David Turizo-Smith
- Doctorado en Oncología, Departamento de Patología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
- Semillero de Investigación en Cannabis y Derivados (SICAD), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Samantha Córdoba-Hernandez
- Semillero de Investigación en Cannabis y Derivados (SICAD), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Lidy Vannessa Mejía-Guarnizo
- Facultad de Ciencias, Maestría en Ciencias, Microbiología, Universidad Nacional de Colombia, Bogotá, Colombia
- Grupo de investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | | | | |
Collapse
|
9
|
Pu T, Wang J, Wei J, Zeng A, Zhang J, Chen J, Yin L, Li J, Lin TP, Melamed J, Corey E, Gao AC, Wu BJ. Stromal-derived MAOB promotes prostate cancer growth and progression. SCIENCE ADVANCES 2024; 10:eadi4935. [PMID: 38335292 PMCID: PMC10857382 DOI: 10.1126/sciadv.adi4935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
Prostate cancer (PC) develops in a microenvironment where the stromal cells modulate adjacent tumor growth and progression. Here, we demonstrated elevated levels of monoamine oxidase B (MAOB), a mitochondrial enzyme that degrades biogenic and dietary monoamines, in human PC stroma, which was associated with poor clinical outcomes of PC patients. Knockdown or overexpression of MAOB in human prostate stromal fibroblasts indicated that MAOB promotes cocultured PC cell proliferation, migration, and invasion and co-inoculated prostate tumor growth in mice. Mechanistically, MAOB induces a reactive stroma with activated marker expression, increased extracellular matrix remodeling, and acquisition of a protumorigenic phenotype through enhanced production of reactive oxygen species. Moreover, MAOB transcriptionally activates CXCL12 through Twist1 synergizing with TGFβ1-dependent Smads in prostate stroma, which stimulates tumor-expressed CXCR4-Src/JNK signaling in a paracrine manner. Pharmacological inhibition of stromal MAOB restricted PC xenograft growth in mice. Collectively, these findings characterize the contribution of MAOB to PC and suggest MAOB as a potential stroma-based therapeutic target.
Collapse
Affiliation(s)
- Tianjie Pu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Jing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Jing Wei
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Alan Zeng
- Undergraduate Programs, University of Washington, Seattle, WA 98195, USA
| | - Jinglong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Jingrui Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Lijuan Yin
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jingjing Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Tzu-Ping Lin
- Department of Urology, Taipei Veterans General Hospital, Taipei 11217, Taiwan, Republic of China
- Department of Urology, School of Medicine and Shu-Tien Urological Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan, Republic of China
| | - Jonathan Melamed
- Department of Pathology, Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Allen C. Gao
- Department of Urologic Surgery, University of California, Davis, Sacramento, CA 95817, USA
| | - Boyang Jason Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
10
|
Bigos KJA, Quiles CG, Lunj S, Smith DJ, Krause M, Troost EGC, West CM, Hoskin P, Choudhury A. Tumour response to hypoxia: understanding the hypoxic tumour microenvironment to improve treatment outcome in solid tumours. Front Oncol 2024; 14:1331355. [PMID: 38352889 PMCID: PMC10861654 DOI: 10.3389/fonc.2024.1331355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Hypoxia is a common feature of solid tumours affecting their biology and response to therapy. One of the main transcription factors activated by hypoxia is hypoxia-inducible factor (HIF), which regulates the expression of genes involved in various aspects of tumourigenesis including proliferative capacity, angiogenesis, immune evasion, metabolic reprogramming, extracellular matrix (ECM) remodelling, and cell migration. This can negatively impact patient outcomes by inducing therapeutic resistance. The importance of hypoxia is clearly demonstrated by continued research into finding clinically relevant hypoxia biomarkers, and hypoxia-targeting therapies. One of the problems is the lack of clinically applicable methods of hypoxia detection, and lack of standardisation. Additionally, a lot of the methods of detecting hypoxia do not take into consideration the complexity of the hypoxic tumour microenvironment (TME). Therefore, this needs further elucidation as approximately 50% of solid tumours are hypoxic. The ECM is important component of the hypoxic TME, and is developed by both cancer associated fibroblasts (CAFs) and tumour cells. However, it is important to distinguish the different roles to develop both biomarkers and novel compounds. Fibronectin (FN), collagen (COL) and hyaluronic acid (HA) are important components of the ECM that create ECM fibres. These fibres are crosslinked by specific enzymes including lysyl oxidase (LOX) which regulates the stiffness of tumours and induces fibrosis. This is partially regulated by HIFs. The review highlights the importance of understanding the role of matrix stiffness in different solid tumours as current data shows contradictory results on the impact on therapeutic resistance. The review also indicates that further research is needed into identifying different CAF subtypes and their exact roles; with some showing pro-tumorigenic capacity and others having anti-tumorigenic roles. This has made it difficult to fully elucidate the role of CAFs within the TME. However, it is clear that this is an important area of research that requires unravelling as current strategies to target CAFs have resulted in worsened prognosis. The role of immune cells within the tumour microenvironment is also discussed as hypoxia has been associated with modulating immune cells to create an anti-tumorigenic environment. Which has led to the development of immunotherapies including PD-L1. These hypoxia-induced changes can confer resistance to conventional therapies, such as chemotherapy, radiotherapy, and immunotherapy. This review summarizes the current knowledge on the impact of hypoxia on the TME and its implications for therapy resistance. It also discusses the potential of hypoxia biomarkers as prognostic and predictive indictors of treatment response, as well as the challenges and opportunities of targeting hypoxia in clinical trials.
Collapse
Affiliation(s)
- Kamilla JA. Bigos
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Conrado G. Quiles
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Sapna Lunj
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Danielle J. Smith
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Mechthild Krause
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- School of Medicine, Technische Universitat Dresden, Dresden, Germany
| | - Esther GC. Troost
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- School of Medicine, Technische Universitat Dresden, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Institute of Radiooncology – OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Rossendorf, Germany
| | - Catharine M. West
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, United Kingdom
| | - Peter Hoskin
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Mount Vernon Cancer Centre, Northwood, United Kingdom
| | - Ananya Choudhury
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Christie Hospital NHS Foundation Trust, Manchester, Germany
| |
Collapse
|
11
|
Omotesho QA, Escamilla A, Pérez-Ruiz E, Frecha CA, Rueda-Domínguez A, Barragán I. Epigenetic targets to enhance antitumor immune response through the induction of tertiary lymphoid structures. Front Immunol 2024; 15:1348156. [PMID: 38333212 PMCID: PMC10851080 DOI: 10.3389/fimmu.2024.1348156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 02/10/2024] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic lymphoid aggregates found in sites of chronic inflammation such as tumors and autoimmune diseases. The discovery that TLS formation at tumor sites correlated with good patient prognosis has triggered extensive research into various techniques to induce their formation at the tumor microenvironment (TME). One strategy is the exogenous induction of specific cytokines and chemokine expression in murine models. However, applying such systemic chemokine expression can result in significant toxicity and damage to healthy tissues. Also, the TLS formed from exogenous chemokine induction is heterogeneous and different from the ones associated with favorable prognosis. Therefore, there is a need to optimize additional approaches like immune cell engineering with lentiviral transduction to improve the TLS formation in vivo. Similarly, the genetic and epigenetic regulation of the different phases of TLS neogenesis are still unknown. Understanding these molecular regulations could help identify novel targets to induce tissue-specific TLS in the TME. This review offers a unique insight into the molecular checkpoints of the different stages and mechanisms involved in TLS formation. This review also highlights potential epigenetic targets to induce TLS neogenesis. The review further explores epigenetic therapies (epi-therapy) and ongoing clinical trials using epi-therapy in cancers. In addition, it builds upon the current knowledge of tools to generate TLS and TLS phenotyping biomarkers with predictive and prognostic clinical potential.
Collapse
Affiliation(s)
- Quadri Ajibola Omotesho
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Alejandro Escamilla
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Department of Human Physiology, Human Histology, Pathological Anatomy and Physical Sport Education, University of Malaga, Malaga, Spain
| | - Elisabeth Pérez-Ruiz
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
| | - Cecilia A. Frecha
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Civil Hospital, Malaga, Spain
| | - Antonio Rueda-Domínguez
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
| | - Isabel Barragán
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Group of Pharmacoepigenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Xu W, Cai J, Peng T, Meng T, Pang Y, Sun L, Wu H, Zhang J, Chen X, Chen H. Fibroblast Activation Protein-Targeted PET/CT with 18F-Fibroblast Activation Protein Inhibitor-74 for Evaluation of Gastrointestinal Cancer: Comparison with 18F-FDG PET/CT. J Nucl Med 2024; 65:40-51. [PMID: 37884330 DOI: 10.2967/jnumed.123.266329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Fibroblast activation protein is overexpressed in the stroma of several cancer types. 18F-fibroblast activation protein inhibitor (FAPI)-74 is a PET tracer with high selectivity for fibroblast activation protein and has shown high accumulation in human tumors in clinical studies. However, the use of 18F-FAPI-74 for PET imaging of gastrointestinal cancer has not been systematically investigated. Herein, we investigated the diagnostic accuracy of 18F-FAPI-74 (18F-LNC1005) PET/CT in gastric, liver, and pancreatic cancers and compared the results with those of 18F-FDG PET/CT. Methods: This prospective study analyzed patients with confirmed gastric, liver, or pancreatic malignancies who underwent concurrent 18F-FDG and 18F-FAPI-74 PET/CT between June 2022 and December 2022. PET/CT findings were confirmed by histopathology or radiographic follow-up. 18F-FDG and 18F-FAPI-74 uptake and tumor-to-background ratios were compared using the Wilcoxon signed-rank test. The McNemar test was used to compare the diagnostic accuracy of the 2 scans. Results: Our cohort consisted of 112 patients: 49 with gastric cancer, 39 with liver cancer, and 24 with pancreatic cancer. Among them, 69 patients underwent PET/CT for initial staging and 43 for recurrence detection. Regarding lesion-based diagnostic accuracy, 18F-FAPI-74 PET/CT showed higher sensitivity than did 18F-FDG in the detection of primary tumors (gastric cancer, 88% [22/25] vs. 60% [15/25], P = 0.016; liver cancer, 100% [22/22] vs. 82% [18/22], P = 0.125; pancreatic cancer, 100% [22/22] vs. 86% [19/22], P = 0.250), local recurrence (92% [23/25] vs. 56% [14/25]; P = 0.021), involved lymph nodes (71% [41/58] vs. 40% [23/58]; P < 0.001), and bone and visceral metastases (98% [350/358] vs. 47% [168/358]; P < 0.001). Compared with 18F-FDG, 18F-FAPI-74 PET/CT upstaged 17 patients' TNM staging among all treatment-naïve patients (17/69, 25%) and changed the clinical management of 4 patients (4/43, 9%) in whom recurrence or metastases were detected. Conclusion: 18F-FAPI-74 PET/CT is superior to 18F-FDG PET/CT in detecting primary tumors, local recurrence, lymph node involvement, and bone and visceral metastases in gastric, pancreatic, and liver cancers, with higher uptake in most primary and metastatic lesions.
Collapse
Affiliation(s)
- Weizhi Xu
- Department of Nuclear Medicine, First Affiliated Hospital of Xiamen University, Xiamen, China
- Minnan PET Center, First Affiliated Hospital of Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Radiopharmaceuticals, School of Medicine, Xiamen University, Xiamen, China
| | - Jiayu Cai
- Department of Nuclear Medicine, First Affiliated Hospital of Xiamen University, Xiamen, China
- Minnan PET Center, First Affiliated Hospital of Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Radiopharmaceuticals, School of Medicine, Xiamen University, Xiamen, China
| | - Tianxing Peng
- Department of Nuclear Medicine, First Affiliated Hospital of Xiamen University, Xiamen, China
- Minnan PET Center, First Affiliated Hospital of Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Radiopharmaceuticals, School of Medicine, Xiamen University, Xiamen, China
| | - Tinghua Meng
- Department of Nuclear Medicine, First Affiliated Hospital of Xiamen University, Xiamen, China
- Minnan PET Center, First Affiliated Hospital of Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Radiopharmaceuticals, School of Medicine, Xiamen University, Xiamen, China
| | - Yizhen Pang
- Department of Nuclear Medicine, First Affiliated Hospital of Xiamen University, Xiamen, China
- Minnan PET Center, First Affiliated Hospital of Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Radiopharmaceuticals, School of Medicine, Xiamen University, Xiamen, China
| | - Long Sun
- Department of Nuclear Medicine, First Affiliated Hospital of Xiamen University, Xiamen, China
- Minnan PET Center, First Affiliated Hospital of Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Radiopharmaceuticals, School of Medicine, Xiamen University, Xiamen, China
| | - Hua Wu
- Department of Nuclear Medicine, First Affiliated Hospital of Xiamen University, Xiamen, China
- Minnan PET Center, First Affiliated Hospital of Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Radiopharmaceuticals, School of Medicine, Xiamen University, Xiamen, China
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore; and
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore;
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Haojun Chen
- Department of Nuclear Medicine, First Affiliated Hospital of Xiamen University, Xiamen, China;
- Minnan PET Center, First Affiliated Hospital of Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Radiopharmaceuticals, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
13
|
Pérez-Gómez JM, Montero-Hidalgo AJ, Fuentes-Fayos AC, Sarmento-Cabral A, Guzmán-Ruiz R, Malagón MM, Herrera-Martínez AD, Gahete MD, Luque RM. Exploring the role of the inflammasomes on prostate cancer: Interplay with obesity. Rev Endocr Metab Disord 2023; 24:1165-1187. [PMID: 37819510 PMCID: PMC10697898 DOI: 10.1007/s11154-023-09838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Obesity is a weight-related disorder characterized by excessive adipose tissue growth and dysfunction which leads to the onset of a systemic chronic low-grade inflammatory state. Likewise, inflammation is considered a classic cancer hallmark affecting several steps of carcinogenesis and tumor progression. In this regard, novel molecular complexes termed inflammasomes have been identified which are able to react to a wide spectrum of insults, impacting several metabolic-related disorders, but their contribution to cancer biology remains unclear. In this context, prostate cancer (PCa) has a markedly inflammatory component, and patients frequently are elderly individuals who exhibit weight-related disorders, being obesity the most prevalent condition. Therefore, inflammation, and specifically, inflammasome complexes, could be crucial players in the interplay between PCa and metabolic disorders. In this review, we will: 1) discuss the potential role of each inflammasome component (sensor, molecular adaptor, and targets) in PCa pathophysiology, placing special emphasis on IL-1β/NF-kB pathway and ROS and hypoxia influence; 2) explore the association between inflammasomes and obesity, and how these molecular complexes could act as the cornerstone between the obesity and PCa; and, 3) compile current clinical trials regarding inflammasome targeting, providing some insights about their potential use in the clinical practice.
Collapse
Affiliation(s)
- Jesús M Pérez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio J Montero-Hidalgo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - André Sarmento-Cabral
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Rocio Guzmán-Ruiz
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - María M Malagón
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Aura D Herrera-Martínez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Endocrinology and Nutrition Service, HURS/IMIBIC, Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.
| |
Collapse
|
14
|
Du Y, Li T, Yi M. Is MG53 a potential therapeutic target for cancer? Front Endocrinol (Lausanne) 2023; 14:1295349. [PMID: 38033997 PMCID: PMC10684902 DOI: 10.3389/fendo.2023.1295349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Cancer treatment still encounters challenges, such as side effects and drug resistance. The tripartite-motif (TRIM) protein family is widely involved in regulation of the occurrence, development, and drug resistance of tumors. MG53, a member of the TRIM protein family, shows strong potential in cancer therapy, primarily due to its E3 ubiquitin ligase properties. The classic membrane repair function and anti-inflammatory capacity of MG53 may also be beneficial for cancer prevention and treatment. However, MG53 appears to be a key regulatory factor in impaired glucose metabolism and a negative regulatory mechanism in muscle regeneration that may have a negative effect on cancer treatment. Developing MG53 mutants that balance the pros and cons may be the key to solving the problem. This article aims to summarize the role and mechanism of MG53 in the occurrence, progression, and invasion of cancer, focusing on the potential impact of the biological function of MG53 on cancer therapy.
Collapse
Affiliation(s)
- Yunyu Du
- School of Sports Science, Beijing Sport University, Beijing, China
- National Institute of Sports Medicine, Beijing, China
| | - Tieying Li
- National Institute of Sports Medicine, Beijing, China
| | - Muqing Yi
- National Institute of Sports Medicine, Beijing, China
| |
Collapse
|
15
|
Ghorani E, Swanton C, Quezada SA. Cancer cell-intrinsic mechanisms driving acquired immune tolerance. Immunity 2023; 56:2270-2295. [PMID: 37820584 DOI: 10.1016/j.immuni.2023.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Immune evasion is a hallmark of cancer, enabling tumors to survive contact with the host immune system and evade the cycle of immune recognition and destruction. Here, we review the current understanding of the cancer cell-intrinsic factors driving immune evasion. We focus on T cells as key effectors of anti-cancer immunity and argue that cancer cells evade immune destruction by gaining control over pathways that usually serve to maintain physiological tolerance to self. Using this framework, we place recent mechanistic advances in the understanding of cancer immune evasion into broad categories of control over T cell localization, antigen recognition, and acquisition of optimal effector function. We discuss the redundancy in the pathways involved and identify knowledge gaps that must be overcome to better target immune evasion, including the need for better, routinely available tools that incorporate the growing understanding of evasion mechanisms to stratify patients for therapy and trials.
Collapse
Affiliation(s)
- Ehsan Ghorani
- Cancer Immunology and Immunotherapy Unit, Department of Surgery and Cancer, Imperial College London, London, UK; Department of Medical Oncology, Imperial College London Hospitals, London, UK.
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Department of Oncology, University College London Hospitals, London, UK
| | - Sergio A Quezada
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Immunology Unit, Research Department of Hematology, University College London Cancer Institute, London, UK.
| |
Collapse
|
16
|
Cullinane C, Brett A, Devane L, McCullough PW, Cooke F, Neary P. The protective role of phosphodiesterase inhibitors in preventing colorectal cancer and advanced colorectal polyps: a systematic review and meta-analysis. Colorectal Dis 2023; 25:1949-1959. [PMID: 37635321 DOI: 10.1111/codi.16724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 08/29/2023]
Abstract
AIM Inflammatory cells within the tumour microenvironment are the driving forces behind colorectal cancer (CRC) tumourigenesis. Understanding the different pathways involved in CRC carcinogenesis paves the way for effective repurposing of drugs for cancer prevention. Emerging data from preclinical and clinical studies suggest that, due to their antiproliferative and anti-inflammatory properties, phosphodiesterase-5 inhibitors (PDE5i) might have an anticancer effect. The aim of this study was to clarify through systematic review and meta-analysis of published peer-reviewed studies whether an association exists between PDE5i use and CRC risk. METHOD This study was guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. Prospective registration was performed on PROSPERO (CRD42022372925). A systematic review was performed for studies reporting CRC and advanced colorectal polyp incidence in PDE5i 'ever-users' and PDE5i 'never-users'. Meta-analysis was performed using RevMan version 5. RESULTS Four observational cohort studies and two case-control studies, comprising 995 242 patients were included in the final analysis, of whom 347 126 were PDE5i ever-users. Patients who were PDE5i ever-users had a significantly lower incidence of CRC or advanced colorectal polyps than never-users (OR 0.88, CI 0.79-0.98, p = 0.02). To examine the primary preventative role of PDE5i, subgroup analysis of four studies including patients without a previous history of CRC found that use of PDE5i was associated with a lower incidence of CRC (OR 0.85, CI 0.75-0.95, p = 0.005, I2 = 64%). There was no significant temporal relationship found between PDE5i use and CRC risk as both current users and previous users had a significantly lower incidence of CRC than never-users. CONCLUSION Our study found a significant anticancer effect of PDE5i, as shown by a reduced risk of CRC in the context of both primary and secondary CRC prevention.
Collapse
Affiliation(s)
- C Cullinane
- Department of Colorectal Surgery, University Hospital Waterford, Waterford, Ireland
| | - A Brett
- Department of Colorectal Surgery, University Hospital Waterford, Waterford, Ireland
| | - L Devane
- Department of Colorectal Surgery, University Hospital Waterford, Waterford, Ireland
| | - P W McCullough
- Department of Colorectal Surgery, University Hospital Waterford, Waterford, Ireland
| | - F Cooke
- Department of Colorectal Surgery, University Hospital Waterford, Waterford, Ireland
| | - P Neary
- Department of Colorectal Surgery, University Hospital Waterford, Waterford, Ireland
- Department of Academic Surgery, University College Cork, Cork, Ireland
| |
Collapse
|
17
|
Saha A, Kolonin MG, DiGiovanni J. Obesity and prostate cancer - microenvironmental roles of adipose tissue. Nat Rev Urol 2023; 20:579-596. [PMID: 37198266 DOI: 10.1038/s41585-023-00764-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 05/19/2023]
Abstract
Obesity is known to have important roles in driving prostate cancer aggressiveness and increased mortality. Multiple mechanisms have been postulated for these clinical observations, including effects of diet and lifestyle, systemic changes in energy balance and hormonal regulation and activation of signalling by growth factors and cytokines and other components of the immune system. Over the past decade, research on obesity has shifted towards investigating the role of peri-prostatic white adipose tissue as an important source of locally produced factors that stimulate prostate cancer progression. Cells that comprise white adipose tissue, the adipocytes and their progenitor adipose stromal cells (ASCs), which proliferate to accommodate white adipose tissue expansion in obesity, have been identified as important drivers of obesity-associated cancer progression. Accumulating evidence suggests that adipocytes are a source of lipids that are used by adjacent prostate cancer cells. However, results of preclinical studies indicate that ASCs promote tumour growth by remodelling extracellular matrix and supporting neovascularization, contributing to the recruitment of immunosuppressive cells, and inducing epithelial-mesenchymal transition through paracrine signalling. Because epithelial-mesenchymal transition is associated with cancer chemotherapy resistance and metastasis, ASCs are considered to be potential targets of therapies that could be developed to suppress cancer aggressiveness in patients with obesity.
Collapse
Affiliation(s)
- Achinto Saha
- Division of Pharmacology and Toxicology and Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX, USA
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Disease, The University of Texas Health Sciences Center at Houston, Houston, Texas, USA.
| | - John DiGiovanni
- Division of Pharmacology and Toxicology and Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX, USA.
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, USA.
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
18
|
Silvestri R, Nicolì V, Gangadharannambiar P, Crea F, Bootman MD. Calcium signalling pathways in prostate cancer initiation and progression. Nat Rev Urol 2023; 20:524-543. [PMID: 36964408 DOI: 10.1038/s41585-023-00738-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/26/2023]
Abstract
Cancer cells proliferate, differentiate and migrate by repurposing physiological signalling mechanisms. In particular, altered calcium signalling is emerging as one of the most widespread adaptations in cancer cells. Remodelling of calcium signalling promotes the development of several malignancies, including prostate cancer. Gene expression data from in vitro, in vivo and bioinformatics studies using patient samples and xenografts have shown considerable changes in the expression of various components of the calcium signalling toolkit during the development of prostate cancer. Moreover, preclinical and clinical evidence suggests that altered calcium signalling is a crucial component of the molecular re-programming that drives prostate cancer progression. Evidence points to calcium signalling re-modelling, commonly involving crosstalk between calcium and other cellular signalling pathways, underpinning the onset and temporal progression of this disease. Discrete alterations in calcium signalling have been implicated in hormone-sensitive, castration-resistant and aggressive variant forms of prostate cancer. Hence, modulation of calcium signals and downstream effector molecules is a plausible therapeutic strategy for both early and late stages of prostate cancer. Based on this premise, clinical trials have been undertaken to establish the feasibility of targeting calcium signalling specifically for prostate cancer.
Collapse
Affiliation(s)
| | - Vanessa Nicolì
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | | | - Francesco Crea
- Cancer Research Group, School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Martin D Bootman
- Cancer Research Group, School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK.
| |
Collapse
|
19
|
Hawlina S, Zorec R, Chowdhury HH. Potential of Personalized Dendritic Cell-Based Immunohybridoma Vaccines to Treat Prostate Cancer. Life (Basel) 2023; 13:1498. [PMID: 37511873 PMCID: PMC10382052 DOI: 10.3390/life13071498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed cancer and the second most common cause of death due to cancer. About 30% of patients with PCa who have been castrated develop a castration-resistant form of the disease (CRPC), which is incurable. In the last decade, new treatments that control the disease have emerged, slowing progression and spread and prolonging survival while maintaining the quality of life. These include immunotherapies; however, we do not yet know the optimal combination and sequence of these therapies with the standard ones. All therapies are not always suitable for every patient due to co-morbidities or adverse effects of therapies or both, so there is an urgent need for further work on new therapeutic options. Advances in cancer immunotherapy with an immune checkpoint inhibition mechanism (e.g., ipilimumab, an anti-CTLA-4 inhibitor) have not shown a survival benefit in patients with CRPC. Other immunological approaches have also not given clear results, which has indirectly prevented breakthrough for this type of therapeutic strategy into clinical use. Currently, the only approved form of immunotherapy for patients with CRPC is a cell-based medicine, but it is only available to patients in some parts of the world. Based on what was gained from recently completed clinical research on immunotherapy with dendritic cell-based immunohybridomas, the aHyC dendritic cell vaccine for patients with CRPC, we highlight the current status and possible alternatives that should be considered in the future.
Collapse
Affiliation(s)
- Simon Hawlina
- Clinical Department of Urology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Surgery, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Helena H Chowdhury
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
20
|
Nguyen AT, Kim HK. Recent Developments in PET and SPECT Radiotracers as Radiopharmaceuticals for Hypoxia Tumors. Pharmaceutics 2023; 15:1840. [PMID: 37514026 PMCID: PMC10385036 DOI: 10.3390/pharmaceutics15071840] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Hypoxia, a deficiency in the levels of oxygen, is a common feature of most solid tumors and induces many characteristics of cancer. Hypoxia is associated with metastases and strong resistance to radio- and chemotherapy, and can decrease the accuracy of cancer prognosis. Non-invasive imaging methods such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) using hypoxia-targeting radiopharmaceuticals have been used for the detection and therapy of tumor hypoxia. Nitroimidazoles are bioreducible moieties that can be selectively reduced under hypoxic conditions covalently bind to intracellular macromolecules, and are trapped within hypoxic cells and tissues. Recently, there has been a strong motivation to develop PET and SPECT radiotracers as radiopharmaceuticals containing nitroimidazole moieties for the visualization and treatment of hypoxic tumors. In this review, we summarize the development of some novel PET and SPECT radiotracers as radiopharmaceuticals containing nitroimidazoles, as well as their physicochemical properties, in vitro cellular uptake values, in vivo biodistribution, and PET/SPECT imaging results.
Collapse
Affiliation(s)
- Anh Thu Nguyen
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
21
|
Nguyen AT, Kim HK. Recent Advances of 68Ga-Labeled PET Radiotracers with Nitroimidazole in the Diagnosis of Hypoxia Tumors. Int J Mol Sci 2023; 24:10552. [PMID: 37445730 DOI: 10.3390/ijms241310552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Positron emission tomography (PET) is a noninvasive molecular imaging method extensively applied in the detection and treatment of various diseases. Hypoxia is a common phenomenon found in most solid tumors. Nitroimidazole is a group of bioreducible pharmacophores that selectively accumulate in hypoxic regions of the body. Over the past few decades, many scientists have reported the use of radiopharmaceuticals containing nitroimidazole for the detection of hypoxic tumors. Gallium-68, a positron-emitting radioisotope, has a favorable half-life time of 68 min and can be conveniently produced by 68Ge/68Ga generators. Recently, there has been significant progress in the preparation of novel 68Ga-labeled complexes bearing nitroimidazole moieties for the diagnosis of hypoxia. This review provides a comprehensive overview of the current status of developing 68Ga-labeled radiopharmaceuticals with nitroimidazole moieties, their pharmacokinetics, and in vitro and in vivo studies, as well as PET imaging studies for hypoxic tumors.
Collapse
Affiliation(s)
- Anh Thu Nguyen
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
22
|
Zhuang H, Yu B, Tao D, Xu X, Xu Y, Wang J, Jiao Y, Wang L. The role of m6A methylation in therapy resistance in cancer. Mol Cancer 2023; 22:91. [PMID: 37264402 PMCID: PMC10233906 DOI: 10.1186/s12943-023-01782-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
Cancer therapy resistance is the main cause of cancer treatment failure. The mechanism of therapy resistance is a hot topic in epigenetics. As one of the most common RNA modifications, N6-methyladenosine (m6A) is involved in various processes of RNA metabolism, such as stability, splicing, transcription, translation, and degradation. A large number of studies have shown that m6A RNA methylation regulates the proliferation and invasion of cancer cells, but the role of m6A in cancer therapy resistance is unclear. In this review, we summarized the research progress related to the role of m6A in regulating therapy resistance in cancers.
Collapse
Affiliation(s)
- Hengzhao Zhuang
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Bo Yu
- Department of Radiotherapy, The Affiliated Jiangyin People's Hospital of Nantong University, Jiangyin, 214400, China
| | - Dan Tao
- Department of Radiation Oncology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 21500, China
| | - Xiaoyan Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Yijun Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Jian Wang
- Department of Radiotherapy, The Affiliated Jiangyin People's Hospital of Nantong University, Jiangyin, 214400, China.
| | - Yang Jiao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, 215000, China.
| | - Lili Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China.
| |
Collapse
|
23
|
Anwar F, Naqvi S, Shams S, Sheikh RA, Al-Abbasi FA, Asseri AH, Baig MR, Kumar V. Nanomedicines: intervention in inflammatory pathways of cancer. Inflammopharmacology 2023; 31:1199-1221. [PMID: 37060398 PMCID: PMC10105366 DOI: 10.1007/s10787-023-01217-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 03/29/2023] [Indexed: 04/16/2023]
Abstract
Inflammation is a complex defense process that maintains tissue homeostasis. However, this complex cascade, if lasts long, may contribute to pathogenesis of several diseases. Chronic inflammation has been exhaustively studied in the last few decades, for its contribution in development and progression of cancer. The intrinsic limitations of conventional anti-inflammatory and anti-cancer therapies triggered the development of nanomedicines for more effective and safer therapies. Targeting inflammation and tumor cells by nanoparticles, encapsulated with active therapeutic agents, offers a promising outcome with patient survival. Considerable technological success has been achieved in this field through exploitation of tumor microenvironment, and recognition of molecules overexpressed on endothelial cells or macrophages, through enhanced vascular permeability, or by rendering biomimetic approach to nanoparticles. This review focusses on the inflammatory pathways in progression of a tumor, and advancement in nanotechnologies targeting these pathways. We also aim to identify the gaps that hinder the successful clinical translation of nanotherapeutics with further clinical studies that will allow oncologist to precisely identify the patients who may be benefited from nanotherapy at time when promotion or progression of tumor initiates. It is postulated that the nanomedicines, in near future, will shift the paradigm of cancer treatment and improve patient survival.
Collapse
Affiliation(s)
- Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Salma Naqvi
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Saiba Shams
- School of Pharmaceutical Education & Research, (Deemed to be University), New Delhi, 110062, India
| | - Ryan Adnan Sheikh
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Amer H Asseri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mirza Rafi Baig
- Department of Clinical Pharmacy & Pharmacotherapeutics. Dubai Pharmacy College for Girls, Po Box 19099, Dubai, United Arab Emirates
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, India.
| |
Collapse
|
24
|
Brichkina A, Polo P, Sharma SD, Visestamkul N, Lauth M. A Quick Guide to CAF Subtypes in Pancreatic Cancer. Cancers (Basel) 2023; 15:cancers15092614. [PMID: 37174079 PMCID: PMC10177377 DOI: 10.3390/cancers15092614] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Pancreatic cancer represents one of the most desmoplastic malignancies and is characterized by an extensive deposition of extracellular matrix. The latter is provided by activated cancer-associated fibroblasts (CAFs), which are abundant cells in the pancreatic tumor microenvironment. Many recent studies have made it clear that CAFs are not a singular cellular entity but represent a multitude of potentially dynamic subgroups that affect tumor biology at several levels. As mentioned before, CAFs significantly contribute to the fibrotic reaction and the biomechanical properties of the tumor, but they can also modulate the local immune environment and the response to targeted, chemo or radiotherapy. As the number of known and emerging CAF subgroups is steadily increasing, it is becoming increasingly difficult to keep up with these developments and to clearly discriminate the cellular subsets identified so far. This review aims to provide a helpful overview that enables readers to quickly familiarize themselves with field of CAF heterogeneity and to grasp the phenotypic, functional and therapeutic distinctions of the various stromal subpopulations.
Collapse
Affiliation(s)
- Anna Brichkina
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Pierfrancesco Polo
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Shrey Dharamvir Sharma
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Nico Visestamkul
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Matthias Lauth
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| |
Collapse
|
25
|
Chen Z, Han F, Du Y, Shi H, Zhou W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:70. [PMID: 36797231 PMCID: PMC9935926 DOI: 10.1038/s41392-023-01332-8] [Citation(s) in RCA: 188] [Impact Index Per Article: 188.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/20/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Having a hypoxic microenvironment is a common and salient feature of most solid tumors. Hypoxia has a profound effect on the biological behavior and malignant phenotype of cancer cells, mediates the effects of cancer chemotherapy, radiotherapy, and immunotherapy through complex mechanisms, and is closely associated with poor prognosis in various cancer patients. Accumulating studies have demonstrated that through normalization of the tumor vasculature, nanoparticle carriers and biocarriers can effectively increase the oxygen concentration in the tumor microenvironment, improve drug delivery and the efficacy of radiotherapy. They also increase infiltration of innate and adaptive anti-tumor immune cells to enhance the efficacy of immunotherapy. Furthermore, drugs targeting key genes associated with hypoxia, including hypoxia tracers, hypoxia-activated prodrugs, and drugs targeting hypoxia-inducible factors and downstream targets, can be used for visualization and quantitative analysis of tumor hypoxia and antitumor activity. However, the relationship between hypoxia and cancer is an area of research that requires further exploration. Here, we investigated the potential factors in the development of hypoxia in cancer, changes in signaling pathways that occur in cancer cells to adapt to hypoxic environments, the mechanisms of hypoxia-induced cancer immune tolerance, chemotherapeutic tolerance, and enhanced radiation tolerance, as well as the insights and applications of hypoxia in cancer therapy.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Fangfang Han
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yan Du
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Huaqing Shi
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Wence Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China. .,Lanzhou University Sencond Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
26
|
Stehle D, Barresi M, Schulz J, Feil R. Heterogeneity of cGMP signalling in tumour cells and the tumour microenvironment: Challenges and chances for cancer pharmacology and therapeutics. Pharmacol Ther 2023; 242:108337. [PMID: 36623589 DOI: 10.1016/j.pharmthera.2023.108337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
The second messenger cyclic guanosine monophosphate (cGMP) is an important regulator of human (patho-)physiology and has emerged as an attractive drug target. Currently, cGMP-elevating drugs are mainly used to treat cardiovascular diseases, but there is also increasing interest in exploring their potential for cancer prevention and therapy. In this review article, we summarise recent findings in cancer-related cGMP research, with a focus on melanoma, breast cancer, colorectal cancer, prostate cancer, glioma, and ovarian cancer. These studies indicate tremendous heterogeneity of cGMP signalling in tumour tissue. It appears that different tumour and stroma cells, and perhaps different sexes, express different cGMP generators, effectors, and degraders. Therefore, the same cGMP-elevating drug can lead to different outcomes in different tumour settings, ranging from inhibition to promotion of tumourigenesis or therapy resistance. These findings, together with recent evidence that increased cGMP signalling is associated with worse prognosis in several human cancers, challenge the traditional view that cGMP elevation generally has an anti-cancer effect. As cGMP pathways appear to be more stable in the stroma than in tumour cells, we suggest that cGMP-modulating drugs should preferentially target the tumour microenvironment. Indeed, there is evidence that phosphodiesterase 5 inhibitors like sildenafil enhance anti-tumour immunity by acting on immune cells. Moreover, many in vivo results obtained with cGMP-modulating drugs could be explained by effects on the tumour vasculature rather than on the tumour cells themselves. We therefore propose a model that incorporates the NO/cGMP signalling pathway in tumour vessels as a key target for cancer therapy. Deciphering the multifaceted roles of cGMP in cancer is not only a challenge for basic research, but also provides a chance to predict potential adverse effects of cGMP-modulating drugs in cancer patients and to develop novel anti-tumour therapies by precision targeting of the relevant cells and molecular pathways.
Collapse
Affiliation(s)
- Daniel Stehle
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany
| | - Mariagiovanna Barresi
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany
| | - Jennifer Schulz
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany
| | - Robert Feil
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany.
| |
Collapse
|
27
|
Saudi A, Banday V, Zirakzadeh AA, Selinger M, Forsberg J, Holmbom M, Henriksson J, Waldén M, Alamdari F, Aljabery F, Winqvist O, Sherif A. Immune-Activated B Cells Are Dominant in Prostate Cancer. Cancers (Basel) 2023; 15:cancers15030920. [PMID: 36765877 PMCID: PMC9913271 DOI: 10.3390/cancers15030920] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/22/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
B cells are multifaceted immune cells responding robustly during immune surveillance against tumor antigens by presentation to T cells and switched immunoglobulin production. However, B cells are unstudied in prostate cancer (PCa). We used flow cytometry to analyze B-cell subpopulations in peripheral blood and lymph nodes from intermediate-high risk PCa patients. B-cell subpopulations were related to clinicopathological factors. B-cell-receptor single-cell sequencing and VDJ analysis identified clonal B-cell expansion in blood and lymph nodes. Pathological staging was pT2 in 16%, pT3a in 48%, and pT3b in 36%. Lymph node metastases occurred in 5/25 patients (20%). Compared to healthy donors, the peripheral blood CD19+ B-cell compartment was significantly decreased in PCa patients and dominated by naïve B cells. The nodal B-cell compartment had significantly increased fractions of CD19+ B cells and switched memory B cells. Plasmablasts were observed in tumor-draining sentinel lymph nodes (SNs). VDJ analysis revealed clonal expansion in lymph nodes. Thus, activated B cells are increased in SNs from PCa patients. The increased fraction of switched memory cells and plasmablasts together with the presence of clonally expanded B cells indicate tumor-specific T-cell-dependent responses from B cells, supporting an important role for B cells in the protection against tumors.
Collapse
Affiliation(s)
- Aws Saudi
- Department of Urology, Medical Faculty, Linköping University, 581 85 Linköping, Sweden
- Department of Clinical and Experimental Medicine, Medical Faculty, Linköping University, 581 85 Linköping, Sweden
| | - Viqar Banday
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umea University, 901 85 Umea, Sweden
- Department of Clinical Microbiology, Immunology, Umea University, 901 85 Umeå, Sweden
| | | | - Martin Selinger
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå Centre for Microbial Research, 6K and 6L, Umeå University, 901 87 Umeå, Sweden
| | - Jon Forsberg
- Department of Urology, Medical Faculty, Linköping University, 581 85 Linköping, Sweden
| | - Martin Holmbom
- Department of Urology, Medical Faculty, Linköping University, 581 85 Linköping, Sweden
| | - Johan Henriksson
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå Centre for Microbial Research, 6K and 6L, Umeå University, 901 87 Umeå, Sweden
| | - Mauritz Waldén
- Department of Urology, Central Hospital of Karlstad, 652 30 Karlstad, Sweden
| | - Farhood Alamdari
- Department of Urology, Västmanland Hospital, 721 89 Västerås, Sweden
| | - Firas Aljabery
- Department of Urology, Medical Faculty, Linköping University, 581 85 Linköping, Sweden
- Department of Clinical and Experimental Medicine, Medical Faculty, Linköping University, 581 85 Linköping, Sweden
| | - Ola Winqvist
- ABClabs, BioClinicum, Campus Solna, 171 76 Stockholm, Sweden
| | - Amir Sherif
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umea University, 901 85 Umea, Sweden
- Correspondence:
| |
Collapse
|
28
|
Galieva F, Khalifa M, Akhmetzyanova Z, Mironova D, Burilov V, Solovieva S, Antipin I. New Supramolecular Hypoxia-Sensitive Complexes Based on Azo-Thiacalixarene. Molecules 2023; 28:molecules28020466. [PMID: 36677529 PMCID: PMC9862174 DOI: 10.3390/molecules28020466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Hypoxia accompanies many human diseases and is an indicator of tumor aggressiveness. Therefore, measuring hypoxia in vivo is clinically important. Recently, complexes of calix[4]arene were identified as potent hypoxia markers. The subject of this paper is new hypoxia-sensitive host-guest complexes of thiacalix[4]arene. We report a new high-yield synthesis method for thiacalix[4]arene with four anionic carboxyl azo fragments on the upper rim (thiacalixarene L) and an assessment of the complexes of thiacalixarene L with the most widespread cationic rhodamine dyes (6G, B, and 123) sensitivity to hypoxia. Moreover, 1D and 2D NMR spectroscopy data support the ability of the macrocycles to form complexes with dyes. Rhodamines B and 123 formed host-guest complexes of 1:1 stoichiometry. Complexes of mixed composition were formed with rhodamine 6G. The association constant between thiacalixarene L and rhodamine 6G is higher than for other dyes. Thiacalixarene L-dye complexes with rhodamine 6G and rhodamine B are stable in the presence of various substances present in a biological environment. The UV-VIS spectrometry and fluorescence showed hypoxia responsiveness of the complexes. Our results demonstrate that thiacalixarene L has a stronger binding with dyes compared with the previously reported azo-calix[4]arene carboxylic derivative. Thus, these results suggest higher selective visualization of hypoxia for the complexes with thiacalixarene L.
Collapse
Affiliation(s)
- Farida Galieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
- Correspondence: (F.G.); (S.S.)
| | - Mohamed Khalifa
- Department of Organic and Medical Chemistry, Kazan Federal University, 420008 Kazan, Russia
- Chemistry Department, Faculty of Science, Damanhour University, Damanhur 22511, Egypt
| | - Zaliya Akhmetzyanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
| | - Diana Mironova
- Department of Organic and Medical Chemistry, Kazan Federal University, 420008 Kazan, Russia
| | - Vladimir Burilov
- Department of Organic and Medical Chemistry, Kazan Federal University, 420008 Kazan, Russia
| | - Svetlana Solovieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
- Department of Organic and Medical Chemistry, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: (F.G.); (S.S.)
| | - Igor Antipin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
- Department of Organic and Medical Chemistry, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
29
|
Faraoni EY, O'Brien BJ, Strickland LN, Osborn BK, Mota V, Chaney J, Atkins CL, Cen P, Rowe J, Cardenas J, Poulsen KL, Wray CJ, Thosani NC, Bailey-Lundberg JM. Radiofrequency Ablation Remodels the Tumor Microenvironment and Promotes Neutrophil-Mediated Abscopal Immunomodulation in Pancreatic Cancer. Cancer Immunol Res 2023; 11:4-12. [PMID: 36367967 PMCID: PMC9808367 DOI: 10.1158/2326-6066.cir-22-0379] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/01/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents a 5-year overall survival rate of 11%, despite efforts to improve clinical outcomes in the past two decades. Therapeutic resistance is a hallmark of this disease, due to its dense and suppressive tumor microenvironment (TME). Endoscopic ultrasound-guided radiofrequency ablation (EUS-RFA) is a promising local ablative and potential immunomodulatory therapy for PDAC. In this study, we performed RFA in a preclinical tumor-bearing KrasG12D; Trp53R172H/+; Pdx1:Cre (KPC) syngeneic model, analyzed local and abscopal affects after RFA and compared our findings with resected PDAC specimens. We found that RFA reduced PDAC tumor progression in vivo and promoted strong TME remodeling. In addition, we discovered tumor-infiltrating neutrophils determined abscopal effects. Using imaging mass cytometry, we showed that RFA elevated dendritic cell numbers in RFA-treated tumors and promoted a significant CD4+ and CD8+ T-cell abscopal response. In addition, RFA elevated levels of programmed death-ligand 1 (PD-L1) and checkpoint blockade inhibition targeting PD-L1 sustained tumor growth reduction in the context of RFA. This study indicates RFA treatment, which has been shown to increase tumor antigen shedding, promotes antitumor immunity. This is critical in PDAC where recent clinical immunotherapy trials have not resulted in substantial changes in overall survival.
Collapse
Affiliation(s)
- Erika Y. Faraoni
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Baylee J. O'Brien
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Lincoln N. Strickland
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Baron K. Osborn
- Department of Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Victoria Mota
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Jarod Chaney
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Constance Lynn Atkins
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Putao Cen
- Division of Oncology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Julie Rowe
- Division of Oncology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Jessica Cardenas
- Department of Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Kyle L. Poulsen
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,Center for Perioperative Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Curtis J. Wray
- Department of Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Nirav C. Thosani
- Center for Interventional Gastroenterology at UTHealth (iGUT), McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Jennifer M. Bailey-Lundberg
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,Center for Perioperative Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,Center for Interventional Gastroenterology at UTHealth (iGUT), McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,Corresponding Author: Jennifer M. Bailey-Lundberg, Department of Anesthesiology, The University of Texas Health Science Center at Houston, MSB 6.230, 6431 Fannin St., Houston, TX 77030. E-mail:
| |
Collapse
|
30
|
Tang Y, Ye C, Zeng J, Zhu P, Cheng S, Zeng W, Yang B, Liu Y, Yu Y. Identification of a basement membrane-based risk scoring system for prognosis prediction and individualized therapy in clear cell renal cell carcinoma. Front Genet 2023; 14:1038924. [PMID: 36816030 PMCID: PMC9935575 DOI: 10.3389/fgene.2023.1038924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) belongs to one of the 10 most frequently diagnosed cancers worldwide and has a poor prognosis at the advanced stage. Although multiple therapeutic agents have been proven to be curative in ccRCC, their clinical application was limited due to the lack of reliable biomarkers. Considering the important role of basement membrane (BM) in tumor metastasis and TME regulation, we investigated the expression of BM-related genes in ccRCC and identified prognostic BM genes through differentially expression analysis and univariate cox regression analysis. Then, BM-related ccRCC subtypes were recognized through consensus non-negative matrix factorization based on the prognostic BM genes and evaluated with regard to clinical and TME features. Next, utilizing the differentially expressed genes between the BM-related subtypes, a risk scoring system BMRS was established after serial analysis of univariate cox regression analysis, lasso regression analysis, and multivariate cox regression analysis. Time-dependent ROC curve revealed the satisfactory prognosis predictive capacity of BMRS with internal, and external validation. Multivariate analysis proved the independent predictive ability of BMRS and a BMRS-based nomogram was constructed for clinical application. Some featured mutants were discovered through genomic analysis of the BMRS risk groups. Meanwhile, the BMRS groups were found to have distinct immune scores, immune cell infiltration levels, and immune-related functions. Moreover, with the help of data from The Cancer Immunome Atlas (TCIA) and Genomics of Drug Sensitivity in Cancer (GDSC), the potential of BMRS in predicting therapeutic response was evaluated and some possible therapeutic compounds were proposed through ConnectivityMap (CMap). For the practicability of BMRS, we validated the expression of BMRS-related genes in clinical samples. After all, we identified BM-related ccRCC subtypes with distinct clinical and TME features and constructed a risk scoring system for the prediction of prognosis, therapeutic responses, and potential therapeutic agents of ccRCC. As ccRCC systemic therapy continues to evolve, the risk scoring system BMRS we reported may assist in individualized medication administration.
Collapse
Affiliation(s)
- Yanlin Tang
- Shantou University Medical College, Shantou, China
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chujin Ye
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiayi Zeng
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ping Zhu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Shouyu Cheng
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Weinan Zeng
- Shantou University Medical College, Shantou, China
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Bowen Yang
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yanjun Liu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- *Correspondence: Yuming Yu, ; Yanjun Liu,
| | - Yuming Yu
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Yuming Yu, ; Yanjun Liu,
| |
Collapse
|
31
|
Owen JS, Clayton A, Pearson HB. Cancer-Associated Fibroblast Heterogeneity, Activation and Function: Implications for Prostate Cancer. Biomolecules 2022; 13:67. [PMID: 36671452 PMCID: PMC9856041 DOI: 10.3390/biom13010067] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
The continuous remodeling of the tumor microenvironment (TME) during prostate tumorigenesis is emerging as a critical event that facilitates cancer growth, progression and drug-resistance. Recent advances have identified extensive communication networks that enable tumor-stroma cross-talk, and emphasized the functional importance of diverse, heterogeneous stromal fibroblast populations during malignant growth. Cancer-associated fibroblasts (CAFs) are a vital component of the TME, which mediate key oncogenic events including angiogenesis, immunosuppression, metastatic progression and therapeutic resistance, thus presenting an attractive therapeutic target. Nevertheless, how fibroblast heterogeneity, recruitment, cell-of-origin and differential functions contribute to prostate cancer remains to be fully delineated. Developing our molecular understanding of these processes is fundamental to developing new therapies and biomarkers that can ultimately improve clinical outcomes. In this review, we explore the current challenges surrounding fibroblast identification, discuss new mechanistic insights into fibroblast functions during normal prostate tissue homeostasis and tumorigenesis, and illustrate the diverse nature of fibroblast recruitment and CAF generation. We also highlight the promise of CAF-targeted therapies for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Jasmine S. Owen
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Aled Clayton
- Tissue Microenvironment Group, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| |
Collapse
|
32
|
Changes in the Expression and Functional Activities of C-X-C Motif Chemokine Ligand 13 ( CXCL13) in Hyperplastic Prostate. Int J Mol Sci 2022; 24:ijms24010056. [PMID: 36613500 PMCID: PMC9820459 DOI: 10.3390/ijms24010056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND C-X-C motif chemokine ligand 13 (CXCL13), a member of the CXC subtype in chemokine superfamily, affects numerous biological processes of various types of cells and the progress of a great number of clinical diseases. The purpose of the current study was to reveal the internal mechanism between CXCL13 and benign prostatic hyperplasia (BPH). METHODS Human serum, prostate tissues and human prostate cell lines (BPH-1, WPMY-1) were utilized. The effect of recombinant human CXCL13 (rHuCXCL13) protein and the influences of the knockdown/overexpression of CXCL13 on two cell lines were studied. Rescue experiments by anti-CXCR5 were also conducted. In vivo, rHuCXCL13 was injected into the ventral prostate of rats. Additionally, a tissue microarray of hyperplastic prostate tissues was constructed to analyze the correlations between CXCL13 and clinical parameters. RESULTS CXCL13 was highly expressed in the prostate tissues and upregulated in the BPH group. It was observed that CXCL13 modulated cell proliferation, apoptosis, and the epithelial-mesenchymal transition (EMT) through CXCR5 via AKT and the ERK1/2 pathway in BPH-1, while it contributed to inflammation and fibrosis through CXCR5 via the STAT3 pathway in WPMY-1. In vivo, rHuCXCL13 induced the development of rat BPH. Additionally, CXCL13 was positively correlated with the prostate volume and total prostate specific antigen. CONCLUSIONS Our novel data demonstrated that CXCL13 modulated cell proliferation, cell cycle, the EMT of epithelial cells, and induced the fibrosis of prostatic stromal cells via a variety of inflammatory factors, suggesting that CXCL13 might be rediscovered as a potential therapeutic target for the treatment of BPH.
Collapse
|
33
|
Rizzolio S, Giordano S, Corso S. The importance of being CAFs (in cancer resistance to targeted therapies). J Exp Clin Cancer Res 2022; 41:319. [PMID: 36324182 PMCID: PMC9632140 DOI: 10.1186/s13046-022-02524-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/23/2022] [Indexed: 05/09/2023] Open
Abstract
In the last two decades, clinical oncology has been revolutionized by the advent of targeted drugs. However, the efficacy of these therapies is significantly limited by primary and acquired resistance, that relies not only on cell-autonomous mechanisms but also on tumor microenvironment cues. Cancer-associated fibroblasts (CAFs) are extremely plastic cells of the tumor microenvironment. They not only produce extracellular matrix components that build up the structure of tumor stroma, but they also release growth factors, chemokines, exosomes, and metabolites that affect all tumor properties, including response to drug treatment. The contribution of CAFs to tumor progression has been deeply investigated and reviewed in several works. However, their role in resistance to anticancer therapies, and in particular to molecular therapies, has been largely overlooked. This review specifically dissects the role of CAFs in driving resistance to targeted therapies and discusses novel CAF targeted therapeutic strategies to improve patient survival.
Collapse
Affiliation(s)
| | - Silvia Giordano
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Torino, Italy
| | - Simona Corso
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.
- Department of Oncology, University of Torino, Torino, Italy.
| |
Collapse
|
34
|
Beider K, Voevoda-Dimenshtein V, Zoabi A, Rosenberg E, Magen H, Ostrovsky O, Shimoni A, Weiss L, Abraham M, Peled A, Nagler A. CXCL13 chemokine is a novel player in multiple myeloma osteolytic microenvironment, M2 macrophage polarization, and tumor progression. J Hematol Oncol 2022; 15:144. [PMID: 36217194 PMCID: PMC9549634 DOI: 10.1186/s13045-022-01366-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/02/2022] [Indexed: 12/04/2022] Open
Abstract
Background We assessed the mechanism by which multiple myeloma (MM) shapes the bone marrow (BM) microenvironment and affects MΦ polarization. Methods In vivo xenograft model of BM-disseminated human myeloma, as well as analysis of MM cell lines, stromal components, and primary samples from patients with MM, was utilized. Results Analysis of the BM from MM-bearing mice inoculated with human CXCR4-expressing RPMI8226 cells revealed a significant increase in M2 MΦ cell numbers (p < 0.01). CXCL13 was one of the most profoundly increased factors upon MM growth with increased levels in the blood of MM-bearing animals. Myeloid cells were the main source of the increased murine CXCL13 detected in MM-infiltrated BM. MM cell lines induced CXCL13 and concurrent expression of M2 markers (MERTK, CD206, CD163) in co-cultured human MΦ in vitro. Interaction with MΦ reciprocally induced CXCL13 expression in MM cell lines. Mechanistically, TGFβ signaling was involved in CXCL13 induction in MM cells, while BTK signaling was implicated in MM-stimulated increase of CXCL13 in MΦ. Recombinant CXCL13 increased RANKL expression and induced TRAP+ osteoclast (OC) formation in vitro, while CXCL13 neutralization blocked these activities. Moreover, mice inoculated with CXCL13-silenced MM cells developed significantly lower BM disease. Reduced tumor load correlated with decreased numbers of M2 MΦ in BM, decreased bone disease, and lower expression of OC-associated genes. Finally, higher levels of CXCL13 were detected in the blood and BM samples of MM patients in comparison with healthy individuals. Conclusions Altogether, our findings suggest that bidirectional interactions of MΦ with MM tumor cells result in M2 MΦ polarization, CXCL13 induction, and subsequent OC activation, enhancing their ability to support bone resorption and MM progression. CXCL13 may thus serve as a potential novel target in MM. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-022-01366-5.
Collapse
Affiliation(s)
- Katia Beider
- Division of Hematology and CBB, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Israel
| | | | - Ali Zoabi
- Division of Hematology and CBB, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Israel
| | - Evgenia Rosenberg
- Division of Hematology and CBB, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Israel
| | - Hila Magen
- Division of Hematology and CBB, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Israel
| | - Olga Ostrovsky
- Division of Hematology and CBB, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Israel
| | - Avichai Shimoni
- Division of Hematology and CBB, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Israel
| | - Lola Weiss
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, Jerusalem, Israel
| | - Michal Abraham
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, Jerusalem, Israel
| | - Amnon Peled
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, Jerusalem, Israel
| | - Arnon Nagler
- Division of Hematology and CBB, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Israel.
| |
Collapse
|
35
|
Wang B, Wang M, Ao D, Wei X. CXCL13-CXCR5 axis: Regulation in inflammatory diseases and cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188799. [PMID: 36103908 DOI: 10.1016/j.bbcan.2022.188799] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 01/10/2023]
Abstract
Chemokine C-X-C motif ligand 13 (CXCL13), originally identified as a B-cell chemokine, plays an important role in the immune system. The interaction between CXCL13 and its receptor, the G-protein coupled receptor (GPCR) CXCR5, builds a signaling network that regulates not only normal organisms but also the development of many diseases. However, the precise action mechanism remains unclear. In this review, we discussed the functional mechanisms of the CXCL13-CXCR5 axis under normal conditions, with special focus on its association with diseases. For certain refractory diseases, we emphasize the diagnostic and therapeutic role of CXCL13-CXCR5 axis.
Collapse
Affiliation(s)
- Binhan Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Danyi Ao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
36
|
Saha A, Hamilton-Reeves J, DiGiovanni J. White adipose tissue-derived factors and prostate cancer progression: mechanisms and targets for interventions. Cancer Metastasis Rev 2022; 41:649-671. [PMID: 35927363 PMCID: PMC9474694 DOI: 10.1007/s10555-022-10056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/27/2022] [Indexed: 12/01/2022]
Abstract
Obesity represents an important risk factor for prostate cancer, driving more aggressive disease, chemoresistance, and increased mortality. White adipose tissue (WAT) overgrowth in obesity is central to the mechanisms that lead to these clinical observations. Adipose stromal cells (ASCs), the progenitors to mature adipocytes and other cell types in WAT, play a vital role in driving PCa aggressiveness. ASCs produce numerous factors, especially chemokines, including the chemokine CXCL12, which is involved in driving EMT and chemoresistance in PCa. A greater understanding of the impact of WAT in obesity-induced progression of PCa and the underlying mechanisms has begun to provide opportunities for developing interventional strategies for preventing or offsetting these critical events. These include weight loss regimens, therapeutic targeting of ASCs, use of calorie restriction mimetic compounds, and combinations of compounds as well as specific receptor targeting strategies.
Collapse
Affiliation(s)
- Achinto Saha
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78723, USA
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, 78723, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, 78723, USA
| | - Jill Hamilton-Reeves
- Departments of Urology and Dietetics & Nutrition, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78723, USA.
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, 78723, USA.
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, 78723, USA.
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA.
| |
Collapse
|
37
|
Chan MKK, Chung JYF, Tang PCT, Chan ASW, Ho JYY, Lin TPT, Chen J, Leung KT, To KF, Lan HY, Tang PMK. TGF-β signaling networks in the tumor microenvironment. Cancer Lett 2022; 550:215925. [DOI: 10.1016/j.canlet.2022.215925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/05/2022] [Accepted: 09/17/2022] [Indexed: 11/02/2022]
|
38
|
Talaat IM, Kim B. A brief glimpse of a tangled web in a small world: Tumor microenvironment. Front Med (Lausanne) 2022; 9:1002715. [PMID: 36045917 PMCID: PMC9421133 DOI: 10.3389/fmed.2022.1002715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 12/20/2022] Open
Abstract
A tumor is a result of stepwise accumulation of genetic and epigenetic alterations. This notion has deepened the understanding of cancer biology and has introduced the era of targeted therapies. On the other hand, there have been a series of attempts of using the immune system to treat tumors, dating back to ancient history, to sporadic reports of inflamed tumors undergoing spontaneous regression. This was succeeded by modern immunotherapies and immune checkpoint inhibitors. The recent breakthrough has broadened the sight to other players within tumor tissue. Tumor microenvironment is a niche or a system orchestrating reciprocal and dynamic interaction of various types of cells including tumor cells and non-cellular components. The output of this complex communication dictates the functions of the constituent elements present within it. More complicated factors are biochemical and biophysical settings unique to TME. This mini review provides a brief guide on a range of factors to consider in the TME research.
Collapse
Affiliation(s)
- Iman M. Talaat
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Byoungkwon Kim
- Department of Pathology, H.H. Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, United Arab Emirates
| |
Collapse
|
39
|
Aging-associated and CD4 T-cell–dependent ectopic CXCL13 activation predisposes to anti–PD-1 therapy-induced adverse events. Proc Natl Acad Sci U S A 2022; 119:e2205378119. [PMID: 35858347 PMCID: PMC9303859 DOI: 10.1073/pnas.2205378119] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Immune-related adverse events (irAEs) induced by immune-checkpoint blockade including antiprogrammed death receptor (PD)-1 therapy are a major problematic issue in cancer immunotherapy. Preclinical models for more physiologically occurring irAEs are potentially useful for the clarification of fundamental causes and natural developmental course of irAEs. Here, we found that in tumor-bearing aged, but not young, mice, anti–PD-(L)1 therapy alone induces irAE-like multiorgan toxicities through CD4 T-cell–derived interleukin (IL)-21 and subsequent age-specific CXCL13 expression in tertiary lymphoid structure. Consistent with this animal model, a systemic increase in CXCL13 correlates with irAE incidence in cancer patients. These findings provide insight into the development of management strategies for irAE that balance both irAE-related immune response and antitumor immune surveillance. Clinical success of immune-checkpoint blockade (ICB) cancer immunotherapy is compromised by increased risk of immune-related adverse events (irAEs). However, mechanistic action(s) of immune responses underlying development of irAE remain not fully explored. Here, we found that in tumor-bearing aged, but not young, mice, antiprogrammed death receptor (PD)-1 therapy elicited irAE-like multiorgan dysfunctions with ectopic accumulation of T and B cells in damaged organs. In this preclinical model, the organ toxicities were mediated by immunoglobulin G (IgG) deposition because administration of IG from ICB-treated aged mice induced the pathogenicity specifically in naïve aged hosts. Mechanistically, CD4 T-cell–derived interleukin (IL)-21 upregulated B-cell–homing chemokine, CXCL13, preferentially in irAE organs from aged mice treated with anti–PD-1 therapy. The ICB-induced pathogenicity was alleviated by B-cell depletion or by blockade of IL-21 or CXCL13 activity. These results suggest that age-associated immune regulatory milieu contributes to the formation of tertiary lymphoid structure-like lymphocytic aggregates in irAE organs and irAE-related toxicity employing IL-21-CXCL13-auto-antibody axis. Supporting this, a systemic increase in CXCL13 and Il21 expression in CD4 T cells correlated with irAE incidence in ICB-treated patients. These findings provide rationale for therapeutic usefulness of CXCL13 in irAE management.
Collapse
|
40
|
Guo J, Zhao J, Sun L, Yang C. Role of ubiquitin specific proteases in the immune microenvironment of prostate cancer: A new direction. Front Oncol 2022; 12:955718. [PMID: 35924159 PMCID: PMC9339679 DOI: 10.3389/fonc.2022.955718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Regulation of ubiquitination is associated with multiple processes of tumorigenesis and development, including regulation of the tumor immune microenvironment. Deubiquitinating enzymes (DUBs) can remove ubiquitin chains from substrates, thereby stabilizing target proteins and altering and remodeling biological processes. During tumorigenesis, deubiquitination-altered biological processes are closely related to tumor metabolism, stemness, and the immune microenvironment. Recently, tumor microenvironment (TME) modulation strategies have attracted considerable attention in cancer immunotherapy. Targeting immunosuppressive mechanisms in the TME has revolutionized cancer therapy. Prostate cancer (PC) is one of the most common cancers and the second most common cause of cancer-related death in men worldwide. While immune checkpoint inhibition has produced meaningful therapeutic effects in many cancer types, clinical trials of anti-CTLA4 or anti-PD1 have not shown a clear advantage in PC patients. TME affects PC progression and also enables tumor cell immune evasion by activating the PD-1/PD-L1 axis. Over the past few decades, an increasing number of studies have demonstrated that deubiquitination in PC immune microenvironment may modulate the host immune system’s response to the tumor. As the largest and most diverse group of DUBs, ubiquitin-specific proteases (USPs) play an important role in regulating T cell development and function. According to current studies, USPs exhibit a high expression signature in PC and may promote tumorigenesis. Elevated expression of USPs often indicates poor tumor prognosis, suggesting that USPs are expected to develop as the markers of tumor prognosis and even potential drug targets for anti-tumor therapy. Herein, we first summarized recent advances of USPs in PC and focused on the relationship between USPs and immunity. Additionally, we clarified the resistance mechanisms of USPs to targeted drugs in PC. Finally, we reviewed the major achievement of targeting USPs in cancers.
Collapse
Affiliation(s)
- Jinhui Guo
- Cancer Center, Institute of clinical medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jie Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Litao Sun
- Cancer Center, Department of Ultrasound, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Litao Sun, ; Chen Yang,
| | - Chen Yang
- Cancer Center, Department of Ultrasound, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Litao Sun, ; Chen Yang,
| |
Collapse
|
41
|
Kim I, Choi S, Yoo S, Lee M, Kim IS. Cancer-Associated Fibroblasts in the Hypoxic Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14143321. [PMID: 35884382 PMCID: PMC9320406 DOI: 10.3390/cancers14143321] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cancers have regions of low oxygen concentration where hypoxia-related signaling pathways are activated. The hypoxic tumor microenvironment has been widely accepted as a hallmark of cancer and shown to be a critical factor in the crosstalk between cancer and stromal cells. Fibroblasts are one of the most abundant cellular components in the tumor stroma and are also significantly affected by oxygen deprivation. In this case, we discuss the molecular and cellular mechanisms that regulate fibroblasts under hypoxic conditions and their effect on cancer development and progression. Unraveling these regulatory mechanisms could be exploited in developing potential fibroblast-specific therapeutics for cancer. Abstract Solid cancers are composed of malignant cells and their surrounding matrix components. Hypoxia plays a critical role in shaping the tumor microenvironment that contributes to cancer progression and treatment failure. Cancer-associated fibroblasts (CAFs) are one of the most prominent components of the tumor microenvironment. CAFs are highly sensitive to hypoxia and participates in the crosstalk with cancer cells. Hypoxic CAFs modulate several mechanisms that induce cancer malignancy, such as extracellular matrix (ECM) remodeling, immune evasion, metabolic reprogramming, angiogenesis, metastasis, and drug resistance. Key signaling molecules regulating CAFs in hypoxia include transforming growth factor (TGF-β) and hypoxia-inducible factors (HIFs). In this article, we summarize the mechanisms underlying the hypoxic regulation of CAFs and how hypoxic CAFs affect cancer development and progression. We also discuss the potential therapeutic strategies focused on targeting CAFs in the hypoxic tumor microenvironment.
Collapse
Affiliation(s)
- Iljin Kim
- Department of Pharmacology and Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon 22212, Korea; (S.C.); (S.Y.)
- Correspondence: (I.K.); (I.-S.K.)
| | - Sanga Choi
- Department of Pharmacology and Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon 22212, Korea; (S.C.); (S.Y.)
| | - Seongkyeong Yoo
- Department of Pharmacology and Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon 22212, Korea; (S.C.); (S.Y.)
| | - Mingyu Lee
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute Science and Technology, Seoul 02792, Korea
- Correspondence: (I.K.); (I.-S.K.)
| |
Collapse
|
42
|
Zhang F, Liu H, Duan M, Wang G, Zhang Z, Wang Y, Qian Y, Yang Z, Jiang X. Crosstalk among m6A RNA methylation, hypoxia and metabolic reprogramming in TME: from immunosuppressive microenvironment to clinical application. J Hematol Oncol 2022; 15:84. [PMID: 35794625 PMCID: PMC9258089 DOI: 10.1186/s13045-022-01304-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment (TME), which is regulated by intrinsic oncogenic mechanisms and epigenetic modifications, has become a research hotspot in recent years. Characteristic features of TME include hypoxia, metabolic dysregulation, and immunosuppression. One of the most common RNA modifications, N6-methyladenosine (m6A) methylation, is widely involved in the regulation of physiological and pathological processes, including tumor development. Compelling evidence indicates that m6A methylation regulates transcription and protein expression through shearing, export, translation, and processing, thereby participating in the dynamic evolution of TME. Specifically, m6A methylation-mediated adaptation to hypoxia, metabolic dysregulation, and phenotypic shift of immune cells synergistically promote the formation of an immunosuppressive TME that supports tumor proliferation and metastasis. In this review, we have focused on the involvement of m6A methylation in the dynamic evolution of tumor-adaptive TME and described the detailed mechanisms linking m6A methylation to change in tumor cell biological functions. In view of the collective data, we advocate treating TME as a complete ecosystem in which components crosstalk with each other to synergistically achieve tumor adaptive changes. Finally, we describe the potential utility of m6A methylation-targeted therapies and tumor immunotherapy in clinical applications and the challenges faced, with the aim of advancing m6A methylation research.
Collapse
|
43
|
Zhao P, Shen Y, Li M, Dan H, Zhao Z, Zhang J. Integration of Transcriptomics and Metabolomics Reveals the Antitumor Mechanism Underlying Tadalafil in Colorectal Cancer. Front Pharmacol 2022; 13:793499. [PMID: 35694253 PMCID: PMC9184725 DOI: 10.3389/fphar.2022.793499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/21/2022] [Indexed: 11/25/2022] Open
Abstract
The potential role of tadalafil, a PDE5 inhibitor, in anticancer activity and prolonged survival has been proposed. However, the systematic effects of tadalafil in colorectal cancer were not fully understood. In this study, we assessed the anti-tumor activity of tadalafil in human colorectal cancer cells. A systematic perspective of the tadalafil-induced anti-tumor mechanism was provided by the integration of transcriptomics and metabolomics. We found that differentially expressed genes (DEGs) were mainly involved in microRNAs in cancer, purine metabolism, glycosphingolipid biosynthesis, arginine biosynthesis, and amino acid metabolism. Amino acid metabolism, especially alanine, aspartate, and glutamate metabolism was the most of the differentially accumulated metabolites (DAMs) through the analysis of metabolomics. The conjoint analysis of DEGs and DAMs presented that they were also mainly involved in alanine, aspartate, and glutamate metabolism. Amino acid metabolism-related genes, GPT, GGT5, and TAT, were significantly decreased after tadalafil treatment. In particular, the disturbance of alanine, aspartate, and glutamate metabolism may be the explanation for the major mechanism resulting from tadalafil anti-tumor activity.
Collapse
Affiliation(s)
- Pan Zhao
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi’an, China
| | - Yao Shen
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi’an, China
| | - Mengyang Li
- The Faculty of Hepatopancreatobiliary Surgery, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Hanjun Dan
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi’an, China
| | - Zhiming Zhao
- The Faculty of Hepatopancreatobiliary Surgery, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
- *Correspondence: Zhiming Zhao, ; Jian Zhang,
| | - Jian Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Zhiming Zhao, ; Jian Zhang,
| |
Collapse
|
44
|
Cancer evolution: special focus on the immune aspect of cancer. Semin Cancer Biol 2022; 86:420-435. [PMID: 35589072 DOI: 10.1016/j.semcancer.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/18/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022]
Abstract
Cancer is an evolutionary disease. Intra-tumor heterogeneity (ITH), which describes the diversity within individual tumors, sets the foundation for evolution. The fitness of tumor cells is determined by their microenvironment, which exerts intense selection pressure that generally favors cells with survival and proliferation advantages. It has been revealed that host immunity dramatically influences the evolutionary trajectory of cancer. As technologies advance, a refined map of the immune system's involvement in cancer evolution has gradually come to our knowledge. Here we specifically view cancer through the lens of evolutionary immunological biology. We will cover the neoplastic evolution under immunosurveillance, including how the host immunity shapes the tumor evolutionary trajectory and how progressive tumors modulate the host immunity to survive. A comprehensive understanding of the interplay between cancer evolution and cancer immunity provides clues to combating cancer strategically.
Collapse
|
45
|
Ren J, Lan T, Liu T, Liu Y, Shao B, Men K, Ma Y, Liang X, Wei YQ, Luo M, Wei XW. CXCL13 as a Novel Immune Checkpoint for Regulatory B Cells and Its Role in Tumor Metastasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2425-2435. [PMID: 35437281 DOI: 10.4049/jimmunol.2100341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 03/07/2022] [Indexed: 12/30/2022]
Abstract
Tumor metastasis is the primary cause of mortality in patients with cancer. Several chemokines are identified as important mediators of tumor growth and/or metastasis. The level of CXCL13 has been reported to be elevated in serum or tumor tissues in patients, which mainly functions to attract B cells and follicular B helper T cells. However, the role of CXCL13 in cancer growth and metastasis is not fully explored. In the current study, we found that CXCL13 is not a strong mediator to directly promote tumor growth; however, the mice deficient in CXCL13 had far fewer pulmonary metastatic foci than did the wild-type mice in experimental pulmonary metastatic models. In addition, Cxcl13 -/- mice also had fewer IL-10-producing B cells (CD45+CD19+IL-10+) in the metastatic tumor immune microenvironment than those of wild-type C57BL/6 mice, resulting in an enhanced antitumor immunity. Notably, CXCL13 deficiency further improved the efficacy of a traditional chemotherapeutic drug (cyclophosphamide), as well as that of anti-programmed death receptor-1 immunotherapy. These results suggested that CXCL13 has an important role in regulating IL-10-producing B cells in tumor metastasis and might be a promising target for improving therapeutic efficiency and stimulating tumor immunity in future cancer therapy.
Collapse
Affiliation(s)
- Jun Ren
- Department of Medical Genetics/Prenatal Diagnosis, West China Second Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China; and.,Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Chengdu, Sichuan, People's Republic of China
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Chengdu, Sichuan, People's Republic of China
| | - Ting Liu
- Department of Medical Genetics/Prenatal Diagnosis, West China Second Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China; and
| | - Yu Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Chengdu, Sichuan, People's Republic of China
| | - Bin Shao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Chengdu, Sichuan, People's Republic of China
| | - Ke Men
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Chengdu, Sichuan, People's Republic of China
| | - Yu Ma
- Department of Medical Genetics/Prenatal Diagnosis, West China Second Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China; and
| | - Xiao Liang
- Department of Medical Genetics/Prenatal Diagnosis, West China Second Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China; and
| | - Yu-Quan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Chengdu, Sichuan, People's Republic of China
| | - Min Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Chengdu, Sichuan, People's Republic of China
| | - Xia-Wei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
46
|
Ge R, Wang Z, Cheng L. Tumor microenvironment heterogeneity an important mediator of prostate cancer progression and therapeutic resistance. NPJ Precis Oncol 2022; 6:31. [PMID: 35508696 PMCID: PMC9068628 DOI: 10.1038/s41698-022-00272-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/16/2022] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer is characterized by a high degree of heterogeneity, which poses a major challenge to precision therapy and drug development. In this review, we discuss how nongenetic factors contribute to heterogeneity of prostate cancer. We also discuss tumor heterogeneity and phenotypic switching related to anticancer therapies. Lastly, we summarize the challenges targeting the tumor environments, and emphasize that continued exploration of tumor heterogeneity is needed in order to offer a personalized therapy for advanced prostate cancer patients.
Collapse
Affiliation(s)
- Rongbin Ge
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zongwei Wang
- Department of Surgery, Division of Urologic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA. .,Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
47
|
The Synergistic Cooperation between TGF-β and Hypoxia in Cancer and Fibrosis. Biomolecules 2022; 12:biom12050635. [PMID: 35625561 PMCID: PMC9138354 DOI: 10.3390/biom12050635] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/10/2022] [Accepted: 04/14/2022] [Indexed: 12/24/2022] Open
Abstract
Transforming growth factor β (TGF-β) is a multifunctional cytokine regulating homeostasis and immune responses in adult animals and humans. Aberrant and overactive TGF-β signaling promotes cancer initiation and fibrosis through epithelial–mesenchymal transition (EMT), as well as the invasion and metastatic growth of cancer cells. TGF-β is a key factor that is active during hypoxic conditions in cancer and is thereby capable of contributing to angiogenesis in various types of cancer. Another potent role of TGF-β is suppressing immune responses in cancer patients. The strong tumor-promoting effects of TGF-β and its profibrotic effects make it a focus for the development of novel therapeutic strategies against cancer and fibrosis as well as an attractive drug target in combination with immune regulatory checkpoint inhibitors. TGF-β belongs to a family of cytokines that exert their function through signaling via serine/threonine kinase transmembrane receptors to intracellular Smad proteins via the canonical pathway and in combination with co-regulators such as the adaptor protein and E3 ubiquitin ligases TRAF4 and TRAF6 to promote non-canonical pathways. Finally, the outcome of gene transcription initiated by TGF-β is context-dependent and controlled by signals exerted by other growth factors such as EGF and Wnt. Here, we discuss the synergistic cooperation between TGF-β and hypoxia in development, fibrosis and cancer.
Collapse
|
48
|
Ronis MJJ, Gomez-Acevedo H, Shankar K, Hennings L, Sharma N, Blackburn ML, Miousse I, Dawson H, Chen C, Mercer KE, Badger TM. Soy Formula Is Not Estrogenic and Does Not Result in Reproductive Toxicity in Male Piglets: Results from a Controlled Feeding Study. Nutrients 2022; 14:nu14051126. [PMID: 35268101 PMCID: PMC8912539 DOI: 10.3390/nu14051126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Soy infant formula which is fed to over half a million infants per year contains isoflavones such as genistein, which have been shown to be estrogenic at high concentrations. The developing testis is sensitive to estrogens, raising concern that the use of soy formulas may result in male reproductive toxicity. In the current study, male White-Dutch Landrace piglets received either sow milk (Sow), or were provided milk formula (Milk), soy formula (Soy), milk formula supplemented with 17-beta-estradiol (2 mg/kg/d) (M + E2) or supplemented with genistein (84 mg/L of diet; (M + G) from postnatal day 2 until day 21. E2 treatment reduced testis weight (p < 0.05) as percentage of body weight, significantly suppressed serum androgen concentrations, increased tubule area, Germ cell and Sertoli cell numbers (p < 0.05) relative to those of Sow or Milk groups. Soy formula had no such effects relative to Sow or Milk groups. mRNAseq revealed 103 differentially expressed genes in the M + E2 group compared to the Milk group related to endocrine/metabolic disorders. However, little overlap was observed between the other treatment groups. These data suggest soy formula is not estrogenic in the male neonatal piglet and that soy formula does not significantly alter male reproductive development.
Collapse
Affiliation(s)
- Martin J. J. Ronis
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido Str., New Orleans, LA 70112, USA
- Correspondence:
| | - Horacio Gomez-Acevedo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Kartik Shankar
- Department of Pediatrics-Nutrition, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA;
| | - Leah Hennings
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Neha Sharma
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (N.S.); (M.L.B.); (K.E.M.); (T.M.B.)
| | - Michael L. Blackburn
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (N.S.); (M.L.B.); (K.E.M.); (T.M.B.)
| | - Isabelle Miousse
- Department of Biochemistry, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Harry Dawson
- USDA ARS Nutrition Center, Diet Genomics and Immunology Laboratory, Beltsville, MD 20705, USA; (H.D.); (C.C.)
| | - Celine Chen
- USDA ARS Nutrition Center, Diet Genomics and Immunology Laboratory, Beltsville, MD 20705, USA; (H.D.); (C.C.)
| | - Kelly E. Mercer
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (N.S.); (M.L.B.); (K.E.M.); (T.M.B.)
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Thomas M. Badger
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (N.S.); (M.L.B.); (K.E.M.); (T.M.B.)
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
49
|
Single-cell analysis reveals that cancer-associated fibroblasts stimulate oral squamous cell carcinoma invasion via the TGF-β/Smad pathway. Acta Biochim Biophys Sin (Shanghai) 2022; 55:262-273. [PMID: 36148955 PMCID: PMC10157546 DOI: 10.3724/abbs.2022132] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Although substantial progress has been made in cancer biology and treatment, the prognosis of oral squamous cell carcinoma (OSCC) is still not satisfactory because of local tumor invasion and frequent lymph node metastasis. The tumor microenvironment (TME) is a potential target in which cancer-associated fibroblasts (CAFs) are of great significance due to their interactions with cancer cells. However, the exact mechanism is still unclear. Therefore, we focus on the crosstalk between cancer cells and CAFs and discover that CAFs are the main source of TGF-β1. Transwell assays and western blot analysis further prove that CAFs activate the TGF-β1/Smad pathway to promote OSCC invasion. Through survival analysis, we confirm that CAF overexpression is correlated with poor overall survival in OSCC. To further elucidate the origin and role of CAFs in OSCC, we analyze single-cell RNA sequencing (scRNA-seq) data from 14 OSCC tumor samples and identify four distinct cell types, including CAFs, in the TME, indicating high intratumoral heterogeneity. Then, two subtypes of CAFs, namely, myofibroblasts (mCAFs) and inflammatory CAFs (iCAFs), are further distinguished. Based on the differentially upregulated genes of mCAFs and iCAFs, GO enrichment analysis reveals their different roles in OSCC progression. Furthermore, the gene expression pattern is dynamically altered across pseudotime, potentially taking part in the transformation from epithelial to mCAFs or iCAFs through the epithelial to mesenchymal transition.
Collapse
|
50
|
Corchado-Cobos R, García-Sancha N, Mendiburu-Eliçabe M, Gómez-Vecino A, Jiménez-Navas A, Pérez-Baena MJ, Holgado-Madruga M, Mao JH, Cañueto J, Castillo-Lluva S, Pérez-Losada J. Pathophysiological Integration of Metabolic Reprogramming in Breast Cancer. Cancers (Basel) 2022; 14:cancers14020322. [PMID: 35053485 PMCID: PMC8773662 DOI: 10.3390/cancers14020322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Tumors exhibit metabolic changes that differentiate them from the normal tissues from which they derive. These metabolic changes favor tumor growth, are primarily induced by cancer cells, and produce metabolic and functional changes in the surrounding stromal cells. There is a close functional connection between the metabolic changes in tumor cells and those that appear in the surrounding stroma. A better understanding of intratumoral metabolic interactions may help identify new vulnerabilities that will facilitate new, more individualized treatment strategies against cancer. We review the metabolic changes described in tumor and stromal cells and their functional changes and then consider, in depth, the metabolic interactions between the cells of the two compartments. Although these changes are generic, we illustrate them mainly with reference to examples in breast cancer. Abstract Metabolic changes that facilitate tumor growth are one of the hallmarks of cancer. The triggers of these metabolic changes are located in the tumor parenchymal cells, where oncogenic mutations induce an imperative need to proliferate and cause tumor initiation and progression. Cancer cells undergo significant metabolic reorganization during disease progression that is tailored to their energy demands and fluctuating environmental conditions. Oxidative stress plays an essential role as a trigger under such conditions. These metabolic changes are the consequence of the interaction between tumor cells and stromal myofibroblasts. The metabolic changes in tumor cells include protein anabolism and the synthesis of cell membranes and nucleic acids, which all facilitate cell proliferation. They are linked to catabolism and autophagy in stromal myofibroblasts, causing the release of nutrients for the cells of the tumor parenchyma. Metabolic changes lead to an interstitium deficient in nutrients, such as glucose and amino acids, and acidification by lactic acid. Together with hypoxia, they produce functional changes in other cells of the tumor stroma, such as many immune subpopulations and endothelial cells, which lead to tumor growth. Thus, immune cells favor tissue growth through changes in immunosuppression. This review considers some of the metabolic changes described in breast cancer.
Collapse
Affiliation(s)
- Roberto Corchado-Cobos
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Natalia García-Sancha
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Marina Mendiburu-Eliçabe
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Aurora Gómez-Vecino
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Alejandro Jiménez-Navas
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Manuel Jesús Pérez-Baena
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Marina Holgado-Madruga
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Javier Cañueto
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
- Departamento de Dermatología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007 Salamanca, Spain
- Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain
| | - Sonia Castillo-Lluva
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
- Correspondence: (S.C.-L.); (J.P-L.)
| | - Jesús Pérez-Losada
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
- Correspondence: (S.C.-L.); (J.P-L.)
| |
Collapse
|