1
|
Ravin NV, Muntyan MS, Smolyakov DD, Rudenko TS, Beletsky AV, Mardanov AV, Grabovich MY. Metagenomics Revealed a New Genus ' Candidatus Thiocaldithrix dubininis' gen. nov., sp. nov. and a New Species ' Candidatus Thiothrix putei' sp. nov. in the Family Thiotrichaceae, Some Members of Which Have Traits of Both Na +- and H +-Motive Energetics. Int J Mol Sci 2023; 24:14199. [PMID: 37762502 PMCID: PMC10532065 DOI: 10.3390/ijms241814199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Two metagenome-assembled genomes (MAGs), GKL-01 and GKL-02, related to the family Thiotrichaceae have been assembled from the metagenome of bacterial mat obtained from a sulfide-rich thermal spring in the North Caucasus. Based on average amino acid identity (AAI) values and genome-based phylogeny, MAG GKL-01 represented a new genus within the Thiotrichaceae family. The GC content of the GKL-01 DNA (44%) differed significantly from that of other known members of the genus Thiothrix (50.1-55.6%). We proposed to assign GKL-01 to a new species and genus 'Candidatus Thiocaldithrix dubininis' gen. nov., sp. nov. GKL-01. The phylogenetic analysis and estimated distances between MAG GKL-02 and the genomes of the previously described species of the genus Thiothrix allowed assigning GKL-02 to a new species with the proposed name 'Candidatus Thiothrix putei' sp. nov. GKL-02 within the genus Thiothrix. Genome data first revealed the presence of both Na+-ATPases and H+-ATPases in several Thiothrix species. According to genomic analysis, bacteria GKL-01 and GKL-02 are metabolically versatile facultative aerobes capable of growing either chemolithoautotrophically or chemolithoheterotrophically in the presence of hydrogen sulfide and/or thiosulfate or chemoorganoheterotrophically.
Collapse
Affiliation(s)
- Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Prospect, 33-2, 119071 Moscow, Russia; (N.V.R.); (A.V.B.); (A.V.M.)
| | - Maria S. Muntyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Dmitry D. Smolyakov
- Department of Biochemistry and Cell Physiology, Voronezh State University, Universitetskaya pl., 1, 394018 Voronezh, Russia; (D.D.S.); (T.S.R.)
| | - Tatyana S. Rudenko
- Department of Biochemistry and Cell Physiology, Voronezh State University, Universitetskaya pl., 1, 394018 Voronezh, Russia; (D.D.S.); (T.S.R.)
| | - Alexey V. Beletsky
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Prospect, 33-2, 119071 Moscow, Russia; (N.V.R.); (A.V.B.); (A.V.M.)
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Prospect, 33-2, 119071 Moscow, Russia; (N.V.R.); (A.V.B.); (A.V.M.)
| | - Margarita Yu. Grabovich
- Department of Biochemistry and Cell Physiology, Voronezh State University, Universitetskaya pl., 1, 394018 Voronezh, Russia; (D.D.S.); (T.S.R.)
| |
Collapse
|
2
|
Zorov DB. A Window to the Potassium World. The Evidence of Potassium Energetics in the Mitochondria and Identity of the Mitochondrial ATP-Dependent K + Channel. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:683-688. [PMID: 36171650 DOI: 10.1134/s0006297922080016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 06/16/2023]
Abstract
The conclusions made in the three papers published in Function by Juhaszova et al. [Function, 3, 2022, zqab065, zqac001, zqac018], can be seen as a breakthrough in bioenergetics and mitochondrial medicine. For more than half a century, it has been believed that mitochondrial energetics is solely protonic and is based on the generation of electrochemical potential of hydrogen ions across the inner mitochondrial membrane upon oxidation of respiratory substrates, resulting in the generation of ATP via reverse transport of protons through the ATP synthase complex. Juhaszova et al. demonstrated that ATP synthase transfers not only protons, but also potassium ions, with the generation of ATP. This mechanism seems logical, given the fact that in eukaryotic cells, the concentration of potassium ions is several million times higher than the concentration of protons. The transport of K+ through the ATP synthase was enhanced by the activators of mitochondrial ATP-dependent K+ channel (mK/ATP), leading to the conclusion that ATP synthase is the material essence of mK/ATP. Beside ATP generation, the transport of osmotically active K+ to the mitochondrial matrix is accompanied by water entry to the matrix, leading to an increase in the matrix volume and activation of mitochondrial respiration with the corresponding increase in the ATP synthesis, which suggests an advantage of such transport for energy production. The driving force for K+ transport into the mitochondria is the membrane potential; an excess of K+ is exported from the matrix by the hypothetical K+/H+ exchangers. Inhibitory factor 1 (IF1) plays an important role in the activation of mK/ATP by increasing the chemo-mechanical efficiency of ATP synthase, which may be a positive factor in the protective anti-ischemic signaling.
Collapse
Affiliation(s)
- Dmitry B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
3
|
Sodium Energetic Cycle in the Natronophilic Bacterium Thioalkalivibrio versutus. Int J Mol Sci 2022; 23:ijms23041965. [PMID: 35216079 PMCID: PMC8874543 DOI: 10.3390/ijms23041965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
As inhabitants of soda lakes, Thioalkalivibrio versutus are halo- and alkaliphilic bacteria that have previously been shown to respire with the first demonstrated Na+-translocating cytochrome-c oxidase (CO). The enzyme generates a sodium-motive force (Δs) as high as −270 mV across the bacterial plasma membrane. However, in these bacteria, operation of the possible Δs consumers has not been proven. We obtained motile cells and used them to study the supposed Na+ energetic cycle in these bacteria. The resulting motility was activated in the presence of the protonophore 2-heptyl-4-hydroxyquinoline N-oxide (HQNO), in line with the same effect on cell respiration, and was fully blocked by amiloride—an inhibitor of Na+-motive flagella. In immotile starving bacteria, ascorbate triggered CO-mediated respiration and motility, both showing the same dependence on sodium concentration. We concluded that, in T. versutus, Na+-translocating CO and Na+-motive flagella operate in the Na+ energetic cycle mode. Our research may shed light on the energetic reason for how these bacteria are confined to a narrow chemocline zone and thrive in the extreme conditions of soda lakes.
Collapse
|
4
|
Muntyan MS, Morozov DA, Leonova YF, Ovchinnikova TV. Identification of Na+-Pumping Cytochrome Oxidase in the Membranes of Extremely Alkaliphilic Thioalkalivibrio Bacteria. BIOCHEMISTRY (MOSCOW) 2021; 85:1631-1639. [PMID: 33705300 DOI: 10.1134/s0006297920120147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
For the first time, the functioning of the oxygen reductase Na+-pump (Na+-pumping cytochrome c oxidase of the cbb3-type) was demonstrated by examining the respiratory chain of the extremely alkaliphilic bacterium Thioalkalivibrio versutus [Muntyan, M. S., et al. (2015) Cytochrome cbb3 of Thioalkalivibrio is a Na+-pumping cytochrome oxidase, Proc. Natl. Acad. Sci. USA, 112, 7695-7700], a product of the ccoNOQP operon. In this study, we detected and identified this enzyme using rabbit polyclonal antibody against the predicted C-terminal amino acid sequence of its catalytic subunit. We found that this cbb3-type oxidase is synthesized in bacterial cells, where it is located in the membranes. The 48-kDa oxidase subunit (CcoN) is catalytic, while subunits CcoO and CcoP with molecular masses of 29 and 34 kDa, respectively, are cytochromes c. The theoretical pI values of the CcoN, CcoO, and CcoP subunits were determined. It was shown that parts of the CcoO and CcoP subunits exposed to the aqueous phase on the cytoplasmic membrane P-side are enriched with negatively charged amino acid residues, in contrast to the parts of the integral subunit CcoN adjacent to the aqueous phase. Thus, the Na+-pumping cytochrome c oxidase of T. versutus, both in function and in structure, demonstrates adaptation to extremely alkaline conditions.
Collapse
Affiliation(s)
- M S Muntyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - D A Morozov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Y F Leonova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - T V Ovchinnikova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
5
|
Calisto F, Sousa FM, Sena FV, Refojo PN, Pereira MM. Mechanisms of Energy Transduction by Charge Translocating Membrane Proteins. Chem Rev 2021; 121:1804-1844. [PMID: 33398986 DOI: 10.1021/acs.chemrev.0c00830] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Life relies on the constant exchange of different forms of energy, i.e., on energy transduction. Therefore, organisms have evolved in a way to be able to harvest the energy made available by external sources (such as light or chemical compounds) and convert these into biological useable energy forms, such as the transmembrane difference of electrochemical potential (Δμ̃). Membrane proteins contribute to the establishment of Δμ̃ by coupling exergonic catalytic reactions to the translocation of charges (electrons/ions) across the membrane. Irrespectively of the energy source and consequent type of reaction, all charge-translocating proteins follow two molecular coupling mechanisms: direct- or indirect-coupling, depending on whether the translocated charge is involved in the driving reaction. In this review, we explore these two coupling mechanisms by thoroughly examining the different types of charge-translocating membrane proteins. For each protein, we analyze the respective reaction thermodynamics, electron transfer/catalytic processes, charge-translocating pathways, and ion/substrate stoichiometries.
Collapse
Affiliation(s)
- Filipa Calisto
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Patricia N Refojo
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
6
|
Esposti MD. On the evolution of cytochrome oxidases consuming oxygen. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148304. [PMID: 32890468 DOI: 10.1016/j.bbabio.2020.148304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023]
Abstract
This review examines the current state of the art on the evolution of the families of Heme Copper Oxygen reductases (HCO) that oxidize cytochrome c and reduce oxygen to water, chiefly cytochrome oxidase, COX. COX is present in many bacterial and most eukaryotic lineages, but its origin has remained elusive. After examining previous proposals for COX evolution, the review summarizes recent insights suggesting that COX enzymes might have evolved in soil dwelling, probably iron-oxidizing bacteria which lived on emerged land over two billion years ago. These bacteria were the likely ancestors of extant acidophilic iron-oxidizers such as Acidithiobacillus spp., which belong to basal lineages of the phylum Proteobacteria. Proteobacteria may thus be considered the originators of COX, which was then laterally transferred to other prokaryotes. The taxonomy of bacteria is presented in relation to the current distribution of COX and C family oxidases, from which COX may have evolved.
Collapse
Affiliation(s)
- Mauro Degli Esposti
- Center for Genomic Sciences UNAM, Ave. Universidad 701, Cuernavaca, CP 62130, Morelos, Mexico.
| |
Collapse
|
7
|
Kiragosyan K, Picard M, Sorokin DY, Dijkstra J, Klok JBM, Roman P, Janssen AJH. Effect of dimethyl disulfide on the sulfur formation and microbial community composition during the biological H 2S removal from sour gas streams. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121916. [PMID: 31884361 DOI: 10.1016/j.jhazmat.2019.121916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/06/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
Removal of organic and inorganic sulfur compounds from sour gases is required because of their toxicity and atmospheric pollution. The most common are hydrogen sulfide (H2S) and methanethiol (MT). Under oxygen-limiting conditions about 92 mol% of sulfide is oxidized to sulfur by haloalkaliphilic sulfur-oxidizing bacteria (SOB), whilst the remainder is oxidized either biologically to sulfate or chemically to thiosulfate. MT is spontaneously oxidized to dimethyl disulfide (DMDS), which was found to inhibit the oxidation of sulfide to sulfate. Hence, we assessed the effect of DMDS on product formation in a lab-scale biodesulfurization setup. DMDS was quantified using a newly, in-house developed analytical method. Subsequently, a chemical reaction mechanism was proposed for the formation of methanethiol and dimethyl trisulfide from the reaction between sulfide and DMDS. Addition of DMDS resulted in significant inhibition of sulfate formation, leading to 96 mol% of sulfur formation. In addition, a reduction in the dominating haloalkaliphilic SOB species, Thioalkalivibrio sulfidiphilus, was observed in favor of Thioalkaibacter halophilus as a more DMDS-tolerant with the 50 % inhibition coefficient at 2.37 mM DMDS.
Collapse
Affiliation(s)
- Karine Kiragosyan
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands; Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Magali Picard
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands; Eurofins Agroscience Services Chem SAS 75, chemin de Sommières 30310, Vergèze, France
| | - Dimitry Y Sorokin
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands; Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Prospect 60-let Oktyabrya 7/2, Moscow, Russian Federation; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jelmer Dijkstra
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Johannes B M Klok
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands; Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Paqell B.V., Reactorweg 301, 3542 AD Utrecht, The Netherlands
| | - Pawel Roman
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Albert J H Janssen
- Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Shell, Oostduinlaan 2, 2596 JM the Hague, The Netherlands
| |
Collapse
|
8
|
Bertsova YV, Baykov AA, Bogachev AV. A simple strategy to differentiate between H +- and Na +-transporting NADH:quinone oxidoreductases. Arch Biochem Biophys 2020; 681:108266. [PMID: 31953132 DOI: 10.1016/j.abb.2020.108266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/30/2019] [Accepted: 01/12/2020] [Indexed: 10/25/2022]
Abstract
We describe here a simple strategy to characterize transport specificity of NADH:quinone oxidoreductases, using Na+-translocating (NQR) and H+-translocating (NDH-1) enzymes of the soil bacterium Azotobactervinelandii as the models. Submillimolar concentrations of Na+ and Li+ increased the rate of deaminoNADH oxidation by the inverted membrane vesicles prepared from the NDH-1-deficient strain. The vesicles generated carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-resistant electric potential difference and CCCP-stimulated pH difference (alkalinization inside) in the presence of Na+. These findings testified a primary Na+-pump function of A. vinelandii NQR. Furthermore, ΔpH measurements with fluorescent probes (acridine orange and pyranine) demonstrated that A. vinelandii NQR cannot transport H+ under various conditions. The opposite results obtained in similar measurements with the vesicles prepared from the NQR-deficient strain indicated a primary H+-pump function of NDH-1. Based on our findings, we propose a package of simple experiments that are necessary and sufficient to unequivocally identify the pumping specificity of a bacterial Na+ or H+ transporter. The NQR-deficient strain, but not the NDH-1-deficient one, exhibited impaired growth characteristics under diazotrophic condition, suggesting a role for the Na+ transport in nitrogen fixation by A. vinelandii.
Collapse
Affiliation(s)
- Yulia V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander A Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
9
|
Bertsova YV, Mamedov MD, Bogachev AV. Na+-Translocating Ferredoxin:NAD+ Oxidoreductase Is a Component of Photosynthetic Electron Transport Chain in Green Sulfur Bacteria. BIOCHEMISTRY (MOSCOW) 2019; 84:1403-1410. [PMID: 31760926 DOI: 10.1134/s0006297919110142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Genomes of photoautotrophic organisms containing type I photosynthetic reaction center were searched for the rnf genes encoding Na+-translocating ferredoxin:NAD+ oxidoreductase (RNF). These genes were absent in heliobacteria, cyanobacteria, algae, and plants; however, genomes of many green sulfur bacteria (especially marine ones) were found to contain the full rnf operon. Analysis of RNA isolated from the marine green sulfur bacterium Chlorobium phaeovibrioides revealed a high level of rnf expression. It was found that the activity of Na+-dependent flavodoxin:NAD+ oxidoreductase detected in the membrane fraction of Chl. phaeovibrioides was absent in the membrane fraction of the freshwater green sulfur bacterium Chlorobaculum limnaeum, which is closely related to Chl. phaeovibrioides but whose genome lacks the rnf genes. Illumination of the membrane fraction of Chl. phaeovibrioides but not of Cba. limnaeum resulted in the light-induced NAD+ reduction. Based on the obtained data, we concluded that in some green sulfur bacteria, RNF may be involved in the NADH formation that should increase the efficiency of light energy conservation in these microorganisms and can serve as the first example of the use of Na+ energetics in photosynthetic electron transport chains.
Collapse
Affiliation(s)
- Y V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - M D Mamedov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - A V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
10
|
Rimboud M, Achouak W. Electroautotrophy of Thioalkalivibrio nitratireducens. Bioelectrochemistry 2019; 126:48-55. [DOI: 10.1016/j.bioelechem.2018.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022]
|
11
|
Graf S, Brzezinski P, von Ballmoos C. The proton pumping bo oxidase from Vitreoscilla. Sci Rep 2019; 9:4766. [PMID: 30886219 PMCID: PMC6423279 DOI: 10.1038/s41598-019-40723-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/18/2019] [Indexed: 01/31/2023] Open
Abstract
The cytochrome bo3 quinol oxidase from Vitreoscilla (vbo3) catalyses oxidation of ubiquinol and reduction of O2 to H2O. Data from earlier studies suggested that the free energy released in this reaction is used to pump sodium ions instead of protons across a membrane. Here, we have studied the functional properties of heterologously expressed vbo3 with a variety of methods. (i) Following oxygen consumption with a Clark-type electrode, we did not observe a measurable effect of Na+ on the oxidase activity of purified vbo3 solubilized in detergent or reconstituted in liposomes. (ii) Using fluorescent dyes, we find that vbo3 does not pump Na+ ions, but H+ across the membrane, and that H+-pumping is not influenced by the presence of Na+. (iii) Using an oxygen pulse method, it was found that 2 H+/e- are ejected from proteoliposomes, in agreement with the values found for the H+-pumping bo3 oxidase of Escherichia coli (ecbo3). This coincides with the interpretation that 1 H+/e- is pumped across the membrane and 1 H+/e- is released during quinol oxidation. (iv) When the electron transfer kinetics of vbo3 upon reaction with oxygen were followed in single turnover experiments, a similar sequence of reaction steps was observed as reported for the E. coli enzyme and none of these reactions was notably affected by the presence of Na+. Overall the data show that vbo3 is a proton pumping terminal oxidase, behaving similarly to the Escherichia coli bo3 quinol oxidase.
Collapse
Affiliation(s)
- Simone Graf
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Christoph von Ballmoos
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.
| |
Collapse
|
12
|
Abbas SZ, Rafatullah M, Ismail N, Shakoori FR. Electrochemistry and microbiology of microbial fuel cells treating marine sediments polluted with heavy metals. RSC Adv 2018; 8:18800-18813. [PMID: 35539672 PMCID: PMC9080629 DOI: 10.1039/c8ra01711e] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/09/2018] [Indexed: 01/27/2023] Open
Abstract
Novel laboratory-designed aerated and non-aerated sediment microbial fuel cell (SMFC) models were constructed for power generation and heavy metal bioremediation.
Collapse
Affiliation(s)
- Syed Zaghum Abbas
- Division of Environmental Technology
- School of Industrial Technology
- Universiti Sains Malaysia
- Malaysia
| | - Mohd Rafatullah
- Division of Environmental Technology
- School of Industrial Technology
- Universiti Sains Malaysia
- Malaysia
| | - Norli Ismail
- Division of Environmental Technology
- School of Industrial Technology
- Universiti Sains Malaysia
- Malaysia
| | - Farah R. Shakoori
- Department of Zoology
- University of the Punjab New Campus Lahore
- Pakistan
| |
Collapse
|
13
|
Carvalheda CA, Pisliakov AV. On the role of subunit M in cytochrome cbb 3 oxidase. Biochem Biophys Res Commun 2017; 491:47-52. [PMID: 28694191 DOI: 10.1016/j.bbrc.2017.07.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
Abstract
Cytochrome cbb3 (or C-type) oxidases are a highly divergent group and the least studied members of the heme-copper oxidases (HCOs) superfamily. HCOs couple the reduction of oxygen at the end of the respiratory chain to the active proton translocation across the membrane, contributing to establishment of an electrochemical gradient essential for ATP synthesis. Cbb3 oxidases exhibit unique structural and functional features and have an essential role in the metabolism of many clinically relevant human pathogens. Such characteristics make them a promising therapeutic target. Three subunits, N, O and P, comprise the core cbb3 complex, with N, the catalytic subunit, being highly conserved among all members of the HCO superfamily, including the A-type (aa3, mitochondrial-like) oxidases. An additional fourth subunit containing a single transmembrane (TM) helix was present in the first crystal structure of cbb3. This TM segment was recently proposed to be part of a novel protein CcoM, which was shown to have a putative role in the complex stability and assembly. In this work, we performed large-scale all-atom molecular dynamics simulations of the CcoNOPM complex to further characterize the interactions between subunit M and the core subunits and to determine whether the presence of the fourth subunit influences the water/proton channels previously described for the core complex. The previously proposed putative CcoNOPH complex is also assessed, and the potential functional redundancy of CcoM and CcoQ is discussed.
Collapse
Affiliation(s)
- Catarina A Carvalheda
- Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom; Physics, School of Science and Engineering, University of Dundee, Nethergate, Dundee, DD1 4HN, United Kingdom.
| | - Andrei V Pisliakov
- Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom; Physics, School of Science and Engineering, University of Dundee, Nethergate, Dundee, DD1 4HN, United Kingdom.
| |
Collapse
|
14
|
Gavrilov S, Podosokorskaya O, Alexeev D, Merkel A, Khomyakova M, Muntyan M, Altukhov I, Butenko I, Bonch-Osmolovskaya E, Govorun V, Kublanov I. Respiratory Pathways Reconstructed by Multi-Omics Analysis in Melioribacter roseus, Residing in a Deep Thermal Aquifer of the West-Siberian Megabasin. Front Microbiol 2017; 8:1228. [PMID: 28713355 PMCID: PMC5492636 DOI: 10.3389/fmicb.2017.01228] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/16/2017] [Indexed: 01/19/2023] Open
Abstract
Melioribacter roseus, a representative of recently proposed Ignavibacteriae phylum, is a metabolically versatile thermophilic bacterium, inhabiting subsurface biosphere of the West-Siberian megabasin and capable of growing on various substrates and electron acceptors. Genomic analysis followed by inhibitor studies and membrane potential measurements of aerobically grown M. roseus cells revealed the activity of aerobic respiratory electron transfer chain comprised of respiratory complexes I and IV, and an alternative complex III. Phylogeny reconstruction revealed that oxygen reductases belonged to atypical cc(o/b)o3-type and canonical cbb3–type cytochrome oxidases. Also, two molybdoenzymes of M. roseus were affiliated either with Ttr or Psr/Phs clades, but not with typical respiratory arsenate reductases of the Arr clade. Expression profiling, both at transcripts and protein level, allowed us to assign the role of the terminal respiratory oxidase under atmospheric oxygen concentration for the cc(o/b)o3 cytochrome oxidase, previously proposed to serve for oxygen detoxification only. Transcriptomic analysis revealed the involvement of both molybdoenzymes of M. roseus in As(V) respiration, yet differences in the genomic context of their gene clusters allow to hypothesize about their distinct roles in arsenate metabolism with the ‘Psr/Phs’-type molybdoenzyme being the most probable candidate respiratory arsenate reductase. Basing on multi-omics data, the pathways for aerobic and arsenate respiration were proposed. Our results start to bridge the vigorously increasing gap between homology-based predictions and experimentally verified metabolic processes, what is especially important for understudied microorganisms of novel lineages from deep subsurface environments of Eurasia, which remained separated from the rest of the biosphere for several geological periods.
Collapse
Affiliation(s)
- Sergey Gavrilov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of SciencesMoscow, Russia
| | - Olga Podosokorskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of SciencesMoscow, Russia
| | - Dmitry Alexeev
- Saint Petersburg State University of Information Technologies, Mechanics and OpticsSt. Petersburg, Russia
| | - Alexander Merkel
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of SciencesMoscow, Russia
| | - Maria Khomyakova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of SciencesMoscow, Russia
| | - Maria Muntyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia
| | - Ilya Altukhov
- Federal Research and Clinical Centre of Physico-Chemical MedicineMoscow, Russia.,Moscow Institute of Physics and TechnologyDolgoprudny, Russia
| | - Ivan Butenko
- Federal Research and Clinical Centre of Physico-Chemical MedicineMoscow, Russia
| | - Elizaveta Bonch-Osmolovskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of SciencesMoscow, Russia
| | - Vadim Govorun
- Federal Research and Clinical Centre of Physico-Chemical MedicineMoscow, Russia.,Moscow Institute of Physics and TechnologyDolgoprudny, Russia
| | - Ilya Kublanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of SciencesMoscow, Russia.,Laboratory of Microbial Genomics, Immanuel Kant Baltic Federal UniversityKaliningrad, Russia
| |
Collapse
|
15
|
Szabó A, Korponai K, Kerepesi C, Somogyi B, Vörös L, Bartha D, Márialigeti K, Felföldi T. Soda pans of the Pannonian steppe harbor unique bacterial communities adapted to multiple extreme conditions. Extremophiles 2017; 21:639-649. [PMID: 28389755 DOI: 10.1007/s00792-017-0932-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/31/2017] [Indexed: 11/26/2022]
Abstract
Soda pans of the Pannonian steppe are unique environments regarding their physical and chemical characteristics: shallowness, high turbidity, intermittent character, alkaline pH, polyhumic organic carbon concentration, hypertrophic condition, moderately high salinity, sodium and carbonate ion dominance. The pans are highly productive environments with picophytoplankton predominance. Little is known about the planktonic bacterial communities inhabiting these aquatic habitats; therefore, amplicon sequencing and shotgun metagenomics were applied to reveal their composition and functional properties. Results showed a taxonomically complex bacterial community which was distinct from other soda lakes regarding its composition, e.g. the dominance of class Alphaproteobacteria was observed within phylum Proteobacteria. The shotgun metagenomic analysis revealed several functional gene components related to the harsh and at the same time hypertrophic environmental conditions, e.g. proteins involved in stress response, transport and hydrolase systems targeting phytoplankton-derived organic matter. This is the first detailed report on the indigenous planktonic bacterial communities coping with the multiple extreme conditions present in the unique soda pans of the Pannonian steppe.
Collapse
Affiliation(s)
- Attila Szabó
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter stny. 1/C, 1117, Budapest, Hungary
| | - Kristóf Korponai
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter stny. 1/C, 1117, Budapest, Hungary
| | - Csaba Kerepesi
- Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI), Kende u. 13-17, 1111, Budapest, Hungary
| | - Boglárka Somogyi
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kunó u. 3, 8237, Tihany, Hungary
| | - Lajos Vörös
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kunó u. 3, 8237, Tihany, Hungary
| | - Dániel Bartha
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, 1143, Budapest, Hungary
| | - Károly Márialigeti
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter stny. 1/C, 1117, Budapest, Hungary
| | - Tamás Felföldi
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter stny. 1/C, 1117, Budapest, Hungary.
| |
Collapse
|
16
|
Berben T, Overmars L, Sorokin DY, Muyzer G. Comparative Genome Analysis of Three Thiocyanate Oxidizing Thioalkalivibrio Species Isolated from Soda Lakes. Front Microbiol 2017; 8:254. [PMID: 28293216 PMCID: PMC5328954 DOI: 10.3389/fmicb.2017.00254] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/07/2017] [Indexed: 12/21/2022] Open
Abstract
Thiocyanate is a C1 compound containing carbon, nitrogen, and sulfur. It is a (by)product in a number of natural and industrial processes. Because thiocyanate is toxic to many organisms, including humans, its removal from industrial waste streams is an important problem. Although a number of bacteria can use thiocyanate as a nitrogen source, only a few can use it as an electron donor. There are two distinct pathways to use thiocyanate: (i) the “carbonyl sulfide pathway,” which has been extensively studied, and (ii) the “cyanate pathway,” whose key enzyme, thiocyanate dehydrogenase, was recently purified and studied. Three species of Thioalkalivibrio, a group of haloalkaliphilic sulfur-oxidizing bacteria isolated from soda lakes, have been described as thiocyanate oxidizers: (i) Thioalkalivibrio paradoxus (“cyanate pathway”), (ii) Thioalkalivibrio thiocyanoxidans (“cyanate pathway”) and (iii) Thioalkalivibrio thiocyanodenitrificans (“carbonyl sulfide pathway”). In this study we provide a comparative genome analysis of these described thiocyanate oxidizers, with genomes ranging in size from 2.5 to 3.8 million base pairs. While focusing on thiocyanate degradation, we also analyzed the differences in sulfur, carbon, and nitrogen metabolism. We found that the thiocyanate dehydrogenase gene is present in 10 different Thioalkalivibrio strains, in two distinct genomic contexts/genotypes. The first genotype is defined by having genes for flavocytochrome c sulfide dehydrogenase upstream from the thiocyanate dehydrogenase operon (present in two strains including the type strain of Tv. paradoxus), whereas in the second genotype these genes are located downstream, together with two additional genes of unknown function (present in eight strains, including the type strains of Tv. thiocyanoxidans). Additionally, we found differences in the presence/absence of genes for various sulfur oxidation pathways, such as sulfide:quinone oxidoreductase, dissimilatory sulfite reductase, and sulfite dehydrogenase. One strain (Tv. thiocyanodenitrificans) lacks genes encoding a carbon concentrating mechanism and none of the investigated genomes were shown to contain known bicarbonate transporters. This study gives insight into the genomic variation of thiocyanate oxidizing bacteria and may lead to improvements in the application of these organisms in the bioremediation of industrial waste streams.
Collapse
Affiliation(s)
- Tom Berben
- Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam Amsterdam, Netherlands
| | - Lex Overmars
- Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam Amsterdam, Netherlands
| | - Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of SciencesMoscow, Russia; Department of Biotechnology, Delft University of TechnologyDelft, Netherlands
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
17
|
Liu X, Wang Y, Hou L, Xiong Y, Zhao S. Fibroblast Growth Factor 21 (FGF21) Promotes Formation of Aerobic Myofibers via the FGF21-SIRT1-AMPK-PGC1α Pathway. J Cell Physiol 2017; 232:1893-1906. [DOI: 10.1002/jcp.25735] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Xinyi Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture; Huazhong Agricultural University; Wuhan Hubei P. R. China
| | - Yongliang Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture; Huazhong Agricultural University; Wuhan Hubei P. R. China
| | - Liming Hou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture; Huazhong Agricultural University; Wuhan Hubei P. R. China
| | - Yuanzhu Xiong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture; Huazhong Agricultural University; Wuhan Hubei P. R. China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture; Huazhong Agricultural University; Wuhan Hubei P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production; Wuhan Hubei P. R. China
| |
Collapse
|
18
|
Golyshina OV, Kublanov IV, Tran H, Korzhenkov AA, Lünsdorf H, Nechitaylo TY, Gavrilov SN, Toshchakov SV, Golyshin PN. Biology of archaea from a novel family Cuniculiplasmataceae (Thermoplasmata) ubiquitous in hyperacidic environments. Sci Rep 2016; 6:39034. [PMID: 27966672 PMCID: PMC5155288 DOI: 10.1038/srep39034] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/16/2016] [Indexed: 12/13/2022] Open
Abstract
The order Thermoplasmatales (Euryarchaeota) is represented by the most acidophilic organisms known so far that are poorly amenable to cultivation. Earlier culture-independent studies in Iron Mountain (California) pointed at an abundant archaeal group, dubbed ‘G-plasma’. We examined the genomes and physiology of two cultured representatives of a Family Cuniculiplasmataceae, recently isolated from acidic (pH 1–1.5) sites in Spain and UK that are 16S rRNA gene sequence-identical with ‘G-plasma’. Organisms had largest genomes among Thermoplasmatales (1.87–1.94 Mbp), that shared 98.7–98.8% average nucleotide identities between themselves and ‘G-plasma’ and exhibited a high genome conservation even within their genomic islands, despite their remote geographical localisations. Facultatively anaerobic heterotrophs, they possess an ancestral form of A-type terminal oxygen reductase from a distinct parental clade. The lack of complete pathways for biosynthesis of histidine, valine, leucine, isoleucine, lysine and proline pre-determines the reliance on external sources of amino acids and hence the lifestyle of these organisms as scavengers of proteinaceous compounds from surrounding microbial community members. In contrast to earlier metagenomics-based assumptions, isolates were S-layer-deficient, non-motile, non-methylotrophic and devoid of iron-oxidation despite the abundance of methylotrophy substrates and ferrous iron in situ, which underlines the essentiality of experimental validation of bioinformatic predictions.
Collapse
Affiliation(s)
- Olga V Golyshina
- School of Biological Sciences, Bangor University, Deiniol Rd, Bangor, LL57 2UW, UK
| | - Ilya V Kublanov
- Winogradsky Institute of Microbiology, Research Center for Biotechnology Russian Academy of Sciences, Prospect 60-Letiya Oktyabrya 7/2, Moscow, 117312, Russia
| | - Hai Tran
- School of Biological Sciences, Bangor University, Deiniol Rd, Bangor, LL57 2UW, UK
| | | | - Heinrich Lünsdorf
- Central Unit of Microscopy, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig, 38124, Germany
| | - Taras Y Nechitaylo
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, Jena, 07745, Germany
| | - Sergey N Gavrilov
- Winogradsky Institute of Microbiology, Research Center for Biotechnology Russian Academy of Sciences, Prospect 60-Letiya Oktyabrya 7/2, Moscow, 117312, Russia
| | | | - Peter N Golyshin
- School of Biological Sciences, Bangor University, Deiniol Rd, Bangor, LL57 2UW, UK
| |
Collapse
|
19
|
Graf S, Fedotovskaya O, Kao WC, Hunte C, Ädelroth P, Bott M, von Ballmoos C, Brzezinski P. Rapid Electron Transfer within the III-IV Supercomplex in Corynebacterium glutamicum. Sci Rep 2016; 6:34098. [PMID: 27682138 PMCID: PMC5040959 DOI: 10.1038/srep34098] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/07/2016] [Indexed: 12/20/2022] Open
Abstract
Complex III in C. glutamicum has an unusual di-heme cyt. c1 and it co-purifies with complex IV in a supercomplex. Here, we investigated the kinetics of electron transfer within this supercomplex and in the cyt. aa3 alone (cyt. bc1 was removed genetically). In the reaction of the reduced cyt. aa3 with O2, we identified the same sequence of events as with other A-type oxidases. However, even though this reaction is associated with proton uptake, no pH dependence was observed in the kinetics. For the cyt. bc1-cyt. aa3 supercomplex, we observed that electrons from the c-hemes were transferred to CuA with time constants 0.1–1 ms. The b-hemes were oxidized with a time constant of 6.5 ms, indicating that this electron transfer is rate-limiting for the overall quinol oxidation/O2 reduction activity (~210 e−/s). Furthermore, electron transfer from externally added cyt. c to cyt. aa3 was significantly faster upon removal of cyt. bc1 from the supercomplex, suggesting that one of the c-hemes occupies a position near CuA. In conclusion, isolation of the III-IV-supercomplex allowed us to investigate the kinetics of electron transfer from the b-hemes, via the di-heme cyt. c1 and heme a to the heme a3-CuB catalytic site of cyt. aa3.
Collapse
Affiliation(s)
- Simone Graf
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.,Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Olga Fedotovskaya
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Wei-Chun Kao
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Carola Hunte
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, D-52425 Jülich, Germany
| | - Christoph von Ballmoos
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
20
|
Klimchuk OI, Dibrova DV, Mulkidjanian AY. Phylogenomic analysis identifies a sodium-translocating decarboxylating oxidoreductase in thermotogae. BIOCHEMISTRY (MOSCOW) 2016; 81:481-90. [DOI: 10.1134/s0006297916050059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Real-time kinetics of electrogenic Na(+) transport by rhodopsin from the marine flavobacterium Dokdonia sp. PRO95. Sci Rep 2016; 6:21397. [PMID: 26864904 PMCID: PMC4749991 DOI: 10.1038/srep21397] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/08/2016] [Indexed: 12/14/2022] Open
Abstract
Discovery of the light-driven sodium-motive pump Na+-rhodopsin (NaR) has initiated studies of the molecular mechanism of this novel membrane-linked energy transducer. In this paper, we investigated the photocycle of NaR from the marine flavobacterium Dokdonia sp. PRO95 and identified electrogenic and Na+-dependent steps of this cycle. We found that the NaR photocycle is composed of at least four steps: NaR519 + hv → K585 → (L450↔M495) → O585 → NaR519. The third step is the only step that depends on the Na+ concentration inside right-side-out NaR-containing proteoliposomes, indicating that this step is coupled with Na+ binding to NaR. For steps 2, 3, and 4, the values of the rate constants are 4×104 s–1, 4.7 × 103 M–1 s–1, and 150 s–1, respectively. These steps contributed 15, 15, and 70% of the total membrane electric potential (Δψ ~ 200 mV) generated by a single turnover of NaR incorporated into liposomes and attached to phospholipid-impregnated collodion film. On the basis of these observations, a mechanism of light-driven Na+ pumping by NaR is suggested.
Collapse
|
22
|
Identification and Characterization of the Novel Subunit CcoM in the cbb3₃Cytochrome c Oxidase from Pseudomonas stutzeri ZoBell. mBio 2016; 7:e01921-15. [PMID: 26814183 PMCID: PMC4742706 DOI: 10.1128/mbio.01921-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cytochrome c oxidases (CcOs), members of the heme-copper containing oxidase (HCO) superfamily, are the terminal enzymes of aerobic respiratory chains. The cbb3-type cytochrome c oxidases (cbb3-CcO) form the C-family and have only the central catalytic subunit in common with the A- and B-family HCOs. In Pseudomonas stutzeri, two cbb3 operons are organized in a tandem repeat. The atomic structure of the first cbb3 isoform (Cbb3-1) was determined at 3.2 Å resolution in 2010 (S. Buschmann, E. Warkentin, H. Xie, J. D. Langer, U. Ermler, and H. Michel, Science 329:327–330, 2010, http://dx.doi.org/10.1126/science.1187303). Unexpectedly, the electron density map of Cbb3-1 revealed the presence of an additional transmembrane helix (TMH) which could not be assigned to any known protein. We now identified this TMH as the previously uncharacterized protein PstZoBell_05036, using a customized matrix-assisted laser desorption ionization (MALDI)–tandem mass spectrometry setup. The amino acid sequence matches the electron density of the unassigned TMH. Consequently, the protein was renamed CcoM. In order to identify the function of this new subunit in the cbb3 complex, we generated and analyzed a CcoM knockout strain. The results of the biochemical and biophysical characterization indicate that CcoM may be involved in CcO complex assembly or stabilization. In addition, we found that CcoM plays a role in anaerobic respiration, as the ΔCcoM strain displayed altered growth rates under anaerobic denitrifying conditions. The respiratory chain has recently moved into the focus for drug development against prokaryotic human pathogens, in particular, for multiresistant strains (P. Murima, J. D. McKinney, and K. Pethe, Chem Biol 21:1423–1432, 2014, http://dx.doi.org/10.1016/j.chembiol.2014.08.020). cbb3-CcO is an essential enzyme for many different pathogenic bacterial species, e.g., Helicobacter pylori, Vibrio cholerae, and Pseudomonas aeruginosa, and represents a promising drug target. In order to develop compounds targeting these proteins, a detailed understanding of the molecular architecture and function is required. Here we identified and characterized a novel subunit, CcoM, in the cbb3-CcO complex and thereby completed the crystal structure of the Cbb3 oxidase from Pseudomonas stutzeri, a bacterium closely related to the human pathogen Pseudomonas aeruginosa.
Collapse
|
23
|
Castro PJ, Silva AF, Marreiros BC, Batista AP, Pereira MM. Respiratory complex I: A dual relation with H(+) and Na(+)? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:928-37. [PMID: 26711319 DOI: 10.1016/j.bbabio.2015.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/10/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
Abstract
Respiratory complex I couples NADH:quinone oxidoreduction to ion translocation across the membrane, contributing to the buildup of the transmembrane difference of electrochemical potential. H(+) is well recognized to be the coupling ion of this system but some studies suggested that this role could be also performed by Na(+). We have previously observed NADH-driven Na(+) transport opposite to H(+) translocation by menaquinone-reducing complexes I, which indicated a Na(+)/H(+) antiporter activity in these systems. Such activity was also observed for the ubiquinone-reducing mitochondrial complex I in its deactive form. The relation of Na(+) with complex I may not be surprising since the enzyme has three subunits structurally homologous to bona fide Na(+)/H(+) antiporters and translocation of H(+) and Na(+) ions has been described for members of most types of ion pumps and transporters. Moreover, no clearly distinguishable motifs for the binding of H(+) or Na(+) have been recognized yet. We noticed that in menaquinone-reducing complexes I, less energy is available for ion translocation, compared to ubiquinone-reducing complexes I. Therefore, we hypothesized that menaquinone-reducing complexes I perform Na(+)/H(+) antiporter activity in order to achieve the stoichiometry of 4H(+)/2e(-). In agreement, the organisms that use ubiquinone, a high potential quinone, would have kept such Na(+)/H(+) antiporter activity, only operative under determined conditions. This would imply a physiological role(s) of complex I besides a simple "coupling" of a redox reaction and ion transport, which could account for the sophistication of this enzyme. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
- Paulo J Castro
- Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Andreia F Silva
- Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Bruno C Marreiros
- Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Ana P Batista
- Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal.
| |
Collapse
|
24
|
Banciu HL, Muntyan MS. Adaptive strategies in the double-extremophilic prokaryotes inhabiting soda lakes. Curr Opin Microbiol 2015; 25:73-9. [PMID: 26025020 DOI: 10.1016/j.mib.2015.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/27/2015] [Accepted: 05/01/2015] [Indexed: 10/23/2022]
Abstract
Haloalkaliphiles are double extremophilic organisms thriving both at high salinity and alkaline pH. Although numerous haloalkaliphilic representatives have been identified among Archaea and Bacteria over the past 15 years, the adaptations underlying their prosperity at haloalkaline conditions are scarcely known. A multi-level adaptive strategy was proposed to occur in haloalkaliphilic organisms isolated from saline alkaline and soda environments including adjustments in the cell wall structure, plasma membrane lipid composition, membrane transport systems, bioenergetics, and osmoregulation. Isolation of chemolithoautotrophic sulfur-oxidizing γ-Proteobacteria from soda lakes allowed the elucidation of the structural and physiological differences between haloalkaliphilic (prefer NaCl) and natronophilic (prefer NaHCO3/Na2CO3, i.e. soda) microbes.
Collapse
Affiliation(s)
- Horia Leonard Banciu
- Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology Center, Babeş-Bolyai University, 400271 Cluj-Napoca, Romania; Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 400006 Cluj-Napoca, Romania.
| | - Maria S Muntyan
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow 119991, Russia
| |
Collapse
|