1
|
Liu W, Chung K, Yu S, Lee LP. Nanoplasmonic biosensors for environmental sustainability and human health. Chem Soc Rev 2024; 53:10491-10522. [PMID: 39192761 DOI: 10.1039/d3cs00941f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Monitoring the health conditions of the environment and humans is essential for ensuring human well-being, promoting global health, and achieving sustainability. Innovative biosensors are crucial in accurately monitoring health conditions, uncovering the hidden connections between the environment and human well-being, and understanding how environmental factors trigger autoimmune diseases, neurodegenerative diseases, and infectious diseases. This review evaluates the use of nanoplasmonic biosensors that can monitor environmental health and human diseases according to target analytes of different sizes and scales, providing valuable insights for preventive medicine. We begin by explaining the fundamental principles and mechanisms of nanoplasmonic biosensors. We investigate the potential of nanoplasmonic techniques for detecting various biological molecules, extracellular vesicles (EVs), pathogens, and cells. We also explore the possibility of wearable nanoplasmonic biosensors to monitor the physiological network and healthy connectivity of humans, animals, plants, and organisms. This review will guide the design of next-generation nanoplasmonic biosensors to advance sustainable global healthcare for humans, the environment, and the planet.
Collapse
Affiliation(s)
- Wenpeng Liu
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| | - Kyungwha Chung
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Subin Yu
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| | - Luke P Lee
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
2
|
Chen X, Xiang Q, Yan S, Wang Y, Su N, Yang X, Gao M, Zhang X. Simultaneous Multi-miRNA Detection in Urinary Small Extracellular Vesicles Using Target-Triggered Locked Hairpin DNA-Functionalized Au Nanoprobes for Systemic Lupus Erythematosus Diagnosis. Anal Chem 2024; 96:16370-16378. [PMID: 39363542 DOI: 10.1021/acs.analchem.4c03794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by multiorgan involvement and complex clinical manifestations, leading to cumbersome diagnostic processes. MicroRNAs (miRNAs) in small extracellular vesicles (sEVs) have emerged as promising biomarkers for liquid biopsy. Herein, we constructed a simple multi-miRNA detection platform based on target-triggered locked hairpin DNA-functionalized Au nanoprobes (AuNP@LH) as a simple and noninvasive tool for the diagnosis and classification of SLE. The nanoprobes were prepared by modifying locked hairpin DNA designed for target miRNAs on gold nanoparticles. In the presence of target miRNAs, target-triggered hairpin assembly amplification was induced, and then fluorophore-labeled bolt DNA was released, resulting in a fluorescence signal responsive to miRNA concentration. Benefiting from the enzyme-free amplification strategy, the limits of detection (LOD) of three miRNA biomarkers for SLE were 19 pM for microRNA-146a, 66 pM for microRNA-29c, and 19 pM for microRNA-150. The proposed probes have been successfully applied to simultaneously detect multiple miRNAs in urinary sEVs from patients diagnosed with SLE and healthy controls, which exhibited good practicability in SLE diagnosis with the area under curve (AUC) of the receiver characteristic curve reaching 1.00. Furthermore, SLE patients with different disease severity can be differentiated with 81.2% accuracy. Predictably, with the advantages of low cost, rapidity, high sensitivity, and noninvasiveness, our multi-miRNA detection platform is a potential tool for multiple miRNA analysis and related clinical applications.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Qingyong Xiang
- Department of Rheumatology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Shaohan Yan
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Yingyu Wang
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai 200040, China
| | - Ning Su
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Xue Yang
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai 200040, China
| | - Mingxia Gao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Xiangmin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Zhang F, Yang N, Zhou F, Qiao R, Wan Y, Liu R, Yang S, Gu M, Xu H, Dong X, Wang G. Orthogonally Sequential Activation of Self-Powered DNAzymes Cascade for Reliable Monitoring of mRNA in Living Cells. Adv Healthc Mater 2024; 13:e2303074. [PMID: 38197479 DOI: 10.1002/adhm.202303074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/06/2023] [Indexed: 01/11/2024]
Abstract
Ratiometric imaging of tumor-related mRNA is significant, yet spatiotemporally resolved regulation on the ratiometric signals to avoid non-specific activation in the living cells remains challenging. Herein, orthogonally sequential activation of concatenated DNAzyme circuits is, first, developed for Spatio Temporally regulated Amplified and Ratiometric (STAR) imaging of TK1 mRNA inside living cells with enhanced reliability and accuracy. By virtue of the synthesized CuO/MnO2 nanosheets, orthogonally regulated self-powered DNAzyme circuits are operated precisely in living cells, sequentially activating two-layered DNAzyme cleavage reactions to achieve the two ratiometric signal readouts successively for reliable monitoring of low-abundance mRNA in living cells. It is found that the ratiometric signals can only be derived from mRNA over-expressed tumor cells, also irrespective of probes' delivery concentration. The presented approach could provide new insight into orthogonally regulated ratiometric systems for reliable imaging of specific biomarkers in living cells, benefiting disease precision diagnostics.
Collapse
Affiliation(s)
- Fuqiang Zhang
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, Ministry of Education Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Nan Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Fu Zhou
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, Ministry of Education Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Ruonan Qiao
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, Ministry of Education Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Yifei Wan
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, Ministry of Education Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Rong Liu
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, Ministry of Education Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Suwan Yang
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, Ministry of Education Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Mingzheng Gu
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, Ministry of Education Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Huae Xu
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, 210009, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Guangfeng Wang
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, Ministry of Education Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
4
|
Han D, Ren XH, He XY, Chen XS, Pang X, Cheng SX. Aptamer/Peptide-Functionalized Nanoprobe for Detecting Multiple miRNAs in Circulating Malignant Cells to Study Tumor Heterogeneity. ACS Biomater Sci Eng 2023; 9:5832-5842. [PMID: 37679307 DOI: 10.1021/acsbiomaterials.3c01055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Identification of diverse biomarkers in heterogenic circulating malignant cells (CMCs) such as circulating tumor cells (CTCs) and circulating tumor endothelial cells (CTECs) has crucial significance in tumor diagnosis. However, it remains a substantial challenge to achieve in situ detection of multiple miRNA markers in living cells in blood. Herein, we demonstrate that an aptamer/peptide-functionalized vector can deliver molecular beacons into targeted living CMCs in peripheral blood of patients for in situ detection of multiple cancer biomarkers, including miRNA-21 (miR-21) and miRNA-221 (miR-221). Based on miR-21 and miR-221 levels, heterogenic CMCs are identified for both nondistant metastatic and distant metastatic cancer patients. CMCs from nondistant metastatic and distant metastatic cancer patients exhibit similar miR-21 levels, while the miR-221 level in CMCs of the distant metastatic cancer patient is higher than that of the nondistant metastatic cancer patient. With the capability to realize precise probing of multiple intracellular biomarkers in living CMCs at the single-cell resolution, the nanoprobe can reveal the tumor heterogeneity and provide useful information for diagnosis and prognosis. The nanoprobe we developed would accelerate the progress toward noninvasive precise cancer diagnosis.
Collapse
Affiliation(s)
- Di Han
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China
- School of Life Sciences and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiao-He Ren
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xiao-Yan He
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Xue-Si Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
5
|
Mirkin CA, Petrosko SH. Inspired Beyond Nature: Three Decades of Spherical Nucleic Acids and Colloidal Crystal Engineering with DNA. ACS NANO 2023; 17:16291-16307. [PMID: 37584399 DOI: 10.1021/acsnano.3c06564] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The conception, synthesis, and invention of a nanostructure, now known as the spherical nucleic acid, or SNA, in 1996 marked the advent of a new field of chemistry. Over the past three decades, the SNA and its analogous anisotropic equivalents have provided an avenue for us to think about some of the most fundamental concepts in chemistry in new ways and led to technologies that are significantly impacting fields from medicine to materials science. A prime example is colloidal crystal engineering with DNA, the framework for using SNAs and related structures to synthesize programmable matter. Herein, we document the evolution of this framework, which was initially inspired by nature, and describe how it now allows researchers to chart paths to move beyond it, as programmable matter with real-world significance is envisioned and created.
Collapse
Affiliation(s)
- Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Sarah Hurst Petrosko
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Nixon SR, Phukan IK, Armijo BJ, Ebrahimi SB, Samanta D. Proximity-Driven DNA Nanosensors. ECS SENSORS PLUS 2023; 2:030601. [PMID: 37424706 PMCID: PMC10323711 DOI: 10.1149/2754-2726/ace068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/12/2023] [Indexed: 07/11/2023]
Abstract
In proximity-driven sensing, interactions between a probe and an analyte produce a detectable signal by causing a change in distance of two probe components or signaling moieties. By interfacing such systems with DNA-based nanostructures, platforms that are highly sensitive, specific, and programmable can be designed. In this Perspective, we delineate the advantages of using DNA building blocks in proximity-driven nanosensors and provide an overview of recent progress in the field, from sensors that rapidly detect pesticides in food to probes that identify rare cancer cells in blood. We also discuss current challenges and identify key areas that need further development.
Collapse
Affiliation(s)
- Sara R. Nixon
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Imon Kanta Phukan
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Brian J. Armijo
- Department of Chemistry, Southwestern University, Georgetown, TX 78626, United States of America
| | - Sasha B. Ebrahimi
- Drug Product Development—Steriles, GlaxoSmithKline, Collegeville, PA 19426, United States of America
| | - Devleena Samanta
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| |
Collapse
|
7
|
Wang S, Zhang J, Zhou H, Lu YC, Jin X, Luo L, You J. The role of protein corona on nanodrugs for organ-targeting and its prospects of application. J Control Release 2023; 360:15-43. [PMID: 37328008 DOI: 10.1016/j.jconrel.2023.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Nowadays, nanodrugs become a hotspot in the high-end medical field. They have the ability to deliver drugs to reach their destination more effectively due to their unique properties and flexible functionalization. However, the fate of nanodrugs in vivo is not the same as those presented in vitro, which indeed influenced their therapeutic efficacy in vivo. When entering the biological organism, nanodrugs will first come into contact with biological fluids and then be covered by some biomacromolecules, especially proteins. The proteins adsorbed on the surface of nanodrugs are known as protein corona (PC), which causes the loss of prospective organ-targeting abilities. Fortunately, the reasonable utilization of PC may determine the organ-targeting efficiency of systemically administered nanodrugs based on the diverse expression of receptors on cells in different organs. In addition, the nanodrugs for local administration targeting diverse lesion sites will also form unique PC, which plays an important role in the therapeutic effect of nanodrugs. This article introduced the formation of PC on the surface of nanodrugs and summarized the recent studies about the roles of diversified proteins adsorbed on nanodrugs and relevant protein for organ-targeting receptor through different administration pathways, which may deepen our understanding of the role that PC played on organ-targeting and improve the therapeutic efficacy of nanodrugs to promote their clinical translation.
Collapse
Affiliation(s)
- Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Yi Chao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Xizhi Jin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China; Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, PR China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.
| |
Collapse
|
8
|
Umapathy VR, Natarajan PM, Swamikannu B. Review of the Role of Nanotechnology in Overcoming the Challenges Faced in Oral Cancer Diagnosis and Treatment. Molecules 2023; 28:5395. [PMID: 37513267 PMCID: PMC10385509 DOI: 10.3390/molecules28145395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Throughout the world, oral cancer is a common and aggressive malignancy with a high risk of morbidity, mortality, and recurrence. The importance of early detection in cancer prevention and disease treatment cannot be overstated. Conventional therapeutic strategies have minor difficulties but considerable side effects and unfavourable consequences in clinical applications. Hence, there is a requirement for effective ways for early detection and treatment of oral cancer. At present, numerous forms of nanoparticles have piqued researchers' interest as a potentially useful tool for diagnostic probes and medicinal devices. Because of their inherent physicochemical properties and customizable surface modification, they are able to circumvent some of restrictions and accomplish the intended diagnostic and therapeutic impact. Nanotechnology is a unique field that has revolutionised the industry and is paving the way for new treatments for oral cancer. It can help with a better diagnosis with less harmful substances and is setting current guidelines for treatment. The use of nanotechnology in cancer diagnosis, therapy, and care improves clinical practise dramatically. The different types of nanoparticles that have been developed for the diagnosis and therapy of oral cancers will be covered in this study. The difficulties and potential uses of nanoparticles in the treatment and diagnosis of oral cancer are then highlighted. In order to emphasise existing difficulties and potential remedies for oral cancer, a prospective view of the future is also provided.
Collapse
Affiliation(s)
- Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Dr. M.G.R. Educational and Research Institute, Chennai 600107, Tamil Nadu, India
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Centre of Medical and Bio-Allied Health Sciences and Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Bhuminathan Swamikannu
- Department of Prosthodontics, Sree Balaji Dental College and Hospital, BIHER University, Pallikaranai, Chennai 600100, Tamil Nadu, India
| |
Collapse
|
9
|
Gu M, Yi X, Xiao Y, Zhang J, Lin M, Xia F. Programming the dynamic range of nanobiosensors with engineering poly-adenine-mediated spherical nucleic acid. Talanta 2023; 256:124278. [PMID: 36681039 DOI: 10.1016/j.talanta.2023.124278] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
Spherical nucleic acid (SNA) conjugates consisting of gold cores functionalized with a densely packed DNA shells are of great significance in the field of medical detection and intracellular imaging. Especially, poly adenine (polyA)-mediated SNAs can improve the controllability and reproducibility of DNA assembly on the nanointerface, showing the tunable hybridization ability. However, due to the physics of single-site binding, the biosensor based on SNA usually exhibits a dynamic range spanning a fixed 81-fold change in target concentration, which limits its application in disease monitoring. To address this problem, we report a tri-block DNA-based approach to assemble SNA for nucleic acid detection based on structure-switching mechanism with programmable dynamic range. The tri-block DNA is a FAM-labeled stem-loop structure, which contains three blocks: polyA block as an anchoring block for tunable surface density, stem block with different GC base pair content for varying the structure stability, and the fixed loop block for target recognition. We find that varying the polyA block, the reaction temperature, and the GC base pair, SNA shows different target binding affinity and detection limit but with normally 81-fold dynamic range. We can extend the dynamic range to 1000-fold by using the combination of two SNAs with different affinity, and narrow the dynamic range to 5-fold by sequestration mechanism. Furthermore, the tunable SNA enables sensitive detection of mRNA in cells. Given its tunable dynamic range, such nanobiosensor based on SNA offers new possibility for various biomedical and clinical applications.
Collapse
Affiliation(s)
- Menghan Gu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Xiaoqing Yi
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Yucheng Xiao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jian Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Meihua Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China.
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
10
|
Zhu D, Li X, Zhu Y, Wei Q, Hu Y, Su S, Chao J, Wang L, Weng L. Spatiotemporal Monitoring of Subcellular mRNAs In Situ via Polyadenine-Mediated Dual-Color Sticky Flares. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15250-15259. [PMID: 36941806 DOI: 10.1021/acsami.3c01242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Spatiotemporal monitoring of multiple low-abundance messenger RNAs (mRNAs) is vitally important for the diagnosis and pathologic analysis of cancer. However, it remains a clinical challenge to monitor and track multiple mRNAs location simultaneously in situ at subcellular level with high efficiency. Herein, we proposed polyA-mediated dual-color sticky flares for simultaneous imaging of two kinds of intracellular mRNA biomarkers. Two kinds of fluorescent DNA specific for GalNac-T mRNA and c-Myc mRNA were functionalized onto gold nanoparticles (AuNPs) through efficient polyadenine (polyA) attachment. By tuning polyA length, the lateral spacing and densities of DNA on AuNPs could be precisely engineered. Compared to the traditional thio-DNA-modified nanoprobes, the uniformity, detection sensitivity, and response kinetics of sticky flares were greatly improved, which enables live-cell imaging of mRNAs with enhanced efficiency. With a sticky-end design, the fluorescent DNA could dynamically trace mRNAs after binding with target mRNAs, which realized spatiotemporal monitoring of subcellular mRNAs in situ. Compared to one target mRNA imaging mode, the multiple target imaging mode allows more accurate diagnosis of cancer. Furthermore, the proposed polyA-mediated dual-color sticky flares exhibit excellent cell entry efficiency and low cytotoxicity with a low-cost and simple assembling process, which provide a pivotal tool for multiple targets imaging in living cells.
Collapse
Affiliation(s)
- Dan Zhu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xiaojian Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yu Zhu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Qingyun Wei
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yang Hu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Shao Su
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jie Chao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
11
|
Luo L, Wang Z. Negatively charged Cu 1.33S nanochains: endocytic pathway, photothermal therapy and toxic effect in vivo. NANOSCALE ADVANCES 2023; 5:1706-1713. [PMID: 36926579 PMCID: PMC10012857 DOI: 10.1039/d2na00776b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Negatively charged nanomaterials have good biocompatibility and low cytotoxicity, but the efficiency of their entry into cells is relatively low. Thus, striking a balance between cell transport efficiency and cytotoxicity is a challenging problem in the field of nanomedicine. In this work, negatively charged Cu1.33S nanochains have shown a higher cellular uptake level in 4T1 cells than Cu1.33S nanoparticles with a similar diameter and surface charge. Inhibition experiments indicate that the cellular uptake of the nanochains depends principally on the lipid-raft protein (i.e. caveolin-1) mediated pathway, although the role of clathrin cannot be ruled out. Caveolin-1 can provide short-range attraction at the membrane interface. Furthermore, by using biochemical analysis, blood routine examination and histological evaluation on healthy Sprague Dawley rats, it is found that the Cu1.33S nanochains have no obvious toxic effect. The Cu1.33S nanochains have an effective photothermal therapy effect of tumor ablation in vivo under low injection dosage and laser intensity. As for the best performing group (20 μg + 1 W cm-2), the temperature of the tumor site rapidly increases within the initial 3 min and rises to a plateau of 79 °C (ΔT = 46 °C) at 5 min. These results reveal the feasibility of the Cu1.33S nanochains as a photothermal agent.
Collapse
Affiliation(s)
- Le Luo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241000 People's Republic of China
| | - Zhenghua Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241000 People's Republic of China
| |
Collapse
|
12
|
Spherical nucleic acids-based biosensors for cancer biomarkers detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Wu K, Yao C, Yang D, Liu D. A functional DNA nanosensor for highly sensitive and selective imaging of ClO− in atherosclerotic plaques. Biosens Bioelectron 2022; 209:114273. [DOI: 10.1016/j.bios.2022.114273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 04/08/2022] [Indexed: 12/14/2022]
|
14
|
Polymer–Metal Composite Healthcare Materials: From Nano to Device Scale. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6080218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Metals have been investigated as biomaterials for a wide range of medical applications. At nanoscale, some metals, such as gold nanoparticles, exhibit plasmonics, which have motivated researchers’ focus on biosensor development. At the device level, some metals, such as titanium, exhibit good physical properties, which could allow them to act as biomedical implants for physical support. Despite these attractive features, the non-specific delivery of metallic nanoparticles and poor tissue–device compatibility have greatly limited their performance. This review aims to illustrate the interplay between polymers and metals, and to highlight the pivotal role of polymer–metal composite/nanocomposite healthcare materials in different biomedical applications. Here, we revisit the recent plasmonic engineered platforms for biomolecules detection in cell-free samples and highlight updated nanocomposite design for (1) intracellular RNA detection, (2) photothermal therapy, and (3) nanomedicine for neurodegenerative diseases, as selected significant live cell–interactive biomedical applications. At the device scale, the rational design of polymer–metallic medical devices is of importance for dental and cardiovascular implantation to overcome the poor physical load transfer between tissues and devices, as well as implant compatibility under a dynamic fluidic environment, respectively. Finally, we conclude the treatment of these innovative polymer–metal biomedical composite designs and provide a future perspective on the aforementioned research areas.
Collapse
|
15
|
Aptamer-mediated DNA concatemer functionalized magnetic nanoparticles for reversible capture and release of circulating tumor cells. Colloids Surf B Biointerfaces 2022; 218:112733. [DOI: 10.1016/j.colsurfb.2022.112733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022]
|
16
|
Lee S, Godhulayyagari S, Nguyen ST, Lu JK, Ebrahimi SB, Samanta D. Signal Transduction Strategies for Analyte Detection Using DNA-Based Nanostructures. Angew Chem Int Ed Engl 2022; 61:e202202211. [PMID: 35307938 DOI: 10.1002/anie.202202211] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Indexed: 12/14/2022]
Abstract
The use of DNA-based nanostructures as probes has led to significant advances in chemical and biological sensing, allowing the detection of analytes in complex media, the understanding of fundamental biological processes, and the ability to diagnose diseases based on molecular signatures. The utility of these structures arises both from DNA's inherent ability to selectively recognize and bind a variety of chemical species and from the unique properties observed when DNA is restructured at the nanoscale. In this Minireview, we chronicle the most commonly used signal transduction strategies that have been interfaced with various DNA-based nanostructures. We discuss the types of analytes and the detection scenarios that are sought after, delineate the advantages and disadvantages of each signaling strategy, and outline the key considerations that guide the selection of each signaling method.
Collapse
Affiliation(s)
- Seungheon Lee
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Austin, TX 78712, USA
| | - Shivudu Godhulayyagari
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Austin, TX 78712, USA
| | - Shadler T Nguyen
- Department of Molecular Biosciences, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Jasmine K Lu
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Austin, TX 78712, USA
| | - Sasha B Ebrahimi
- Biopharmaceutical Product Sciences, GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, PA 19426, USA
| | - Devleena Samanta
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Austin, TX 78712, USA
| |
Collapse
|
17
|
Yu Y, Wang Z, Wu S, Zhu C, Meng X, Li C, Cheng S, Tao W, Wang F. Glutathione-Sensitive Nanoglue Platform with Effective Nucleic Acids Gluing onto Liposomes for Photo-Gene Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25126-25134. [PMID: 35608168 DOI: 10.1021/acsami.2c04022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Liposomal spherical nucleic acids possess a high density of nucleic acids, e.g., DNA, on a liposomal core. There are two approaches to conjugate DNA onto the zwitterionic liposomes, i.e., covalent and noncovalent conjugation, otherwise using cationic liposomes. However, complex and expensive DNA chemical modification methods need to seek a novel and easy-operating approach to decorating DNA onto liposomes. Inspired by the nanoparticle solution as nanoglues for gels and biological tissues, we use MnO2 nanosheets to "glue" DNA onto liposomes without DNA modification. In tumor cells with a high glutathione concentration, MnO2-based nanoglues are degraded, generating water-soluble Mn2+ ions, further "unglue" DNA (i.e., DNAzyme), and liposomes. Using the intelligent liposomal nanoglue (DNAzyme/MnO2/Lip) combining glutathione-sensitive MnO2 nanosheets, gene silencing agent DNAzyme, and photosensitizer Chlorin e6 (Ce6) in liposomes, effective photo-gene therapy was demonstrated.
Collapse
Affiliation(s)
- Yue Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Zhenfeng Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Sichen Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Chunmeng Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Xianshe Meng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Chao Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Sheng Cheng
- Instrumental Analysis Center, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Wei Tao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Feng Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| |
Collapse
|
18
|
Sensitive detection of microRNAs using polyadenine-mediated fluorescence spherical nucleic acids and a microfluidic electrokinetic signal amplification chip. J Pharm Anal 2022; 12:808-813. [PMID: 36320608 PMCID: PMC9615518 DOI: 10.1016/j.jpha.2022.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
The identification of tumor-related microRNAs (miRNAs) exhibits excellent promise for the early diagnosis of cancer and other bioanalytical applications. Therefore, we developed a sensitive and efficient biosensor using polyadenine (polyA)-mediated fluorescent spherical nucleic acid (FSNA) for miRNA analysis based on strand displacement reactions on gold nanoparticle (AuNP) surfaces and electrokinetic signal amplification (ESA) on a microfluidic chip. In this FSNA, polyA-DNA biosensor was anchored on AuNP surfaces via intrinsic affinity between adenine and Au. The upright conformational polyA-DNA recognition block hybridized with 6-carboxyfluorescein-labeled reporter-DNA, resulting in fluorescence quenching of FSNA probes induced by AuNP-based resonance energy transfer. Reporter DNA was replaced in the presence of target miRNA, leading to the recovery of reporter-DNA fluorescence. Subsequently, reporter-DNAs were accumulated and detected in the front of with Nafion membrane in the microchannel by ESA. Our method showed high selectivity and sensitivity with a limit of detection of 1.3 pM. This method could also be used to detect miRNA-21 in human serum and urine samples, with recoveries of 104.0%–113.3% and 104.9%–108.0%, respectively. Furthermore, we constructed a chip with three parallel channels for the simultaneous detection of multiple tumor-related miRNAs (miRNA-21, miRNA-141, and miRNA-375), which increased the detection efficiency. Our universal method can be applied to other DNA/RNA analyses by altering recognition sequences. FSNA assisted microfluidic chip was developed for miRNAs detection. Three different miRNAs were detected simultaneously. The excellent sensitivity and specificity were displayed toward miRNAs.
Collapse
|
19
|
Lee S, Godhulayyagari S, Nguyen ST, Lu JK, Ebrahimi SB, Samanta D. Signal Transduction Strategies for Analyte Detection Using DNA‐Based Nanostructures. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Seungheon Lee
- Department of Chemistry The University of Texas at Austin 105 E 24th Street Austin TX 78712 USA
| | - Shivudu Godhulayyagari
- Department of Chemistry The University of Texas at Austin 105 E 24th Street Austin TX 78712 USA
| | - Shadler T. Nguyen
- Department of Molecular Biosciences The University of Texas at Austin 2500 Speedway Austin TX 78712 USA
| | - Jasmine K. Lu
- Department of Chemistry The University of Texas at Austin 105 E 24th Street Austin TX 78712 USA
| | - Sasha B. Ebrahimi
- Biopharmaceutical Product Sciences GlaxoSmithKline 1250 S Collegeville Road Collegeville PA 19426 USA
| | - Devleena Samanta
- Department of Chemistry The University of Texas at Austin 105 E 24th Street Austin TX 78712 USA
| |
Collapse
|
20
|
Samanta D, Zhou W, Ebrahimi SB, Petrosko SH, Mirkin CA. Programmable Matter: The Nanoparticle Atom and DNA Bond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107875. [PMID: 34870875 DOI: 10.1002/adma.202107875] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Indexed: 05/21/2023]
Abstract
Colloidal crystal engineering with DNA has led to significant advances in bottom-up materials synthesis and a new way of thinking about fundamental concepts in chemistry. Here, programmable atom equivalents (PAEs), comprised of nanoparticles (the "atoms") functionalized with DNA (the "bonding elements"), are assembled through DNA hybridization into crystalline lattices. Unlike atomic systems, the "atom" (e.g., the nanoparticle shape, size, and composition) and the "bond" (e.g., the DNA length and sequence) can be tuned independently, yielding designer materials with unique catalytic, optical, and biological properties. In this review, nearly three decades of work that have contributed to the evolution of this class of programmable matter is chronicled, starting from the earliest examples based on gold-core PAEs, and then delineating how advances in synthetic capabilities, DNA design, and fundamental understanding of PAE-PAE interactions have led to new classes of functional materials that, in several cases, have no natural equivalent.
Collapse
Affiliation(s)
- Devleena Samanta
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Wenjie Zhou
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sasha B Ebrahimi
- Department of Chemical Engineering and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sarah Hurst Petrosko
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Department of Chemical Engineering and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
21
|
Topa J, Grešner P, Żaczek AJ, Markiewicz A. Breast cancer circulating tumor cells with mesenchymal features-an unreachable target? Cell Mol Life Sci 2022; 79:81. [PMID: 35048186 PMCID: PMC8770434 DOI: 10.1007/s00018-021-04064-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022]
Abstract
Circulating tumor cells (CTCs) mediate dissemination of solid tumors and can be an early sign of disease progression. Moreover, they show a great potential in terms of non-invasive, longitudinal monitoring of cancer patients. CTCs have been extensively studied in breast cancer (BC) and were shown to present a significant phenotypic plasticity connected with initiation of epithelial-mesenchymal transition (EMT). Apart from conferring malignant properties, EMT affects CTCs recovery rate, making a significant portion of CTCs from patients’ samples undetected. Wider application of methods and markers designed to isolate and identify mesenchymal CTCs is required to expand our knowledge about the clinical impact of mesenchymal CTCs. Therefore, here we provide a comprehensive review of clinical significance of mesenchymal CTCs in BC together with statistical analysis of previously published data, in which we assessed the suitability of a number of methods/markers used for isolation of CTCs with different EMT phenotypes, both in in vitro spike-in tests with BC cell lines, as well as clinical samples. Results of spiked-in cell lines indicate that, in general, methods not based on epithelial enrichment only, capture mesenchymal CTCs much more efficiently that CellSearch® (golden standard in CTCs detection), but at the same time are not much inferior to Cell Search®, though large variation in recovery rates of added cells among the methods is observed. In clinical samples, where additional CTCs detection markers are needed, positive epithelial-based CTCs enrichment was the most efficient in isolating CTCs with mesenchymal features from non-metastatic BC patients. From the marker side, PI3K and VIM were contributing the most to detection of CTCs with mesenchymal features (in comparison to SNAIL) in non-metastatic and metastatic BC patients, respectively. However, additional data are needed for more robust identification of markers for efficient detection of CTCs with mesenchymal features.
Collapse
Affiliation(s)
- Justyna Topa
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Debinki 1, 80-211, Gdansk, Poland
| | - Peter Grešner
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Debinki 1, 80-211, Gdansk, Poland
| | - Anna J Żaczek
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Debinki 1, 80-211, Gdansk, Poland
| | - Aleksandra Markiewicz
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Debinki 1, 80-211, Gdansk, Poland.
| |
Collapse
|
22
|
Rahimzadegan M, Mohammadi Q, Shafieian M, Sabzevari O, Hassannejad Z. Influence of reducing agents on in situ synthesis of gold nanoparticles and scaffold conductivity with emphasis on neural differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 134:112634. [PMID: 35577691 DOI: 10.1016/j.msec.2021.112634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Recorded advancements in nerve tissue regeneration have still not provided satisfactory results, and complete physiological recovery is not assured. The engineering of nanofibrous scaffolds provides a suitable platform for stem cell transplantation by controlling cell proliferation and differentiation to replace lost cells. In this study, a conductive scaffold was fabricated by in situ synthesis of gold nanoparticles (Au-NPs) on electrospun polycaprolactone/chitosan nanofibrous scaffolds and its effect on neural differentiation of mesenchymal stem cells was investigated. METHOD The conductive scaffold was prepared using polycaprolactone/chitosan solution containing soluble Au ions by electrospinning approach. In situ synthesis of Au-NPs was conducted using two reducing agents, Tetrakis(hydroxymethyl)phosphonium chloride (THPC) as an organophosphorus compound and formaldehyde, and also different reduction times. Morphology and distribution of the Au-NPs on the nanofibrous scaffolds were assessed using field emission scanning electron microscopy (FE-SEM) and energy dispersed X-ray spectroscopy (EDX). The hydrophilicity and biocompatibility of the scaffolds were determined by water contact angle and MTT assays respectively. The characterization of the scaffolds was proceeded by testing the porosity, tensile strength and electrical conductivity. Also, the scaffold's ability to support neural differentiation of mesenchymal stem cells was evaluated by immune-staining/blotting of Beta tubulin III. RESULTS & CONCLUSION FE-SEM and EDX results demonstrated the uniform distribution of Au-NPs on electrospun nanofibers made of a combination of polycaprolactone and chitosan (PCL/CS). We found that electrical conductivity of the scaffolds fabricated using THPC for 4 days and formaldehyde for 7 days was in the range of electrical conductivity of the scaffolds suitable for nerve regeneration. Contact angle measurements showed the effect of Au-NPs on the hydrophilic properties of the scaffolds, where the scaffold showed the porosity of 50% in the presence of Au-NPs. Au-NPs decoration on the scaffold decreased the mechanical properties with the ultimate strength of 14 (MPa). In vitro assessment demonstrated the potential of the fabricated conductive scaffold to enhance the attachment and proliferation of fibroblast cells, and differentiation potential of mesenchymal stem cells toward neuron-like cells. This designed scaffold holds promise as a future carrier and delivery platform in nerve tissue engineering.
Collapse
Affiliation(s)
- Milad Rahimzadegan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Qazal Mohammadi
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mehdi Shafieian
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Omid Sabzevari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran..
| | - Zahra Hassannejad
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran; Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Diana A, Setzu MD, Kokaia Z, Nat R, Maxia C, Murtas D. SmartFlare TM is a reliable method for assessing mRNA expression in single neural stem cells. World J Stem Cells 2021; 13:1918-1927. [PMID: 35069990 PMCID: PMC8727230 DOI: 10.4252/wjsc.v13.i12.1918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/11/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND One of the most challenging tasks of modern biology concerns the real-time tracking and quantification of mRNA expression in living cells. On this matter, a novel platform called SmartFlareTM has taken advantage of fluorophore-linked nanoconstructs for targeting RNA transcripts. Although fluorescence emission does not account for the spatial mRNA distribution, NanoFlare technology has grown a range of theranostic applications starting from detecting biomarkers related to diseases, such as cancer, neurodegenerative pathologies or embryonic developmental disorders.
AIM To investigate the potential of SmartFlareTM in determining time-dependent mRNA expression of prominin 1 (CD133) and octamer-binding transcription factor 4 (OCT4) in single living cells through differentiation.
METHODS Brain fragments from the striatum of aborted human fetuses aged 8 wk postconception were processed to obtain neurospheres. For the in vitro differentiation, neurospheres were gently dissociated with Accutase solution. Single cells were resuspended in a basic medium enriched with fetal bovine serum, plated on poly-L-lysine-coated glass coverslips, and grown in a lapse of time from 1 to 4 wk. Live cell mRNA detection was performed using SmartFlareTM probes (CD133, Oct4, Actin, and Scramble). All the samples were incubated at 37 °C for 24 h. For nuclear staining, Hoechst 33342 was added. SmartFlareTM CD133- and OCT4-specific fluorescence signal was assessed using a semiquantitative visual approach, taking into account the fluorescence intensity and the number of labeled cells.
RESULTS In agreement with previous PCR experiments, a unique expression trend was observed for CD133 and OCT4 genes until 7 d in vitro (DIV). Fluorescence resulted in a mixture of diffuse cytoplasmic and spotted-like pattern, also detectable in the contacting neural branches. From 15 to 30 DIV, only few cells showed a scattered fluorescent pattern, in line with the differentiation progression and coherent with mRNA downregulation of these stemness-related genes.
CONCLUSION SmartFlareTM appears to be a reliable, easy-to-handle tool for investigating CD133 and OCT4 expression in a neural stem cell model, preserving cell biological properties in anticipation of downstream experiments.
Collapse
Affiliation(s)
- Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Maria Dolores Setzu
- Department of Biomedical Sciences, University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Zaal Kokaia
- Laboratory of Stem Cells & Restorative Neurology, Lund Stem Cell Center, Lund University, Lund SE-221 84, Lund, Sweden
| | - Roxana Nat
- Institute of Neuroscience, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Cristina Maxia
- Department of Biomedical Sciences, University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Daniela Murtas
- Department of Biomedical Sciences, University of Cagliari, Monserrato 09042, Cagliari, Italy
| |
Collapse
|
24
|
Zhang B, Bai S, Chao X, Wu T, Chen Z, Cheng Z, Xiao Y, Zhang K, Bai Y. Molecularly pure miktoarm spherical nucleic acids: preparation and usage as a scaffold for abiotic intracellular catalysis. Chem Sci 2021; 12:15843-15848. [PMID: 35024108 PMCID: PMC8672723 DOI: 10.1039/d1sc04833c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/31/2021] [Indexed: 11/26/2022] Open
Abstract
We present a fullerene-based strategy that allows the synthesis of molecularly pure miktoarm spherical nucleic acids (SNAs) with diverse structures, which, with post-functionalization, could serve as efficient scaffolds for intracellular catalysis. The SNA structure promotes cell permeability, nucleic acid stability, and catalytic efficiency, making the platform ideal for in cellulo reactions. Consequently, the tris(triazole)-bearing miktoarm SNA was able to effectively mediate intracellular copper-catalyzed alkyne-azide cycloaddition at nanomolar level of copper, and facilitate the same reaction in live zebrafish.
Collapse
Affiliation(s)
- Bohan Zhang
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 China
| | - Silei Bai
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 China
| | - Xiangyu Chao
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 China
| | - Tong Wu
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 China
| | - Zhiyong Chen
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 China
| | - Zehong Cheng
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 China
| | - Yue Xiao
- School of Chemistry and Chemical Engineering, Zhengzhou University Zhengzhou Henan 450001 China
| | - Ke Zhang
- School of Chemistry and Chemical Engineering, Zhengzhou University Zhengzhou Henan 450001 China
- Department of Chemistry and Chemical Biology, Northeastern University Boston MA 02115 USA
| | - Yugang Bai
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 China
| |
Collapse
|
25
|
Bao H, Li Y, Yu C, Li X, Wang Y, Gao L, Huang J, Zhang Z. DNA-coated gold nanoparticles for tracking hepatocyte growth factor secreted by transplanted mesenchymal stem cells in pulmonary fibrosis therapy. Biomater Sci 2021; 10:368-375. [PMID: 34897301 DOI: 10.1039/d1bm01362a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The identification of paracrine factors secreted by transplanted mesenchymal stem cells (MSCs) during the treatment of idiopathic pulmonary fibrosis (IPF) is essential for understanding the role of MSCs in therapy. Herein, we report a facile and efficient strategy for in vivo tracking the secretion of hepatocyte growth factor (HGF) in MSCs during IPF therapy. In our strategy, a novel nanoflare tracer consisting of gold nanoparticles (AuNPs), complementary sequences and dye-labeled recognition sequences is developed. Briefly, the AuNPs are functionalized with oligonucleotide complementary sequences hybridized to the organic dye-labeled recognition sequences, where the organic fluorophores are in close proximity to the AuNPs. In the absence of targets, the dye and AuNPs are separated from each other, inducing the quenching of the fluorescence signal. However, in the presence of targets, the recognition sequences gradually fall off from the AuNPs, causing the fluorescence signal to rise. In brief, in vivo monitoring of the dynamic expression of HGF mRNA in transplanted MSCs during IPF therapy in the current work may provide new insight into the paracrine process of the transplanted MSCs, thereby advancing the MSC-based IPF therapy toward clinical applications.
Collapse
Affiliation(s)
- Hongying Bao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Yuxuan Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Chenggong Yu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Xiaodi Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Yujie Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Li Gao
- School of Life Science, Jiangsu University, Zhenjiang 212013, China
| | - Jie Huang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Zhijun Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
26
|
Ferreira-Gonçalves T, Ferreira D, Ferreira HA, Reis CP. Nanogold-based materials in medicine: from their origins to their future. Nanomedicine (Lond) 2021; 16:2695-2723. [PMID: 34879741 DOI: 10.2217/nnm-2021-0265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The properties of gold-based materials have been explored for centuries in several research fields, including medicine. Multiple published production methods for gold nanoparticles (AuNPs) have shown that the physicochemical and optical properties of AuNPs depend on the production method used. These different AuNP properties have allowed exploration of their usefulness in countless distinct biomedical applications over the last few years. Here we present an extensive overview of the most commonly used AuNP production methods, the resulting distinct properties of the AuNPs and the potential application of these AuNPs in diagnostic and therapeutic approaches in biomedicine.
Collapse
Affiliation(s)
- Tânia Ferreira-Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health Technologies (DFFTS), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa, 1649-003, Portugal
| | - David Ferreira
- Comprehensive Health Research Centre (CHRC), Departamento de Desporto e Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, Largo dos Colegiais, Évora, 7000, Portugal
| | - Hugo A Ferreira
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, 1749-016, Portugal
| | - Catarina P Reis
- Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health Technologies (DFFTS), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa, 1649-003, Portugal.,Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, 1749-016, Portugal
| |
Collapse
|
27
|
Petrosko SH, Coleman BD, Drout RJ, Schultz JD, Mirkin CA. Spherical Nucleic Acids: Integrating Nanotechnology Concepts into General Chemistry Curricula. JOURNAL OF CHEMICAL EDUCATION 2021; 98:3090-3099. [PMID: 35250048 PMCID: PMC8890693 DOI: 10.1021/acs.jchemed.1c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoscience and technology research offer exciting avenues to modernize undergraduate-level General Chemistry curricula. In particular, spherical nucleic acid (SNA) nanoconjugates, which behave as "programmable atom equivalents" (PAEs) in the context of colloidal crystals, are one system that one can use to reinforce foundational concepts in chemistry including matter and atoms, the Periodic Table, Lewis dot structures and the octet rule, valency and valence-shell electron-pair repulsion (VSEPR) theory, and Pauling's rules, ultimately leading to enriching discussions centered on materials chemistry and biochemistry with key implications in medicine, optics, catalysis, and other areas. These lessons connect historical and modern concepts in chemistry, relate course content to current professional and popular science topics, inspire critical and creative thinking, and spur some students to continue their science, technology, engineering, and mathematics (STEM) education and attain careers in STEM fields. Ultimately, and perhaps most importantly, these lessons may expand the pool of young students interested in chemistry by making connections to a broader group of contemporary concepts and technologies that impact their lives and enhance their view of the field. Herein, a way of teaching aspects of General Chemistry in the context of modern nanoscience concepts is introduced to instructors and curricula developers at research institutions, primarily undergraduate institutions, and community colleges worldwide.
Collapse
Affiliation(s)
- Sarah Hurst Petrosko
- Department of Chemistry and International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Benjamin D Coleman
- Department of Chemistry and International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Riki J Drout
- Department of Chemistry and International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Jonathan D Schultz
- Department of Chemistry and International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| |
Collapse
|
28
|
Yang CS, Kim IH, Chae HD, Kim DD, Jeon CH. Detection of Circulating Gastrointestinal Cancer Cells in Conditionally Reprogrammed Cell Culture. In Vivo 2021; 35:1515-1520. [PMID: 33910829 DOI: 10.21873/invivo.12404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIM The aim of this study was to detect circulating tumor cells (CTC) in the peripheral blood of gastrointestinal cancer patients using conditionally reprogrammed cell (CRC) culture. MATERIALS AND METHODS We confirmed the sensitivity of the CRC culture method. Five ml of blood were obtained from 81 cancer patients (56 colorectal and 25 gastric). The collected mononuclear cells were cultured for 4 weeks in the CRC condition. Finally, cultured cells were characterized by RT-PCR for the expression of hTERT and MAGE A1-6 mRNA. RESULTS The CRC method had a CTC detection limit of 6 cells for gastric cancer cells. After culture of 81 blood specimens, 38 formed visible cells, including 5 colonies. Among the 38 cells, 13 were hTERT positive and 4 were MAGE A1-6 positive. The final CTC detection rate was 16.0%. CONCLUSION The CRC culture may potentially be used to evaluate the metastatic cancer cells in the circulation.
Collapse
Affiliation(s)
- Chun-Seok Yang
- Department of General Surgery, Medical School, Daegu Catholic University Medical Center, Daegu, Republic of Korea
| | - In-Hwan Kim
- Department of General Surgery, Medical School, Daegu Catholic University Medical Center, Daegu, Republic of Korea
| | - Hyun-Dong Chae
- Department of General Surgery, Medical School, Daegu Catholic University Medical Center, Daegu, Republic of Korea
| | - Dae-Dong Kim
- Department of General Surgery, Medical School, Yonsei University, Seoul, Republic of Korea
| | - Chang-Ho Jeon
- Department of Laboratory Medicine, Medical School, Daegu Catholic University Medical Center, Daegu, Republic of Korea
| |
Collapse
|
29
|
Alexaki K, Giust D, Kyriazi ME, El-Sagheer AH, Brown T, Muskens OL, Kanaras AG. A DNA sensor based on upconversion nanoparticles and two-dimensional dichalcogenide materials. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-020-2023-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractWe demonstrate the fabrication of a new DNA sensor that is based on the optical interactions occurring between oligonucleotide-coated NaYF4:Yb3+;Er3+ upconversion nanoparticles and the two-dimensional dichalcogenide materials, MoS2 and WS2. Monodisperse upconversion nanoparticles were functionalized with single-stranded DNA endowing the nanoparticles with the ability to interact with the surface of the two-dimensional materials via van der Waals interactions leading to subsequent quenching of the upconversion fluorescence. By contrast, in the presence of a complementary oligonucleotide target and the formation of double-stranded DNA, the upconversion nanoparticles could not interact with MoS2 and WS2, thus retaining their inherent fluorescence properties. Utilizing this sensor we were able to detect target oligonucleotides with high sensitivity and specificity whilst reaching a concentration detection limit as low as 5 mol·L−1, within minutes.
Collapse
|
30
|
Takehana S, Murata Y, Jo JI, Tabata Y. Complexation design of cationized gelatin and molecular beacon to visualize intracellular mRNA. PLoS One 2021; 16:e0245899. [PMID: 33493232 PMCID: PMC7833158 DOI: 10.1371/journal.pone.0245899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
The objective of this study is to prepare cationized gelatin-molecular beacon (MB) complexes for the visualization of intracellular messenger RNA (mRNA). The complexes were prepared from cationized gelatins with different extents of cationization and different mixing ratios of MB to cationized gelatin. The apparent size of complexes was almost similar, while the zeta potential was different among the complexes. Irrespective of the preparation conditions, the complexes had a sequence specificity against the target oligonucleotides in hybridization. The cytotoxicity and the amount of complexes internalized into cells increased with an increase in the cationization extent and the concentration of cationized gelatin. After the incubation with complexes prepared from cationized gelatin with the highest extent of cationization and at mixing ratios of 10 and 20 pmole MB/μg cationized gelatin, a high fluorescent intensity was detected. On the other hand, the complex prepared with the mixing ratio at 20 pmole/μg did not show any cytotoxicity. The complex was the most effective to visualize the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA endogenously present. In addition, even for enhanced green fluorescent protein (EGFP) mRNA exogenously transfected, the complex permitted to effectively detect it as well. It is concluded that both the endogenous and exogenous mRNA can be visualized in living cells by use of cationized gelatin-MB complexes designed.
Collapse
Affiliation(s)
- Sho Takehana
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yuki Murata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jun-ichiro Jo
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
31
|
Liu M, Wang F, Zhang X, Mao X, Wang L, Tian Y, Fan C, Li Q. Tracking endocytosis and intracellular distribution of spherical nucleic acids with correlative single-cell imaging. Nat Protoc 2020; 16:383-404. [PMID: 33288954 DOI: 10.1038/s41596-020-00420-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 09/22/2020] [Indexed: 11/09/2022]
Abstract
A comprehensive understanding of interactions between nanoparticles (NPs) and biological components is critical to the clinical application of NPs and nanomedicine. Here we provide a step-by-step correlative imaging approach to investigate plasmonic NPs of different aggregation states at the single-cell level. Traceable spherical nucleic acids (SNAs) are fabricated by decorating 50-nm spherical gold NPs with fluorophore-labeled DNA, serving as dually emissive (fluorescent and plasmonic) NPs. The in situ correlative imaging with dark-field microscopy (DFM) and fluorescence microscopy (FM) reveals intracellular distribution of SNAs, whereas DFM combined with scanning electron microscopy (SEM) allows semi-quantification of SNA clustering states in solution. The imaging data are analyzed by ImageJ and a colorimetry-based algorithm written in Python. The clustering states of SNAs in a single cell can be efficiently distinguished within 20 s. This method can be readily installed to monitor real-time endocytosis and cellular distribution of plasmonic NPs of different aggregation states and to quantitatively image targets of interest (e.g., specific DNA, messenger RNA, peptides or proteins) in living cells. The entire procedure can be completed in 3-5 d and requires standard DFM, FM and SEM imaging and data analysis skills and equipment.
Collapse
Affiliation(s)
- Mengmeng Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Fei Wang
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xueli Zhang
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lihua Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.,Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.,Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
32
|
Zhu X, Qu B, Ying ZM, Liu JW, Wu Z, Yu RQ, Jiang JH. Cascade Circuits on Self-Assembled DNA Polymers for Targeted RNA Imaging In Vivo. Anal Chem 2020; 92:15953-15958. [PMID: 33275414 DOI: 10.1021/acs.analchem.0c03400] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
DNA molecular probes have emerged as a powerful tool for RNA imaging. Hurdles in cell-specific delivery and other issues such as insufficient stability, limited sensitivity, or slow reaction kinetics, however, hinder the further application of DNA molecular probes in vivo. Herein, we report an aptamer-tethered DNA polymer for cell-specific transportation and amplified imaging of RNA in vivo via a DNA cascade reaction. DNA polymers are constructed through an initiator-triggered hybridization chain reaction using two functional DNA monomers. The prepared DNA polymers show low cytotoxicity and good stability against nuclease degradation and enable cell-specific transportation of DNA circuits via aptamer-receptor binding. Moreover, assembling the reactants of hairpins C1 and C2 on the DNA polymers accelerates the response kinetics and improves the sensitivity of the cascade reaction. We also show that the DNA polymers enable efficient imaging of microRNA-21 in live cells and in vivo via intravenous injection. The DNA polymers provide a valuable platform for targeted and amplified RNA imaging in vivo, which holds great implications for early clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Xueli Zhu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China.,Henan Province Function-Oriented Porous Materials Key Laboratory, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, Henan, China
| | - Bin Qu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Zhan-Ming Ying
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Jin-Wen Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China.,The First Affiliated Hospital of Guangxi Medical University, School of Preclinical Medicine & Centre for Translational Medicine, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Zhenkun Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| |
Collapse
|
33
|
Zhao Y, Zuo X, Li Q, Chen F, Chen YR, Deng J, Han D, Hao C, Huang F, Huang Y, Ke G, Kuang H, Li F, Li J, Li M, Li N, Lin Z, Liu D, Liu J, Liu L, Liu X, Lu C, Luo F, Mao X, Sun J, Tang B, Wang F, Wang J, Wang L, Wang S, Wu L, Wu ZS, Xia F, Xu C, Yang Y, Yuan BF, Yuan Q, Zhang C, Zhu Z, Yang C, Zhang XB, Yang H, Tan W, Fan C. Nucleic Acids Analysis. Sci China Chem 2020; 64:171-203. [PMID: 33293939 PMCID: PMC7716629 DOI: 10.1007/s11426-020-9864-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Nucleic acids are natural biopolymers of nucleotides that store, encode, transmit and express genetic information, which play central roles in diverse cellular events and diseases in living things. The analysis of nucleic acids and nucleic acids-based analysis have been widely applied in biological studies, clinical diagnosis, environmental analysis, food safety and forensic analysis. During the past decades, the field of nucleic acids analysis has been rapidly advancing with many technological breakthroughs. In this review, we focus on the methods developed for analyzing nucleic acids, nucleic acids-based analysis, device for nucleic acids analysis, and applications of nucleic acids analysis. The representative strategies for the development of new nucleic acids analysis in this field are summarized, and key advantages and possible limitations are discussed. Finally, a brief perspective on existing challenges and further research development is provided.
Collapse
Affiliation(s)
- Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Yan-Ru Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
| | - Jinqi Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Da Han
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Changlong Hao
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Fujian Huang
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074 China
| | - Yanyi Huang
- College of Chemistry and Molecular Engineering, Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin, 300071 China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| | - Libing Liu
- Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Chunhua Lu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Jiashu Sun
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology (ICSB), Chinese Institute for Brain Research (CIBR), Tsinghua University, Beijing, 100084 China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Shu Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| | - Lingling Wu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
| | - Fan Xia
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074 China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Yang Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Bi-Feng Yuan
- Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Quan Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Chao Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Huanghao Yang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Weihong Tan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
34
|
Arndt N, Tran HDN, Zhang R, Xu ZP, Ta HT. Different Approaches to Develop Nanosensors for Diagnosis of Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001476. [PMID: 33344116 PMCID: PMC7740096 DOI: 10.1002/advs.202001476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/18/2020] [Indexed: 05/09/2023]
Abstract
The success of clinical treatments is highly dependent on early detection and much research has been conducted to develop fast, efficient, and precise methods for this reason. Conventional methods relying on nonspecific and targeting probes are being outpaced by so-called nanosensors. Over the last two decades a variety of activatable sensors have been engineered, with a great diversity concerning the operating principle. Therefore, this review delineates the achievements made in the development of nanosensors designed for diagnosis of diseases.
Collapse
Affiliation(s)
- Nina Arndt
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityBrisbaneQueensland4111Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
- Department of BiotechnologyTechnische Universität BerlinBerlin10623Germany
| | - Huong D. N. Tran
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityBrisbaneQueensland4111Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
| | - Hang T. Ta
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityBrisbaneQueensland4111Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
- School of Environment and ScienceGriffith UniversityBrisbaneQueensland4111Australia
| |
Collapse
|
35
|
Samanta D, Ebrahimi SB, Kusmierz CD, Cheng HF, Mirkin CA. Protein Spherical Nucleic Acids for Live-Cell Chemical Analysis. J Am Chem Soc 2020; 142:13350-13355. [PMID: 32706250 DOI: 10.1021/jacs.0c06866] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report the development of a new strategy for the chemical analysis of live cells based on protein spherical nucleic acids (ProSNAs). The ProSNA architecture enables analyte detection via the highly programmable nucleic acid shell or a functional protein core. As a proof-of-concept, we use an i-motif as the nucleic acid recognition element to probe pH in living cells. By interfacing the i-motif with a forced-intercalation readout, we introduce a quencher-free approach that is resistant to false-positive signals, overcoming limitations associated with conventional fluorophore/quencher-based gold NanoFlares. Using glucose oxidase as a functional protein core, we show activity-based, amplified sensing of glucose. This enzymatic system affords greater than 100-fold fluorescence turn on in buffer, is selective for glucose in the presence of close analogs (i.e., glucose-6-phosphate), and can detect glucose above a threshold concentration of ∼5 μM, which enables the study of relative changes in intracellular glucose concentrations.
Collapse
|
36
|
Ebrahimi SB, Samanta D, Mirkin CA. DNA-Based Nanostructures for Live-Cell Analysis. J Am Chem Soc 2020; 142:11343-11356. [DOI: 10.1021/jacs.0c04978] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Wong WK, Wong SHD, Bian L. Long-Term Detection of Oncogenic MicroRNA in Living Human Cancer Cells by Gold@ Polydopamine-Shell Nanoprobe. ACS Biomater Sci Eng 2020; 6:3778-3783. [PMID: 33463320 DOI: 10.1021/acsbiomaterials.0c00633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oncogenic microRNAs (miRNA), for example, miR-155, are key tumor biomarkers in cancer cells that drive tumorigenesis, and the miRNA profile signature can predict cancer development and aggressiveness. Hence, timely detection of oncogenic miRNA in living cells is highly attractive to the diagnosis of cancer at an early stage. Herein, we report a highly sequence-specific gold@polydopamine-based nanoprobe for long-term detection of miRNA in human cancer cell lines in vitro. A single administration of the nanoprobe enables continuous detection of the miR-155 expression level in living cancer cells for up to 5 days. We believe that our nanoprobe is highly promising for both oncology research and translational applications.
Collapse
Affiliation(s)
- Wai Ki Wong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077 China
| | - Siu Hong Dexter Wong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077 China
| | - Liming Bian
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077 China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518172 China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang, 310058 China
| |
Collapse
|
38
|
Qing Z, Luo G, Xing S, Zou Z, Lei Y, Liu J, Yang R. Pt–S Bond‐Mediated Nanoflares for High‐Fidelity Intracellular Applications by Avoiding Thiol Cleavage. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry School of Chemistry and Biological Engineering Changsha University of Science and Technology Changsha 410114 China
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Guoyan Luo
- Hunan Provincial Key Laboratory of Cytochemistry School of Chemistry and Biological Engineering Changsha University of Science and Technology Changsha 410114 China
| | - Shuohui Xing
- Hunan Provincial Key Laboratory of Cytochemistry School of Chemistry and Biological Engineering Changsha University of Science and Technology Changsha 410114 China
| | - Zhen Zou
- Hunan Provincial Key Laboratory of Cytochemistry School of Chemistry and Biological Engineering Changsha University of Science and Technology Changsha 410114 China
| | - Yanli Lei
- Hunan Provincial Key Laboratory of Cytochemistry School of Chemistry and Biological Engineering Changsha University of Science and Technology Changsha 410114 China
| | - Juewen Liu
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Ronghua Yang
- Hunan Provincial Key Laboratory of Cytochemistry School of Chemistry and Biological Engineering Changsha University of Science and Technology Changsha 410114 China
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research Ministry of Education College of Chemistry and Chemical Engineering Hunan Normal University Changsha 410081 China
| |
Collapse
|
39
|
Qing Z, Luo G, Xing S, Zou Z, Lei Y, Liu J, Yang R. Pt-S Bond-Mediated Nanoflares for High-Fidelity Intracellular Applications by Avoiding Thiol Cleavage. Angew Chem Int Ed Engl 2020; 59:14044-14048. [PMID: 32401400 DOI: 10.1002/anie.202003964] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/05/2020] [Indexed: 12/23/2022]
Abstract
The Au-S bond is the classic way to functionalize gold nanoparticles (AuNPs). However, cleavage of the bond by biothiols and other chemicals is a long-standing problem hindering practical applications, especially in cells. Instead of replacing the thiol by a carbene or selenol for stronger adsorption, it is now shown that the Pt-S bond is much more stable, fully avoiding cleavage by biothiols. AuNPs were deposited with a thin layer of platinum, and an AuNP@Pt-S nanoflare was constructed to detect the miRNA-21 microRNA in living cells. This design retained the optical and cellular uptake properties of DNA-functionalized AuNPs, while showing high-fidelity signaling. It discriminated target cancer cells even in a mixed-cell culture system, where the Au-S based nanoflare was less sensitive. Compared to previous methods of changing the ligand chemistry, coating a Pt shell is more accessible, and previously developed methods for AuNPs can be directly adapted.
Collapse
Affiliation(s)
- Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, China.,Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Guoyan Luo
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Shuohui Xing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Zhen Zou
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Yanli Lei
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Ronghua Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, China.,Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
40
|
Larkin IN, Garimella V, Yamankurt G, Scott AW, Xing H, Mirkin CA. Dual-Readout Sandwich Immunoassay for Device-Free and Highly Sensitive Anthrax Biomarker Detection. Anal Chem 2020; 92:7845-7851. [PMID: 32437125 PMCID: PMC7418077 DOI: 10.1021/acs.analchem.0c01090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report a dual-readout, AuNP-based sandwich immunoassay for the device-free colorimetric and sensitive scanometric detection of disease biomarkers. An AuNP-antibody conjugate serves as a signal transduction and amplification agent by promoting the reduction and deposition of either platinum or gold onto its surface, generating corresponding colorimetric or light scattering (scanometric) signals, respectively. We apply the Pt-based colorimetric readout of this assay to the discovery of a novel monoclonal antibody (mAb) sandwich pair for the detection of an anthrax protective antigen (PA83). The identified antibody pair detects PA83 down to 1 nM in phosphate-buffered saline and 5 nM in human serum, which are physiologically relevant concentrations. Reducing gold rather than platinum onto the mAb-AuNP sandwich enables scanometric detection of subpicomolar PA83 concentrations, over 3 orders of magnitude more sensitive than the colorimetric readout.
Collapse
Affiliation(s)
- Isaac N Larkin
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60608, United States
- Department of Interdisciplinary Biological Sciences, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60608, United States
| | - Viswanadham Garimella
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60608, United States
| | - Gokay Yamankurt
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60608, United States
- Department of Interdisciplinary Biological Sciences, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60608, United States
| | - Alexander W Scott
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60608, United States
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60608, United States
| | - Hang Xing
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60608, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60608, United States
| | - Chad A Mirkin
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60608, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60608, United States
| |
Collapse
|
41
|
Yang F, Zhao Z, Sun B, Chen Q, Sun J, He Z, Luo C. Nanotherapeutics for Antimetastatic Treatment. Trends Cancer 2020; 6:645-659. [PMID: 32448754 DOI: 10.1016/j.trecan.2020.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 02/08/2023]
Abstract
Tumor metastases, that is, the development of secondary tumors in organs distant from the primary tumor, and their treatment remain a serious problem in cancer therapy. The unique challenges for tracking and treating tumor metastases lie in the small size, high heterogeneity, and wide dispersion to distant organs of metastases. Recently, nanomedicines, with the capacity to precisely deliver therapeutic agents to both primary and secondary tumors, have demonstrated many potential benefits for metastatic cancer theranostics. Given the remarkable progression in emerging nanotherapeutics for antimetastatic treatment, it is timely to summarize the latest advances in this field. This review highlights the rationale, advantages, and challenges for integrating biomedical nanotechnology with cancer biology to develop antimetastatic nanotherapeutics.
Collapse
Affiliation(s)
- Fujun Yang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhiqiang Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qin Chen
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
42
|
Facile Method for Obtaining Gold-Coated Polyester Surfaces with Antimicrobial Properties. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/4504062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The antimicrobial and antifungal activity of polymers used in medical devices has been extensively studied due to the growing impact of hospital-related infections in patients. The ideal biocidal polymeric materials should be very effective in the microorganism’s inhibition, not toxic to the human body, and environmentally friendly. In this context, this work is aimed at obtaining antimicrobial and antifungal properties at the polyester film surfaces without introducing toxic effects. Poly (ethylene terephthalate) (PET) films were functionalized with Ar plasma and then immersed in a solution containing gold nanoparticles (AuNps). The results demonstrated the appearance of the hydrophilic groups on the film surface after modification of PET film by plasma Ar treatment and the formation of the polar groups such as C=O, COO-, and OH, which then reacted with AuNps. The changes induced in the treated polymer samples were investigated in terms of AuNp adsorption efficiency on polyester film by contact angle, profilometry, Scanning Electron Microscopy (SEM), Attenuated Total Reflectance Spectroscopy-Fourier Transform Infrared (ATR-FTIR), and X-ray Photoelectron Spectroscopy (XPS) measurements. The morphological and structural analyses have shown a good adhesion of AuNps at treated film surfaces. The results of biocompatibility antimicrobial and antifungal tests proved the nontoxic behavior of the sample and its good antimicrobial and antifungal activity.
Collapse
|
43
|
Samanta D, Ebrahimi SB, Mirkin CA. Nucleic-Acid Structures as Intracellular Probes for Live Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901743. [PMID: 31271253 PMCID: PMC6942251 DOI: 10.1002/adma.201901743] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/08/2019] [Indexed: 05/02/2023]
Abstract
The chemical composition of cells at the molecular level determines their growth, differentiation, structure, and function. Probing this composition is powerful because it provides invaluable insight into chemical processes inside cells and in certain cases allows disease diagnosis based on molecular profiles. However, many techniques analyze fixed cells or lysates of bulk populations, in which information about dynamics and cellular heterogeneity is lost. Recently, nucleic-acid-based probes have emerged as a promising platform for the detection of a wide variety of intracellular analytes in live cells with single-cell resolution. Recent advances in this field are described and common strategies for probe design, types of targets that can be identified, current limitations, and future directions are discussed.
Collapse
Affiliation(s)
- Devleena Samanta
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sasha B Ebrahimi
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
44
|
Zhao J, Liu C, Li Y, Ma Y, Deng J, Li L, Sun J. Thermophoretic Detection of Exosomal microRNAs by Nanoflares. J Am Chem Soc 2020; 142:4996-5001. [PMID: 32134270 DOI: 10.1021/jacs.9b13960] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exosomal microRNAs (miRNAs) are reliable and noninvasive biomarkers for the early diagnosis of cancer. Yet, accurate and feasible detection of exosomal miRNAs is often hampered by the low abundance of miRNAs in exosomes and the requirement for RNA extraction in large sample volumes. Here we show a thermophoretic sensor implemented with nanoflares for in situ detection of exosomal miRNAs, without resorting to either RNA extraction or target amplification. Thermophoretic accumulation of nanoflare-treated exosomes leads to an amplified fluorescence signal upon the binding of exosomal miRNAs to nanoflares, allowing for direct and quantitative measurement of exosomal miRNAs down to 0.36 fM in 0.5 μL serum samples. One of the best markers, exosomal miR-375, showed an accuracy of 85% for detection of estrogen receptor-positive breast cancer at early stages (stages I, II). This work provides a feasible tool to improve the diagnosis of cancer.
Collapse
Affiliation(s)
- Junxiang Zhao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yike Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Ma
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinqi Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lele Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiashu Sun
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
45
|
Deng M, Li M, Mao X, Li F, Zuo X. Nucleic Acid Nanoprobes for Biosensor Development in Complex Matrices. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-9073-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Chi Q, Yang Z, Xu K, Wang C, Liang H. DNA Nanostructure as an Efficient Drug Delivery Platform for Immunotherapy. Front Pharmacol 2020; 10:1585. [PMID: 32063844 PMCID: PMC6997790 DOI: 10.3389/fphar.2019.01585] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/06/2019] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy has received increasing attention due to its low potential side effects and high specificity. For instance, cancer immunotherapy has achieved great success. CpG is a well-known and commonly used immunotherapeutic and vaccine adjuvant, but it has the disadvantage of being unstable and low in efficacy and needs to be transported through an effective nanocarrier. With perfect structural programmability, permeability, and biocompatibility, DNA nanostructures are one of the most promising candidates to deliver immune components to realize immunotherapy. However, the instability and low capability of the payload of ordinary DNA assemblies limit the relevant applications. Consequently, DNA nanostructure with a firm structure, high drug payloads is highly desirable. In the paper, the latest progress of biostable, high-payload DNA nanoassemblies of various structures, including cage-like DNA nanostructure, DNA particles, DNA polypods, and DNA hydrogel, are reviewed. Cage-like DNA structures hold drug molecules firmly inside the structure and leave a large space within the cavity. These DNA nanostructures use their unique structure to carry abundant CpG, and their biocompatibility and size advantages to enter immune cells to achieve immunotherapy for various diseases. Part of the DNA nanostructures can also achieve more effective treatment in conjunction with other functional components such as aPD1, RNA, TLR ligands.
Collapse
Affiliation(s)
- Qingjia Chi
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, China
| | - Zichang Yang
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, China
| | - Kang Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunli Wang
- “111” Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing, China
| | - Huaping Liang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
47
|
Zhang Q, Wang W, Huang S, Yu S, Tan T, Zhang JR, Zhu JJ. Capture and selective release of multiple types of circulating tumor cells using smart DNAzyme probes. Chem Sci 2020; 11:1948-1956. [PMID: 34123289 PMCID: PMC8148068 DOI: 10.1039/c9sc04309h] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022] Open
Abstract
The effective capture, release and reanalysis of circulating tumor cells (CTCs) are of great significance to acquire tumor information and promote the progress of tumor therapy. Particularly, the selective release of multiple types of CTCs is critical to further study; however, it is still a great challenge. To meet this challenge, we designed a smart DNAzyme probe-based platform. By combining multiple targeting aptamers and multiple metal ion responsive DNAzymes, efficient capture and selective release of multiple types CTCs were realized. Sgc8c aptamer integrated Cu2+-dependent DNAzyme and TD05 aptamer integrated Mg2+-dependent DNAzyme can capture CCRF-CEM cells and Ramos cells respectively on the substrate. With the addition of Cu2+ or Mg2+, CCRF-CEM cells or Ramos cells will be released from the substrate with specific selectivity. Furthermore, our platform has been successfully demonstrated in the whole blood sample. Therefore, our capture/release platform will benefit research on the molecular analysis of CTCs after release and has great potential for cancer diagnosis and individualized treatment.
Collapse
Affiliation(s)
- Qianying Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Wenjing Wang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University Wuhan 430070 China
| | - Shan Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Sha Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Tingting Tan
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing 210008 China
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
- School of Chemistry and Life Science, Nanjing University Jinling College Nanjing 210089 China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
48
|
Liu M, Mao X, Huang L, Fan C, Tian Y, Li Q. Automated Nanoplasmonic Analysis of Spherical Nucleic Acids Clusters in Single Cells. Anal Chem 2019; 92:1333-1339. [PMID: 31820626 DOI: 10.1021/acs.analchem.9b04500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Spherical nucleic acids (SNAs) have been extensively used in the field of biosensing, drug delivery, and theranostics. Precise engineering of SNAs and their clinical application require better understanding of their cellular internalization process. We demonstrate a colorimetry-based algorithm that can analyze the aggregation states of SNAs clusters on the basis of the changes of plasmonic colors of SNAs. The dark-field microscopy (DFM) images of cytoplasmic region of single cells are imported as raw data. All the image spots are analyzed in the interference reduction process, and the clustering states of target image spots are assigned on the basis of the distribution of coordinates of all the pixels in the CIE map. This method provides faster analysis on clustering states of extracellular and intracellular SNAs with good accuracy. Moreover, the clustering states of SNAs in 20 single cells (generally >1000) can be efficiently distinguished within 200 s. Therefore, our method provides an automatic, quantitative, objective, and repeatable way to analyze SNAs aggregations, and shows good application potential in robust and quantitative nanoplasmonic analysis in single cells.
Collapse
Affiliation(s)
- Mengmeng Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Xiuhai Mao
- School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Lulu Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , China
| |
Collapse
|
49
|
Zhang Y, Li M, Gao X, Chen Y, Liu T. Nanotechnology in cancer diagnosis: progress, challenges and opportunities. J Hematol Oncol 2019; 12:137. [PMID: 31847897 PMCID: PMC6918551 DOI: 10.1186/s13045-019-0833-3] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022] Open
Abstract
In the fight against cancer, early detection is a key factor for successful treatment. However, the detection of cancer in the early stage has been hindered by the intrinsic limits of conventional cancer diagnostic methods. Nanotechnology provides high sensitivity, specificity, and multiplexed measurement capacity and has therefore been investigated for the detection of extracellular cancer biomarkers and cancer cells, as well as for in vivo imaging. This review summarizes the latest developments in nanotechnology applications for cancer diagnosis. In addition, the challenges in the translation of nanotechnology-based diagnostic methods into clinical applications are discussed.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, 410008, China
| | - Maoyu Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, 410008, China
- Department of Gastroenterology, XiangYa Hospital, Central South University, Changsha, 410008, China
| | - Xiaomei Gao
- Department of Pathology, XiangYa Hospital, Central South University, Changsha, 410008, China
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, 410008, China.
| | - Ting Liu
- Department of Gastroenterology, XiangYa Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
50
|
Applications of Spherical Nucleic Acid Nanoparticles as Delivery Systems. Trends Mol Med 2019; 25:1066-1079. [DOI: 10.1016/j.molmed.2019.08.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
|