1
|
Tan X, Min R, Wang S, Ning H, Mu B, Cao N, Yan W, Jin X, Yang C. Lactonization of Diols Over Highly Efficient Metal-Based Catalysts. CHEMSUSCHEM 2024; 17:e202400909. [PMID: 39264637 DOI: 10.1002/cssc.202400909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/01/2024] [Indexed: 09/13/2024]
Abstract
Lactones has gained increasing attention in recent years due to wide application in polymer and pharmaceutical industries. Traditional synthetic methods of lactones often involve harsh operating temperature, use of strong alkalis and toxic oxidants. Therefore, lactonization of diols under milder conditions have been viewed as the most promising route for future commercialization. A variety of metal catalysts (Ru, Pt, Ir, Au, Fe, Cu, Co, and Zn) have been developed for highly efficient oxidant-, acceptor-, base- and additive-free lactonization processes. However, only a few initial attempts have been reported with no further details on catalytic mechanism being disclosed in literature. There demands a systematic study of the mechanistic details and the structure-function relationship to guide the catalyst design. In this work, we critically reviewed and discussed the structure-function relationship, the catalytic reaction mechanism, the catalyst stability, as well as the effect of oxidant and solvent for lactonization of diols. This work may provide additional insights for the development of other oxygen-containing functional molecules for material science and technologies.
Collapse
Affiliation(s)
- Xiaomeng Tan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Rui Min
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Shiyu Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Hui Ning
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Baoquan Mu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Ning Cao
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Wenjuan Yan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Xin Jin
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Chaohe Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| |
Collapse
|
2
|
White NM, Waldie KM. Electrocatalytic formate and alcohol oxidation by hydride transfer at first-row transition metal complexes. Dalton Trans 2024; 53:11644-11654. [PMID: 38896286 DOI: 10.1039/d3dt04304e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The electrocatalytic oxidation of carbon-based liquid fuels, such as formic acid and alcohols, has important applications for our renewable energy transition. Molecular electrocatalysts based on transition metal complexes provide the opportunity to explore the interplay between precise catalyst design and electrocatalytic activity. Recent advances have seen the development of first-row transition metal electrocatalysts for these transformations that operate via hydride transfer between the substrate and catalyst. In this Frontier article, we present the key contributions to this field and discuss the proposed mechanisms for each case. These studies also reveal the remaining challenges for formate and alcohol oxidation with first-row transition metal systems, for which we provide perspectives on future directions for next-generation electrocatalyst design.
Collapse
Affiliation(s)
- Navar M White
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, USA.
| | - Kate M Waldie
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
3
|
Verma PK. Advancement in photocatalytic acceptorless dehydrogenation reactions: Opportunity and challenges for sustainable catalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Das A, Elvers BJ, Nayak MK, Chrysochos N, Anga S, Kumar A, Rao DK, Narayanan TN, Schulzke C, Yildiz CB, Jana A. Realizing 1,1-Dehydration of Secondary Alcohols to Carbenes: Pyrrolidin-2-ols as a Source of Cyclic (Alkyl)(Amino)Carbenes. Angew Chem Int Ed Engl 2022; 61:e202202637. [PMID: 35362643 PMCID: PMC9400972 DOI: 10.1002/anie.202202637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 11/30/2022]
Abstract
Herein we report secondary pyrrolidin-2-ols as a source of cyclic (alkyl)(amino)carbenes (CAAC) for the synthesis of CAAC-CuI -complexes and cyclic thiones when reacted with CuI -salts and elemental sulfur, respectively, under reductive elimination of water from the carbon(IV)-center. This result demonstrates a convenient and facile access to CAAC-based CuI -salts, which are well known catalysts for different organic transformations. It further establishes secondary alcohols to be a viable source of carbenes-realizing after 185 years Dumas' dream who tried to prepare the parent carbene (CH2 ) by 1,1-dehydration of methanol. Addressed is also the reactivity of water towards CAACs, which proceeds through an oxidative addition of the O-H bond to the carbon(II)-center. This emphasizes the ability of carbon-compounds to mimic the reactivity of transition-metal complexes: reversible oxidative addition and reductive elimination of the O-H bond to/from the C(II)/C(IV)-centre.
Collapse
Affiliation(s)
- Ayan Das
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | - Benedict J. Elvers
- Institut für BiochemieUniversität GreifswaldFelix-Hausdorff-Straße 417489GreifswaldGermany
| | - Mithilesh Kumar Nayak
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | - Nicolas Chrysochos
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | - Srinivas Anga
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | - Amar Kumar
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | - D. Krishna Rao
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | | | - Carola Schulzke
- Institut für BiochemieUniversität GreifswaldFelix-Hausdorff-Straße 417489GreifswaldGermany
| | - Cem B. Yildiz
- Department of Aromatic and Medicinal PlantsAksaray UniversityAksaray68100Turkey
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| |
Collapse
|
5
|
A cobalt redox switch driving alcohol dehydrogenation by redox coupled molecular swing. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Owen AE, Preiss A, McLuskie A, Gao C, Peters G, Bühl M, Kumar A. Manganese-Catalyzed Dehydrogenative Synthesis of Urea Derivatives and Polyureas. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Annika Preiss
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY169ST, U.K
| | - Angus McLuskie
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY169ST, U.K
| | - Chang Gao
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY169ST, U.K
| | - Gavin Peters
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY169ST, U.K
| | - Michael Bühl
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY169ST, U.K
| | - Amit Kumar
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY169ST, U.K
| |
Collapse
|
7
|
Das A, Elvers BJ, Nayak MK, Chrysochos N, Anga S, Kumar A, Rao DK, Narayanan TN, Schulzke C, Yildiz CB, Jana A. Realizing the 1,1‐Dehydration of Secondary Alcohols to Carbenes: Pyrrolidin‐2‐ols as a Source of Cyclic (Alkyl)(Amino)Carbenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ayan Das
- Tata Institute of Fundamental Research Hyderabad Chemistry INDIA
| | | | | | | | - Srinivas Anga
- Tata Institute of Fundamental Research Hyderabad Chemistry INDIA
| | - Amar Kumar
- Tata Institute of Fundamental Research Hyderabad Chemistry INDIA
| | - D. Krishna Rao
- Tata Institute of Fundamental Research Hyderabad Chemistry INDIA
| | | | | | - Cem B. Yildiz
- Aksaray Universitesi Aromatic and Medicinal Plants TURKEY
| | - Anukul Jana
- TIFR Centre for Interdisciplinary Sciences Chemical Science 21, Brundavan Colony, Narsingi 500075 Hyderabad INDIA
| |
Collapse
|
8
|
Wang Q, Lan J, Liang R, Xia Y, Qin L, Chung LW, Zheng Z. New Tricks for an Old Dog: Grubbs Catalysts Enable Efficient Hydrogen Production from Aqueous-Phase Methanol Reforming. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qian Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jialing Lan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Rong Liang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yihao Xia
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lei Qin
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lung Wa Chung
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiping Zheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
9
|
Trincado M, Bösken J, Grützmacher H. Homogeneously catalyzed acceptorless dehydrogenation of alcohols: A progress report. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213967] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Cui S, Wu X, Ma W, Tang W, Sun H, Xiao J, Xue D, Wang C. Synthesis of 2H-pyrroles via iron catalyzed dehydrogenative coupling and C–C bond cleavage. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
11
|
Abstract
We describe as 'reversible' a bidirectional catalyst that allows a reaction to proceed at a significant rate in response to even a small departure from equilibrium, resulting in fast and energy-efficient chemical transformation. Examining the relation between reaction rate and thermodynamic driving force is the basis of electrochemical investigations of redox reactions, which can be catalysed by metallic surfaces and biological or synthetic molecular catalysts. This relation has also been discussed in the context of biological energy transduction, regarding the function of biological molecular machines that harness chemical reactions to do mechanical work. This Perspective describes mean-field kinetic modelling of these three types of systems - surface catalysts, molecular catalysts of redox reactions and molecular machines - with the goal of unifying concepts in these different fields. We emphasize that reversibility should be distinguished from other figures of merit, such as rate or directionality, before its design principles can be identified and used to engineer synthetic catalysts.
Collapse
|
12
|
Shada ADR, Miller AJM, Emge TJ, Goldman AS. Catalytic Dehydrogenation of Alkanes by PCP–Pincer Iridium Complexes Using Proton and Electron Acceptors. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Arun Dixith Reddy Shada
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Alexander J. M. Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Thomas J. Emge
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Alan S. Goldman
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
13
|
Mulder DW, Peters JW, Raugei S. Catalytic bias in oxidation-reduction catalysis. Chem Commun (Camb) 2021; 57:713-720. [PMID: 33367317 DOI: 10.1039/d0cc07062a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cataytic bias refers to the propensity of a reaction catalyst to effect a different rate acceleration in one direction versus the other in a chemical reaction under non-equilibrium conditions. In biocatalysis, the inherent bias of an enzyme is often advantagous to augment the innate thermodynamics of a reaction to promote efficiency and fidelity in the coordination of catabolic and anabolic pathways. In industrial chemical catalysis a directional cataltyic bias is a sought after property in facilitating the engineering of systems that couple catalysis with harvest and storage of for example fine chemicals or energy compounds. Interestingly, there is little information about catalytic bias in biocatalysis likely in large part due to difficulties in developing tractible assays sensitive enough to study detailed kinetics. For oxidation-reduction reactions, colorimetric redox indicators exist in a range of reduction potentials to provide a mechanism to study both directions of reactions in a fairly facile manner. The current short review attempts to define catalytic bias conceptually and to develop model systems for defining the parameters that control catalytic bias in enzyme catalyzed oxidation-reduction catalysis.
Collapse
Affiliation(s)
- David W Mulder
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | | | | |
Collapse
|
14
|
Huang Y, Wang B, Yuan H, Sun Y, Yang D, Cui X, Shi F. The catalytic dehydrogenation of ethanol by heterogeneous catalysts. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02479a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this review, recent advances in the catalytic dehydrogenation of ethanol to acetaldehytde with the release of hydrogen catalyzed by a heterogeneous catalyst aresummerized and discussed.
Collapse
Affiliation(s)
- Yongji Huang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Bin Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Hangkong Yuan
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Yubin Sun
- Shaanxi Yanchang Petroleum (Group) Co., Ltd
- Xi'an
- China
| | - Dongyuan Yang
- Shaanxi Yanchang Petroleum (Group) Co., Ltd
- Xi'an
- China
| | - Xinjiang Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Feng Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| |
Collapse
|
15
|
Ghosh A, Debnath T, Ash T, Banerjee S, Das AK. Ru‐Catalyzed Cross Dehydrogenative Coupling Leading to Si−O and Si−S Bond Formations and Also Stimulating an Alternative Scope for Hydrogenation of C=O, C=N and N=N Bonds. ChemistrySelect 2020. [DOI: 10.1002/slct.202003968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Avik Ghosh
- School of Mathematical & Computational Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| | - Tanay Debnath
- School of Mathematical & Computational Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| | - Tamalika Ash
- School of Mathematical & Computational Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| | - Soumadip Banerjee
- School of Mathematical & Computational Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| | - Abhijit K. Das
- School of Mathematical & Computational Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| |
Collapse
|
16
|
Zhou QQ, Zou YQ, Ben-David Y, Milstein D. A Reversible Liquid-to-Liquid Organic Hydrogen Carrier System Based on Ethylene Glycol and Ethanol. Chemistry 2020; 26:15487-15490. [PMID: 33459426 DOI: 10.1002/chem.202002749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Indexed: 01/22/2023]
Abstract
Liquid organic hydrogen carriers (LOHCs) are powerful systems for the efficient unloading and loading molecular hydrogen. Herein, a liquid-to-liquid organic hydrogen carrier system based on reversible dehydrogenative coupling of ethylene glycol (EG) with ethanol catalysed by ruthenium pincer complexes is reported. Noticeable advantages of the current LOHC system is that both reactants (hydrogen-rich components) and the produced esters (hydrogen-lean components) are liquids at room temperature, and the dehydrogenation process can be performed under solvent and base-free conditions. Moreover, the hydrogenation reaction proceeds under low hydrogen pressure (5 bar), and the LOHC system has a relatively high theoretical gravimetric hydrogen storage capacity (HSC>5.0 wt %), presenting an attractive hydrogen storage system.
Collapse
Affiliation(s)
- Quan-Quan Zhou
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - You-Quan Zou
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yehoshoa Ben-David
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - David Milstein
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
17
|
Reversible aerobic oxidative dehydrogenation/hydrogenation of N-heterocycles over AlN supported redox cobalt catalysts. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
McLoughlin EA, Armstrong KC, Waymouth RM. Electrochemically Regenerable Hydrogen Atom Acceptors: Mediators in Electrocatalytic Alcohol Oxidation Reactions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Keith C. Armstrong
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Robert M. Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
19
|
Buil ML, Esteruelas MA, Izquierdo S, Nicasio AI, Oñate E. N–H and C–H Bond Activations of an Isoindoline Promoted by Iridium- and Osmium-Polyhydride Complexes: A Noninnocent Bridge Ligand for Acceptorless and Base-Free Dehydrogenation of Secondary Alcohols. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- María L. Buil
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Miguel A. Esteruelas
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Susana Izquierdo
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Antonio I. Nicasio
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
20
|
Cui X, Huang Z, van Muyden AP, Fei Z, Wang T, Dyson PJ. Acceptorless dehydrogenation and hydrogenation of N- and O-containing compounds on Pd 3Au 1(111) facets. SCIENCE ADVANCES 2020; 6:eabb3831. [PMID: 32937440 PMCID: PMC7458463 DOI: 10.1126/sciadv.abb3831] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/15/2020] [Indexed: 05/05/2023]
Abstract
Catalytic dehydrogenation and hydrogenation of amines and alcohols are important in the synthesis of fine chemicals. Despite several efficient homogeneous catalysts having been identified, highly active heterogeneous catalysts remain elusive, although they would meet an unmet need. Here, we show that bimetallic Pd-Au nanoparticles with Pd-to-Au molar ratios of 3:1 immobilized on multiwall carbon nanotubes (Pd3Au1/CNT) display high catalytic activity in the oxidant-free and acceptorless dehydrogenation and hydrogenation of N- and O-containing heterocyclic compounds, amines/imines, and alcohols/ketones. Transmission electron microscopy analysis demonstrates the preferential exposure of Pd3Au1(111) facets on the Pd3Au1/CNT catalyst. Mechanistic insights combining experimental data with density functional theory calculations reveal that the Pd3Au1(111) surface enhances both dehydrogenation and hydrogenation reactions and provides a rationale for the observed enhancements.
Collapse
Affiliation(s)
- Xinjiang Cui
- Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Zhangjun Huang
- Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Antoine P van Muyden
- Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Zhaofu Fei
- Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Tao Wang
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Paul J Dyson
- Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
21
|
Verevkin SP, Emel’yanenko VN, Zherikova KV, Zelenina LN, Zaitsau DH, Pimerzin AA. Thermochemistry of organometallic compounds: Structure-property relationships in alkylferrocenes. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.136911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Hydrogenation Reactions Catalyzed by PNP-Type Complexes Featuring a HN(CH2CH2PR2)2 Ligand. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
McLoughlin EA, Matson BD, Sarangi R, Waymouth RM. Electrocatalytic Alcohol Oxidation with Iron-Based Acceptorless Alcohol Dehydrogenation Catalyst. Inorg Chem 2019; 59:1453-1460. [DOI: 10.1021/acs.inorgchem.9b03230] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Benjamin D. Matson
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Robert M. Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
24
|
Mohammadnezhad G, Abad S, Farrokhpour H. Theoretical Evaluation of One-Pot Synthesis of Aliphatic PNP Pincer Ligands. J STRUCT CHEM+ 2019. [DOI: 10.1134/s0022476619110052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Dagnaw WM, Lu Y, Zhao R, Wang ZX. DFT Study of PNP-Mn-Catalyzed Acceptorless Dehydrogenative Coupling of Primary Alcohols with Hydrazine to Give Alkene or Azine. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Wasihun Menberu Dagnaw
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Lu
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ruihua Zhao
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Ma W, Zhang X, Fan J, Liu Y, Tang W, Xue D, Li C, Xiao J, Wang C. Iron-Catalyzed Anti-Markovnikov Hydroamination and Hydroamidation of Allylic Alcohols. J Am Chem Soc 2019; 141:13506-13515. [DOI: 10.1021/jacs.9b05221] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Wei Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, China
| | - Xiaohui Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, China
| | - Juan Fan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, China
| | - Yuxuan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, China
| | - Weijun Tang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, China
| | - Chaoqun Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, China
| | - Jianliang Xiao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, China
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, U.K
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, China
| |
Collapse
|
27
|
Zhou X, Malakar S, Zhou T, Murugesan S, Huang C, Emge TJ, Krogh-Jespersen K, Goldman AS. Catalytic Alkane Transfer Dehydrogenation by PSP-Pincer-Ligated Ruthenium. Deactivation of an Extremely Reactive Fragment by Formation of Allyl Hydride Complexes. ACS Catal 2019. [DOI: 10.1021/acscatal.8b05172] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Xiaoguang Zhou
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Santanu Malakar
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Tian Zhou
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Sathiyamoorthy Murugesan
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Carlos Huang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Thomas J. Emge
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Karsten Krogh-Jespersen
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Alan S. Goldman
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
28
|
Lu Y, Zhao R, Guo J, Liu Z, Menberu W, Wang Z. A Unified Mechanism to Account for Manganese‐ or Ruthenium‐Catalyzed Nitrile α‐Olefinations by Primary or Secondary Alcohols: A DFT Mechanistic Study. Chemistry 2019; 25:3939-3949. [DOI: 10.1002/chem.201806016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/02/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Yu Lu
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ruihua Zhao
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jiandong Guo
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zheyuan Liu
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wasihun Menberu
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhi‐Xiang Wang
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
29
|
Saha T, Pramanick R, Sengupta D, Goswami S. Metal-ligand cooperativity in a ruthenium(II) complex of bis-azoaromatic ligand for catalytic dehydrogenation of alcohols. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.09.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Alig L, Fritz M, Schneider S. First-Row Transition Metal (De)Hydrogenation Catalysis Based On Functional Pincer Ligands. Chem Rev 2018; 119:2681-2751. [PMID: 30596420 DOI: 10.1021/acs.chemrev.8b00555] [Citation(s) in RCA: 523] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The use of 3d metals in de/hydrogenation catalysis has emerged as a competitive field with respect to "traditional" precious metal catalyzed transformations. The introduction of functional pincer ligands that can store protons and/or electrons as expressed by metal-ligand cooperativity and ligand redox-activity strongly stimulated this development as a conceptual starting point for rational catalyst design. This review aims at providing a comprehensive picture of the utilization of functional pincer ligands in first-row transition metal hydrogenation and dehydrogenation catalysis and related synthetic concepts relying on these such as the hydrogen borrowing methodology. Particular emphasis is put on the implementation and relevance of cooperating and redox-active pincer ligands within the mechanistic scenarios.
Collapse
Affiliation(s)
- Lukas Alig
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstrasse 4 , D-37077 Göttingen , Germany
| | - Maximilian Fritz
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstrasse 4 , D-37077 Göttingen , Germany
| | - Sven Schneider
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstrasse 4 , D-37077 Göttingen , Germany
| |
Collapse
|
31
|
H2-release from alcohols, diols, and compounds with amino functionality promoted by titanium(II) sandwich complex, [Cp2Ti]: a theoretical approach. Struct Chem 2018. [DOI: 10.1007/s11224-018-1207-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Curley JB, Smith NE, Bernskoetter WH, Hazari N, Mercado BQ. Catalytic Formic Acid Dehydrogenation and CO2 Hydrogenation Using Iron PNRP Pincer Complexes with Isonitrile Ligands. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00534] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Julia B. Curley
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Nicholas E. Smith
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Wesley H. Bernskoetter
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Nilay Hazari
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Brandon Q. Mercado
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| |
Collapse
|
33
|
Madduluri VR, Katari NK, Peddinti N, Velpula VK, Burri DR, Kamaraju SRR, Jonnalagadda SB. Facile redbrick clay as splendid catalyst for selective dehydration of alcohols. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3577-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Ben Halima T, Masson-Makdissi J, Newman SG. Nickel-Catalyzed Amide Bond Formation from Methyl Esters. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808560] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Taoufik Ben Halima
- Centre for Catalysis Research and Innovation; Department of Chemistry and Biomolecular Sciences; University of Ottawa; 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| | - Jeanne Masson-Makdissi
- Centre for Catalysis Research and Innovation; Department of Chemistry and Biomolecular Sciences; University of Ottawa; 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| | - Stephen G. Newman
- Centre for Catalysis Research and Innovation; Department of Chemistry and Biomolecular Sciences; University of Ottawa; 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
35
|
Ben Halima T, Masson-Makdissi J, Newman SG. Nickel-Catalyzed Amide Bond Formation from Methyl Esters. Angew Chem Int Ed Engl 2018; 57:12925-12929. [PMID: 30113123 DOI: 10.1002/anie.201808560] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/10/2018] [Indexed: 11/10/2022]
Abstract
Despite being one of the most important and frequently run chemical reactions, the synthesis of amide bonds is accomplished primarily by wasteful methods that proceed by stoichiometric activation of one of the starting materials. We report a nickel-catalyzed procedure that can enable diverse amides to be synthesized from abundant methyl ester starting materials, producing only volatile alcohol as a stoichiometric waste product. In contrast to acid- and base-mediated amidations, the reaction is proposed to proceed by a neutral cross coupling-type mechanism, opening up new opportunities for direct, efficient, chemoselective synthesis.
Collapse
Affiliation(s)
- Taoufik Ben Halima
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Jeanne Masson-Makdissi
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
36
|
Ma W, Cui S, Sun H, Tang W, Xue D, Li C, Fan J, Xiao J, Wang C. Iron-Catalyzed Alkylation of Nitriles with Alcohols. Chemistry 2018; 24:13118-13123. [DOI: 10.1002/chem.201803762] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Wei Ma
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; Department of Chemistry and Chemical, Engineering, Shaanxi Normal University; Xi'an 710119 P. R. China
| | - Suya Cui
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; Department of Chemistry and Chemical, Engineering, Shaanxi Normal University; Xi'an 710119 P. R. China
| | - Huamin Sun
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; Department of Chemistry and Chemical, Engineering, Shaanxi Normal University; Xi'an 710119 P. R. China
| | - Weijun Tang
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; Department of Chemistry and Chemical, Engineering, Shaanxi Normal University; Xi'an 710119 P. R. China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; Department of Chemistry and Chemical, Engineering, Shaanxi Normal University; Xi'an 710119 P. R. China
| | - Chaoqun Li
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; Department of Chemistry and Chemical, Engineering, Shaanxi Normal University; Xi'an 710119 P. R. China
| | - Juan Fan
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; Department of Chemistry and Chemical, Engineering, Shaanxi Normal University; Xi'an 710119 P. R. China
| | - Jianliang Xiao
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; Department of Chemistry and Chemical, Engineering, Shaanxi Normal University; Xi'an 710119 P. R. China
- Department of Chemistry; University of Liverpool; Liverpool L69 7ZD UK
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; Department of Chemistry and Chemical, Engineering, Shaanxi Normal University; Xi'an 710119 P. R. China
| |
Collapse
|
37
|
Alabau RG, Esteruelas MA, Martínez A, Oliván M, Oñate E. Base-Free and Acceptorless Dehydrogenation of Alcohols Catalyzed by an Iridium Complex Stabilized by a N,N,N-Osmaligand. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00380] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Roberto G. Alabau
- Departamento de Química Inorgánica − Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) − Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Zaragoza − CSIC, 50009 Zaragoza, Spain
| | - Miguel A. Esteruelas
- Departamento de Química Inorgánica − Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) − Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Zaragoza − CSIC, 50009 Zaragoza, Spain
| | - Antonio Martínez
- Departamento de Química Inorgánica − Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) − Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Zaragoza − CSIC, 50009 Zaragoza, Spain
| | - Montserrat Oliván
- Departamento de Química Inorgánica − Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) − Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Zaragoza − CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Química Inorgánica − Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) − Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Zaragoza − CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
38
|
Li L, Lei M, Liu L, Xie Y, Schaefer HF. Metal-Substrate Cooperation Mechanism for Dehydrogenative Amidation Catalyzed by a PNN-Ru Catalyst. Inorg Chem 2018; 57:8778-8787. [PMID: 30010329 DOI: 10.1021/acs.inorgchem.8b00563] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The pyridine-based PNN ruthenium pincer complex (PNN)Ru(CO)(H) can catalyze the well-known dehydrogenative amidation reaction, but the mechanism is not fully understood. In this work, we find there exists an alternative metal-substrate cooperation mechanism in this reaction system, which is more favorable than the aromatization-dearomatization mechanism. The possible reaction of the excess base t-BuO- with catalyst species (PNN)Ru(CO)(H) is studied, indicating t-BuO- is able to facilitate the ligand substitution and enhance catalytic activities. With the bifunctional Ru-N moiety, the imine-substituted species (PN)(imine)Ru(CO)(H) 5 could serve as an alternative catalytic species and efficiently facilitate some elementary steps such as the hydrogen transfer, hydrogen elimination, and C-N coupling. Meanwhile, the C-N coupling step proceeds via the split of aldehydic C-H bond across the Ru(II)-imine bond, which results in an amide bond directly. The hemiaminal is uninvolved in the C-N coupling process. Finally, the formation of linear peptides and cyclic dipeptides are unveiled by the newly proposed mechanism. The metal-substrate cooperation could widely exist in transition metal catalyst systems with a large influence on the reaction activity.
Collapse
Affiliation(s)
- Longfei Li
- Center for Computational Quantum Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| | | | | | - Yaoming Xie
- Center for Computational Quantum Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| | - Henry F Schaefer
- Center for Computational Quantum Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| |
Collapse
|
39
|
Pramanick R, Bhattacharjee R, Sengupta D, Datta A, Goswami S. An Azoaromatic Ligand as Four Electron Four Proton Reservoir: Catalytic Dehydrogenation of Alcohols by Its Zinc(II) Complex. Inorg Chem 2018; 57:6816-6824. [PMID: 29863859 DOI: 10.1021/acs.inorgchem.8b00034] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Electroprotic storage materials, though invaluable in energy-related research, are scanty among non-natural compounds. Herein, we report a zinc(II) complex of the ligand 2,6-bis(phenylazo)pyridine (L), which acts as a multiple electron and proton reservoir during catalytic dehydrogenation of alcohols to aldehydes/ketones. The redox-inactive metal ion Zn(II) serves as an oxophilic Lewis acid, while the ligand behaves as efficient storage of electron and proton. Synthesis, X-ray structure, and spectral characterizations of the catalyst, ZnLCl2 (1a) along with the two hydrogenated complexes of 1a, ZnH2LCl2 (1b), and ZnH4LCl2 (1c) are reported. It has been argued that the reversible azo-hydrazo redox couple of 1a controls aerobic dehydrogenation of alcohols. Hydrogenated complexes are hyper-reactive and quantitatively reduce O2 and para-benzoquinone to H2O2 and para-hydroquinone, respectively. Plausible mechanistic pathways for alcohol oxidation are discussed based on controlled experiments, isotope labeling, and spectral analysis of intermediates.
Collapse
|
40
|
Suárez A. Hydrogenation of carbonyl compounds of relevance to hydrogen storage in alcohols. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2017-0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
Alcohols are a promising source for the sustainable production of hydrogen that may also serve as rechargeable liquid organic hydrogen carriers (LOHCs). Metal-catalyzed acceptorless dehydrogenation of alcohols produces carbonyl derivatives as H2-depleted by-products, which by means of a hydrogenation reaction can be reconverted to the initial alcohols. Hence, reversible H2-storage systems based on pairs of secondary alcohols/ketones and primary alcohols/carboxylic acid derivatives may be envisaged. In this contribution, the hydrogenation of carbonyl derivatives, including ketones, esters, amides and carboxylic acids, is reviewed from the perspective of the hydrogen storage in alcohols.
Collapse
|
41
|
Yi Y, Liu H, Xiao LP, Wang B, Song G. Highly Efficient Hydrogenation of Levulinic Acid into γ-Valerolactone using an Iron Pincer Complex. CHEMSUSCHEM 2018; 11:1474-1478. [PMID: 29575709 DOI: 10.1002/cssc.201800435] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Indexed: 06/08/2023]
Abstract
The search for nonprecious-metal-based catalysts for the synthesis of γ-valerolactone (GVL) through hydrogenation of levulinic acid and its derivatives in an efficient fashion is of great interest and importance, as GVL is an important a sustainable liquid. We herein report a pincer iron complex that can efficiently catalyze the hydrogenation of levulinic acid and methyl levulinate into GVL, achieving a turnover number of up to 23 000 and a turnover frequency of 1917 h-1 . This iron-based catalyst also enabled the formation of GVL from various biomass-derived carbohydrates in aqueous solution, thus paving a new way toward a renewable chemical industry.
Collapse
Affiliation(s)
- Yuxuan Yi
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, PR China
| | - Huiying Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, PR China
| | - Ling-Ping Xiao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, PR China
| | - Bo Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, PR China
| | - Guoyong Song
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, PR China
| |
Collapse
|
42
|
Nguyen DH, Trivelli X, Capet F, Swesi Y, Favre-Réguillon A, Vanoye L, Dumeignil F, Gauvin RM. Deeper Mechanistic Insight into Ru Pincer-Mediated Acceptorless Dehydrogenative Coupling of Alcohols: Exchanges, Intermediates, and Deactivation Species. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00995] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Duc Hanh Nguyen
- Université de Lille, CNRS, Centrale Lille, ENSCL, Université d’Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Xavier Trivelli
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille F-59000, France
| | - Frédéric Capet
- Université de Lille, CNRS, Centrale Lille, ENSCL, Université d’Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Youssef Swesi
- Laboratoire de Génie des Procédés Catalytiques, LGPC, CNRS - CPE Lyon - Université de Lyon, Villeurbanne F-69616, France
| | - Alain Favre-Réguillon
- Laboratoire de Génie des Procédés Catalytiques, LGPC, CNRS - CPE Lyon - Université de Lyon, Villeurbanne F-69616, France
| | - Laurent Vanoye
- Laboratoire de Génie des Procédés Catalytiques, LGPC, CNRS - CPE Lyon - Université de Lyon, Villeurbanne F-69616, France
| | - Franck Dumeignil
- Université de Lille, CNRS, Centrale Lille, ENSCL, Université d’Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Régis M. Gauvin
- Université de Lille, CNRS, Centrale Lille, ENSCL, Université d’Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| |
Collapse
|
43
|
Wang Y, Huang Z, Leng X, Zhu H, Liu G, Huang Z. Transfer Hydrogenation of Alkenes Using Ethanol Catalyzed by a NCP Pincer Iridium Complex: Scope and Mechanism. J Am Chem Soc 2018. [PMID: 29517232 DOI: 10.1021/jacs.8b01038] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The first general catalytic approach to effecting transfer hydrogenation (TH) of unactivated alkenes using ethanol as the hydrogen source is described. A new NCP-type pincer iridium complex (BQ-NCOP)IrHCl containing a rigid benzoquinoline backbone has been developed for efficient, mild TH of unactivated C-C multiple bonds with ethanol, forming ethyl acetate as the sole byproduct. A wide variety of alkenes, including multisubstituted alkyl alkenes, aryl alkenes, and heteroatom-substituted alkenes, as well as O- or N-containing heteroarenes and internal alkynes, are suitable substrates. Importantly, the (BQ-NCOP)Ir/EtOH system exhibits high chemoselectivity for alkene hydrogenation in the presence of reactive functional groups, such as ketones and carboxylic acids. Furthermore, the reaction with C2D5OD provides a convenient route to deuterium-labeled compounds. Detailed kinetic and mechanistic studies have revealed that monosubstituted alkenes (e.g., 1-octene, styrene) and multisubstituted alkenes (e.g., cyclooctene (COE)) exhibit fundamental mechanistic difference. The OH group of ethanol displays a normal kinetic isotope effect (KIE) in the reaction of styrene, but a substantial inverse KIE in the case of COE. The catalysis of styrene or 1-octene with relatively strong binding affinity to the Ir(I) center has (BQ-NCOP)IrI(alkene) adduct as an off-cycle catalyst resting state, and the rate law shows a positive order in EtOH, inverse first-order in styrene, and first-order in the catalyst. In contrast, the catalysis of COE has an off-cycle catalyst resting state of (BQ-NCOP)IrIII(H)[O(Et)···HO(Et)···HOEt] that features a six-membered iridacycle consisting of two hydrogen-bonds between one EtO ligand and two EtOH molecules, one of which is coordinated to the Ir(III) center. The rate law shows a negative order in EtOH, zeroth-order in COE, and first-order in the catalyst. The observed inverse KIE corresponds to an inverse equilibrium isotope effect for the pre-equilibrium formation of (BQ-NCOP)IrIII(H)(OEt) from the catalyst resting state via ethanol dissociation. Regardless of the substrate, ethanol dehydrogenation is the slow segment of the catalytic cycle, while alkene hydrogenation occurs readily following the rate-determining step, that is, β-hydride elimination of (BQ-NCOP)Ir(H)(OEt) to form (BQ-NCOP)Ir(H)2 and acetaldehyde. The latter is effectively converted to innocent ethyl acetate under the catalytic conditions, thus avoiding the catalyst poisoning via iridium-mediated decarbonylation of acetaldehyde.
Collapse
Affiliation(s)
- Yulei Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Zhidao Huang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Huping Zhu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Guixia Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Zheng Huang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| |
Collapse
|
44
|
Xu S, Alhthlol LM, Paudel K, Reinheimer E, Tyer DL, Taylor DK, Smith AM, Holzmann J, Lozano E, Ding K. Tripodal N,P Mixed-Donor Ligands and Their Cobalt Complexes: Efficient Catalysts for Acceptorless Dehydrogenation of Secondary Alcohols. Inorg Chem 2018; 57:2394-2397. [DOI: 10.1021/acs.inorgchem.8b00043] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Latifah M. Alhthlol
- King Saud bin Abdulaziz University for Health Sciences, Al Mubarraz, Alahsa 36428, Saudi Arabia
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Buil ML, Esteruelas MA, Gay MP, Gómez-Gallego M, Nicasio AI, Oñate E, Santiago A, Sierra MA. Osmium Catalysts for Acceptorless and Base-Free Dehydrogenation of Alcohols and Amines: Unusual Coordination Modes of a BPI Anion. Organometallics 2018. [DOI: 10.1021/acs.organomet.7b00906] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- María L. Buil
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), Centro
de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Miguel A. Esteruelas
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), Centro
de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - M. Pilar Gay
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), Centro
de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Mar Gómez-Gallego
- Departamento
de Química Orgánica I, Facultad de CC. Químicas,
Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Antonio I. Nicasio
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), Centro
de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), Centro
de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Alicia Santiago
- Departamento
de Química Orgánica I, Facultad de CC. Químicas,
Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Miguel A. Sierra
- Departamento
de Química Orgánica I, Facultad de CC. Químicas,
Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
46
|
Hao Z, Yan X, Liu K, Yue X, Han Z, Lin J. Ruthenium carbonyl complexes with pyridine-alkoxide ligands: synthesis, characterization and catalytic application in dehydrogenative oxidation of alcohols. NEW J CHEM 2018. [DOI: 10.1039/c8nj03706j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dehydrogenative oxidation of secondary alcohols catalyzed by several new trinuclear ruthenium carbonyl complexes under mild conditions was proposed.
Collapse
Affiliation(s)
- Zhiqiang Hao
- National Demonstration Center for Experimental Chemistry Education
- The College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang 050024
- People's Republic of China
| | - Xinlong Yan
- National Demonstration Center for Experimental Chemistry Education
- The College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang 050024
- People's Republic of China
| | - Kang Liu
- National Demonstration Center for Experimental Chemistry Education
- The College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang 050024
- People's Republic of China
| | - Xiaohui Yue
- National Demonstration Center for Experimental Chemistry Education
- The College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang 050024
- People's Republic of China
| | - Zhangang Han
- National Demonstration Center for Experimental Chemistry Education
- The College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang 050024
- People's Republic of China
| | - Jin Lin
- National Demonstration Center for Experimental Chemistry Education
- The College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang 050024
- People's Republic of China
| |
Collapse
|
47
|
Hydrogenation/Dehydrogenation of Unsaturated Bonds with Iron Pincer Catalysis. TOP ORGANOMETAL CHEM 2018. [DOI: 10.1007/3418_2018_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Jaiswal G, Landge VG, Jagadeesan D, Balaraman E. Iron-based nanocatalyst for the acceptorless dehydrogenation reactions. Nat Commun 2017. [DOI: 10.1038/s41467-017-01603-3 pmid: 29247179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
49
|
Iron-based nanocatalyst for the acceptorless dehydrogenation reactions. Nat Commun 2017; 8:2147. [PMID: 29247179 PMCID: PMC5732290 DOI: 10.1038/s41467-017-01603-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 10/02/2017] [Indexed: 01/02/2023] Open
Abstract
Development of sustainable catalytic systems for fundamentally important synthetic transformations and energy storage applications is an intellectually stimulating challenge. Catalytic dehydrogenation of feedstock chemicals, such as alcohols and amines to value-added products with the concomitant generation of dihydrogen is of much interest in the context of hydrogen economy and is an effective alternative to the classical oxidation reactions. Despite a number of homogeneous catalysts being identified for the acceptorless dehydrogenation, the use of high price and limited availability of precious metals and poor recovery of the catalyst have spurred interest in catalysis with more earth-abundant alternatives, especially iron. However, no report has described a reusable iron-based heterogeneous catalyst for oxidant-free and acceptorless dehydrogenation reactions. Here we replace expensive noble metal catalysts with an inexpensive, benign, and sustainable nanoscale iron catalyst for the efficient acceptorless dehydrogenation of N-heterocycles and alcohols with liberation of hydrogen gas. Catalytic acceptorless dehydrogenation reactions provide a sustainable route to valuable products and hydrogen fuel. Here, the authors show a recyclable iron catalyst that is highly active in the acceptorless dehydrogenation of a wide range of N-heterocycles and alcohols.
Collapse
|
50
|
Dai H, Guan H. Iron Dihydride Complexes: Synthesis, Reactivity, and Catalytic Applications. Isr J Chem 2017. [DOI: 10.1002/ijch.201700101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Huiguang Dai
- Department of Chemistry University of Cincinnati Cincinnati, OH 45221-0172 USA
| | - Hairong Guan
- Department of Chemistry University of Cincinnati Cincinnati, OH 45221-0172 USA
| |
Collapse
|