1
|
Schroeder J, Dunning J, Chan AHH, Chik HYJ, Burke T. Not so social in old age: demography as one driver of decreasing sociality. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220458. [PMID: 39463245 PMCID: PMC11513642 DOI: 10.1098/rstb.2022.0458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Humans become more selective with whom they spend their time, and as a result, the social networks of older humans are smaller than those of younger ones. In non-human animals, processes such as competition and opportunity can result in patterns of declining sociality with age. While there is support for declining sociality with age in mammals, evidence from wild bird populations is lacking. Here, we test whether sociality declines with age in a wild, insular bird population, where we know the exact ages of individuals. Using 6 years of sociality data, we find that as birds aged, their degree and betweenness decreased. The number of same-age birds still alive also decreased with age. Our results suggest that a longitudinal change in sociality with age may be, in part, an emergent effect of natural changes in demography. This highlights the need to investigate the changing costs and benefits of sociality across a lifetime.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Julia Schroeder
- Department of Life Sciences, Imperial College London, Silwood Park Campus, AscotSL5 7PY, UK
| | - Jamie Dunning
- Department of Life Sciences, Imperial College London, Silwood Park Campus, AscotSL5 7PY, UK
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Alex Hoi Han Chan
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, KonstanzPostbox 687, Germany
- Department of Collective Behaviour, Max Planck Institute of Animal Behaviour, Radolfzell78464, Germany
| | - Heung Ying Janet Chik
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen9747 AG, The Netherlands
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Terry Burke
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, SheffieldS10 2TN, UK
| |
Collapse
|
2
|
Sanghvi K, Pizzari T, Sepil I. What does not kill you makes you stronger? Effects of paternal age at conception on fathers and sons. Evolution 2024; 78:1619-1632. [PMID: 38912848 DOI: 10.1093/evolut/qpae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Advancing male age is often hypothesized to reduce both male fertility and offspring quality due to reproductive senescence. However, the effects of advancing male age on reproductive output and offspring quality are not always deleterious. For example, older fathers might buffer the effects of reproductive senescence by terminally investing in reproduction. Similarly, males that survive to reproduce at an old age might carry alleles that confer high viability (viability selection), which are then inherited by offspring, or might have high reproductive potential (selective disappearance). Differentiating these mechanisms requires an integrated experimental study of paternal survival and reproductive performance, as well as offspring quality, which is currently lacking. Using a cross-sectional study in Drosophila melanogaster, we test the effects of paternal age at conception (PAC) on paternal survival and reproductive success, and on the lifespans of sons. We discover that mating at an old age is linked with decreased future male survival, suggesting that mating-induced mortality is possibly due to old fathers being frail. We find no evidence for terminal investment and show that reproductive senescence in fathers does not onset until their late-adult life. Additionally, we find that as a father's lifespan increases, his probability of siring offspring increases for older PAC treatments only. Lastly, we show that sons born to older fathers live longer than those born to younger fathers due to viability selection. Collectively, our results suggest that advancing paternal age is not necessarily associated with deleterious effects for offspring and may even lead to older fathers producing longer-lived offspring.
Collapse
Affiliation(s)
- Krish Sanghvi
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Tommaso Pizzari
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Irem Sepil
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Cocciardi JM, Hoffman AM, Alvarado-Serrano DF, Anderson J, Blumstein M, Boehm EL, Bolin LG, Borokini IT, Bradburd GS, Branch HA, Brudvig LA, Chen Y, Collins SL, Des Marais DL, Gamba D, Hanan NP, Howard MM, Jaros J, Juenger TE, Kooyers NJ, Kottler EJ, Lau JA, Menon M, Moeller DA, Mozdzer TJ, Sheth SN, Smith M, Toll K, Ungerer MC, Vahsen ML, Wadgymar SM, Waananen A, Whitney KD, Avolio ML. The value of long-term ecological research for evolutionary insights. Nat Ecol Evol 2024; 8:1584-1592. [PMID: 39095611 DOI: 10.1038/s41559-024-02464-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/11/2024] [Indexed: 08/04/2024]
Abstract
Scientists must have an integrative understanding of ecology and evolution across spatial and temporal scales to predict how species will respond to global change. Although comprehensively investigating these processes in nature is challenging, the infrastructure and data from long-term ecological research networks can support cross-disciplinary investigations. We propose using these networks to advance our understanding of fundamental evolutionary processes and responses to global change. For ecologists, we outline how long-term ecological experiments can be expanded for evolutionary inquiry, and for evolutionary biologists, we illustrate how observed long-term ecological patterns may motivate new evolutionary questions. We advocate for collaborative, multi-site investigations and discuss barriers to conducting evolutionary work at network sites. Ultimately, these networks offer valuable information and opportunities to improve predictions of species' responses to global change.
Collapse
Affiliation(s)
- Jennifer M Cocciardi
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biology, University of Mississippi, Oxford, MS, USA.
| | - Ava M Hoffman
- Department of Biostatistics, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Jill Anderson
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Meghan Blumstein
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emma L Boehm
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Lana G Bolin
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Gideon S Bradburd
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Haley A Branch
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lars A Brudvig
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Yanni Chen
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Scott L Collins
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - David L Des Marais
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Diana Gamba
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Niall P Hanan
- Department of Plant and Environmental Sciences, Jornada Basin LTER Program, New Mexico State University, Las Cruces, NM, USA
| | - Mia M Howard
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Joseph Jaros
- Department of Biological Sciences, Fordham University, New York, NY, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Nicholas J Kooyers
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, USA
| | - Ezra J Kottler
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Jennifer A Lau
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Mitra Menon
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA
| | - David A Moeller
- Department of Plant and Microbial Biology, University of Minnesota, Minneapolis, MN, USA
| | | | - Seema N Sheth
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Melinda Smith
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Katherine Toll
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Mark C Ungerer
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Megan L Vahsen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | | - Amy Waananen
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN, USA
| | - Kenneth D Whitney
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Meghan L Avolio
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
4
|
Chik HYJ, Mannarelli ME, Dos Remedios N, Simons MJP, Burke T, Schroeder J, Dugdale HL. Adult telomere length is positively correlated with survival and lifetime reproductive success in a wild passerine. Mol Ecol 2024; 33:e17455. [PMID: 38993011 DOI: 10.1111/mec.17455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/01/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024]
Abstract
Explaining variation in individual fitness is a key goal in evolutionary biology. Recently, telomeres, repeating DNA sequences capping chromosome ends, have gained attention as a biomarker for body state, physiological costs, and senescence. Existing research has provided mixed evidence for whether telomere length correlates with fitness, including survival and reproductive output. Moreover, few studies have examined how the rate of change in telomere length correlates with fitness in wild populations. Here, we intensively monitored an insular population of house sparrows, and collected longitudinal telomere and life history data (16 years, 1225 individuals). We tested whether telomere length and its rate of change predict fitness measures, namely survival, lifespan and annual and lifetime reproductive effort and success. Telomere length positively predicted short-term survival, independent of age, but did not predict lifespan, suggesting either a diminishing telomere length-survival correlation with age or other extrinsic factors of mortality. The positive association of telomere length with survival translated into reproductive benefits, as birds with longer telomeres produced more genetic recruits, hatchlings and reared more fledglings over their lifetime. In contrast, there was no association between telomere dynamics and annual reproductive output, suggesting telomere dynamics might not reflect the costs of reproduction in this population, potentially masked by variation in individual quality. The rate of change of telomere length did not correlate with neither lifespan nor lifetime reproductive success. Our results provide further evidence that telomere length correlates with fitness, and contribute to our understanding of the selection on, and evolution of, telomere dynamics.
Collapse
Affiliation(s)
- Heung Ying Janet Chik
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Maria-Elena Mannarelli
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | - Natalie Dos Remedios
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
- School of Social Sciences, University of Auckland, Auckland, New Zealand
| | - Mirre J P Simons
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Terry Burke
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Julia Schroeder
- Department of Life Sciences, Imperial College London Silwood Park, Ascot, UK
| | - Hannah L Dugdale
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
5
|
Zhang R, Fang J, Qi T, Zhu S, Yao L, Fang G, Li Y, Zang X, Xu W, Hao W, Liu S, Yang D, Chen D, Yang J, Ma X, Wu L. Maternal aging increases offspring adult body size via transmission of donut-shaped mitochondria. Cell Res 2023; 33:821-834. [PMID: 37500768 PMCID: PMC10624822 DOI: 10.1038/s41422-023-00854-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
Maternal age at childbearing has continued to increase in recent decades. However, whether and how it influences offspring adult traits are largely unknown. Here, using adult body size as the primary readout, we reveal that maternal rather than paternal age has an evolutionarily conserved effect on offspring adult traits in humans, Drosophila, and Caenorhabditis elegans. Elucidating the mechanisms of such effects in humans and other long-lived animals remains challenging due to their long life course and difficulties in conducting in vivo studies. We thus employ the short-lived and genetically tractable nematode C. elegans to explore the mechanisms underlying the regulation of offspring adult trait by maternal aging. By microscopic analysis, we find that old worms transmit aged mitochondria with a donut-like shape to offspring. These mitochondria are rejuvenated in the offspring's early life, with their morphology fully restored before adulthood in an AMPK-dependent manner. Mechanistically, we demonstrate that early-life mitochondrial dysfunction activates AMPK, which in turn not only alleviates mitochondrial abnormalities but also activates TGFβ signaling to increase offspring adult size. Together, our findings provide mechanistic insight into the ancient role of maternal aging in shaping the traits of adult offspring.
Collapse
Affiliation(s)
- Runshuai Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jinan Fang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Ting Qi
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Shihao Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Luxia Yao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Guicun Fang
- Microscopy Core Facility, Westlake University, Hangzhou, Zhejiang, China
| | - Yunsheng Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xiao Zang
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Weina Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Wanyu Hao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Shouye Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Dan Yang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Di Chen
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Jian Yang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| | - Xianjue Ma
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China.
| | - Lianfeng Wu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Dupont SM, Barbraud C, Chastel O, Delord K, Pallud M, Parenteau C, Weimerskirch H, Angelier F. How does maternal age influence reproductive performance and offspring phenotype in the snow petrel (Pagodroma nivea)? Oecologia 2023; 203:63-78. [PMID: 37833549 DOI: 10.1007/s00442-023-05451-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023]
Abstract
In wild vertebrates, the increase of breeding success with advancing age has been extensively studied through laying date, clutch size, hatching success, and fledging success. However, to better evaluate the influence of age on reproductive performance in species with high reproductive success, assessing not only reproductive success but also other proxies of reproductive performance appear crucial. For example, the quality of developmental conditions and offspring phenotype can provide robust and complementary information on reproductive performance. In long-lived vertebrate species, several proxies of developmental conditions can be used to estimate the quality of the produced offspring (i.e., body size, body condition, corticosterone levels, and telomere length), and therefore, their probability to survive. By sampling chicks reared by known-aged mothers, we investigated the influence of maternal age on reproductive performance and offspring quality in a long-lived bird species, the snow petrel (Pagodroma nivea). Older females bred and left their chick alone earlier. Moreover, older females had larger chicks that grew faster, and ultimately, those chicks had a higher survival probability at the nest. In addition, older mothers produced chicks with a higher sensitivity to stress, as shown by moderately higher stress-induced corticosterone levels. Overall, our study demonstrated that maternal age is correlated to reproductive performance (hatching date, duration of the guarding period and survival) and offspring quality (body size, growth rate and sensitivity to stress), suggesting that older individuals provide better parental cares to their offspring. These results also demonstrate that maternal age can affect the offspring phenotype with potential long-term consequences.
Collapse
Affiliation(s)
- Sophie M Dupont
- Laboratoire de Biologie des Organismes et des Ecosystèmes Aquatiques (BOREA), MNHN, CNRS UMR8067, SU, IRD207, UCN, UA, 97275, Schoelcher Cedex, Martinique, France.
- Institut du Littoral, Environnement et Sociétés (LIENSs), CNRS UMR7266, La Rochelle Université, 17000, La Rochelle, France.
| | - Christophe Barbraud
- Centre d'Etudes Biologiques de Chizé (CEBC), CNRS UMR7372, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), CNRS UMR7372, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Karine Delord
- Centre d'Etudes Biologiques de Chizé (CEBC), CNRS UMR7372, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Marie Pallud
- Centre d'Etudes Biologiques de Chizé (CEBC), CNRS UMR7372, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Charline Parenteau
- Centre d'Etudes Biologiques de Chizé (CEBC), CNRS UMR7372, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Henri Weimerskirch
- Centre d'Etudes Biologiques de Chizé (CEBC), CNRS UMR7372, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé (CEBC), CNRS UMR7372, La Rochelle Université, 79360, Villiers-en-Bois, France
| |
Collapse
|
7
|
Dunning J, Burke T, Hoi Hang Chan A, Ying Janet Chik H, Evans T, Schroeder J. Opposite-sex associations are linked with annual fitness, but sociality is stable over lifetime. Behav Ecol 2023; 34:315-324. [PMID: 37192923 PMCID: PMC10183206 DOI: 10.1093/beheco/arac124] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/27/2022] [Accepted: 12/06/2022] [Indexed: 03/11/2023] Open
Abstract
Animal sociality, an individual's propensity to associate with others, has fitness consequences through mate choice, for example, directly, by increasing the pool of prospective partners, and indirectly through increased survival, and individuals benefit from both. Annually, fitness consequences are realized through increased mating success and subsequent fecundity. However, it remains unknown whether these consequences translate to lifetime fitness. Here, we quantified social associations and their link to fitness annually and over lifetime, using a multi-generational, genetic pedigree. We used social network analysis to calculate variables representing different aspects of an individual's sociality. Sociality showed high within-individual repeatability. We found that birds with more opposite-sex associates had higher annual fitness than those with fewer, but this did not translate to lifetime fitness. Instead, for lifetime fitness, we found evidence for stabilizing selection on opposite-sex sociality, and sociality in general, suggesting that reported benefits are only short-lived in a wild population, and that selection favors an average sociality.
Collapse
Affiliation(s)
- Jamie Dunning
- Department of Life Sciences, Imperial College London, UK
| | - Terry Burke
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, UK
| | - Alex Hoi Hang Chan
- Department of Life Sciences, Imperial College London, UK
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Germany
- Max Plank Institute of Animal Behaviour, Germany
| | - Heung Ying Janet Chik
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Netherlands
- School of Natural Sciences, Macquarie University, Australia
| | - Tim Evans
- Center for Complexity Science, Imperial College London, UK
| | | |
Collapse
|
8
|
Sorci G, Hussein HA, Levêque G, Saint Jalme M, Lacroix F, Hingrat Y, Lesobre L. Ranking parameters driving siring success during sperm competition in the North African houbara bustard. Commun Biol 2023; 6:305. [PMID: 36949210 PMCID: PMC10033649 DOI: 10.1038/s42003-023-04698-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/10/2023] [Indexed: 03/24/2023] Open
Abstract
Sperm competition is a powerful force driving the evolution of ejaculate and sperm traits. However, the outcome of sperm competition depends on many traits that extend beyond ejaculate quality. Here, we study male North African houbara bustards (Chlamydotis undulata undulata) competing for egg fertilization, after artificial insemination, with the aim to rank the importance of 14 parameters as drivers of siring success. Using a machine learning approach, we show that traits independent of male quality (i.e., insemination order, delay between insemination and egg laying) are the most important predictors of siring success. Traits describing intrinsic male quality (i.e., number of sperm in the ejaculate, mass motility index) are also positively associated with siring success, but their contribution to explaining the outcome of sperm competition is much lower than for insemination order. Overall, this analysis shows that males mating at the last position in the mating sequence have the best chance to win the competition for egg fertilization. This raises the question of the importance of female behavior as determinant of mating order.
Collapse
Affiliation(s)
- Gabriele Sorci
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, Dijon, France.
| | - Hiba Abi Hussein
- Reneco International Wildlife Consultants LLC, Abu Dhabi, United Arab Emirates
| | | | - Michel Saint Jalme
- Centre d'Ecologie et des Sciences de la Conservation, CESCO, Museum National d'Histoire Naturelle, CNRS, Ménagerie le zoo du Jardin des Plantes, Sorbonne Université, Paris, France
| | - Frédéric Lacroix
- Reneco International Wildlife Consultants LLC, Abu Dhabi, United Arab Emirates
| | - Yves Hingrat
- Reneco International Wildlife Consultants LLC, Abu Dhabi, United Arab Emirates
| | - Loïc Lesobre
- Reneco International Wildlife Consultants LLC, Abu Dhabi, United Arab Emirates
| |
Collapse
|
9
|
Martine P, Aude A. Parental age at conception on mouse lemur's offspring longevity: Sex-specific maternal effects. PLoS One 2022; 17:e0265783. [PMID: 36580457 PMCID: PMC9799291 DOI: 10.1371/journal.pone.0265783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/22/2022] [Indexed: 12/30/2022] Open
Abstract
Parental age at conception often influences offspring's longevity, a phenomenon referred as the "Lansing effect" described in large variety of organisms. But, the majority of the results refer to the survival of juveniles, mainly explained by an inadequate parental care by the elderly parents, mostly the mothers. Studies on the effect of parental age on offspring's longevity in adulthood remain few, except in humans for whom effects of parental age vary according to statistical models or socioeconomic environments. In a small primate in which the longevity reaches up to 13 years, we investigated the effects of parental age at conception on the longevity of offspring (N = 278) issued from parents with known longevity. None of the postnatal parameters (body mass at 30 and 60 days after birth, size and composition of the litter) influenced offspring's longevity. Mothers' age at conception negatively affected offspring's longevity in males but not in females. By contrast, fathers' age at conception did not influence offspring's longevity. Finally, the longevity of female offspring was significantly positively related to the longevity of both parents. Compared with current studies, the surprisingly minor effect of fathers 'age was related to the high seasonal reproduction and the particular telomere biology of mouse lemurs.
Collapse
Affiliation(s)
- Perret Martine
- UMR 7179, Adaptive mechanisms and Evolution, MECADEV, Brunoy, France
- * E-mail:
| | - Anzeraey Aude
- UMR 7179, Adaptive mechanisms and Evolution, MECADEV, Brunoy, France
| |
Collapse
|
10
|
Sparks AM, Hammers M, Komdeur J, Burke T, Richardson DS, Dugdale HL. Sex-dependent effects of parental age on offspring fitness in a cooperatively breeding bird. Evol Lett 2022; 6:438-449. [PMID: 36579166 PMCID: PMC9783413 DOI: 10.1002/evl3.300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Parental age can have considerable effects on offspring phenotypes and health. However, intergenerational effects may also have longer term effects on offspring fitness. Few studies have investigated parental age effects on offspring fitness in natural populations while also testing for sex- and environment-specific effects. Further, longitudinal parental age effects may be masked by population-level processes such as the selective disappearance of poor-quality individuals. Here, we used multigenerational data collected on individually marked Seychelles warblers (Acrocephalus sechellensis) to investigate the impact of maternal and paternal age on offspring life span and lifetime reproductive success. We found negative effects of maternal age on female offspring life span and lifetime reproductive success, which were driven by within-mother effects. There was no difference in annual reproductive output of females born to older versus younger mothers, suggesting that the differences in offspring lifetime reproductive success were driven by effects on offspring life span. In contrast, there was no association between paternal age and female offspring life span or either maternal or paternal age and male offspring life span. Lifetime reproductive success, but not annual reproductive success, of male offspring increased with maternal age, but this was driven by between-mother effects. No paternal age effects were found on female offspring lifetime reproductive success but there was a positive between-father effect on male offspring lifetime reproductive success. We did not find strong evidence for environment-dependent parental age effects. Our study provides evidence for parental age effects on the lifetime fitness of offspring and shows that such effects can be sex dependent. These results add to the growing literature indicating the importance of intergenerational effects on long-term offspring performance and highlight that these effects can be an important driver of variation in longevity and fitness in the wild.
Collapse
Affiliation(s)
- Alexandra M. Sparks
- Faculty of Biological Sciences, School of BiologyUniversity of LeedsLeedsLS2 9JTUnited Kingdom,School of BiosciencesUniversity of SheffieldSheffieldS10 2TNUnited Kingdom
| | - Martijn Hammers
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningen9712 CPThe Netherlands,Aeres University of Applied SciencesAlmere1325 WBThe Netherlands
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningen9712 CPThe Netherlands
| | - Terry Burke
- School of BiosciencesUniversity of SheffieldSheffieldS10 2TNUnited Kingdom
| | - David S. Richardson
- School of Biological SciencesUniversity of East AngliaNorwichNR4 7TJUnited Kingdom,Nature SeychellesMahéRepublic of Seychelles
| | - Hannah L. Dugdale
- Faculty of Biological Sciences, School of BiologyUniversity of LeedsLeedsLS2 9JTUnited Kingdom,Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningen9712 CPThe Netherlands
| |
Collapse
|
11
|
Cope H, Ivimey-Cook ER, Moorad J. Triparental ageing in a laboratory population of an insect with maternal care. Behav Ecol 2022; 33:1123-1132. [PMID: 36518633 PMCID: PMC9735237 DOI: 10.1093/beheco/arac078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 07/13/2022] [Accepted: 08/08/2022] [Indexed: 09/10/2024] Open
Abstract
Parental age at reproduction influences offspring size and survival by affecting prenatal and postnatal conditions in a wide variety of species, including humans. However, most investigations into this manifestation of ageing focus upon maternal age effects; the effects of paternal age and interactions between maternal and paternal age are often neglected. Furthermore, even when maternal age effects are studied, pre- and post-natal effects are often confounded. Using a cross-fostered experimental design, we investigated the joint effects of pre-natal paternal and maternal and post-natal maternal ages on five traits related to offspring outcomes in a laboratory population of a species of burying beetle, Nicrophorus vespilloides. We found a significant positive effect of the age of the egg producer on larval survival to dispersal. We found more statistical evidence for interaction effects, which acted on larval survival and egg length. Both interaction effects were negative and involved the age of the egg-producer, indicating that age-related pre-natal maternal improvements were mitigated by increasing age in fathers and foster mothers. These results agree with an early study that found little evidence for maternal senescence, but it emphasizes that parental age interactions may be an important contributor to ageing patterns. We discuss how the peculiar life history of this species may promote selection to resist the evolution of parental age effects, and how this might have influenced our ability to detect senescence.
Collapse
Affiliation(s)
- Hilary Cope
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Edward R Ivimey-Cook
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jacob Moorad
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
12
|
Anderson CE, Malek MC, Jonas-Closs RA, Cho Y, Peshkin L, Kirschner MW, Yampolsky LY. Inverse Lansing Effect: Maternal Age and Provisioning Affecting Daughters' Longevity and Male Offspring Production. Am Nat 2022; 200:704-721. [PMID: 36260845 DOI: 10.1086/721148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
AbstractMaternal age effects on offspring life history are known in a variety of organisms, with offspring of older mothers typically having lower life expectancy (the Lansing effect). However, there is no consensus on the generality and mechanisms of this pattern. We tested predictions of the Lansing effect in several Daphnia magna clones and observed clone-specific magnitude and direction of the maternal age effect on offspring longevity. We also report ambidirectional, genotype-specific effects of maternal age on the propensity of daughters to produce male offspring. Focusing on two clones with contrasting life histories, we demonstrate that maternal age effects can be explained by lipid provisioning of embryos by mothers of different ages. Individuals from a single-generation maternal age reversal treatment showed intermediate life span and intermediate lipid content at birth. In the clone characterized by the "inverse Lansing effect," neonates produced by older mothers showed higher mitochondrial membrane potential in neural tissues than their counterparts born to younger mothers. We conclude that an inverse Lansing effect is possible and hypothesize that it may be caused by age-specific maternal lipid provisioning creating a calorically restricted environment during embryonic development, which in turn reduces fecundity and increases life span in offspring.
Collapse
|
13
|
Sharman P, Young AJ, Wilson AJ. Evidence of maternal and paternal age effects on speed in thoroughbred racehorses. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220691. [PMID: 36249332 DOI: 10.5061/dryad.qbzkh18m0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/16/2022] [Indexed: 05/25/2023]
Abstract
Effects of parental age on offspring viability have been reported in a wide range of species. However, to what extent parental age influences offspring traits beyond viability remains unclear. Moreover, previous research has primarily focused on maternal age effects. The purpose of this study was to test for paternal and maternal age effects on offspring speed in thoroughbred racehorses. We analysed over 900 000 race performances by over 100 000 horses on British racecourses between 1996 and 2019. With knowledge of the age of all 41 107 dams and 2 887 sires at offspring conception, we jointly modelled maternal and paternal age effects using a 'within-individual centring' approach. Within-parents, we identified a significant effect of maternal age on offspring speed of -0.017 yards s-1 yr-1 and a corresponding paternal age effect of -0.011 yards s-1 yr-1. Although maternal age effects were stronger (more negative), the existence and magnitude of paternal effects is particularly noteworthy, given thoroughbred sires have no involvement in parental care. Our results also suggest that the selective disappearance of both sires and dams is ongoing. These findings could potentially be used to optimize thoroughbred racehorse breeding decisions, and more generally, add to the increasing body of evidence that both maternal and paternal age affect a range of offspring characteristics.
Collapse
Affiliation(s)
- Patrick Sharman
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Andrew J Young
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Alastair J Wilson
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| |
Collapse
|
14
|
Sharman P, Young AJ, Wilson AJ. Evidence of maternal and paternal age effects on speed in thoroughbred racehorses. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220691. [PMID: 36249332 PMCID: PMC9532991 DOI: 10.1098/rsos.220691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/16/2022] [Indexed: 05/10/2023]
Abstract
Effects of parental age on offspring viability have been reported in a wide range of species. However, to what extent parental age influences offspring traits beyond viability remains unclear. Moreover, previous research has primarily focused on maternal age effects. The purpose of this study was to test for paternal and maternal age effects on offspring speed in thoroughbred racehorses. We analysed over 900 000 race performances by over 100 000 horses on British racecourses between 1996 and 2019. With knowledge of the age of all 41 107 dams and 2 887 sires at offspring conception, we jointly modelled maternal and paternal age effects using a 'within-individual centring' approach. Within-parents, we identified a significant effect of maternal age on offspring speed of -0.017 yards s-1 yr-1 and a corresponding paternal age effect of -0.011 yards s-1 yr-1. Although maternal age effects were stronger (more negative), the existence and magnitude of paternal effects is particularly noteworthy, given thoroughbred sires have no involvement in parental care. Our results also suggest that the selective disappearance of both sires and dams is ongoing. These findings could potentially be used to optimize thoroughbred racehorse breeding decisions, and more generally, add to the increasing body of evidence that both maternal and paternal age affect a range of offspring characteristics.
Collapse
Affiliation(s)
- Patrick Sharman
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Andrew J. Young
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Alastair J. Wilson
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| |
Collapse
|
15
|
Sharman P, Young AJ, Wilson AJ. Evidence of maternal and paternal age effects on speed in thoroughbred racehorses. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220691. [PMID: 36249332 DOI: 10.6084/m9.figshare.c.6228607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/16/2022] [Indexed: 05/25/2023]
Abstract
Effects of parental age on offspring viability have been reported in a wide range of species. However, to what extent parental age influences offspring traits beyond viability remains unclear. Moreover, previous research has primarily focused on maternal age effects. The purpose of this study was to test for paternal and maternal age effects on offspring speed in thoroughbred racehorses. We analysed over 900 000 race performances by over 100 000 horses on British racecourses between 1996 and 2019. With knowledge of the age of all 41 107 dams and 2 887 sires at offspring conception, we jointly modelled maternal and paternal age effects using a 'within-individual centring' approach. Within-parents, we identified a significant effect of maternal age on offspring speed of -0.017 yards s-1 yr-1 and a corresponding paternal age effect of -0.011 yards s-1 yr-1. Although maternal age effects were stronger (more negative), the existence and magnitude of paternal effects is particularly noteworthy, given thoroughbred sires have no involvement in parental care. Our results also suggest that the selective disappearance of both sires and dams is ongoing. These findings could potentially be used to optimize thoroughbred racehorse breeding decisions, and more generally, add to the increasing body of evidence that both maternal and paternal age affect a range of offspring characteristics.
Collapse
Affiliation(s)
- Patrick Sharman
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Andrew J Young
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Alastair J Wilson
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| |
Collapse
|
16
|
Bennett S, Girndt A, Sánchez-Tójar A, Burke T, Simons M, Schroeder J. Evidence of Paternal Effects on Telomere Length Increases in Early Life. Front Genet 2022; 13:880455. [PMID: 35656320 PMCID: PMC9152208 DOI: 10.3389/fgene.2022.880455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
Offspring of older parents in many species have decreased longevity, a faster ageing rate and lower fecundity than offspring born to younger parents. Biomarkers of ageing, such as telomeres, that tend to shorten as individuals age, may provide insight into the mechanisms of such parental age effects. Parental age may be associated with offspring telomere length either directly through inheritance of shortened telomeres or indirectly, for example, through changes in parental care in older parents affecting offspring telomere length. Across the literature there is considerable variation in estimates of the heritability of telomere length, and in the direction and extent of parental age effects on telomere length. To address this, we experimentally tested how parental age is associated with the early-life telomere dynamics of chicks at two time points in a captive population of house sparrows Passer domesticus. We experimentally separated parental age from sex effects, and removed effects of age-assortative mating, by allowing the parent birds to only mate with young, or old partners. The effect of parental age was dependent on the sex of the parent and the chicks, and was found in the father-daughter relationship only; older fathers produced daughters with longer telomere lengths post-fledging. Overall we found that chick telomere length increased between the age of 0.5 and 3 months at the population and individual level. This finding is unusual in birds with such increases more commonly associated with non-avian taxa. Our results suggest parental age effects on telomere length are sex-specific either through indirect or direct inheritance. The study of similar patterns in different species and taxa will help us further understand variation in telomere length and its evolution.
Collapse
Affiliation(s)
- Sophie Bennett
- Division of Biology, Imperial College London, London, United Kingdom.,UK Centre for Ecology & Hydrology, Wallingford, United Kingdom
| | - Antje Girndt
- Division of Biology, Imperial College London, London, United Kingdom.,Department of Evolutionary Biology, Max Planck Institute for Ornithology, Seewiesen, Germany.,Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | - Alfredo Sánchez-Tójar
- Division of Biology, Imperial College London, London, United Kingdom.,Department of Evolutionary Biology, Max Planck Institute for Ornithology, Seewiesen, Germany.,Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | - Terry Burke
- School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, United Kingdom
| | - Mirre Simons
- School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, United Kingdom
| | - Julia Schroeder
- Division of Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
17
|
Campos FA, Altmann J, Cords M, Fedigan LM, Lawler R, Lonsdorf EV, Stoinski TS, Strier KB, Bronikowski AM, Pusey AE, Alberts SC. Female reproductive aging in seven primate species: Patterns and consequences. Proc Natl Acad Sci U S A 2022; 119:e2117669119. [PMID: 35533284 PMCID: PMC9171789 DOI: 10.1073/pnas.2117669119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/11/2022] [Indexed: 11/26/2022] Open
Abstract
Age-related changes in fertility have increasingly been documented in wild animal populations: In many species the youngest and oldest reproducers are disadvantaged relative to prime adults. How do these effects evolve, and what explains their diversity across species? Tackling this question requires detailed data on patterns of age-related reproductive performance in multiple animal species. Here, we compare patterns and consequences of age-related changes in female reproductive performance in seven primate populations that have been subjects of long-term continuous study for 29 to 57 y. We document evidence of age effects on fertility and on offspring performance in most, but not all, of these primate species. Specifically, females of six species showed longer interbirth intervals in the oldest age classes, youngest age classes, or both, and the oldest females also showed relatively fewer completed interbirth intervals. In addition, five species showed markedly lower survival among offspring born to the oldest mothers, and two species showed reduced survival for offspring born to both the youngest and the oldest mothers. In contrast, we found mixed evidence that maternal age affects the age at which daughters first reproduce: Only in muriquis and to some extent in chimpanzees, the only two species with female-biased dispersal, did relatively young mothers produce daughters that tended to have earlier first reproduction. Our findings demonstrate shared patterns as well as contrasts in age-related changes in female fertility across species of nonhuman primates and highlight species-specific behavior and life-history patterns as possible explanations for species-level differences.
Collapse
Affiliation(s)
- Fernando A. Campos
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX 78249
| | - Jeanne Altmann
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
| | - Marina Cords
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027
| | - Linda M. Fedigan
- Department of Anthropology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Richard Lawler
- Department of Sociology and Anthropology, James Madison University, Harrisonburg, VA 22807
| | | | | | - Karen B. Strier
- Department of Anthropology, University of Wisconsin–Madison, Madison, WI 53706
| | - Anne M. Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011
| | - Anne E. Pusey
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27710
| | - Susan C. Alberts
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27710
- Department of Biology, Duke University, Durham, NC 27708
| |
Collapse
|
18
|
Shenoi VN, Brengdahl MI, Grace JL, Eriksson B, Rydén P, Friberg U. A genome-wide test for paternal indirect genetic effects on lifespan in Drosophila melanogaster. Proc Biol Sci 2022; 289:20212707. [PMID: 35538781 PMCID: PMC9091837 DOI: 10.1098/rspb.2021.2707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Exposing sires to various environmental manipulations has demonstrated that paternal effects can be non-trivial also in species where male investment in offspring is almost exclusively limited to sperm. Whether paternal effects also have a genetic component (i.e. paternal indirect genetic effects (PIGEs)) in such species is however largely unknown, primarily because of methodological difficulties separating indirect from direct effects of genes. PIGEs may nevertheless be important since they have the capacity to contribute to evolutionary change. Here we use Drosophila genetics to construct a breeding design that allows testing nearly complete haploid genomes (more than 99%) for PIGEs. Using this technique, we estimate the variance in male lifespan due to PIGEs among four populations and compare this to the total paternal genetic variance (the sum of paternal indirect and direct genetic effects). Our results indicate that a substantial part of the total paternal genetic variance results from PIGEs. A screen of 38 haploid genomes, randomly sampled from a single population, suggests that PIGEs also influence variation in lifespan within populations. Collectively, our results demonstrate that PIGEs may constitute an underappreciated source of phenotypic variation.
Collapse
Affiliation(s)
| | | | - Jaime L. Grace
- Department of Biology, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL 60660, USA
| | - Björn Eriksson
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, Box 102, 230 53 Alnarp, Sweden
| | - Patrik Rydén
- Department of Mathematics and Mathematical Statistics, Umeå University, 901 87 Umeå, Sweden,Computational Life Science Cluster (CLiC), Umeå University, 901 87 Umeå, Sweden
| | - Urban Friberg
- IFM Biology, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
19
|
Alif Ž, Dunning J, Chik HYJ, Burke T, Schroeder J. What is the best fitness measure in wild populations? A case study on the power of short-term fitness proxies to predict reproductive value. PLoS One 2022; 17:e0260905. [PMID: 35452482 PMCID: PMC9032343 DOI: 10.1371/journal.pone.0260905] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/30/2022] [Indexed: 12/04/2022] Open
Abstract
Fitness is at the core of evolutionary theory, but it is difficult to measure accurately. One way to measure long-term fitness is by calculating the individual’s reproductive value, which represents the expected number of allele copies an individual passes on to distant future generations. However, this metric of fitness is scarcely used because the estimation of individual’s reproductive value requires long-term pedigree data, which is rarely available in wild populations where following individuals from birth to death is often impossible. Wild study systems therefore use short-term fitness metrics as proxies, such as the number of offspring produced. This study compared two frequently used short-term metrics for fitness obtained at different offspring life stages (eggs, hatchlings, fledglings and recruits), and compared their ability to predict reproductive values derived from the genetic pedigree of a wild passerine bird population. We used twenty years of precise field observations and a near-complete genetic pedigree to calculate reproductive success, individual growth rate and de-lifed fitness as lifetime fitness measures, and as annual de-lifed fitness. We compared the power of these metrics to predict reproductive values and lineage survival to the end of the study period. The three short-term fitness proxies predict the reproductive values and lineage survival only when measured at the recruit stage. There were no significant differences between the different fitness proxies at the same offspring stages in predicting the reproductive values and lineage survival. Annual fitness at one year old predicted reproductive values equally well as lifetime de-lifed fitness. However, none of the short-term fitness proxies were strongly associated with the reproductive values. The commonly used short-term fitness proxies best predict long-term fitness when measured at recruitment stage. Thus, because lifetime fitness measured at recruit stage and annual fitness in the first year of life were the best proxies of long-term fitness in short-lived birds, we encourage their future use.
Collapse
Affiliation(s)
- Živa Alif
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire, United Kingdom
- * E-mail:
| | - Jamie Dunning
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire, United Kingdom
| | - Heung Ying Janet Chik
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Terry Burke
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Julia Schroeder
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire, United Kingdom
| |
Collapse
|
20
|
Callejas‐Díaz M, Chambel MR, San‐Martín‐Lorén J, Gea‐Izquierdo G, Santos‐Del‐Blanco L, Postma E, Climent JM. The role of maternal age, growth, and environment in shaping offspring performance in an aerial conifer seed bank. AMERICAN JOURNAL OF BOTANY 2022; 109:366-376. [PMID: 34973037 PMCID: PMC9790720 DOI: 10.1002/ajb2.1811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 05/09/2023]
Abstract
PREMISE Maternal effects have been demonstrated to affect offspring performance in many organisms, and in plants, seeds are important mediators of these effects. Some woody plant species maintain long-lasting canopy seed banks as an adaptation to wildfires. Importantly, these seeds stored in serotinous cones are produced by the mother plant under varying ontogenetic and physiological conditions. METHODS We sampled the canopy seed bank of a highly serotinous population of Pinus pinaster to test whether maternal age and growth and the environmental conditions during each crop year affected seed mass and ultimately germination and early survival. After determining retrospectively the year of each seed cohort, we followed germination and early survival in a semi-natural common garden. RESULTS Seed mass was related to maternal age and growth at the time of seed production; i.e., slow-growing, older mothers had smaller seeds, and fast-growing, young mothers had larger seeds, which could be interpreted either as a proxy of senescence or as a maternal strategy. Seed mass had a positive effect on germination success, but aside from differences in seed mass, maternal age had a negative effect and diameter had a positive effect on germination timing and subsequent survival. CONCLUSIONS The results highlight the importance of maternal conditions combined with seed mass in shaping seedling establishment. Our findings open new insights in the offspring performance deriving from long-term canopy seed banks, which may have high relevance for plant adaptation.
Collapse
Affiliation(s)
- Marta Callejas‐Díaz
- Department of Forest Ecology and GeneticsForest Research Centre, National Institute for Agricultural and Food Research and Technology (INIA‐CSIC)MadridSpain
| | - M. Regina Chambel
- Department of Forest Ecology and GeneticsForest Research Centre, National Institute for Agricultural and Food Research and Technology (INIA‐CSIC)MadridSpain
| | - Javier San‐Martín‐Lorén
- Department of Forest Ecology and GeneticsForest Research Centre, National Institute for Agricultural and Food Research and Technology (INIA‐CSIC)MadridSpain
| | - Guillermo Gea‐Izquierdo
- Department of Forest Ecology and GeneticsForest Research Centre, National Institute for Agricultural and Food Research and Technology (INIA‐CSIC)MadridSpain
| | - Luis Santos‐Del‐Blanco
- Department of Forest Ecology and GeneticsForest Research Centre, National Institute for Agricultural and Food Research and Technology (INIA‐CSIC)MadridSpain
| | - Erik Postma
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
| | - José M. Climent
- Department of Forest Ecology and GeneticsForest Research Centre, National Institute for Agricultural and Food Research and Technology (INIA‐CSIC)MadridSpain
- Sustainable Forest Management Research InstituteUniversity of Valladolid‐National Institute for Agricultural and Food Research and TechnologyPalenciaSpain
| |
Collapse
|
21
|
Bleu J, Meylan S, Clobert J, Massot M. Grandmaternal age at reproduction affects grandoffspring body condition, reproduction and survival in a wild population of lizards. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Josefa Bleu
- Université de Strasbourg CNRS Institut Pluridisciplinaire Hubert Curien (UMR 7178 F‐67000 Strasbourg France
| | - Sandrine Meylan
- Sorbonne Université CNRS Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES Paris F‐75005 Paris France
| | - Jean Clobert
- CNRS USR 2936, Station d’Écologie Expérimentale du CNRS, route du CNRS 09200 Moulis France
| | - Manuel Massot
- Sorbonne Université CNRS Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES Paris F‐75005 Paris France
| |
Collapse
|
22
|
Angell CS, Janacek R, Rundle HD. Maternal and paternal age effects on male antler flies: a field experiment. Am Nat 2021; 199:436-442. [DOI: 10.1086/718236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Segami JC, Lind MI, Qvarnström A. Should females prefer old males? Evol Lett 2021; 5:507-520. [PMID: 34621537 PMCID: PMC8484724 DOI: 10.1002/evl3.250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 12/05/2022] Open
Abstract
Whether females should prefer to mate with old males is controversial. Old males may sire offspring of low quality because of an aging germline, but their proven ability to reach an old age can also be an excellent indicator of superior genetic quality, especially in natural populations. These genetic effects are, however, hard to study in nature, because they are often confounded with direct benefits offered by old males to the female, such as experience and high territory quality. We, therefore, used naturally occurring extra‐pair young to disentangle different aspects of male age on female fitness in a natural population of collared flycatchers because any difference between within‐ and extra‐pair young within a nest should be caused by paternal genetic effects only. Based on 18 years of long‐term data, we found that females paired with older males as social partners experienced an overall reproductive advantage. However, offspring sired by old males were of lower quality as compared to their extra‐pair half‐siblings, whereas the opposite was found in nests attended by young males. These results imply a negative genetic effect of old paternal age, given that extra‐pair males are competitive middle‐age males. Thus, offspring may benefit from being sired by young males but raised by old males, to maximize both genetic and direct effects. Our results show that direct and genetic benefits from pairing with old males may act in opposing directions and that the quality of the germline may deteriorate before other signs of senescence become obvious.
Collapse
Affiliation(s)
- Julia Carolina Segami
- Department of Ecology and Genetics, Animal Ecology Uppsala University Uppsala SE-75236 Sweden
| | - Martin I Lind
- Department of Ecology and Genetics, Animal Ecology Uppsala University Uppsala SE-75236 Sweden
| | - Anna Qvarnström
- Department of Ecology and Genetics, Animal Ecology Uppsala University Uppsala SE-75236 Sweden
| |
Collapse
|
24
|
Brown AM, Wood EM, Capilla-Lasheras P, Harrison XA, Young AJ. Longitudinal evidence that older parents produce offspring with longer telomeres in a wild social bird. Biol Lett 2021; 17:20210409. [PMID: 34665991 PMCID: PMC8526163 DOI: 10.1098/rsbl.2021.0409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023] Open
Abstract
As telomere length (TL) often predicts survival and lifespan, there is considerable interest in the origins of inter-individual variation in TL. Cross-generational effects of parental age on offspring TL are thought to be a key source of variation, but the rarity of longitudinal studies that examine the telomeres of successive offspring born throughout the lives of parents leaves such effects poorly understood. Here, we exploit TL measures of successive offspring produced throughout the long breeding tenures of parents in wild white-browed sparrow weaver (Plocepasser mahali) societies, to isolate the effects of within-parent changes in age on offspring TLs. Our analyses reveal the first evidence to date of a positive within-parent effect of advancing age on offspring TL: as individual parents age, they produce offspring with longer telomeres (a modest effect that persists into offspring adulthood). We consider the potential for pre- and post-natal mechanisms to explain our findings. As telomere attrition predicts offspring survival to adulthood in this species, this positive parental age effect could impact parent and offspring fitness if it arose via differential telomere attrition during offspring development. Our findings support the view that cross-generational effects of parental age can be a source of inter-individual variation in TL.
Collapse
Affiliation(s)
- Antony M. Brown
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Emma M. Wood
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Pablo Capilla-Lasheras
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Xavier A. Harrison
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Andrew J. Young
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| |
Collapse
|
25
|
Culina A, Adriaensen F, Bailey LD, Burgess MD, Charmantier A, Cole EF, Eeva T, Matthysen E, Nater CR, Sheldon BC, Sæther B, Vriend SJG, Zajkova Z, Adamík P, Aplin LM, Angulo E, Artemyev A, Barba E, Barišić S, Belda E, Bilgin CC, Bleu J, Both C, Bouwhuis S, Branston CJ, Broggi J, Burke T, Bushuev A, Camacho C, Campobello D, Canal D, Cantarero A, Caro SP, Cauchoix M, Chaine A, Cichoń M, Ćiković D, Cusimano CA, Deimel C, Dhondt AA, Dingemanse NJ, Doligez B, Dominoni DM, Doutrelant C, Drobniak SM, Dubiec A, Eens M, Einar Erikstad K, Espín S, Farine DR, Figuerola J, Kavak Gülbeyaz P, Grégoire A, Hartley IR, Hau M, Hegyi G, Hille S, Hinde CA, Holtmann B, Ilyina T, Isaksson C, Iserbyt A, Ivankina E, Kania W, Kempenaers B, Kerimov A, Komdeur J, Korsten P, Král M, Krist M, Lambrechts M, Lara CE, Leivits A, Liker A, Lodjak J, Mägi M, Mainwaring MC, Mänd R, Massa B, Massemin S, Martínez‐Padilla J, Mazgajski TD, Mennerat A, Moreno J, Mouchet A, Nakagawa S, Nilsson J, Nilsson JF, Cláudia Norte A, van Oers K, Orell M, Potti J, Quinn JL, Réale D, Kristin Reiertsen T, Rosivall B, Russell AF, Rytkönen S, Sánchez‐Virosta P, Santos ESA, Schroeder J, Senar JC, Seress G, Slagsvold T, Szulkin M, Teplitsky C, Tilgar V, Tolstoguzov A, Török J, Valcu M, Vatka E, Verhulst S, Watson H, Yuta T, Zamora‐Marín JM, Visser ME. Connecting the data landscape of long-term ecological studies: The SPI-Birds data hub. J Anim Ecol 2021; 90:2147-2160. [PMID: 33205462 PMCID: PMC8518542 DOI: 10.1111/1365-2656.13388] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/01/2020] [Indexed: 01/20/2023]
Abstract
The integration and synthesis of the data in different areas of science is drastically slowed and hindered by a lack of standards and networking programmes. Long-term studies of individually marked animals are not an exception. These studies are especially important as instrumental for understanding evolutionary and ecological processes in the wild. Furthermore, their number and global distribution provides a unique opportunity to assess the generality of patterns and to address broad-scale global issues (e.g. climate change). To solve data integration issues and enable a new scale of ecological and evolutionary research based on long-term studies of birds, we have created the SPI-Birds Network and Database (www.spibirds.org)-a large-scale initiative that connects data from, and researchers working on, studies of wild populations of individually recognizable (usually ringed) birds. Within year and a half since the establishment, SPI-Birds has recruited over 120 members, and currently hosts data on almost 1.5 million individual birds collected in 80 populations over 2,000 cumulative years, and counting. SPI-Birds acts as a data hub and a catalogue of studied populations. It prevents data loss, secures easy data finding, use and integration and thus facilitates collaboration and synthesis. We provide community-derived data and meta-data standards and improve data integrity guided by the principles of Findable, Accessible, Interoperable and Reusable (FAIR), and aligned with the existing metadata languages (e.g. ecological meta-data language). The encouraging community involvement stems from SPI-Bird's decentralized approach: research groups retain full control over data use and their way of data management, while SPI-Birds creates tailored pipelines to convert each unique data format into a standard format. We outline the lessons learned, so that other communities (e.g. those working on other taxa) can adapt our successful model. Creating community-specific hubs (such as ours, COMADRE for animal demography, etc.) will aid much-needed large-scale ecological data integration.
Collapse
|
26
|
Malod K, Roets PD, Bosua H, Archer CR, Weldon CW. Selecting on age of female reproduction affects lifespan in both sexes and age-dependent reproductive effort in female (but not male) Ceratitis cosyra. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03063-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
Koch IJ, Narum SR. An evaluation of the potential factors affecting lifetime reproductive success in salmonids. Evol Appl 2021; 14:1929-1957. [PMID: 34429740 PMCID: PMC8372082 DOI: 10.1111/eva.13263] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 01/24/2023] Open
Abstract
Lifetime reproductive success (LRS), the number of offspring produced over an organism's lifetime, is a fundamental component of Darwinian fitness. For taxa such as salmonids with multiple species of conservation concern, understanding the factors affecting LRS is critical for the development and implementation of successful conservation management practices. Here, we reviewed the published literature to synthesize factors affecting LRS in salmonids including significant effects of hatchery rearing, life history, and phenotypic variation, and behavioral and spawning interactions. Additionally, we found that LRS is affected by competitive behavior on the spawning grounds, genetic compatibility, local adaptation, and hybridization. Our review of existing literature revealed limitations of LRS studies, and we emphasize the following areas that warrant further attention in future research: (1) expanding the range of studies assessing LRS across different life-history strategies, specifically accounting for distinct reproductive and migratory phenotypes; (2) broadening the variety of species represented in salmonid fitness studies; (3) constructing multigenerational pedigrees to track long-term fitness effects; (4) conducting LRS studies that investigate the effects of aquatic stressors, such as anthropogenic effects, pathogens, environmental factors in both freshwater and marine environments, and assessing overall body condition, and (5) utilizing appropriate statistical approaches to determine the factors that explain the greatest variation in fitness and providing information regarding biological significance, power limitations, and potential sources of error in salmonid parentage studies. Overall, this review emphasizes that studies of LRS have profoundly advanced scientific understanding of salmonid fitness, but substantial challenges need to be overcome to assist with long-term recovery of these keystone species in aquatic ecosystems.
Collapse
Affiliation(s)
- Ilana J. Koch
- Columbia River Inter‐Tribal Fish CommissionHagermanIDUSA
| | - Shawn R. Narum
- Columbia River Inter‐Tribal Fish CommissionHagermanIDUSA
| |
Collapse
|
28
|
Basso O, Willis SK, Hatch EE, Mikkelsen EM, Rothman KJ, Wise LA. Maternal age at birth and daughter's fecundability. Hum Reprod 2021; 36:1970-1980. [PMID: 33860312 PMCID: PMC8213449 DOI: 10.1093/humrep/deab057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/12/2021] [Indexed: 01/10/2023] Open
Abstract
STUDY QUESTION Do daughters of older mothers have lower fecundability? SUMMARY ANSWER In this cohort study of North American pregnancy planners, there was virtually no association between maternal age ≥35 years and daughters' fecundability. WHAT IS KNOWN ALREADY Despite suggestive evidence that daughters of older mothers may have lower fertility, only three retrospective studies have examined the association between maternal age and daughter's fecundability. STUDY DESIGN, SIZE, DURATION Prospective cohort study of 6689 pregnancy planners enrolled between March 2016 and January 2020. PARTICIPANTS/MATERIALS, SETTING, METHODS Pregnancy Study Online (PRESTO) is an ongoing pre-conception cohort study of pregnancy planners (age, 21-45 years) from the USA and Canada. We estimated fecundability ratios (FR) for maternal age at the participant's birth using multivariable proportional probabilities regression models. MAIN RESULTS AND THE ROLE OF CHANCE Daughters of mothers ≥30 years were less likely to have previous pregnancies (or pregnancy attempts) or risk factors for infertility, although they were more likely to report that their mother had experienced problems conceiving. The proportion of participants with prior unplanned pregnancies, a birth before age 21, ≥3 cycles of attempt at study entry or no follow-up was greater among daughters of mothers <25 years. Compared with maternal age 25-29 years, FRs (95% CI) for maternal age <20, 20-24, 30-34, and ≥35 were 0.72 (0.61, 0.84), 0.92 (0.85, 1.00), 1.08 (1.00, 1.17), and 1.00 (0.89, 1.12), respectively. LIMITATIONS, REASONS FOR CAUTION Although the examined covariates did not meaningfully affect the associations, we had limited information on the participants' mother. Differences by maternal age in reproductive history, infertility risk factors and loss to follow-up suggest that selection bias may partly explain our results. WIDER IMPLICATIONS OF THE FINDINGS Our finding that maternal age 35 years or older was not associated with daughter's fecundability is reassuring, considering the trend towards delayed childbirth. However, having been born to a young mother may be a marker of low fecundability among pregnancy planners. STUDY FUNDING/COMPETING INTEREST(S) PRESTO was funded by NICHD Grants (R21-HD072326 and R01-HD086742) and has received in-kind donations from Swiss Precision Diagnostics, FertilityFriend.com, Kindara.com, and Sandstone Diagnostics. Dr Wise is a fibroid consultant for AbbVie, Inc. TRIAL REGISTRATION NUMBER n/a.
Collapse
Affiliation(s)
- Olga Basso
- Department of Obstetrics and Gynecology, Royal Victoria Hospital, Research Institute of McGill University Health Centre, Montreal, QC H3A 1A2, Canada
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
| | - Sydney K Willis
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Elizabeth E Hatch
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Ellen M Mikkelsen
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Kenneth J Rothman
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Research Triangle Institute, Research Triangle Park, NC, USA
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
29
|
Cholewa M, Jankowiak Ł, Szenejko M, Dybus A, Śmietana P, Wysocki D. The effects of parental age difference on the offspring sex and fitness of European blackbirds. PeerJ 2021; 9:e10858. [PMID: 33828905 PMCID: PMC7996069 DOI: 10.7717/peerj.10858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/07/2021] [Indexed: 11/20/2022] Open
Abstract
Background Many studies of birds have indicated that offspring sex ratios can vary with environmental and parental traits. On the basis of long-term research, we first evaluated the possible influence of parental age difference and brood characteristics on offspring sex and fitness in multi-brooded Blackbirds Turdus merula. Methodology The study was conducted in the city-centre Stefan Żeromski Park in Szczecin, NW Poland, where the local population of Blackbirds has been studied since 1996. Data on the offspring sex and fitness were collected in five years, 2005-2007 and 2016-2017. During the breeding season we inspected the study area to locate the pairs' territories and to track their nests and clutches. Results We found that the overall sex ratio did not differ statistically from 50:50, but that younger females bonded with older mates did tend to produce more sons, probably because of the greater fitness of male descendants. Accordingly, the sons' breeding success increased with the father's age, but this relationship was close to non-linear, which may indicate that the transgenerational effect of paternal senescence could negatively affect progeny fitness despite the high-quality of older fathers. Older females mated with younger males produced more daughters, which could have been due to the lesser attractiveness of the males and the mothers' poorer condition caused by accelerated senescence. We found that neither offspring hatching sequence nor hatching date or clutch sequence were significant for sex determination. Conclusions We consider that in our Blackbird population, parental age could make a more significant contribution to shaping offspring sex and reproductive success.
Collapse
Affiliation(s)
- Marta Cholewa
- Institute of Biology, University of Szczecin, Szczecin, Poland
| | | | - Magdalena Szenejko
- Institute of Marine and Environmental Sciences, University of Szczecin, Szczecin, Poland.,Molecular Biology and Biotechnology Centre, University of Szczecin, Szczecin, Poland
| | - Andrzej Dybus
- Department of Genetics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Poland
| | - Przemysław Śmietana
- Institute of Marine and Environmental Sciences, University of Szczecin, Szczecin, Poland
| | - Dariusz Wysocki
- Institute of Marine and Environmental Sciences, University of Szczecin, Szczecin, Poland
| |
Collapse
|
30
|
Vuarin P, Lesobre L, Levêque G, Saint Jalme M, Lacroix F, Hingrat Y, Sorci G. Paternal age negatively affects sperm production of the progeny. Ecol Lett 2021; 24:719-727. [PMID: 33565248 DOI: 10.1111/ele.13696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 01/02/2023]
Abstract
Parental age has profound consequences for offspring's phenotype. However, whether patrilineal age affects offspring sperm production remains unknown, despite the importance of sperm production for male reproductive success in species facing post-copulatory sexual selection. Using a longitudinal dataset on ejaculate attributes of the houbara bustard, we showed that offspring sired by old fathers had different age-dependent trajectories of sperm production compared to offspring sired by young fathers. Specifically, they produced less sperm (-48%) in their first year of life, and 14% less during their lifetime. Paternal age had the strongest effect, with weak evidence for grandpaternal or great grandpaternal age effects. These results show that paternal age can affect offspring reproductive success by reducing sperm production, establishing an intergenerational link between ageing and sexual selection.
Collapse
Affiliation(s)
- Pauline Vuarin
- Reneco International Wildlife Consultants LLC, Abu Dhabi, PoBox 61741, United Arab Emirates.,Biogéosciences, UMR 6282 CNRS, Université de Bourgogne Franche-Comté, 6 boulevard Gabriel, Dijon, 21000, France
| | - Loïc Lesobre
- Reneco International Wildlife Consultants LLC, Abu Dhabi, PoBox 61741, United Arab Emirates
| | - Gwènaëlle Levêque
- Emirates Center for Wildlife Propagation, BP 47, route de Midelt, Missour, 33250, Morocco
| | - Michel Saint Jalme
- Centre d'Ecologie et des Sciences de la Conservation, UMR 7204 MNHN CNRS-UPMC, Museum National d'Histoire Naturelle, 43 et 61 rue Buffon, Paris, 75005, France
| | - Frédéric Lacroix
- Reneco International Wildlife Consultants LLC, Abu Dhabi, PoBox 61741, United Arab Emirates
| | - Yves Hingrat
- Reneco International Wildlife Consultants LLC, Abu Dhabi, PoBox 61741, United Arab Emirates
| | - Gabriele Sorci
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne Franche-Comté, 6 boulevard Gabriel, Dijon, 21000, France
| |
Collapse
|
31
|
Hellmann JK, Bukhari SA, Deno J, Bell AM. Sex-specific plasticity across generations I: Maternal and paternal effects on sons and daughters. J Anim Ecol 2020; 89:2788-2799. [PMID: 33191518 PMCID: PMC7902357 DOI: 10.1111/1365-2656.13364] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Intergenerational plasticity or parental effects-when parental environments alter the phenotype of future generations-can influence how organisms cope with environmental change. An intriguing, underexplored possibility is that sex-of both the parent and the offspring-plays an important role in driving the evolution of intergenerational plasticity in both adaptive and non-adaptive ways. Here, we evaluate the potential for sex-specific parental effects in a freshwater population of three-spined sticklebacks Gasterosteus aculeatus by independently and jointly manipulating maternal and paternal experiences and separately evaluating their phenotypic effects in sons versus daughters. We tested the adaptive hypothesis that daughters are more responsive to cues from their mother, whereas sons are more responsive to cues from their father. We exposed mothers, fathers or both parents to visual cues of predation risk and measured offspring antipredator traits and brain gene expression. Predator-exposed fathers produced sons that were more risk-prone, whereas predator-exposed mothers produced more anxious sons and daughters. Furthermore, maternal and paternal effects on offspring survival were non-additive: offspring with a predator-exposed father, but not two predator-exposed parents, had lower survival against live predators. There were also strong sex-specific effects on brain gene expression: exposing mothers versus fathers to predation risk activated different transcriptional profiles in their offspring, and sons and daughters strongly differed in the ways in which their brain gene expression profiles were influenced by parental experience. We found little evidence to support the hypothesis that offspring prioritize their same-sex parent's experience. Parental effects varied with both the sex of the parent and the offspring in complicated and non-additive ways. Failing to account for these sex-specific patterns (e.g. by pooling sons and daughters) would have underestimated the magnitude of parental effects. Altogether, these results draw attention to the potential for sex to influence patterns of intergenerational plasticity and raise new questions about the interface between intergenerational plasticity and sex-specific selective pressures, sexual conflict and sexual selection.
Collapse
Affiliation(s)
- Jennifer K Hellmann
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
| | - Syed Abbas Bukhari
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
| | - Jack Deno
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
| | - Alison M Bell
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
- Program in Ecology, Evolution and Conservation, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
| |
Collapse
|
32
|
van Lieshout SHJ, Sparks AM, Bretman A, Newman C, Buesching CD, Burke T, Macdonald DW, Dugdale HL. Estimation of environmental, genetic and parental age at conception effects on telomere length in a wild mammal. J Evol Biol 2020; 34:296-308. [PMID: 33113164 DOI: 10.1111/jeb.13728] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 10/09/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022]
Abstract
Understanding individual variation in fitness-related traits requires separating the environmental and genetic determinants. Telomeres are protective caps at the ends of chromosomes that are thought to be a biomarker of senescence as their length predicts mortality risk and reflect the physiological consequences of environmental conditions. The relative contribution of genetic and environmental factors to individual variation in telomere length is, however, unclear, yet important for understanding its evolutionary dynamics. In particular, the evidence for transgenerational effects, in terms of parental age at conception, on telomere length is mixed. Here, we investigate the heritability of telomere length, using the 'animal model', and parental age at conception effects on offspring telomere length in a wild population of European badgers (Meles meles). Although we found no heritability of telomere length and low evolvability (<0.001), our power to detect heritability was low and a repeatability of 2% across individual lifetimes provides a low upper limit to ordinary narrow-sense heritability. However, year (32%) and cohort (3%) explained greater proportions of the phenotypic variance in telomere length, excluding qPCR plate and row variances. There was no support for cross-sectional or within-individual parental age at conception effects on offspring telomere length. Our results indicate a lack of transgenerational effects through parental age at conception and a low potential for evolutionary change in telomere length in this population. Instead, we provide evidence that individual variation in telomere length is largely driven by environmental variation in this wild mammal.
Collapse
Affiliation(s)
- Sil H J van Lieshout
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, UK.,Department of Animal and Plant Sciences, NERC Biomolecular Analysis Facility, University of Sheffield, Sheffield, UK
| | - Alexandra M Sparks
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, UK
| | - Amanda Bretman
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, UK
| | - Chris Newman
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Abingdon, UK
| | - Christina D Buesching
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Abingdon, UK
| | - Terry Burke
- Department of Animal and Plant Sciences, NERC Biomolecular Analysis Facility, University of Sheffield, Sheffield, UK
| | - David W Macdonald
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Abingdon, UK
| | - Hannah L Dugdale
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, UK.,Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
33
|
Cooper EB, Bonnet T, Osmond H, Cockburn A, Kruuk LEB. Do the ages of parents or helpers affect offspring fitness in a cooperatively breeding bird? J Evol Biol 2020; 33:1735-1748. [PMID: 33045108 DOI: 10.1111/jeb.13712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/31/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022]
Abstract
Age-related changes in parental phenotypes or genotypes can impact offspring fitness, but separating germline from nongermline transgenerational effects of ageing is difficult for wild populations. Further, in cooperatively breeding species, in addition to parental ages, the age of 'helpers' attending offspring may also affect juvenile performance. Using a 30-year study of a cooperative breeder with very high rates of extra-pair paternity, the superb fairy-wren (Malurus cyaneus), we investigated the effects of maternal, paternal and helper ages on three measures of offspring performance: nestling weight, juvenile survival to independence and recruitment to the breeding population. Mothers with a longer lifespan had offspring with higher juvenile survival, indicating selective disappearance, but the effect of maternal age on juvenile survival was of similar magnitude but negative. For extra-pair offspring, there was no evidence of any effect of the ages of either the genetic sire or the cuckolded 'social' father. However, for within-pair offspring, there was a positive effect of paternal age on juvenile survival, which we suggest may be driven by sexual selection. There were positive associations between the average age of helpers attending a nest and two of the three aspects of offspring performance; these effects were stronger than any of the effects of parental age. In general, the multiple associations between offspring fitness and the ages of adults around them appeared to be driven more by age-related changes in environmental effects than by age-related changes in the germline.
Collapse
Affiliation(s)
- Eve B Cooper
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Timothée Bonnet
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Helen Osmond
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Andrew Cockburn
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Loeske E B Kruuk
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
34
|
Plaza M, Burke T, Cox T, Flynn‐Carroll A, Girndt A, Halford G, Martin DA, Sanchez‐Fortún M, Sánchez‐Tójar A, Somerville J, Schroeder J. Repeatable social network node‐based metrics across populations and contexts in a passerine. J Evol Biol 2020; 33:1634-1642. [DOI: 10.1111/jeb.13703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/29/2020] [Accepted: 09/05/2020] [Indexed: 01/30/2023]
Affiliation(s)
- Mireia Plaza
- Department of Life Sciences Imperial College London Ascot UK
- Department of Evolutionary Ecology National Museum of Natural Sciences (CSIC) Madrid Spain
| | - Terry Burke
- Department of Animal and Plant Sciences University of Sheffield Sheffield UK
| | - Tara Cox
- Department of Life Sciences Imperial College London Ascot UK
| | | | - Antje Girndt
- Max Planck Institute for Ornithology Seewiesen Germany
- International Max‐Planck Research School (IMPRS) for Organismal Biology University of Konstanz Konstanz Germany
| | | | | | - Moises Sanchez‐Fortún
- Department of Zoology and Anthropology Faculty of Biology University of Barcelona Barcelona Spain
| | - Alfredo Sánchez‐Tójar
- Department of Life Sciences Imperial College London Ascot UK
- International Max‐Planck Research School (IMPRS) for Organismal Biology University of Konstanz Konstanz Germany
- Department of Evolutionary Biology Bielefeld University Bielefeld Germany
| | | | - Julia Schroeder
- Department of Life Sciences Imperial College London Ascot UK
| |
Collapse
|
35
|
Depeux C, Lemaître JF, Moreau J, Dechaume-Moncharmont FX, Laverre T, Pauhlac H, Gaillard JM, Beltran-Bech S. Reproductive senescence and parental effects in an indeterminate grower. J Evol Biol 2020; 33:1256-1264. [PMID: 32574391 DOI: 10.1111/jeb.13667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022]
Abstract
Reproductive senescence is the decrease of reproductive performance with increasing age and can potentially include trans-generational effects as the offspring produced by old parents might have a lower fitness than those produced by young parents. This negative effect may be caused either by the age of the father, mother or the interaction between the ages of both parents. Using the common woodlouse Armadillidium vulgare, an indeterminate grower, as a biological model, we tested for the existence of a deleterious effect of parental age on fitness components. Contrary to previous findings reported from vertebrate studies, old parents produced both a higher number and larger offspring than young parents. However, their offspring had lower fitness components (by surviving less, producing a smaller number of clutches or not reproducing at all) than offspring born to young parents. Our findings strongly support the existence of trans-generational senescence in woodlice and contradict the belief that old individuals in indeterminate growers contribute the most to recruitment and correspond thereby to the key life stage for population dynamics. Our work also provides rare evidence that the trans-generational effect of senescence can be stronger than direct reproductive senescence in indeterminate growers.
Collapse
Affiliation(s)
- Charlotte Depeux
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers Cedex 9, France.,Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 558, Université Lyon 1, Villeurbanne cedex, France
| | - Jean-François Lemaître
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 558, Université Lyon 1, Villeurbanne cedex, France
| | - Jérôme Moreau
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, Dijon, France.,Centre d'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, Villiers-en-bois, France
| | | | - Tiffany Laverre
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers Cedex 9, France
| | - Hélène Pauhlac
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers Cedex 9, France
| | - Jean-Michel Gaillard
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 558, Université Lyon 1, Villeurbanne cedex, France
| | - Sophie Beltran-Bech
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers Cedex 9, France
| |
Collapse
|
36
|
Hernández CM, van Daalen SF, Caswell H, Neubert MG, Gribble KE. A demographic and evolutionary analysis of maternal effect senescence. Proc Natl Acad Sci U S A 2020; 117:16431-16437. [PMID: 32601237 PMCID: PMC7368264 DOI: 10.1073/pnas.1919988117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Maternal effect senescence-a decline in offspring survival or fertility with maternal age-has been demonstrated in many taxa, including humans. Despite decades of phenotypic studies, questions remain about how maternal effect senescence impacts evolutionary fitness. To understand the influence of maternal effect senescence on population dynamics, fitness, and selection, we developed matrix population models in which individuals are jointly classified by age and maternal age. We fit these models to data from individual-based culture experiments on the aquatic invertebrate, Brachionus manjavacas (Rotifera). By comparing models with and without maternal effects, we found that maternal effect senescence significantly reduces fitness for B. manjavacas and that this decrease arises primarily through reduced fertility, particularly at maternal ages corresponding to peak reproductive output. We also used the models to estimate selection gradients, which measure the strength of selection, in both high growth rate (laboratory) and two simulated low growth rate environments. In all environments, selection gradients on survival and fertility decrease with increasing age. They also decrease with increasing maternal age for late maternal ages, implying that maternal effect senescence can evolve through the same process as in Hamilton's theory of the evolution of age-related senescence. The models we developed are widely applicable to evaluate the fitness consequences of maternal effect senescence across species with diverse aging and fertility schedule phenotypes.
Collapse
Affiliation(s)
| | - Silke F van Daalen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Hal Caswell
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Michael G Neubert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543
| | - Kristin E Gribble
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
37
|
|
38
|
Hanson HE, Mathews NS, Hauber ME, Martin LB. The house sparrow in the service of basic and applied biology. eLife 2020; 9:e52803. [PMID: 32343224 PMCID: PMC7189751 DOI: 10.7554/elife.52803] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
From the northernmost tip of Scandinavia to the southernmost corner of Patagonia, and across six continents, house sparrows (Passer domesticus) inhabit most human-modified habitats of the globe. With over 7,000 articles published, the species has become a workhorse for not only the study of self-urbanized wildlife, but also for understanding life history and body size evolution, sexual selection and many other biological phenomena. Traditionally, house sparrows were studied for their adaptations to local biotic and climatic conditions, but more recently, the species has come to serve as a focus for studies seeking to reveal the genomic, epigenetic and physiological underpinnings of success among invasive vertebrate species. Here, we review the natural history of house sparrows, highlight what the study of these birds has meant to bioscience generally, and describe the many resources available for future work on this species.
Collapse
Affiliation(s)
- Haley E Hanson
- Global and Planetary Health, University of South FloridaTampaUnited States
| | - Noreen S Mathews
- Global and Planetary Health, University of South FloridaTampaUnited States
| | - Mark E Hauber
- Department of Evolution, Ecology, and BehaviorUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Lynn B Martin
- Global and Planetary Health, University of South FloridaTampaUnited States
| |
Collapse
|
39
|
Spagopoulou F. Transgenerational maternal age effects in nature: Lessons learnt from Asian elephants. J Anim Ecol 2020; 89:936-939. [PMID: 32249424 DOI: 10.1111/1365-2656.13218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/20/2020] [Indexed: 11/30/2022]
Abstract
IN FOCUS Reichert, S., Berger, V., Jackson, J., Chapman, S. N., Htut, W., Mar, K. U., & Lummaa, V. (2019). Maternal age at birth shapes offspring life-history trajectory across generations in long-lived Asian elephants. Journal of Animal Ecology, 89, 996-1007. Parental age can have strong effects on offspring life history, but the prevalence and magnitude of such effects in natural populations remain poorly understood. Using a multigenerational dataset of semi-captive Asian elephants, Reichert et al. (2019) studied the effects of maternal and grandmaternal age on offspring performance and found that offspring from old mothers have lower survival, but higher body condition and reproductive success than offspring from younger mothers. Importantly the observed consequences on survival are long-lasting and span more than one generation, with grand-offspring of old grandmothers also showing reduced survival. These findings suggest that persistent transgenerational effects of maternal age on fitness can shape the individual variation in ageing patterns in nature and ultimately the evolution of life histories.
Collapse
Affiliation(s)
- Foteini Spagopoulou
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
40
|
Reichert S, Berger V, Jackson J, Chapman SN, Htut W, Mar KU, Lummaa V. Maternal age at birth shapes offspring life-history trajectory across generations in long-lived Asian elephants. J Anim Ecol 2020; 89:996-1007. [PMID: 31222736 DOI: 10.1111/1365-2656.13049] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 04/14/2019] [Indexed: 11/30/2022]
Abstract
Advanced maternal age at birth can have pronounced consequences for offspring health, survival and reproduction. If carried over to the next generation, such fitness effects could have important implications for population dynamics and the evolution of ageing, but these remain poorly understood. While many laboratory studies have investigated maternal age effects, relatively few studies have been conducted in natural populations, and they usually only present a "snapshot" of an offspring's lifetime. In the present study, we focus on how maternal age influences offspring life-history trajectories and performance in a long-lived mammal. We use a multigenerational demographic dataset of semi-captive Asian elephants to investigate maternal age effects on several offspring life-history traits: condition, reproductive success and overall survival. We show that offspring born to older mothers display reduced overall survival but higher reproductive success, and reduced survival of their own progeny. Our results show evidence of a persistent effect of maternal age on fitness across generations in a long-lived mammal. By highlighting transgenerational effects on the fitness of the next generation associated with maternal age, the present study helps increase our understanding of factors contributing to individual variation in ageing rates and fitness.
Collapse
Affiliation(s)
- Sophie Reichert
- Department of Biology, University of Turku, Turku, Finland
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Vérane Berger
- Department of Biology, University of Turku, Turku, Finland
| | - John Jackson
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | | | - Win Htut
- Ministry of Natural Resources and Environmental Conservation, Myanma Timber Enterprise, Yangon, Myanmar
| | - Khyne U Mar
- Department of Biology, University of Turku, Turku, Finland
| | - Virpi Lummaa
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
41
|
Kroeger SB, Blumstein DT, Armitage KB, Reid JM, Martin JGA. Older mothers produce more successful daughters. Proc Natl Acad Sci U S A 2020; 117:4809-4814. [PMID: 32071200 PMCID: PMC7060700 DOI: 10.1073/pnas.1908551117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Annual reproductive success and senescence patterns vary substantially among individuals in the wild. However, it is still seldom considered that senescence may not only affect an individual but also affect age-specific reproductive success in its offspring, generating transgenerational reproductive senescence. We used long-term data from wild yellow-bellied marmots (Marmota flaviventer) living in two different elevational environments to quantify age-specific reproductive success of daughters born to mothers differing in age. Contrary to prediction, daughters born to older mothers had greater annual reproductive success on average than daughters born to younger mothers, and this translated into greater lifetime reproductive success. However, in the favorable lower elevation environment, daughters born to older mothers also had greater age-specific decreases in annual reproductive success. In the harsher higher elevation environment on the other hand, daughters born to older mothers tended to die before reaching ages at which such senescent decreases could be observed. Our study highlights the importance of incorporating environment-specific transgenerational parent age effects on adult offspring age-specific life-history traits to fully understand the substantial variation observed in senescence patterns in wild populations.
Collapse
Affiliation(s)
- Svenja B Kroeger
- School of Biological Sciences, Zoology Building, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom;
- Department of Landscape and Biodiversity, The Norwegian Institute of Bioeconomy Research, 7031 Trondheim, Norway
| | - Daniel T Blumstein
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-1606
- The Rocky Mountain Biological Laboratory, Crested Butte, CO 81224
| | - Kenneth B Armitage
- The Rocky Mountain Biological Laboratory, Crested Butte, CO 81224
- Department of Ecology & Evolutionary Biology, The University of Kansas, Lawrence, KS 66045-7534
| | - Jane M Reid
- School of Biological Sciences, Zoology Building, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Realfagbygget, Gløshaugen, N-7491 Trondheim, Norway
| | - Julien G A Martin
- School of Biological Sciences, Zoology Building, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
42
|
Lieshout SHJ, Froy H, Schroeder J, Burke T, Simons MJP, Dugdale HL. Slicing: A sustainable approach to structuring samples for analysis in long‐term studies. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sil H. J. Lieshout
- School of Biology Faculty of Biological Sciences University of Leeds Leeds UK
| | - Hannah Froy
- Institute of Evolutionary Biology University of Edinburgh Edinburgh UK
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Julia Schroeder
- Department of Life Sciences Imperial College London Ascot UK
| | - Terry Burke
- Department of Animal and Plant Sciences University of Sheffield Sheffield UK
| | - Mirre J. P. Simons
- Department of Animal and Plant Sciences University of Sheffield Sheffield UK
- The Bateson Centre University of Sheffield Sheffield UK
| | - Hannah L. Dugdale
- School of Biology Faculty of Biological Sciences University of Leeds Leeds UK
| |
Collapse
|
43
|
Monaghan P, Metcalfe NB. The deteriorating soma and the indispensable germline: gamete senescence and offspring fitness. Proc Biol Sci 2019; 286:20192187. [PMID: 31847776 DOI: 10.1098/rspb.2019.2187] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The idea that there is an impenetrable barrier that separates the germline and soma has shaped much thinking in evolutionary biology and in many other disciplines. However, recent research has revealed that the so-called 'Weismann Barrier' is leaky, and that information is transferred from soma to germline. Moreover, the germline itself is now known to age, and to be influenced by an age-related deterioration of the soma that houses and protects it. This could reduce the likelihood of successful reproduction by old individuals, but also lead to long-term deleterious consequences for any offspring that they do produce (including a shortened lifespan). Here, we review the evidence from a diverse and multidisciplinary literature for senescence in the germline and its consequences; we also examine the underlying mechanisms responsible, emphasizing changes in mutation rate, telomere loss, and impaired mitochondrial function in gametes. We consider the effect on life-history evolution, particularly reproductive scheduling and mate choice. Throughout, we draw attention to unresolved issues, new questions to consider, and areas where more research is needed. We also highlight the need for a more comparative approach that would reveal the diversity of processes that organisms have evolved to slow or halt age-related germline deterioration.
Collapse
Affiliation(s)
- Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Neil B Metcalfe
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| |
Collapse
|
44
|
Wylde Z, Spagopoulou F, Hooper AK, Maklakov AA, Bonduriansky R. Parental breeding age effects on descendants' longevity interact over 2 generations in matrilines and patrilines. PLoS Biol 2019; 17:e3000556. [PMID: 31765371 PMCID: PMC6901263 DOI: 10.1371/journal.pbio.3000556] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/09/2019] [Accepted: 11/07/2019] [Indexed: 01/09/2023] Open
Abstract
Individuals within populations vary enormously in mortality risk and longevity, but the causes of this variation remain poorly understood. A potentially important and phylogenetically widespread source of such variation is maternal age at breeding, which typically has negative effects on offspring longevity. Here, we show that paternal age can affect offspring longevity as strongly as maternal age does and that breeding age effects can interact over 2 generations in both matrilines and patrilines. We manipulated maternal and paternal ages at breeding over 2 generations in the neriid fly Telostylinus angusticollis. To determine whether breeding age effects can be modulated by the environment, we also manipulated larval diet and male competitive environment in the first generation. We found separate and interactive effects of parental and grand-parental ages at breeding on descendants' mortality rate and life span in both matrilines and patrilines. These breeding age effects were not modulated by grand-parental larval diet quality or competitive environment. Our findings suggest that variation in maternal and paternal ages at breeding could contribute substantially to intrapopulation variation in mortality and longevity.
Collapse
Affiliation(s)
- Zachariah Wylde
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Foteini Spagopoulou
- Uppsala Centre for Evolution and Genomics, Uppsala University, Uppsala, Sweden
| | - Amy K. Hooper
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Alexei A. Maklakov
- Uppsala Centre for Evolution and Genomics, Uppsala University, Uppsala, Sweden
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Russell Bonduriansky
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
45
|
Vuarin P, Bouchard A, Lesobre L, Levêque G, Chalah T, Jalme MS, Lacroix F, Hingrat Y, Sorci G. Post-copulatory sexual selection allows females to alleviate the fitness costs incurred when mating with senescing males. Proc Biol Sci 2019; 286:20191675. [PMID: 31640511 DOI: 10.1098/rspb.2019.1675] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Male senescence has detrimental effects on reproductive success and offspring fitness. When females mate with multiple males during the same reproductive bout, post-copulatory sexual selection that operates either through sperm competition or cryptic female choice might allow females to skew fertilization success towards young males and as such limit the fitness costs incurred when eggs are fertilized by senescing males. Here, we experimentally tested this hypothesis. We artificially inseminated female North African houbara bustards with sperm from dyads of males of different (young and old) or similar ages (either young or old). Then, we assessed whether siring success was biased towards young males and we measured several life-history traits of the progeny to evaluate the fitness costs due to advanced paternal age. In agreement with the prediction, we found that siring success was biased towards young males, and offspring sired by old males had impaired hatching success, growth and post-release survival (in females). Overall, our results support the hypothesis that post-copulatory sexual selection might represent an effective mechanism allowing females to avoid the fitness costs of fertilization by senescing partners.
Collapse
Affiliation(s)
- Pauline Vuarin
- Emirates Center for Wildlife Propagation, Missour 33250, Morocco.,Biogéosciences, UMR 6282 CNRS, Université de Bourgogne Franche-Comté, Dijon 21000, France
| | - Alice Bouchard
- Emirates Center for Wildlife Propagation, Missour 33250, Morocco
| | - Loïc Lesobre
- Reneco International Wildlife Consultants LLC, Abu Dhabi, PO Box 61741, United Arab Emirates
| | | | - Toni Chalah
- Reneco International Wildlife Consultants LLC, Abu Dhabi, PO Box 61741, United Arab Emirates
| | - Michel Saint Jalme
- Centre d'Ecologie et des Sciences de la Conservation, UMR 7204 MNHN CNRS-UPMC, Museum National d'Histoire Naturelle, Paris 75005, France
| | - Frédéric Lacroix
- Reneco International Wildlife Consultants LLC, Abu Dhabi, PO Box 61741, United Arab Emirates
| | - Yves Hingrat
- Reneco International Wildlife Consultants LLC, Abu Dhabi, PO Box 61741, United Arab Emirates
| | - Gabriele Sorci
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne Franche-Comté, Dijon 21000, France
| |
Collapse
|
46
|
Lattore M, Nakagawa S, Burke T, Plaza M, Schroeder J. No evidence for kin recognition in a passerine bird. PLoS One 2019; 14:e0213486. [PMID: 31644570 PMCID: PMC6808440 DOI: 10.1371/journal.pone.0213486] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/03/2019] [Indexed: 11/23/2022] Open
Abstract
Theory predicts that individuals behave altruistically towards their relatives. Hence, some form of kin recognition is useful for individuals to optimize their behavior. In species that display bi-parental care and are subject to extra-pair matings, kin recognition theoretically can allow cuckolded fathers to reduce their parental investment, and thus optimize their fitness. Whether this is possible remains unclear in birds. This study investigates whether males provide differential parental care depending on relatedness, as a proxy to recognizing chicks in their nest as kin or not. We cross-fostered House sparrow (Passer domesticus) chicks after hatching, and then expected that fathers would show a decrease in their parental efforts when tending to a clutch of unrelated offspring. House sparrow males are able to adjust their parental care to the identity of their partner, making them an ideal study species. However, there was no significant effect of relatedness on provisioning rates. This suggests that sparrows may not be capable of kin recognition, or at least do not display kin discrimination despite its apparent evolutionary advantage.
Collapse
Affiliation(s)
- Martina Lattore
- Department of Life Science, Imperial College London, Silwood Park, Ascot, United Kingdom
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Terry Burke
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Mireia Plaza
- Department of Evolutionary Ecology, National Museum of Natural Sciencie-CSIC, Madrid, Spain
| | - Julia Schroeder
- Department of Life Science, Imperial College London, Silwood Park, Ascot, United Kingdom
- * E-mail:
| |
Collapse
|
47
|
Affiliation(s)
- Matthias Galipaud
- Department of evolutionary biology and environmental studies University of Zurich Zurich Switzerland
| | - Hanna Kokko
- Department of evolutionary biology and environmental studies University of Zurich Zurich Switzerland
| |
Collapse
|
48
|
Marasco V, Boner W, Griffiths K, Heidinger B, Monaghan P. Intergenerational effects on offspring telomere length: interactions among maternal age, stress exposure and offspring sex. Proc Biol Sci 2019; 286:20191845. [PMID: 31575358 DOI: 10.1098/rspb.2019.1845] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Offspring produced by older parents often have reduced longevity, termed the Lansing effect. Because adults usually have similar-aged mates, it is difficult to separate effects of maternal and paternal age, and environmental circumstances are also likely to influence offspring outcomes. The mechanisms underlying the Lansing effect are poorly understood. Variation in telomere length and loss, particularly in early life, is linked to longevity in many vertebrates, and therefore changes in offspring telomere dynamics could be very important in this context. We examined the effect of maternal age and environment on offspring telomere length in zebra finches. We kept mothers under either control (ad libitum food) or more challenging (unpredictable food) circumstances and experimentally minimized paternal age and mate choice effects. Irrespective of the maternal environment, there was a substantial negative effect of maternal age on offspring telomere length, evident in longitudinal and cross-sectional comparisons (average of 39% shorter). Furthermore, in young mothers, sons reared by challenged mothers had significantly shorter telomere lengths than sons reared by control mothers. This effect disappeared when the mothers were old, and was absent in daughters. These findings highlight the importance of telomere dynamics as inter-generational mediators of the evolutionary processes determining optimal age-specific reproductive effort and sex allocation.
Collapse
Affiliation(s)
- Valeria Marasco
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Savoyenstraβe 1a, 1160 Vienna, Austria.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Kate Griffiths
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Britt Heidinger
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK.,Biological Sciences Department, North Dakota State University, Stevens Hall, Fargo, ND 58108, USA
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| |
Collapse
|
49
|
Girndt A, Cockburn G, Sánchez-Tójar A, Hertel M, Burke T, Schroeder J. Male age and its association with reproductive traits in captive and wild house sparrows. J Evol Biol 2019; 32:1432-1443. [PMID: 31529748 PMCID: PMC8653889 DOI: 10.1111/jeb.13542] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022]
Abstract
Evolutionary theory predicts that females seek extra‐pair fertilizations from high‐quality males. In socially monogamous bird species, it is often old males that are most successful in extra‐pair fertilizations. Adaptive models of female extra‐pair mate choice suggest that old males may produce offspring of higher genetic quality than young males because they have proven their survivability. However, old males are also more likely to show signs of reproductive senescence, such as reduced sperm quality. To better understand why old males account for a disproportionally large number of extra‐pair offspring and what the consequences of mating with old males are, we compared several sperm traits of both captive and wild house sparrows, Passer domesticus. Sperm morphological traits and cloacal protuberance volume (a proxy for sperm load) of old and young males did not differ substantially. However, old males delivered almost three times more sperm to the female's egg than young males. We discuss the possibility of a post‐copulatory advantage for old over young males and the consequences for females mated with old males.
Collapse
Affiliation(s)
- Antje Girndt
- Research Group Evolutionary Biology, Max Planck Institute for Ornithology, Seewiesen, Germany.,Department of Life Sciences, Imperial College London, Silwood Park Campus, UK.,Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | - Glenn Cockburn
- Research Group Evolution of Sensory Systems, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Alfredo Sánchez-Tójar
- Research Group Evolutionary Biology, Max Planck Institute for Ornithology, Seewiesen, Germany.,Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | - Moritz Hertel
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Terry Burke
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Julia Schroeder
- Department of Life Sciences, Imperial College London, Silwood Park Campus, UK
| |
Collapse
|
50
|
|