1
|
Addante RJ, Clise E, Waechter R, Bengson J, Drane DL, Perez-Caban J. A third kind of episodic memory: Context familiarity is distinct from item familiarity and recollection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603640. [PMID: 39071285 PMCID: PMC11275934 DOI: 10.1101/2024.07.15.603640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Episodic memory is accounted for with two processes: 'familiarity' when generally recognizing an item and 'recollection' when retrieving the full contextual details bound with the item. Paradoxically, people sometimes report contextual information as familiar but without recollecting details, which is not easily accounted for by existing theories. We tested a combination of item recognition confidence and source memory, focusing upon 'item-only hits with source unknown' ('item familiarity'), 'low-confidence hits with correct source memory' ('context familiarity'), and 'high-confidence hits with correct source memory' ('recollection'). Results across multiple within-subjects (trial-wise) and between subjects (individual variability) levels indicated these were behaviorally and physiologically distinct. Behaviorally, a crossover interaction was evident in response times, with context familiarity being slower than each condition during item recognition, but faster during source memory. Electrophysiologically, a Condition x Time x Location triple dissociation was evident in event-related potentials (ERPs), which was then independently replicated. Context familiarity exhibited an independent negative central effect from 800-1200 ms, differentiated from positive ERPs for item-familiarity (400 to 600 ms) and recollection (600 to 900 ms). These three conditions thus reflect mutually exclusive, fundamentally different processes of episodic memory. Context familiarity is a third distinct process of episodic memory. Summary Memory for past events is widely believed to operate through two different processes: one called 'recollection' when retrieving confident, specific details of a memory, and another called 'familiarity' when only having an unsure but conscious awareness that an item was experienced before. When people successfully retrieve details such as the source or context of a prior event, it has been assumed to reflect recollection. We demonstrate that familiarity of context is functionally distinct from familiarity of items and recollection and offer a new, tri-component model of memory. The three memory responses were differentiated across multiple behavioral and brain wave measures. What has traditionally been thought to be two kinds of memory processes are actually three, becoming evident when using sensitive enough multi-measures. Results are independently replicated across studies from different labs. These data reveal that context familiarity is a third process of human episodic memory.
Collapse
|
2
|
Song S, Hu Q, Du J, Yan S, Lei X, Tang R, Wang C. Prevalence of cancer-related cognitive impairment among patients with nasopharyngeal carcinoma: a cross-sectional study. Clin Transl Oncol 2024:10.1007/s12094-024-03699-8. [PMID: 39235555 DOI: 10.1007/s12094-024-03699-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
OBJECTIVE To examine the prevalence of cancer-related cognitive impairment (CRCI) and its contributing factors in patients with nasopharyngeal carcinoma (NPC) and explore the relationship between various assessment methods. METHODS A cross-sectional study was conducted with 367 patients with NPC between March 2022 and April 2024 at Chongqing University Cancer Hospital. The data gathered from the demographic questionnaire, Montreal Cognitive Assessment (MoCA), Functional Assessment of Cancer Therapy-Cognitive Function (FACT-Cog), Self-Rating Anxiety Scale (SAS), and Self-Rating Depression Scale (SDS) were analyzed using logistic regression. RESULTS Out of 367 participants, males accounted for 271 (73.84%). There were 217 (59.13%) individuals aged between 35-55 years. Cognitive impairment incidence was 58.04% using MoCA and 47.98% using FACT-Cog. Years of education, work condition, age and time since diagnosis (≥ 11 months) were all significantly associated with cognitive impairment using MoCA, the strongest being time since diagnosis (≥ 11 months) (OR = 2.672, 95% CI = 1.191-5.997, P = 0.017). Gender, marital status (married), place of residence (township), place of residence (city), alcohol history, SAS and SDS were all significantly associated with FACT-Cog, the strongest being marital status (married) (OR = 4.100, 95% CI = 1.130-14.87, P = 0.032). CONCLUSION Patients diagnosed with NPC exhibit susceptibility to CRCI. There was a weak correlation between some aspects of the subjective tests and the objective test scores. Advanced age and disease diagnosis longer than 10 months are associated with a heightened risk of objective cognitive impairment. Furthermore, residing in rural areas, female, married, alcohol history, SAS and SDS increases the likelihood of subjective cognitive impairment. These findings highlight the need to select appropriate assessment scales for different needs and take targeted interventions to address CRCI in patients with NPC.
Collapse
Affiliation(s)
- Suting Song
- Radiation Oncology Center, Chongqing University Cancer Hospital, No. 181 Han Yu Road, Shapingba District, Chongqing, 400030, China
| | - Qu Hu
- Radiation Oncology Center, Chongqing University Cancer Hospital, No. 181 Han Yu Road, Shapingba District, Chongqing, 400030, China
| | - Jiayi Du
- Radiation Oncology Center, Chongqing University Cancer Hospital, No. 181 Han Yu Road, Shapingba District, Chongqing, 400030, China
| | - Sisi Yan
- Radiation Oncology Center, Chongqing University Cancer Hospital, No. 181 Han Yu Road, Shapingba District, Chongqing, 400030, China
| | - Xuejiao Lei
- Radiation Oncology Center, Chongqing University Cancer Hospital, No. 181 Han Yu Road, Shapingba District, Chongqing, 400030, China
| | - Ruisi Tang
- Radiation Oncology Center, Chongqing University Cancer Hospital, No. 181 Han Yu Road, Shapingba District, Chongqing, 400030, China
| | - Chunyu Wang
- Radiation Oncology Center, Chongqing University Cancer Hospital, No. 181 Han Yu Road, Shapingba District, Chongqing, 400030, China.
| |
Collapse
|
3
|
Ueda R, Sakakura K, Mitsuhashi T, Sonoda M, Firestone E, Kuroda N, Kitazawa Y, Uda H, Luat AF, Johnson EL, Ofen N, Asano E. Cortical and white matter substrates supporting visuospatial working memory. Clin Neurophysiol 2024; 162:9-27. [PMID: 38552414 PMCID: PMC11102300 DOI: 10.1016/j.clinph.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/24/2024] [Accepted: 03/11/2024] [Indexed: 05/19/2024]
Abstract
OBJECTIVE In tasks involving new visuospatial information, we rely on working memory, supported by a distributed brain network. We investigated the dynamic interplay between brain regions, including cortical and white matter structures, to understand how neural interactions change with different memory loads and trials, and their subsequent impact on working memory performance. METHODS Patients undertook a task of immediate spatial recall during intracranial EEG monitoring. We charted the dynamics of cortical high-gamma activity and associated functional connectivity modulations in white matter tracts. RESULTS Elevated memory loads were linked to enhanced functional connectivity via occipital longitudinal tracts, yet decreased through arcuate, uncinate, and superior-longitudinal fasciculi. As task familiarity grew, there was increased high-gamma activity in the posterior inferior-frontal gyrus (pIFG) and diminished functional connectivity across a network encompassing frontal, parietal, and temporal lobes. Early pIFG high-gamma activity was predictive of successful recall. Including this metric in a logistic regression model yielded an accuracy of 0.76. CONCLUSIONS Optimizing visuospatial working memory through practice is tied to early pIFG activation and decreased dependence on irrelevant neural pathways. SIGNIFICANCE This study expands our knowledge of human adaptation for visuospatial working memory, showing the spatiotemporal dynamics of cortical network modulations through white matter tracts.
Collapse
Affiliation(s)
- Riyo Ueda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 1878551, Japan.
| | - Kazuki Sakakura
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois 60612, USA; Department of Neurosurgery, University of Tsukuba, Tsukuba 3058575, Japan.
| | - Takumi Mitsuhashi
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Neurosurgery, Juntendo University, School of Medicine, Tokyo 1138421, Japan.
| | - Masaki Sonoda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Neurosurgery, Yokohama City University, Yokohama 2360004, Japan.
| | - Ethan Firestone
- Department of Physiology, Wayne State University, Detroit, Michigan 48202, USA.
| | - Naoto Kuroda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan.
| | - Yu Kitazawa
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Neurology and Stroke Medicine, Yokohama City University, Yokohama 2360004, Japan.
| | - Hiroshi Uda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Neurosurgery, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan.
| | - Aimee F Luat
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Pediatrics, Central Michigan University, Mt. Pleasant, Michigan 48858, USA.
| | - Elizabeth L Johnson
- Departments of Medical Social Sciences, Pediatrics, and Psychology, Northwestern University, Chicago, Illinois 60611, USA.
| | - Noa Ofen
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, Michigan 48202, USA; Department of Psychology, Wayne State University, Detroit, Michigan 48202, USA.
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Translational Neuroscience Program, Wayne State University, Detroit, Michigan 48201, USA.
| |
Collapse
|
4
|
M Aghajan Z, Kreiman G, Fried I. Minute-scale periodicity of neuronal firing in the human entorhinal cortex. Cell Rep 2023; 42:113271. [PMID: 37906591 DOI: 10.1016/j.celrep.2023.113271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/09/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023] Open
Abstract
Grid cells in the entorhinal cortex demonstrate spatially periodic firing, thought to provide a spatial map on behaviorally relevant length scales. Whether such periodicity exists for behaviorally relevant time scales in the human brain remains unclear. We investigate neuronal firing during a temporally continuous experience by presenting 14 neurosurgical patients with a video while recording neuronal activity from multiple brain regions. We report on neurons that modulate their activity in a periodic manner across different time scales-from seconds to many minutes, most prevalently in the entorhinal cortex. These neurons remap their dominant periodicity to shorter time scales during a subsequent recognition memory task. When the video is presented at two different speeds, a significant percentage of these temporally periodic cells (TPCs) maintain their time scales, suggesting a degree of invariance. The TPCs' temporal periodicity might complement the spatial periodicity of grid cells and together provide scalable spatiotemporal metrics for human experience.
Collapse
Affiliation(s)
- Zahra M Aghajan
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Gabriel Kreiman
- Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Brains, Minds and Machines, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Itzhak Fried
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA; Faculty of Medicine, Tel Aviv University, Tel-Aviv 69978, Israel.
| |
Collapse
|
5
|
Chang CH, Zehra S, Nestor A, Lee ACH. Using image reconstruction to investigate face perception in amnesia. Neuropsychologia 2023; 185:108573. [PMID: 37119985 DOI: 10.1016/j.neuropsychologia.2023.108573] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Damage to the medial temporal lobe (MTL), which is traditionally considered to subserve memory exclusively, has been reported to contribute to impaired face perception. However, it remains unknown how exactly such brain lesions may impact face representations and in particular facial shape and surface information, both of which are crucial for face perception. The present study employed a behavioral-based image reconstruction approach to reveal the pictorial representations of face perception in two amnesic patients: DA, who has an extensive bilateral MTL lesion that extends beyond the MTL in the right hemisphere, and BL, who has damage to the hippocampal dentate gyrus (DG). Both patients and their respective matched controls completed similarity judgments for pairs of faces, from which facial shape and surface features were subsequently derived and synthesized to create images of reconstructed facial appearance. Participants also completed a face oddity judgment task (FOJT) that has previously been shown to be sensitive to MTL cortical damage. While BL exhibited an impaired pattern of performance on the FOJT, DA demonstrated intact performance accuracy. Notably, the recovered pictorial content of faces was comparable between both patients and controls, although there was evidence for atypical face representations in BL particularly with regards to color. Our work provides novel insight into the face representations underlying face perception in two well-studied amnesic patients in the literature and demonstrates the applicability of the image reconstruction approach to individuals with brain damage.
Collapse
Affiliation(s)
- Chi-Hsun Chang
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, Canada
| | - Sukhan Zehra
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, Canada
| | - Adrian Nestor
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, Canada
| | - Andy C H Lee
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, Canada; Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
A wearable platform for closed-loop stimulation and recording of single-neuron and local field potential activity in freely moving humans. Nat Neurosci 2023; 26:517-527. [PMID: 36804647 PMCID: PMC9991917 DOI: 10.1038/s41593-023-01260-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 01/17/2023] [Indexed: 02/22/2023]
Abstract
Advances in technologies that can record and stimulate deep brain activity in humans have led to impactful discoveries within the field of neuroscience and contributed to the development of novel therapies for neurological and psychiatric disorders. Further progress, however, has been hindered by device limitations in that recording of single-neuron activity during freely moving behaviors in humans has not been possible. Additionally, implantable neurostimulation devices, currently approved for human use, have limited stimulation programmability and restricted full-duplex bidirectional capability. In this study, we developed a wearable bidirectional closed-loop neuromodulation system (Neuro-stack) and used it to record single-neuron and local field potential activity during stationary and ambulatory behavior in humans. Together with a highly flexible and customizable stimulation capability, the Neuro-stack provides an opportunity to investigate the neurophysiological basis of disease, develop improved responsive neuromodulation therapies, explore brain function during naturalistic behaviors in humans and, consequently, bridge decades of neuroscientific findings across species.
Collapse
|
7
|
The effects of variable encoding contexts on item and source recognition. Mem Cognit 2023; 51:391-403. [PMID: 35980546 DOI: 10.3758/s13421-022-01353-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2022] [Indexed: 11/08/2022]
Abstract
How repeated encoding affects retention of item details is an unresolved question. The Competitive Trace theory (Yassa & Reagh, Frontiers in Behavioral Neuroscience, 7, 107, 2013) assumes that even slight variations in encoding contexts across item repetitions induce competition among non-overlapping contextual traces, leading to semanticization and decontextualized memory traces. However, empirical support for this assumption is mixed. In extension of previous research, the current study attempted to increase the competition between contextual traces by increasing encoding context variability. In three experiments we tested how repeated encoding in the same context or different contexts affects target recognition, similar lure discrimination, and source memory. Participants viewed images of objects once, three times in the same or three times in different contexts. Context variability was implemented through variations in background color or encoding tasks. Repeated encoding improved memory for item details, independent of context variability. Background color was poorly remembered but answering different encoding questions for repeated items impaired recollection of specific encoding tasks, in comparison to encoding items only once or repeatedly with the same encoding task. Our findings show that repetitions enhance memory for perceptual details but can impair memory for contextual elements, a dissociation that needs to be considered by the Competitive Trace Theory and other consolidation theories.
Collapse
|
8
|
Wirtshafter HS, Disterhoft JF. Place cells are nonrandomly clustered by field location in CA1 hippocampus. Hippocampus 2023; 33:65-84. [PMID: 36519700 PMCID: PMC9877199 DOI: 10.1002/hipo.23489] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/26/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
A challenge in both modern and historic neuroscience has been achieving an understanding of neuron circuits, and determining the computational and organizational principles that underlie these circuits. Deeper understanding of the organization of brain circuits and cell types, including in the hippocampus, is required for advances in behavioral and cognitive neuroscience, as well as for understanding principles governing brain development and evolution. In this manuscript, we pioneer a new method to analyze the spatial clustering of active neurons in the hippocampus. We use calcium imaging and a rewarded navigation task to record from 100 s of place cells in the CA1 of freely moving rats. We then use statistical techniques developed for and in widespread use in geographic mapping studies, global Moran's I, and local Moran's I to demonstrate that cells that code for similar spatial locations tend to form small spatial clusters. We present evidence that this clustering is not the result of artifacts from calcium imaging, and show that these clusters are primarily formed by cells that have place fields around previously rewarded locations. We go on to show that, although cells with similar place fields tend to form clusters, there is no obvious topographic mapping of environmental location onto the hippocampus, such as seen in the visual cortex. Insights into hippocampal organization, as in this study, can elucidate mechanisms underlying motivational behaviors, spatial navigation, and memory formation.
Collapse
Affiliation(s)
- Hannah S. Wirtshafter
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, 310 E. Superior St., Morton 5-660, Chicago, IL 60611
| | - John F. Disterhoft
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, 310 E. Superior St., Morton 5-660, Chicago, IL 60611
| |
Collapse
|
9
|
Zhang Y, Aghajan ZM, Ison M, Lu Q, Tang H, Kalender G, Monsoor T, Zheng J, Kreiman G, Roychowdhury V, Fried I. Decoding of human identity by computer vision and neuronal vision. Sci Rep 2023; 13:651. [PMID: 36635322 PMCID: PMC9837190 DOI: 10.1038/s41598-022-26946-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023] Open
Abstract
Extracting meaning from a dynamic and variable flow of incoming information is a major goal of both natural and artificial intelligence. Computer vision (CV) guided by deep learning (DL) has made significant strides in recognizing a specific identity despite highly variable attributes. This is the same challenge faced by the nervous system and partially addressed by the concept cells-neurons exhibiting selective firing in response to specific persons/places, described in the human medial temporal lobe (MTL) . Yet, access to neurons representing a particular concept is limited due to these neurons' sparse coding. It is conceivable, however, that the information required for such decoding is present in relatively small neuronal populations. To evaluate how well neuronal populations encode identity information in natural settings, we recorded neuronal activity from multiple brain regions of nine neurosurgical epilepsy patients implanted with depth electrodes, while the subjects watched an episode of the TV series "24". First, we devised a minimally supervised CV algorithm (with comparable performance against manually-labeled data) to detect the most prevalent characters (above 1% overall appearance) in each frame. Next, we implemented DL models that used the time-varying population neural data as inputs and decoded the visual presence of the four main characters throughout the episode. This methodology allowed us to compare "computer vision" with "neuronal vision"-footprints associated with each character present in the activity of a subset of neurons-and identify the brain regions that contributed to this decoding process. We then tested the DL models during a recognition memory task following movie viewing where subjects were asked to recognize clip segments from the presented episode. DL model activations were not only modulated by the presence of the corresponding characters but also by participants' subjective memory of whether they had seen the clip segment, and by the associative strengths of the characters in the narrative plot. The described approach can offer novel ways to probe the representation of concepts in time-evolving dynamic behavioral tasks. Further, the results suggest that the information required to robustly decode concepts is present in the population activity of only tens of neurons even in brain regions beyond MTL.
Collapse
Affiliation(s)
- Yipeng Zhang
- grid.19006.3e0000 0000 9632 6718Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, CA USA
| | - Zahra M. Aghajan
- grid.19006.3e0000 0000 9632 6718Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA USA
| | - Matias Ison
- grid.4563.40000 0004 1936 8868School of Psychology, University of Nottingham, Nottingham, UK
| | - Qiujing Lu
- grid.19006.3e0000 0000 9632 6718Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, CA USA
| | - Hanlin Tang
- grid.38142.3c000000041936754XChildren’s Hospital, Harvard Medical School, Boston, MA USA
| | - Guldamla Kalender
- grid.19006.3e0000 0000 9632 6718Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA USA
| | - Tonmoy Monsoor
- grid.19006.3e0000 0000 9632 6718Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, CA USA
| | - Jie Zheng
- grid.38142.3c000000041936754XChildren’s Hospital, Harvard Medical School, Boston, MA USA
| | - Gabriel Kreiman
- grid.38142.3c000000041936754XChildren’s Hospital, Harvard Medical School, Boston, MA USA ,grid.116068.80000 0001 2341 2786Center for Brains, Minds and Machines, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Vwani Roychowdhury
- grid.19006.3e0000 0000 9632 6718Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, CA USA
| | - Itzhak Fried
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA. .,Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
10
|
Abstract
Memory recollections and voluntary actions are often perceived as spontaneously generated irrespective of external stimuli. Although products of our neurons, they are only rarely accessible in humans at the neuronal level. Here I review insights gleaned from unique neurosurgical opportunities to record and stimulate single-neuron activity in people who can declare their thoughts, memories and wishes. I discuss evidence that the subjective experience of human recollection and that of voluntary action arise from the activity of two internal neuronal generators, the former from medial temporal lobe reactivation and the latter from frontoparietal preactivation. I characterize properties of these generators and their interaction, enabling flexible recruitment of memory-based choices for action as well as recruitment of action-based plans for the representation of conceptual knowledge in memories. Both internal generators operate on surprisingly explicit but different neuronal codes, which appear to arise with distinct single-neuron activity, often observed before participants' reports of conscious awareness. I discuss prediction of behaviour based on these codes, and the potential for their modulation. The prospects of editing human memories and volitions by enhancement, inception or deletion of specific, selected content raise therapeutic possibilities and ethical concerns.
Collapse
|
11
|
Willems T, Henke K. Imaging human engrams using 7 Tesla magnetic resonance imaging. Hippocampus 2021; 31:1257-1270. [PMID: 34739173 PMCID: PMC9298259 DOI: 10.1002/hipo.23391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022]
Abstract
The investigation of the physical traces of memories (engrams) has made significant progress in the last decade due to optogenetics and fluorescent cell tagging applied in rodents. Engram cells were identified. The ablation of engram cells led to the loss of the associated memory, silent memories were reactivated, and artificial memories were implanted in the brain. Human engram research lags behind engram research in rodents due to methodological and ethical constraints. However, advances in multivariate analysis techniques of functional magnetic resonance imaging (fMRI) data and machine learning algorithms allowed the identification of stable engram patterns in humans. In addition, MRI scanners with an ultrahigh field strength of 7 Tesla (T) have left their prototype state and became more common around the world to assist human engram research. Although most engram research in humans is still being performed with a field strength of 3T, fMRI at 7T will push engram research. Here, we summarize the current state and findings of human engram research and discuss the advantages and disadvantages of applying 7 versus 3T fMRI to image human memory traces.
Collapse
Affiliation(s)
- Tom Willems
- Institute of Psychology, University of Bern, Bern, Switzerland
| | - Katharina Henke
- Institute of Psychology, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Pinpointing the neural signatures of single-exposure visual recognition memory. Proc Natl Acad Sci U S A 2021; 118:2021660118. [PMID: 33903238 DOI: 10.1073/pnas.2021660118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Memories of the images that we have seen are thought to be reflected in the reduction of neural responses in high-level visual areas such as inferotemporal (IT) cortex, a phenomenon known as repetition suppression (RS). We challenged this hypothesis with a task that required rhesus monkeys to report whether images were novel or repeated while ignoring variations in contrast, a stimulus attribute that is also known to modulate the overall IT response. The monkeys' behavior was largely contrast invariant, contrary to the predictions of an RS-inspired decoder, which could not distinguish responses to images that are repeated from those that are of lower contrast. However, the monkeys' behavioral patterns were well predicted by a linearly decodable variant in which the total spike count was corrected for contrast modulation. These results suggest that the IT neural activity pattern that best aligns with single-exposure visual recognition memory behavior is not RS but rather sensory referenced suppression: reductions in IT population response magnitude, corrected for sensory modulation.
Collapse
|
13
|
How Are Memories Stored in the Human Hippocampus? Trends Cogn Sci 2021; 25:425-426. [PMID: 33820659 DOI: 10.1016/j.tics.2021.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 11/20/2022]
|
14
|
Suthana N, Ekstrom AD, Yassa MA, Stark C. Pattern Separation in the Human Hippocampus: Response to Quiroga. Trends Cogn Sci 2021; 25:423-424. [PMID: 33820660 DOI: 10.1016/j.tics.2021.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Nanthia Suthana
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA; Department of Neurosurgery, David Geffen School of Medicine and Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA; Department of Psychology, University of California, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, CA 90095, USA.
| | - Arne D Ekstrom
- Psychology Department, University of Arizona, Tucson, AZ 85721, USA; Evelyn McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Michael A Yassa
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA; Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA 92697, USA
| | - Craig Stark
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA; Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
15
|
Kalsbeek A, Buijs RM. Organization of the neuroendocrine and autonomic hypothalamic paraventricular nucleus. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:45-63. [PMID: 34225948 DOI: 10.1016/b978-0-12-820107-7.00004-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A major function of the nervous system is to maintain a relatively constant internal environment. The distinction between our external environment (i.e., the environment that we live in and that is subject to major changes, such as temperature, humidity, and food availability) and our internal environment (i.e., the environment formed by the fluids surrounding our bodily tissues and that has a very stable composition) was pointed out in 1878 by Claude Bernard (1814-1878). Later on, it was indicated by Walter Cannon (1871-1945) that the internal environment is not really constant, but rather shows limited variability. Cannon named the mechanism maintaining this limited variability homeostasis. Claude Bernard envisioned that, for optimal health, all physiologic processes in the body needed to maintain homeostasis and should be in perfect harmony with each other. This is illustrated by the fact that, for instance, during the sleep-wake cycle important elements of our physiology such as body temperature, circulating glucose, and cortisol levels show important variations but are in perfect synchrony with each other. These variations are driven by the biologic clock in interaction with hypothalamic target areas, among which is the paraventricular nucleus of the hypothalamus (PVN), a core brain structure that controls the neuroendocrine and autonomic nervous systems and thus is key for integrating central and peripheral information and implementing homeostasis. This chapter focuses on the anatomic connections between the biologic clock and the PVN to modulate homeostasis according to the daily sleep-wake rhythm. Experimental studies have revealed a highly specialized organization of the connections between the clock neurons and neuroendocrine system as well as preautonomic neurons in the PVN. These complex connections ensure a logical coordination between behavioral, endocrine, and metabolic functions that helps the organism maintain homeostasis throughout the day.
Collapse
Affiliation(s)
- Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers (Amsterdam UMC), University of Amsterdam, Amsterdam, The Netherlands; Department of Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | - Ruud M Buijs
- Hypothalamic Integration Mechanisms Laboratory, Department of Cellular Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
16
|
Topalovic U, Aghajan ZM, Villaroman D, Hiller S, Christov-Moore L, Wishard TJ, Stangl M, Hasulak NR, Inman CS, Fields TA, Rao VR, Eliashiv D, Fried I, Suthana N. Wireless Programmable Recording and Stimulation of Deep Brain Activity in Freely Moving Humans. Neuron 2020; 108:322-334.e9. [PMID: 32946744 PMCID: PMC7785319 DOI: 10.1016/j.neuron.2020.08.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/11/2020] [Accepted: 08/20/2020] [Indexed: 12/29/2022]
Abstract
Uncovering the neural mechanisms underlying human natural ambulatory behavior is a major challenge for neuroscience. Current commercially available implantable devices that allow for recording and stimulation of deep brain activity in humans can provide invaluable intrinsic brain signals but are not inherently designed for research and thus lack flexible control and integration with wearable sensors. We developed a mobile deep brain recording and stimulation (Mo-DBRS) platform that enables wireless and programmable intracranial electroencephalographic recording and electrical stimulation integrated and synchronized with virtual reality/augmented reality (VR/AR) and wearables capable of external measurements (e.g., motion capture, heart rate, skin conductance, respiration, eye tracking, and scalp EEG). When used in freely moving humans with implanted neural devices, this platform is adaptable to ecologically valid environments conducive to elucidating the neural mechanisms underlying naturalistic behaviors and to the development of viable therapies for neurologic and psychiatric disorders.
Collapse
Affiliation(s)
- Uros Topalovic
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Zahra M Aghajan
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Diane Villaroman
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sonja Hiller
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Leonardo Christov-Moore
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Tyler J Wishard
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Matthias Stangl
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | | | - Cory S Inman
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Tony A Fields
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Vikram R Rao
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dawn Eliashiv
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Itzhak Fried
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90024, USA; Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Tel Aviv Sourasky Medical Center and Sackler Faculty School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nanthia Suthana
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90024, USA; Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
17
|
Wicks RT, Witcher MR, Couture DE, Laxton AW, Popli G, Whitlow CT, Fetterhoff D, Dakos AS, Roeder BM, Deadwyler SA, Hampson RE. Hippocampal CA1 and CA3 neural recording in the human brain: validation of depth electrode placement through high-resolution imaging and electrophysiology. Neurosurg Focus 2020; 49:E5. [PMID: 32610296 DOI: 10.3171/2020.4.focus20164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/16/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Intracranial human brain recordings typically utilize recording systems that do not distinguish individual neuron action potentials. In such cases, individual neurons are not identified by location within functional circuits. In this paper, verified localization of singly recorded hippocampal neurons within the CA3 and CA1 cell fields is demonstrated. METHODS Macro-micro depth electrodes were implanted in 23 human patients undergoing invasive monitoring for identification of epileptic seizure foci. Individual neurons were isolated and identified via extracellular action potential waveforms recorded via macro-micro depth electrodes localized within the hippocampus. A morphometric survey was performed using 3T MRI scans of hippocampi from the 23 implanted patients, as well as 46 normal (i.e., nonepileptic) patients and 26 patients with a history of epilepsy but no history of depth electrode placement, which provided average dimensions of the hippocampus along typical implantation tracks. Localization within CA3 and CA1 cell fields was tentatively assigned on the basis of recording electrode site, stereotactic positioning of the depth electrode in comparison with the morphometric survey, and postsurgical MRI. Cells were selected as candidate CA3 and CA1 principal neurons on the basis of waveform and firing rate characteristics and confirmed within the CA3-to-CA1 neural projection pathways via measures of functional connectivity. RESULTS Cross-correlation analysis confirmed that nearly 80% of putative CA3-to-CA1 cell pairs exhibited positive correlations compatible with feed-forward connection between the cells, while only 2.6% exhibited feedback (inverse) connectivity. Even though synchronous and long-latency correlations were excluded, feed-forward correlation between CA3-CA1 pairs was identified in 1071 (26%) of 4070 total pairs, which favorably compares to reports of 20%-25% feed-forward CA3-CA1 correlation noted in published animal studies. CONCLUSIONS This study demonstrates the ability to record neurons in vivo from specified regions and subfields of the human brain. As brain-machine interface and neural prosthetic research continues to expand, it is necessary to be able to identify recording and stimulation sites within neural circuits of interest.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dustin Fetterhoff
- 6Program in Neuroscience, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Alexander S Dakos
- 6Program in Neuroscience, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Brent M Roeder
- 6Program in Neuroscience, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Sam A Deadwyler
- 5Physiology and Pharmacology, and.,6Program in Neuroscience, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Robert E Hampson
- 2Neurology.,5Physiology and Pharmacology, and.,6Program in Neuroscience, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| |
Collapse
|
18
|
Context-dependent representations of objects and space in the primate hippocampus during virtual navigation. Nat Neurosci 2019; 23:103-112. [PMID: 31873285 DOI: 10.1038/s41593-019-0548-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 10/24/2019] [Indexed: 11/09/2022]
Abstract
The hippocampus is implicated in associative memory and spatial navigation. To investigate how these functions are mixed in the hippocampus, we recorded from single hippocampal neurons in macaque monkeys navigating a virtual maze during a foraging task and a context-object associative memory task. During both tasks, single neurons encoded information about spatial position; a linear classifier also decoded position. However, the population code for space did not generalize across tasks, particularly where stimuli relevant to the associative memory task appeared. Single-neuron and population-level analyses revealed that cross-task changes were due to selectivity for nonspatial features of the associative memory task when they were visually available (perceptual coding) and following their disappearance (mnemonic coding). Our results show that neurons in the primate hippocampus nonlinearly mix information about space and nonspatial elements of the environment in a task-dependent manner; this efficient code flexibly represents unique perceptual experiences and correspondent memories.
Collapse
|
19
|
Sakon JJ, Suzuki WA. A neural signature of pattern separation in the monkey hippocampus. Proc Natl Acad Sci U S A 2019; 116:9634-9643. [PMID: 31010929 PMCID: PMC6511004 DOI: 10.1073/pnas.1900804116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The CA3 and dentate gyrus (DG) regions of the hippocampus are considered key for disambiguating sensory inputs from similar experiences in memory, a process termed pattern separation. The neural mechanisms underlying pattern separation, however, have been difficult to compare across species: rodents offer robust recording methods with less human-centric tasks, while humans provide complex behavior with less recording potential. To overcome these limitations, we trained monkeys to perform a visual pattern separation task similar to those used in humans while recording activity from single CA3/DG neurons. We find that, when animals discriminate recently seen novel images from similar (lure) images, behavior indicative of pattern separation, CA3/DG neurons respond to lure images more like novel than repeat images. Using a population of these neurons, we are able to classify novel, lure, and repeat images from each other using this pattern of firing rates. Notably, one subpopulation of these neurons is more responsible for distinguishing lures and repeats-the key discrimination indicative of pattern separation.
Collapse
Affiliation(s)
- John J Sakon
- Center for Neural Science, New York University, New York, NY 10003
| | - Wendy A Suzuki
- Center for Neural Science, New York University, New York, NY 10003
| |
Collapse
|
20
|
Parato J, Shen H, Smith SS. α4βδ GABA A Receptors Trigger Synaptic Pruning and Reduce Dendritic Length of Female Mouse CA3 Hippocampal Pyramidal Cells at Puberty. Neuroscience 2019; 398:23-36. [PMID: 30496825 PMCID: PMC6411036 DOI: 10.1016/j.neuroscience.2018.11.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 01/24/2023]
Abstract
Synaptic pruning during adolescence is critical for optimal cognition. The CA3 hippocampus contains unique spine types and plays a pivotal role in pattern separation and seizure generation, where sex differences exist, but adolescent pruning has only been studied in the male. Thus, for the present study we assessed pruning of specific spine types in the CA3 hippocampus during adolescence and investigated a possible mechanism in the female mouse. To this end, we used Golgi-impregnated brains from pubertal (∼PND 35, assessed by vaginal opening) and post-pubertal (PND 56) mice. Spine density was assessed from z-stack (0.1-μm steps) images taken using a Nikon DS-U3 camera through a Nikon Eclipse Ci-L microscope and analyzed with NIS Elements. Spine density decreased significantly (P < 0.05) during adolescence, with 50-60% decreases in mushroom and stubby spine-types (P < 0.05, ∼PND35 vs. PND56) in non-proestrous mice. This was associated with decreases in kalirin-7, a spine protein which stabilizes the cytoskeleton and is required for spine maintenance. Because our previous findings suggest that pubertal increases in α4βδ GABAA receptors (GABARs) trigger pruning in CA1, we investigated their role in CA3. α4 expression in CA3 hippocampus increased 4-fold at puberty (P < 0.05), assessed by immunostaining and verified electrophysiologically by an increased response to gaboxadol (100 nM), which is selective for α4βδ. Knock-out of α4 prevented the pubertal decrease in kalirin-7 and synaptic pruning and also increased the dendritic length, demonstrating a functional link. These data suggest that pubertal α4βδ GABARs alter dendritic morphology and trigger pruning in female CA3 hippocampus.
Collapse
Affiliation(s)
- Julie Parato
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA; Program in Neural and Behavioral Science, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA
| | - Hui Shen
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA; School of Biomedical Engineering, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Sheryl S Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA; The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| |
Collapse
|
21
|
El-Kalliny MM, Wittig JH, Sheehan TC, Sreekumar V, Inati SK, Zaghloul KA. Changing temporal context in human temporal lobe promotes memory of distinct episodes. Nat Commun 2019; 10:203. [PMID: 30643130 PMCID: PMC6331638 DOI: 10.1038/s41467-018-08189-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/14/2018] [Indexed: 12/28/2022] Open
Abstract
Memories of experiences that occur around the same time are linked together by a shared temporal context, represented by shared patterns of neural activity. However, shared temporal context may be problematic for selective retrieval of specific memories. Here, we examine intracranial EEG (iEEG) in the human temporal lobe as participants perform a verbal paired associates memory task that requires the encoding of distinct word pairs in memory. We find that the rate of change in patterns of low frequency (3–12 Hz) power distributed across the temporal lobe is significantly related to memory performance. We also find that exogenous electrical stimulation affects how quickly these neural representations of temporal context change with time, which directly affects the ability to successfully form memories for distinct items. Our results indicate that the ability to retrieve distinct episodic memories is related to how quickly neural representations of temporal context change over time during encoding. Memories formed around the same time are linked together by a shared temporal context. Here, the authors show that the ability to selectively retrieve distinct episodic memories formed close together in time is related to how quickly neural representations of temporal context change over time during encoding.
Collapse
Affiliation(s)
- Mostafa M El-Kalliny
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - John H Wittig
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Timothy C Sheehan
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Vishnu Sreekumar
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sara K Inati
- Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
22
|
Hartopp N, Wright P, Ray NJ, Evans TE, Metzler-Baddeley C, Aggleton JP, O'Sullivan MJ. A Key Role for Subiculum-Fornix Connectivity in Recollection in Older Age. Front Syst Neurosci 2019; 12:70. [PMID: 30687030 PMCID: PMC6335321 DOI: 10.3389/fnsys.2018.00070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/17/2018] [Indexed: 11/13/2022] Open
Abstract
Individual differences in memory during aging are associated with the microstructure of the fornix, a bidirectional tract connecting the hippocampus with the diencephalon, basal forebrain and cortex. To investigate the origin of alterations in fornix microstructure, measurement of hippocampal subfield volumes was combined with diffusion MRI and cognitive evaluation in a new sample of 31 healthy human participants aged 50-89 years. The fornix, uncinate and parahippocampal cingulum were reconstructed using diffusion MRI tractography. Episodic memory was assessed with free and cued verbal recall, visual recognition and paired associate learning tests. Recall performance was associated with fornix microstructure and hippocampal subfield volumes. Subiculum and CA1 volumes remained positively associated with fornix microstructure when controlling for other volumes. Subiculum volume was also associated with fornix microstructure independent of age. Regression analyses showed that subiculum-fornix associations explained more variation in recall than that of CA1-fornix associations. In a multivariable regression model, age and subiculum volume were independent predictors of free recall whilst fornix microstructure and CA1 volume were not. These results suggest that age-related changes in a network that includes the subiculum and fornix are important in cognitive change in healthy aging. These results match anatomical predictions concerning the importance of hippocampal - diencephalic projections for memory.
Collapse
Affiliation(s)
- Naomi Hartopp
- Division of Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Paul Wright
- Division of Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Nicola J Ray
- Department of Psychology, Manchester Metropolitan University, Manchester, United Kingdom
| | - Tavia E Evans
- Division of Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.,Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - John P Aggleton
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Michael J O'Sullivan
- Division of Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.,School of Psychology, Cardiff University, Cardiff, United Kingdom.,Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia.,Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| |
Collapse
|
23
|
Time-resolved neural reinstatement and pattern separation during memory decisions in human hippocampus. Proc Natl Acad Sci U S A 2018; 115:E7418-E7427. [PMID: 30006465 DOI: 10.1073/pnas.1717088115] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mnemonic decision-making has long been hypothesized to rely on hippocampal dynamics that bias memory processing toward the formation of new memories or the retrieval of old ones. Successful memory encoding may be best optimized by pattern separation, whereby two highly similar experiences can be represented by underlying neural populations in an orthogonal manner. By contrast, successful memory retrieval is thought to be supported by a recovery of the same neural pattern laid down during encoding. Here we examined how hippocampal pattern completion and separation emerge over time during memory decisions. We measured electrocorticography activity in the human hippocampus and posterior occipitotemporal cortex (OTC) while participants performed continuous recognition of items that were new, repeated (old), or highly similar to a prior item (similar). During retrieval decisions of old items, both regions exhibited significant reinstatement of multivariate high-frequency activity (HFA) associated with encoding. Further, the extent of reinstatement of encoding patterns during retrieval was correlated with the strength (HFA power) of hippocampal encoding. Evidence for encoding pattern reinstatement was also seen in OTC on trials requiring fine-grained discrimination of similar items. By contrast, hippocampal activity showed evidence for pattern separation during these trials. Together, these results underscore the critical role of the hippocampus in supporting both reinstatement of overlapping information and separation of similar events.
Collapse
|
24
|
Kumaran D, Hassabis D, McClelland JL. What Learning Systems do Intelligent Agents Need? Complementary Learning Systems Theory Updated. Trends Cogn Sci 2018; 20:512-534. [PMID: 27315762 DOI: 10.1016/j.tics.2016.05.004] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 04/22/2016] [Accepted: 05/03/2016] [Indexed: 12/17/2022]
Abstract
We update complementary learning systems (CLS) theory, which holds that intelligent agents must possess two learning systems, instantiated in mammalians in neocortex and hippocampus. The first gradually acquires structured knowledge representations while the second quickly learns the specifics of individual experiences. We broaden the role of replay of hippocampal memories in the theory, noting that replay allows goal-dependent weighting of experience statistics. We also address recent challenges to the theory and extend it by showing that recurrent activation of hippocampal traces can support some forms of generalization and that neocortical learning can be rapid for information that is consistent with known structure. Finally, we note the relevance of the theory to the design of artificial intelligent agents, highlighting connections between neuroscience and machine learning.
Collapse
Affiliation(s)
- Dharshan Kumaran
- Google DeepMind, 5 New Street Square, London EC4A 3TW, UK; Institute of Cognitive Neuroscience, University College London, 17 Queen Square, WC1N 3AR, UK.
| | - Demis Hassabis
- Google DeepMind, 5 New Street Square, London EC4A 3TW, UK; Gatsby Computational Neuroscience Unit, 17 Queen Square, London WC1N 3AR, UK.
| | - James L McClelland
- Department of Psychology and Center for Mind, Brain, and Computation, Stanford University, 450 Serra Mall, CA 94305, USA.
| |
Collapse
|
25
|
M Aghajan Z, Schuette P, Fields TA, Tran ME, Siddiqui SM, Hasulak NR, Tcheng TK, Eliashiv D, Mankin EA, Stern J, Fried I, Suthana N. Theta Oscillations in the Human Medial Temporal Lobe during Real-World Ambulatory Movement. Curr Biol 2017; 27:3743-3751.e3. [PMID: 29199073 DOI: 10.1016/j.cub.2017.10.062] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/21/2017] [Accepted: 10/25/2017] [Indexed: 01/24/2023]
Abstract
The theta rhythm-a slow (6-12 Hz) oscillatory component of the local field potential-plays a critical role in spatial navigation and memory by coordinating the activity of neuronal ensembles within the medial temporal lobe (MTL). Although theta has been extensively studied in freely moving rodents, its presence in humans has been elusive and primarily investigated in stationary subjects. Here we used a unique clinical opportunity to examine theta within the human MTL during untethered, real-world ambulatory movement. We recorded intracranial electroencephalographic activity from participants chronically implanted with the wireless NeuroPace responsive neurostimulator (RNS) and tracked their motion with sub-millimeter precision. Our data revealed that movement-related theta oscillations indeed exist in humans, such that theta power is significantly higher during movement than immobility. Unlike in rodents, however, theta occurs in short bouts, with average durations of ∼400 ms, which are more prevalent during fast versus slow movements. In a rare opportunity to study a congenitally blind participant, we found that both the prevalence and duration of theta bouts were increased relative to the sighted participants. These results provide critical support for conserved neurobiological characteristics of theta oscillations during ambulatory spatial navigation, while highlighting some fundamental differences across species in these oscillations between humans and rodents.
Collapse
Affiliation(s)
- Zahra M Aghajan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peter Schuette
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tony A Fields
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michelle E Tran
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sameed M Siddiqui
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | - Dawn Eliashiv
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emily A Mankin
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - John Stern
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Itzhak Fried
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Functional Neurosurgery Unit, Tel Aviv Medical Center, Tel Aviv 64361, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nanthia Suthana
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
26
|
Selective neuronal lapses precede human cognitive lapses following sleep deprivation. Nat Med 2017; 23:1474-1480. [PMID: 29106402 PMCID: PMC5720899 DOI: 10.1038/nm.4433] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 10/04/2017] [Indexed: 02/07/2023]
Abstract
Sleep deprivation is a major source of morbidity with widespread health effects, including increased risk of hypertension, diabetes, obesity, heart attack, and stroke. Moreover, sleep deprivation brings about vehicle accidents and medical errors and is therefore an urgent topic of investigation. During sleep deprivation, homeostatic and circadian processes interact to build up sleep pressure, which results in slow behavioral performance (cognitive lapses) typically attributed to attentional thalamic and frontoparietal circuits, but the underlying mechanisms remain unclear. Recently, through study of electroencephalograms (EEGs) in humans and local field potentials (LFPs) in nonhuman primates and rodents it was found that, during sleep deprivation, regional 'sleep-like' slow and theta (slow/theta) waves co-occur with impaired behavioral performance during wakefulness. Here we used intracranial electrodes to record single-neuron activities and LFPs in human neurosurgical patients performing a face/nonface categorization psychomotor vigilance task (PVT) over multiple experimental sessions, including a session after full-night sleep deprivation. We find that, just before cognitive lapses, the selective spiking responses of individual neurons in the medial temporal lobe (MTL) are attenuated, delayed, and lengthened. These 'neuronal lapses' are evident on a trial-by-trial basis when comparing the slowest behavioral PVT reaction times to the fastest. Furthermore, during cognitive lapses, LFPs exhibit a relative local increase in slow/theta activity that is correlated with degraded single-neuron responses and with baseline theta activity. Our results show that cognitive lapses involve local state-dependent changes in neuronal activity already present in the MTL.
Collapse
|
27
|
Knieling S, Niediek J, Kutter E, Bostroem J, Elger CE, Mormann F. An online adaptive screening procedure for selective neuronal responses. J Neurosci Methods 2017; 291:36-42. [PMID: 28826654 DOI: 10.1016/j.jneumeth.2017.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND A common problem in neurophysiology is to identify stimuli that elicit neuronal responses in a given brain region. Particularly in situations where electrode positions are fixed, this can be a time-consuming task that requires presentation of a large number of stimuli. Such a screening for response-eliciting stimuli is employed, e.g., as a standard procedure to identify 'concept cells' in the human medial temporal lobe. NEW METHOD Our new method evaluates neuronal responses to stimuli online during a screening session, which allows us to successively exclude stimuli that do not evoke a response. Using this method, we can screen a larger number of stimuli which in turn increases the chances of finding responsive neurons and renders time-consuming offline analysis unnecessary. RESULTS Our method enabled us to present 30% more stimuli in the same period of time with additional presentations of the most promising candidate stimuli. Our online method ran smoothly on a standard computer and network. COMPARISON WITH AN EXISTING METHOD To analyze how our online screening procedure performs in comparison to an established offline method, we used the Wave_Clus software package. We did not observe any major drawbacks in our method, but a much higher efficiency and analysis speed. CONCLUSIONS By transitioning from a traditional offline screening procedure to our new online method, we substantially increased the number of visual stimuli presented in a given time period. This allows to identify more response-eliciting stimuli, which forms the basis to better address a great number of questions in cognitive neuroscience.
Collapse
Affiliation(s)
- S Knieling
- Dept. of Epileptology, University of Bonn, Germany
| | - J Niediek
- Dept. of Epileptology, University of Bonn, Germany
| | - E Kutter
- Dept. of Epileptology, University of Bonn, Germany
| | - J Bostroem
- Dept. of Neurosurgery, University of Bonn, Germany
| | - C E Elger
- Dept. of Epileptology, University of Bonn, Germany
| | - F Mormann
- Dept. of Epileptology, University of Bonn, Germany.
| |
Collapse
|
28
|
Titiz AS, Hill MRH, Mankin EA, M Aghajan Z, Eliashiv D, Tchemodanov N, Maoz U, Stern J, Tran ME, Schuette P, Behnke E, Suthana NA, Fried I. Theta-burst microstimulation in the human entorhinal area improves memory specificity. eLife 2017; 6. [PMID: 29063831 PMCID: PMC5655155 DOI: 10.7554/elife.29515] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/03/2017] [Indexed: 01/04/2023] Open
Abstract
The hippocampus is critical for episodic memory, and synaptic changes induced by long-term potentiation (LTP) are thought to underlie memory formation. In rodents, hippocampal LTP may be induced through electrical stimulation of the perforant path. To test whether similar techniques could improve episodic memory in humans, we implemented a microstimulation technique that allowed delivery of low-current electrical stimulation via 100 μm-diameter microelectrodes. As thirteen neurosurgical patients performed a person recognition task, microstimulation was applied in a theta-burst pattern, shown to optimally induce LTP. Microstimulation in the right entorhinal area during learning significantly improved subsequent memory specificity for novel portraits; participants were able both to recognize previously-viewed photos and reject similar lures. These results suggest that microstimulation with physiologic level currents—a radical departure from commonly used deep brain stimulation protocols—is sufficient to modulate human behavior and provides an avenue for refined interrogation of the circuits involved in human memory.
Collapse
Affiliation(s)
- Ali S Titiz
- Department of Neurosurgery, University of California, Los Angeles, United States
| | - Michael R H Hill
- Department of Neurosurgery, University of California, Los Angeles, United States.,California Institute of Technology, Pasadena, United States
| | - Emily A Mankin
- Department of Neurosurgery, University of California, Los Angeles, United States
| | - Zahra M Aghajan
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, United States
| | - Dawn Eliashiv
- Department of Neurology, University of California, Los Angeles, United States
| | - Natalia Tchemodanov
- Department of Neurosurgery, University of California, Los Angeles, United States
| | - Uri Maoz
- Department of Neurosurgery, University of California, Los Angeles, United States.,California Institute of Technology, Pasadena, United States.,Department of Psychology, University of California, Los Angeles, United States
| | - John Stern
- Department of Neurology, University of California, Los Angeles, United States
| | - Michelle E Tran
- Department of Neurosurgery, University of California, Los Angeles, United States
| | - Peter Schuette
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, United States
| | - Eric Behnke
- Department of Neurosurgery, University of California, Los Angeles, United States
| | - Nanthia A Suthana
- Department of Neurosurgery, University of California, Los Angeles, United States.,Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, United States.,Department of Psychology, University of California, Los Angeles, United States
| | - Itzhak Fried
- Department of Neurosurgery, University of California, Los Angeles, United States.,Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, United States
| |
Collapse
|
29
|
Functional dynamics of hippocampal glutamate during associative learning assessed with in vivo 1H functional magnetic resonance spectroscopy. Neuroimage 2017; 153:189-197. [PMID: 28363835 DOI: 10.1016/j.neuroimage.2017.03.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/06/2017] [Accepted: 03/22/2017] [Indexed: 12/25/2022] Open
Abstract
fMRI has provided vibrant characterization of regional and network responses associated with associative learning and memory; however, their relationship to functional neurochemistry is unclear. Here, we introduce a novel application of in vivo proton functional magnetic resonance spectroscopy (1H fMRS) to investigate the dynamics of hippocampal glutamate during paired-associated learning and memory in healthy young adults. We show that the temporal dynamics of glutamate differed significantly during processes of memory consolidation and retrieval. Moreover, learning proficiency was predictive of the temporal dynamics of glutamate such that fast learners were characterized by a significant increase in glutamate levels early in learning, whereas this increase was only observed later in slow learners. The observed functional dynamics of glutamate provides a novel in vivo marker of brain function. Previously demonstrated N-methyl-D-aspartate (NMDA) receptor mediated synaptic plasticity during associative memory formation may be expressed in glutamate dynamics, which the novel application of 1H MRS is sensitive to. The novel application of 1H fMRS can provide highly innovative vistas for characterizing brain function in vivo, with significant implications for studying glutamatergic neurotransmission in health and disorders such as schizophrenia.
Collapse
|
30
|
Wais PE, Jahanikia S, Steiner D, Stark CEL, Gazzaley A. Retrieval of high-fidelity memory arises from distributed cortical networks. Neuroimage 2017; 149:178-189. [PMID: 28159685 DOI: 10.1016/j.neuroimage.2017.01.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/19/2022] Open
Abstract
Medial temporal lobe (MTL) function is well established as necessary for memory of facts and events. It is likely that lateral cortical regions critically guide cognitive control processes to tune in high-fidelity details that are most relevant for memory retrieval. Here, convergent results from functional and structural MRI show that retrieval of detailed episodic memory arises from lateral cortical-MTL networks, including regions of inferior frontal and angular gyrii. Results also suggest that recognition of items based on low-fidelity, generalized information, rather than memory arising from retrieval of relevant episodic details, is not associated with functional connectivity between MTL and lateral cortical regions. Additionally, individual differences in microstructural properties in white matter pathways, associated with distributed MTL-cortical networks, are positively correlated with better performance on a mnemonic discrimination task.
Collapse
Affiliation(s)
- Peter E Wais
- Department of Neurology & Center for Integrative Neurosciences, University of California, San Francisco, United States.
| | - Sahar Jahanikia
- Department of Neurology & Center for Integrative Neurosciences, University of California, San Francisco, United States
| | - Daniel Steiner
- Department of Neurology & Center for Integrative Neurosciences, University of California, San Francisco, United States
| | - Craig E L Stark
- Center for the Neurobiology of Learning and Memory & Department of Neurobiology and Behavior, University of California, Irvine, United States
| | - Adam Gazzaley
- Department of Neurology & Center for Integrative Neurosciences, University of California, San Francisco, United States; Departments of Physiology and Psychiatry, University of California, San Francisco, United States
| |
Collapse
|