1
|
Zhang H, Gong X, Zhao Q, Mukai T, Vargas-Rodriguez O, Zhang H, Zhang Y, Wassel P, Amikura K, Maupin-Furlow J, Ren Y, Xu X, Wolf YI, Makarova K, Koonin E, Shen Y, Söll D, Fu X. The tRNA discriminator base defines the mutual orthogonality of two distinct pyrrolysyl-tRNA synthetase/tRNAPyl pairs in the same organism. Nucleic Acids Res 2022; 50:4601-4615. [PMID: 35466371 PMCID: PMC9071458 DOI: 10.1093/nar/gkac271] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 12/24/2022] Open
Abstract
Site-specific incorporation of distinct non-canonical amino acids into proteins via genetic code expansion requires mutually orthogonal aminoacyl-tRNA synthetase/tRNA pairs. Pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs are ideal for genetic code expansion and have been extensively engineered for developing mutually orthogonal pairs. Here, we identify two novel wild-type PylRS/tRNAPyl pairs simultaneously present in the deep-rooted extremely halophilic euryarchaeal methanogen Candidatus Methanohalarchaeum thermophilum HMET1, and show that both pairs are functional in the model halophilic archaeon Haloferax volcanii. These pairs consist of two different PylRS enzymes and two distinct tRNAs with dissimilar discriminator bases. Surprisingly, these two PylRS/tRNAPyl pairs display mutual orthogonality enabled by two unique features, the A73 discriminator base of tRNAPyl2 and a shorter motif 2 loop in PylRS2. In vivo translation experiments show that tRNAPyl2 charging by PylRS2 is defined by the enzyme's shortened motif 2 loop. Finally, we demonstrate that the two HMET1 PylRS/tRNAPyl pairs can simultaneously decode UAG and UAA codons for incorporation of two distinct noncanonical amino acids into protein. This example of a single base change in a tRNA leading to additional coding capacity suggests that the growth of the genetic code is not yet limited by the number of identity elements fitting into the tRNA structure.
Collapse
Affiliation(s)
| | | | | | - Takahito Mukai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Huiming Zhang
- BGI-Shenzhen, Shenzhen, 518083, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuxing Zhang
- BGI-Shenzhen, Shenzhen, 518083, China,Sino-Danish College, University of the Chinese Academy of Sciences, Beijing, China
| | - Paul Wassel
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Kazuaki Amikura
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Julie Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA,Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Yan Ren
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Yue Shen
- Correspondence may also be addressed to Yue Shen.
| | - Dieter Söll
- To whom correspondence should be addressed. Tel: +1 203 4326200;
| | - Xian Fu
- Correspondence may also be addressed to Xian Fu.
| |
Collapse
|
2
|
Why Is the UAG (Amber) Stop Codon Almost Absent in Highly Expressed Bacterial Genes? Life (Basel) 2022; 12:life12030431. [PMID: 35330182 PMCID: PMC8954436 DOI: 10.3390/life12030431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
The genome hypothesis postulates that genes in a genome tend to conform to their species’ usage of the codon catalog and the GC content of the DNA. Thus, codon frequencies differ across organisms, including the three termination codons in the standard genetic code. Here, we analyze the frequencies of stop codons in a group of highly expressed genes from 196 prokaryotes under strong translational selection. The occurrence of the three translation termination codons is highly biased, with UAA (ochre) being the most prevalent in almost all bacteria. In contrast, UAG (amber) is the least frequent termination codon, e.g., only 321 occurrences (7.4%) in E. coli K-12 substr. W3110. Of the 253 highly expressed genes, only two end with an UAG codon. The strength of the selective bias against UAG in highly expressed genes varies among bacterial genomes, but it is not affected by the GC content of these genomes. In contrast, increased GC content results in a decrease in UAA abundance with a concomitant increase in UGA abundance. We propose that readthrough efficiency and context effects could explain the prevalence of UAA over UAG, particularly in highly expressed genes. Findings from this communication can be utilized for the optimization of gene expression.
Collapse
|
3
|
Berg MD, Brandl CJ. Transfer RNAs: diversity in form and function. RNA Biol 2021; 18:316-339. [PMID: 32900285 PMCID: PMC7954030 DOI: 10.1080/15476286.2020.1809197] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022] Open
Abstract
As the adaptor that decodes mRNA sequence into protein, the basic aspects of tRNA structure and function are central to all studies of biology. Yet the complexities of their properties and cellular roles go beyond the view of tRNAs as static participants in protein synthesis. Detailed analyses through more than 60 years of study have revealed tRNAs to be a fascinatingly diverse group of molecules in form and function, impacting cell biology, physiology, disease and synthetic biology. This review analyzes tRNA structure, biosynthesis and function, and includes topics that demonstrate their diversity and growing importance.
Collapse
Affiliation(s)
- Matthew D. Berg
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | | |
Collapse
|
4
|
Koehler C, Estrada Girona G, Reinkemeier CD, Lemke EA. Inducible Genetic Code Expansion in Eukaryotes. Chembiochem 2020; 21:3216-3219. [PMID: 32598534 PMCID: PMC7754456 DOI: 10.1002/cbic.202000338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/25/2020] [Indexed: 11/07/2022]
Abstract
Genetic code expansion (GCE) is a versatile tool to site-specifically incorporate a noncanonical amino acid (ncAA) into a protein, for example, to perform fluorescent labeling inside living cells. To this end, an orthogonal aminoacyl-tRNA-synthetase/tRNA (RS/tRNA) pair is used to insert the ncAA in response to an amber stop codon in the protein of interest. One of the drawbacks of this system is that, in order to achieve maximum efficiency, high levels of the orthogonal tRNA are required, and this could interfere with host cell functionality. To minimize the adverse effects on the host, we have developed an inducible GCE system that enables us to switch on tRNA or RS expression when needed. In particular, we tested different promotors in the context of the T-REx or Tet-On systems to control expression of the desired orthogonal tRNA and/or RS. We discuss our result with respect to the control of GCE components as well as efficiency. We found that only the T-REx system enables simultaneous control of tRNA and RS expression.
Collapse
Affiliation(s)
- Christine Koehler
- BiocentreJohannes-Gutenberg University Mainz55128MainzGermany
- Institute of Molecular Biology gGmbH55128MainzGermany
- Structural and Computational Biology Unit and Cell Biology and Biophysics UnitEuropean Molecular Biology LaboratoryMeyerhofstraße 169117HeidelbergGermany
- ARAXA Biosciences GmbHMeyerhofstraße 169117HeidelbergGermany
| | - Gemma Estrada Girona
- Structural and Computational Biology Unit and Cell Biology and Biophysics UnitEuropean Molecular Biology LaboratoryMeyerhofstraße 169117HeidelbergGermany
| | - Christopher D. Reinkemeier
- BiocentreJohannes-Gutenberg University Mainz55128MainzGermany
- Institute of Molecular Biology gGmbH55128MainzGermany
- Structural and Computational Biology Unit and Cell Biology and Biophysics UnitEuropean Molecular Biology LaboratoryMeyerhofstraße 169117HeidelbergGermany
| | - Edward A. Lemke
- BiocentreJohannes-Gutenberg University Mainz55128MainzGermany
- Institute of Molecular Biology gGmbH55128MainzGermany
- Structural and Computational Biology Unit and Cell Biology and Biophysics UnitEuropean Molecular Biology LaboratoryMeyerhofstraße 169117HeidelbergGermany
| |
Collapse
|
5
|
Svirskaitė J, Oksanen HM, Daugelavičius R, Bamford DH. Monitoring Physiological Changes in Haloarchaeal Cell during Virus Release. Viruses 2016; 8:59. [PMID: 26927156 PMCID: PMC4810249 DOI: 10.3390/v8030059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 01/14/2023] Open
Abstract
The slow rate of adsorption and non-synchronous release of some archaeal viruses have hindered more thorough analyses of the mechanisms of archaeal virus release. To address this deficit, we utilized four viruses that infect Haloarcula hispanica that represent the four virion morphotypes currently known for halophilic euryarchaeal viruses: (1) icosahedral internal membrane-containing SH1; (2) icosahedral tailed HHTV-1; (3) spindle-shaped His1; and (4) pleomorphic His2. To discern the events occurring as the progeny viruses exit, we monitored culture turbidity, as well as viable cell and progeny virus counts of infected and uninfected cultures. In addition to these traditional metrics, we measured three parameters associated with membrane integrity: the binding of the lipophilic anion phenyldicarbaundecaborane, oxygen consumption, and both intra- and extra-cellular ATP levels.
Collapse
Affiliation(s)
- Julija Svirskaitė
- Department of Biosciences, Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland.
| | - Hanna M Oksanen
- Department of Biosciences, Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland.
| | - Rimantas Daugelavičius
- Department of Biochemistry, Vytautas Magnus University, Vileikos g. 8, 44404 Kaunas, Lithuania.
| | - Dennis H Bamford
- Department of Biosciences, Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland.
| |
Collapse
|