1
|
Schaffrath R, Brinkmann U. Diphthamide - a conserved modification of eEF2 with clinical relevance. Trends Mol Med 2024; 30:164-177. [PMID: 38097404 DOI: 10.1016/j.molmed.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 02/17/2024]
Abstract
Diphthamide, a complex modification on eukaryotic translation elongation factor 2 (eEF2), assures reading-frame fidelity during translation. Diphthamide and enzymes for its synthesis are conserved in eukaryotes and archaea. Originally identified as target for diphtheria toxin (DT) in humans, its clinical relevance now proves to be broader than the link to pathogenic bacteria. Diphthamide synthesis enzymes (DPH1 and DPH3) are associated with cancer, and DPH gene mutations can cause diphthamide deficiency syndrome (DDS). Finally, new analyses provide evidence that diphthamide may restrict propagation of viruses including SARS-CoV-2 and HIV-1, and that DPH enzymes are targeted by viruses for degradation to overcome this restriction. This review describes how diphthamide is synthesized and functions in translation, and covers its clinical relevance in human development, cancer, and infectious diseases.
Collapse
Affiliation(s)
- Raffael Schaffrath
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany.
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany.
| |
Collapse
|
2
|
Ammon A, Mellenthin L, Emmerich C, Naschberger E, Stürzl M, Mackensen A, Müller F. Reduced cytotoxicity by mutation of Lysine 590 of Pseudomonas exotoxin can be restored in an optimized, Lysine-free immunotoxin. IMMUNOTHERAPY ADVANCES 2022; 2:ltac007. [PMID: 35919491 PMCID: PMC9327129 DOI: 10.1093/immadv/ltac007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/17/2022] [Indexed: 12/02/2022] Open
Abstract
Immunotoxins, which are fusion proteins of an antibody fragment and a fragment of a bacterial or a plant toxin, induce apoptosis in target cells by inhibition of protein synthesis. ADP-ribosylating toxins often have few lysine residues in their catalytic domain. As they are the target for ubiquitination, the low number of lysines possibly prevents ubiquitin-dependent degradation of the toxin in the cytosol. To reduce this potential degradation, we aimed to generate a lysine-free (noK), Pseudomonas exotoxin (PE)-based immunotoxin. The new generation 24 kDa PE, which lacks all but the furin-cleavage site of domain II, was mutated at lysine 590 (K590) and at K606 in a CD22-targeting immunotoxin and activity was determined against various B cell malignancies in vitro and in vivo. On average, K590 mutated to arginine (R) reduced cytotoxicity by 1.3-fold and K606R enhanced cytotoxicity by 1.3-fold compared to wild type (wt). Mutating K590 to histidine or deleting K590 did not prevent this loss in cytotoxicity. Neither stability nor internalization rate of K590R could explain reduced cytotoxicity. These results highlight the relevance of lysine 590 for PE intoxication. In line with in vitro results, the K606R mutant was more than 1.8-fold more active than the other variants in vivo suggesting that this single mutation may be beneficial when targeting CD22-positive malignancies. Finally, reduced cytotoxicity by K590R was compensated for by K606R and the resulting lysine-free variant achieved wt-like activity in vitro and in vivo. Thus, PE24-noK may represent a promising candidate for down-stream applications that would interfere with lysines.
Collapse
Affiliation(s)
- Anna Ammon
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), 91054 Erlangen, Germany
| | - Lisa Mellenthin
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), 91054 Erlangen, Germany
| | - Charlotte Emmerich
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), 91054 Erlangen, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), 91054 Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), 91054 Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), 91054 Erlangen, Germany
| | - Fabian Müller
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
3
|
Kreitman RJ, Pastan I. Immunotoxins: From Design to Clinical Application. Biomolecules 2021; 11:1696. [PMID: 34827694 PMCID: PMC8615697 DOI: 10.3390/biom11111696] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022] Open
Abstract
The Special Issue of Biomolecules entitled "Immunotoxins, From Design to Clinical Application" contains seven reviews related to immunotoxins [...].
Collapse
Affiliation(s)
- Robert J. Kreitman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | | |
Collapse
|
4
|
Dieffenbach M, Pastan I. Mechanisms of Resistance to Immunotoxins Containing Pseudomonas Exotoxin A in Cancer Therapy. Biomolecules 2020; 10:E979. [PMID: 32630017 PMCID: PMC7408526 DOI: 10.3390/biom10070979] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 02/06/2023] Open
Abstract
Immunotoxins are a class of targeted cancer therapeutics in which a toxin such as Pseudomonas exotoxin A (PE) is linked to an antibody or cytokine to direct the toxin to a target on cancer cells. While a variety of PE-based immunotoxins have been developed and a few have demonstrated promising clinical and preclinical results, cancer cells frequently have or develop resistance to these immunotoxins. This review presents our current understanding of the mechanism of action of PE-based immunotoxins and discusses cellular mechanisms of resistance that interfere with various steps of the pathway. These steps include binding of the immunotoxin to the target antigen, internalization, intracellular processing and trafficking to reach the cytosol, inhibition of protein synthesis through ADP-ribosylation of elongation factor 2 (EF2), and induction of apoptosis. Combination therapies that increase immunotoxin action and overcome specific mechanisms of resistance are also reviewed.
Collapse
Affiliation(s)
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA;
| |
Collapse
|
5
|
Togami K, Pastika T, Stephansky J, Ghandi M, Christie AL, Jones KL, Johnson CA, Lindsay RW, Brooks CL, Letai A, Craig JW, Pozdnyakova O, Weinstock DM, Montero J, Aster JC, Johannessen CM, Lane AA. DNA methyltransferase inhibition overcomes diphthamide pathway deficiencies underlying CD123-targeted treatment resistance. J Clin Invest 2020; 129:5005-5019. [PMID: 31437130 DOI: 10.1172/jci128571] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/13/2019] [Indexed: 12/16/2022] Open
Abstract
The interleukin-3 receptor α subunit, CD123, is expressed in many hematologic malignancies including acute myeloid leukemia (AML) and blastic plasmacytoid dendritic cell neoplasm (BPDCN). Tagraxofusp (SL-401) is a CD123-targeted therapy consisting of interleukin-3 fused to a truncated diphtheria toxin payload. Factors influencing response to tagraxofusp other than CD123 expression are largely unknown. We interrogated tagraxofusp resistance in patients and experimental models and found that it was not associated with CD123 loss. Rather, resistant AML and BPDCN cells frequently acquired deficiencies in the diphthamide synthesis pathway, impairing tagraxofusp's ability to ADP-ribosylate cellular targets. Expression of DPH1, encoding a diphthamide pathway enzyme, was reduced by DNA CpG methylation in resistant cells. Treatment with the DNA methyltransferase inhibitor azacitidine restored DPH1 expression and tagraxofusp sensitivity. We also developed a drug-dependent ADP-ribosylation assay in primary cells that correlated with tagraxofusp activity and may represent an additional novel biomarker. As predicted by these results and our observation that resistance also increased mitochondrial apoptotic priming, we found that the combination of tagraxofusp and azacitidine was effective in patient-derived xenografts treated in vivo. These data have important implications for clinical use of tagraxofusp and led to a phase 1 study combining tagraxofusp and azacitidine in myeloid malignancies.
Collapse
Affiliation(s)
- Katsuhiro Togami
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy Pastika
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason Stephansky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Mahmoud Ghandi
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Amanda L Christie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Kristen L Jones
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Carl A Johnson
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey W Craig
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Olga Pozdnyakova
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Joan Montero
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Andrew A Lane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Romero R, Sánchez-Rivera FJ, Westcott PMK, Mercer KL, Bhutkar A, Muir A, González Robles TJ, Lamboy Rodríguez S, Liao LZ, Ng SR, Li L, Colón CI, Naranjo S, Beytagh MC, Lewis CA, Hsu PP, Bronson RT, Vander Heiden MG, Jacks T. Keap1 mutation renders lung adenocarcinomas dependent on Slc33a1. NATURE CANCER 2020; 1:589-602. [PMID: 34414377 PMCID: PMC8373048 DOI: 10.1038/s43018-020-0071-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 05/01/2020] [Indexed: 12/13/2022]
Abstract
Approximately 20-30% of human lung adenocarcinomas (LUAD) harbor loss-of-function (LOF) mutations in Kelch-like ECH Associated-Protein 1 (KEAP1), which lead to hyperactivation of the nuclear factor, erythroid 2-like 2 (NRF2) antioxidant pathway and correlate with poor prognosis1-3. We previously showed that Keap1 mutation accelerates KRAS-driven LUAD and produces a marked dependency on glutaminolysis4. To extend the investigation of genetic dependencies in the context of Keap1 mutation, we performed a druggable genome CRISPR-Cas9 screen in Keap1-mutant cells. This analysis uncovered a profound Keap1 mutant-specific dependency on solute carrier family 33 member 1 (Slc33a1), an endomembrane-associated protein with roles in autophagy regulation5, as well as a series of functionally-related genes implicated in the unfolded protein response. Targeted genetic and biochemical experiments using mouse and human Keap1-mutant tumor lines, as well as preclinical genetically-engineered mouse models (GEMMs) of LUAD, validate Slc33a1 as a robust Keap1-mutant-specific dependency. Furthermore, unbiased genome-wide CRISPR screening identified additional genes related to Slc33a1 dependency. Overall, our study provides a strong rationale for stratification of patients harboring KEAP1-mutant or NRF2-hyperactivated tumors as likely responders to targeted SLC33A1 inhibition and underscores the value of integrating functional genetic approaches with GEMMs to identify and validate genotype-specific therapeutic targets.
Collapse
Affiliation(s)
- Rodrigo Romero
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Massachusetts Institute of Technology Department of Biology, Cambridge, MA, USA
| | - Francisco J Sánchez-Rivera
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Massachusetts Institute of Technology Department of Biology, Cambridge, MA, USA
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Kim L Mercer
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Arjun Bhutkar
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Alexander Muir
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | | | | | - Laura Z Liao
- Massachusetts Institute of Technology Department of Biology, Cambridge, MA, USA
| | - Sheng Rong Ng
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Massachusetts Institute of Technology Department of Biology, Cambridge, MA, USA
| | - Leanne Li
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Caterina I Colón
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Santiago Naranjo
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Massachusetts Institute of Technology Department of Biology, Cambridge, MA, USA
| | - Mary Clare Beytagh
- Massachusetts Institute of Technology Department of Biology, Cambridge, MA, USA
| | - Caroline A Lewis
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peggy P Hsu
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Roderick T Bronson
- Tufts University, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Massachusetts Institute of Technology Department of Biology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tyler Jacks
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
- Massachusetts Institute of Technology Department of Biology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
7
|
Mita P, Sun X, Fenyö D, Kahler DJ, Li D, Agmon N, Wudzinska A, Keegan S, Bader JS, Yun C, Boeke JD. BRCA1 and S phase DNA repair pathways restrict LINE-1 retrotransposition in human cells. Nat Struct Mol Biol 2020; 27:179-191. [PMID: 32042152 PMCID: PMC7082080 DOI: 10.1038/s41594-020-0374-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 01/02/2020] [Indexed: 12/30/2022]
Abstract
Long interspersed element-1 (LINE-1 or L1) is the only autonomous retrotransposon active in human cells. Different host factors have been shown to influence L1 mobility however, systematic analyses of these factors are limited. Here, we developed a high-throughput microscopy-based retrotransposition assay that identified the Double-Stranded Break (DSB) repair and Fanconi Anemia factors active in the S/G2 phase as potent inhibitors and regulators of L1 activity. In particular BRCA1, an E3 ubiquitin ligase with a key role in several DNA repair pathways, directly affects L1 retrotransposition frequency and structure and also plays a distinct role in controlling L1 ORF2 protein translation through L1 mRNA binding. These results suggest the existence of a “battleground” at the DNA replication fork between HR factors and L1 retrotransposons, and revealing a potential role for L1 in the genotypic evolution of tumors characterized by BRCA1 and HR repair deficiencies.
Collapse
Affiliation(s)
- Paolo Mita
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.
| | - Xiaoji Sun
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.,Cellarity Inc., Cambridge, MA, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - David J Kahler
- High Throughput Biology Core, NYU Langone Health, New York, NY, USA.,Planet Pharma, Boston, MA, USA
| | - Donghui Li
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.,Flagship VL58, Inc., Cambridge, MA, USA
| | - Neta Agmon
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Aleksandra Wudzinska
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Sarah Keegan
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Joel S Bader
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Chi Yun
- High Throughput Biology Core, NYU Langone Health, New York, NY, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
8
|
Ebenezer DL, Fu P, Krishnan Y, Maienschein-Cline M, Hu H, Jung S, Madduri R, Arbieva Z, Harijith A, Natarajan V. Genetic deletion of Sphk2 confers protection against Pseudomonas aeruginosa mediated differential expression of genes related to virulent infection and inflammation in mouse lung. BMC Genomics 2019; 20:984. [PMID: 31842752 PMCID: PMC6916461 DOI: 10.1186/s12864-019-6367-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa (PA) is an opportunistic Gram-negative bacterium that causes serious life threatening and nosocomial infections including pneumonia. PA has the ability to alter host genome to facilitate its invasion, thus increasing the virulence of the organism. Sphingosine-1- phosphate (S1P), a bioactive lipid, is known to play a key role in facilitating infection. Sphingosine kinases (SPHK) 1&2 phosphorylate sphingosine to generate S1P in mammalian cells. We reported earlier that Sphk2-/- mice offered significant protection against lung inflammation, compared to wild type (WT) animals. Therefore, we profiled the differential expression of genes between the protected group of Sphk2-/- and the wild type controls to better understand the underlying protective mechanisms related to the Sphk2 deletion in lung inflammatory injury. Whole transcriptome shotgun sequencing (RNA-Seq) was performed on mouse lung tissue using NextSeq 500 sequencing system. RESULTS Two-way analysis of variance (ANOVA) analysis was performed and differentially expressed genes following PA infection were identified using whole transcriptome of Sphk2-/- mice and their WT counterparts. Pathway (PW) enrichment analyses of the RNA seq data identified several signaling pathways that are likely to play a crucial role in pneumonia caused by PA such as those involved in: 1. Immune response to PA infection and NF-κB signal transduction; 2. PKC signal transduction; 3. Impact on epigenetic regulation; 4. Epithelial sodium channel pathway; 5. Mucin expression; and 6. Bacterial infection related pathways. Our genomic data suggests a potential role for SPHK2 in PA-induced pneumonia through elevated expression of inflammatory genes in lung tissue. Further, validation by RT-PCR on 10 differentially expressed genes showed 100% concordance in terms of vectoral changes as well as significant fold change. CONCLUSION Using Sphk2-/- mice and differential gene expression analysis, we have shown here that S1P/SPHK2 signaling could play a key role in promoting PA pneumonia. The identified genes promote inflammation and suppress others that naturally inhibit inflammation and host defense. Thus, targeting SPHK2/S1P signaling in PA-induced lung inflammation could serve as a potential therapy to combat PA-induced pneumonia.
Collapse
Affiliation(s)
- David L Ebenezer
- Department of Pharmacology, University of Illinois, Chicago, USA
| | - Panfeng Fu
- Department of Pharmacology, University of Illinois, Chicago, USA
| | | | | | - Hong Hu
- Department of Bioinformatics, University of Illinois, Chicago, USA
| | - Segun Jung
- Globus, University of Chicago, Chicago, IL, USA
| | - Ravi Madduri
- Globus, University of Chicago, Chicago, IL, USA
- Argonne National Laboratory, Chicago, IL, USA
| | - Zarema Arbieva
- Department of Core Genomics Facility, University of Illinois, Chicago, USA
| | - Anantha Harijith
- Department of Pediatrics, University of Illinois, Room 3139, COMRB Building, 909, South Wolcott Avenue, Chicago, IL, 60612, USA.
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois, Chicago, USA
- Department of Medicine, University of Illinois, Chicago, USA
| |
Collapse
|
9
|
Ruiz-de-la-Herrán J, Tomé-Amat J, Lázaro-Gorines R, Gavilanes JG, Lacadena J. Inclusion of a Furin Cleavage Site Enhances Antitumor Efficacy against Colorectal Cancer Cells of Ribotoxin α-Sarcin- or RNase T1-Based Immunotoxins. Toxins (Basel) 2019; 11:E593. [PMID: 31614771 PMCID: PMC6832446 DOI: 10.3390/toxins11100593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
Immunotoxins are chimeric molecules that combine the specificity of an antibody to recognize and bind tumor antigens with the potency of the enzymatic activity of a toxin, thus, promoting the death of target cells. Among them, RNases-based immunotoxins have arisen as promising antitumor therapeutic agents. In this work, we describe the production and purification of two new immunoconjugates, based on RNase T1 and the fungal ribotoxin α-sarcin, with optimized properties for tumor treatment due to the inclusion of a furin cleavage site. Circular dichroism spectroscopy, ribonucleolytic activity studies, flow cytometry, fluorescence microscopy, and cell viability assays were carried out for structural and in vitro functional characterization. Our results confirm the enhanced antitumor efficiency showed by these furin-immunotoxin variants as a result of an improved release of their toxic domain to the cytosol, favoring the accessibility of both ribonucleases to their substrates. Overall, these results represent a step forward in the design of immunotoxins with optimized properties for potential therapeutic application in vivo.
Collapse
Affiliation(s)
- Javier Ruiz-de-la-Herrán
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | - Jaime Tomé-Amat
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain.
- Centre for Plant Biotechnology and Genomics (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid 28223, Spain.
| | - Rodrigo Lázaro-Gorines
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | - José G Gavilanes
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | - Javier Lacadena
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain.
| |
Collapse
|
10
|
Mateus-Seidl R, Stahl S, Dengl S, Birzele F, Herrmuth H, Mayer K, Niederfellner G, Liu XF, Pastan I, Brinkmann U. Interplay between reversible phosphorylation and irreversible ADP-ribosylation of eukaryotic translation elongation factor 2. Biol Chem 2019; 400:501-512. [PMID: 30218597 DOI: 10.1515/hsz-2018-0280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/11/2018] [Indexed: 11/15/2022]
Abstract
The functionality of eukaryotic translation elongation factor 2 (eEF2) is modulated by phosphorylation, eEF2 is simultaneously the molecular target of ADP-ribosylating toxins. We analyzed the interplay between phosphorylation and diphthamide-dependent ADP-ribosylation. Phosphorylation does not require diphthamide, eEF2 without it still becomes phosphorylated. ADP-ribosylation not only modifies the H715 diphthamide but also inhibits phosphorylation of S595 located in proximity to H715, and stimulates phosphorylation of T56. S595 can be phosphorylated by CDK2 and CDK1 which affects EEF2K-mediated T56-phosphorylation. Thus, ADP-ribosylation and S595-phosphorylation by kinases occur within the same vicinity and both trigger T56-phosphorylation. Diphthamide is surface-accessible permitting access to ADP-ribosylating enzymes, the adjacent S595 side chain extends into the interior. This orientation is incompatible with phosphorylation, neither allowing kinase access nor phosphate attachment. S595 phosphorylation must therefore be accompanied by structural alterations affecting the interface to ADP-ribosylating toxins. In agreement with that, replacement of S595 with Ala, Glu or Asp prevents ADP-ribosylation. Phosphorylation (starvation) as well as ADP-ribosylation (toxins) inhibit protein synthesis, both affect the S595/H715 region of eEF2, both trigger T57-phosphorylation eliciting similar transcriptional responses. Phosphorylation is short lived while ADP-ribosylation is stable. Thus, phosphorylation of the S595/H715 'modifier region' triggers transient interruption of translation while ADP-ribosylation arrests irreversibly.
Collapse
Affiliation(s)
- Rita Mateus-Seidl
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, FRG, Germany
| | - Sebastian Stahl
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, FRG, Germany
| | - Stefan Dengl
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, FRG, Germany
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences- Bioinformatics, Roche Innovation Center Basel, Grenzacherstr. 124, CH-4070 Basel, Germany
| | - Hedda Herrmuth
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, FRG, Germany
| | - Klaus Mayer
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, FRG, Germany
| | - Gerhard Niederfellner
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, FRG, Germany
| | - Xiu-Fen Liu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Bethesda, MD 20814, USA
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Bethesda, MD 20814, USA
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, FRG, Germany
| |
Collapse
|
11
|
Domain II of Pseudomonas Exotoxin Is Critical for Efficacy of Bolus Doses in a Xenograft Model of Acute Lymphoblastic Leukemia. Toxins (Basel) 2018; 10:toxins10050210. [PMID: 29883379 PMCID: PMC5983266 DOI: 10.3390/toxins10050210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022] Open
Abstract
Moxetumomab pasudotox is a fusion protein of a CD22-targeting antibody and Pseudomonas exotoxin. Minutes of exposure to Moxetumomab achieves similar cell killing than hours of exposure to a novel deimmunized variant against some acute lymphoblastic leukemia (ALL). Because blood levels fall quickly, Moxetumomab is more than 1000-fold more active than the deimmunized variant in vivo. We aimed to identify which part of Moxetumomab increases in vivo efficacy and generated five immunotoxins, tested time-dependent activity, and determined the efficacy in a KOPN-8 xenograft model. Full domain II shortened the time cells had to be exposed to die to only a few minutes for some ALL; deimmunized domain III consistently extended the time. Against KOPN-8, full domain II accelerated time to arrest protein synthesis by three-fold and tripled PARP-cleavage. In vivo efficacy was increased by more than 10-fold by domain II and increasing size, and therefore half-life enhanced efficacy two- to four-fold. In summary, in vivo efficacy is determined by the time cells have to be exposed to immunotoxin to die and serum half-life. Thus, domain II is most critical for activity against some ALL treated with bolus doses; however, immunotoxins lacking all but the furin-cleavage site of domain II may be advantageous when treating continuously.
Collapse
|
12
|
Sabino M, Carmelo VAO, Mazzoni G, Cappelli K, Capomaccio S, Ajmone-Marsan P, Verini-Supplizi A, Trabalza-Marinucci M, Kadarmideen HN. Gene co-expression networks in liver and muscle transcriptome reveal sex-specific gene expression in lambs fed with a mix of essential oils. BMC Genomics 2018; 19:236. [PMID: 29618337 PMCID: PMC5885410 DOI: 10.1186/s12864-018-4632-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 03/27/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Essential oil (EO) dietary supplementation is a new strategy to improve animal health. EO compounds have antiparasitic, antimicrobial, antiviral, antimycotic, antioxidant and anti-inflammatory proprieties. Nutrigenomics investigations represent innovative approaches in understanding the relation between diet effect and gene expression related to the animal performance. Few nutrigenomics studies have used a high-throughput RNA-Sequencing (RNA-Seq) approach, despite great potential of RNA-Seq data in gene expression quantification and in co-expression network analyses. Our aim is to use the potential of RNA-Sequencing data in order to evaluate the effect of an EO supplementary diet on gene expression in both lamb liver and muscle. RESULTS Using a treatment and sex interaction model, 13 and 4 differentially expressed genes were identified in liver and muscle respectively. Sex-specific differentially expressed (DE) genes were identified in both sexes. Using network based analysis, different clusters of co-expressed genes that were highly correlated to the diet were detected in males vs. females, in agreement with DE analysis. A total of five regulatory genes in liver tissue associated to EO diet were identified: DNAJB9, MANF, UFM1, CTNNLA1 and NFX1. Our study reveals a sex-dependent effect of EO diet in both tissues, and an influence on the expression of genes mainly involved in immune, inflammatory and stress pathway. CONCLUSION Our analysis suggests a sex-dependent effect of the EO dietary supplementation on the expression profile of both liver and muscle tissues. We hypothesize that the presence of EOs could have beneficial effects on wellness of male lamb and further analyses are needed to understand the biological mechanisms behind the different effect of EO metabolites based on sex. Using lamb as a model for nutrigenomics studies, it could be interesting to investigate the effects of EO diets in other species and in humans.
Collapse
Affiliation(s)
- Marcella Sabino
- Dipartimento di Medicina Veterinaria, University of Perugia, Perugia, Italy
| | | | - Gianluca Mazzoni
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Copenhagen, Denmark
| | - Katia Cappelli
- Dipartimento di Medicina Veterinaria, University of Perugia, Perugia, Italy
| | - Stefano Capomaccio
- Dipartimento di Medicina Veterinaria, University of Perugia, Perugia, Italy
| | - Paolo Ajmone-Marsan
- Istituto di Zootecnica, Catholic University of the Sacred Heart, Piacenza, Italy
| | | | | | - Haja N Kadarmideen
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Copenhagen, Denmark.
| |
Collapse
|
13
|
Zhang X, Xia P, Wang P, Yang J, Baird DJ. Omics Advances in Ecotoxicology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3842-3851. [PMID: 29481739 DOI: 10.1021/acs.est.7b06494] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Toxic substances in the environment generate adverse effects at all levels of biological organization from the molecular level to community and ecosystem. Given this complexity, it is not surprising that ecotoxicologists have struggled to address the full consequences of toxic substance release at ecosystem level, due to the limits of observational and experimental tools to reveal the changes in deep structure at different levels of organization. -Omics technologies, consisting of genomics and ecogenomics, have the power to reveal, in unprecedented detail, the cellular processes of an individual or biodiversity of a community in response to environmental change with high sample/observation throughput. This represents a historic opportunity to transform the way we study toxic substances in ecosystems, through direct linkage of ecological effects with the systems biology of organisms. Three recent examples of -omics advance in the assessment of toxic substances are explored here: (1) the use of functional genomics in the discovery of novel molecular mechanisms of toxicity of chemicals in the environment; (2) the development of laboratory pipelines of dose-dependent, reduced transcriptomics to support high-throughput chemical testing at the biological pathway level; and (3) the use of eDNA metabarcoding approaches for assessing chemical effects on biological communities in mesocosm experiments and through direct observation in field monitoring. -Omics advances in ecotoxicological studies not only generate new knowledge regarding mechanisms of toxicity and environmental effect, improving the relevance and immediacy of laboratory toxicological assessment, but can provide a wholly new paradigm for ecotoxicology by linking ecological models to mechanism-based, systems biology approaches.
Collapse
Affiliation(s)
- Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Pu Xia
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Pingping Wang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Jianghu Yang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Donald J Baird
- Environment & Climate Change Canada @ Canadian Rivers Institute, Department of Biology , University of New Brunswick , Fredericton , New Brunswick E3B 5A3 , Canada
| |
Collapse
|
14
|
Müller F, Stookey S, Cunningham T, Pastan I. Paclitaxel synergizes with exposure time adjusted CD22-targeting immunotoxins against B-cell malignancies. Oncotarget 2018; 8:30644-30655. [PMID: 28423727 PMCID: PMC5458156 DOI: 10.18632/oncotarget.16141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/18/2017] [Indexed: 12/21/2022] Open
Abstract
CD22-targeted recombinant immunotoxins (rIT) are active in hairy cell leukemia or acute lymphoblastic leukemia (ALL), but not in mantle cell lymphoma (MCL) patients. The goal was to enhance rIT efficacy in vivo and to define a strong combination treatment. Activity of Moxetumomab pasudotox (Moxe) and LR combined with paclitaxel was tested against MCL cell lines in vitro and as bolus doses or continuous infusion in xenograft models. In the KOPN-8 ALL xenograft, Moxe or paclitaxel alone was active, but all mice died from leukemia; when combined, 60% of the mice achieved a sustained complete remission. Against MCL cells in vitro, LR was more active than Moxe and the cells had to be exposed to rIT for more than 24 hours for them to die. To maintain high blood levels in vivo, LR was administered continuously by 7-day pumps achieving a well-tolerated steady plasma concentration of 45 ng/ml. In JeKo-1 xenografts, continuously administered LR was 14-fold more active than bolus doses and the combination with paclitaxel additionally improved responses by 135-fold. Maintaining high rIT-plasma levels greatly improves responses in the JeKo-1 model and paclitaxel substantially enhances bolus and continuously infused rIT, supporting a clinical evaluation against B-cell malignancies.
Collapse
Affiliation(s)
- Fabian Müller
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Department of Hematology and Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Stephanie Stookey
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,MD Program, University of North Caroline, Chapel Hill, NC, USA
| | - Tyler Cunningham
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,MD/PhD Program, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
Interplay between P-Glycoprotein Expression and Resistance to Endoplasmic Reticulum Stressors. Molecules 2018; 23:molecules23020337. [PMID: 29415493 PMCID: PMC6017601 DOI: 10.3390/molecules23020337] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
Multidrug resistance (MDR) is a phenotype of cancer cells with reduced sensitivity to a wide range of unrelated drugs. P-glycoprotein (P-gp)—a drug efflux pump (ABCB1 member of the ABC transporter gene family)—is frequently observed to be a molecular cause of MDR. The drug-efflux activity of P-gp is considered as the underlying mechanism of drug resistance against P-gp substrates and results in failure of cancer chemotherapy. Several pathological impulses such as shortages of oxygen and glucose supply, alterations of calcium storage mechanisms and/or processes of protein N-glycosylation in the endoplasmic reticulum (ER) leads to ER stress (ERS), characterized by elevation of unfolded protein cell content and activation of the unfolded protein response (UPR). UPR is responsible for modification of protein folding pathways, removal of misfolded proteins by ER associated protein degradation (ERAD) and inhibition of proteosynthesis. However, sustained ERS may result in UPR-mediated cell death. Neoplastic cells could escape from the death pathway induced by ERS by switching UPR into pro survival mechanisms instead of apoptosis. Here, we aimed to present state of the art information about consequences of P-gp expression on mechanisms associated with ERS development and regulation of the ERAD system, particularly focused on advances in ERS-associated therapy of drug resistant malignancies.
Collapse
|
16
|
Wang Y, Bryant SH, Cheng T, Wang J, Gindulyte A, Shoemaker BA, Thiessen PA, He S, Zhang J. PubChem BioAssay: 2017 update. Nucleic Acids Res 2016; 45:D955-D963. [PMID: 27899599 PMCID: PMC5210581 DOI: 10.1093/nar/gkw1118] [Citation(s) in RCA: 345] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/26/2016] [Accepted: 11/09/2016] [Indexed: 12/19/2022] Open
Abstract
PubChem's BioAssay database (https://pubchem.ncbi.nlm.nih.gov) has served as a public repository for small-molecule and RNAi screening data since 2004 providing open access of its data content to the community. PubChem accepts data submission from worldwide researchers at academia, industry and government agencies. PubChem also collaborates with other chemical biology database stakeholders with data exchange. With over a decade's development effort, it becomes an important information resource supporting drug discovery and chemical biology research. To facilitate data discovery, PubChem is integrated with all other databases at NCBI. In this work, we provide an update for the PubChem BioAssay database describing several recent development including added sources of research data, redesigned BioAssay record page, new BioAssay classification browser and new features in the Upload system facilitating data sharing.
Collapse
Affiliation(s)
- Yanli Wang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Stephen H Bryant
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Tiejun Cheng
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Jiyao Wang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Asta Gindulyte
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Benjamin A Shoemaker
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Paul A Thiessen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Siqian He
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Jian Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
17
|
Xia P, Zhang X, Xie Y, Guan M, Villeneuve DL, Yu H. Functional Toxicogenomic Assessment of Triclosan in Human HepG2 Cells Using Genome-Wide CRISPR-Cas9 Screening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10682-10692. [PMID: 27459410 DOI: 10.1021/acs.est.6b02328] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
There are thousands of chemicals used by humans and detected in the environment for which limited or no toxicological data are available. Rapid and cost-effective approaches for assessing the toxicological properties of chemicals are needed. We used CRISPR-Cas9 functional genomic screening to identify the potential molecular mechanism of a widely used antimicrobial triclosan (TCS) in HepG2 cells. Resistant genes at IC50 (the concentration causing a 50% reduction in cell viability) were significantly enriched in the adherens junction pathway, MAPK signaling pathway, and PPAR signaling pathway, suggesting a potential role in the molecular mechanism of TCS-induced cytotoxicity. Evaluation of the top-ranked resistant genes, FTO (encoding an mRNA demethylase) and MAP2K3 (a MAP kinase kinase family gene), revealed that their loss conferred resistance to TCS. In contrast, sensitive genes at IC10 and IC20 were specifically enriched in pathways involved with immune responses, which was concordant with transcriptomic profiling of TCS at concentrations of <IC10. It is suggested that the CRISPR-Cas9 fingerprint may reveal the patterns of TCS toxicity at low concentration levels. Moreover, we retrieved the potential connection between CRISPR-Cas9 fingerprint and disease terms, obesity, and breast cancer from an existing chemical-gene-disease database. Overall, CRISPR-Cas9 functional genomic screening offers an alternative approach for chemical toxicity testing.
Collapse
Affiliation(s)
- Pu Xia
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, People's Republic of China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, People's Republic of China
| | - Yuwei Xie
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, People's Republic of China
| | - Miao Guan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, People's Republic of China
| | - Daniel L Villeneuve
- Mid-Continent Ecology Division, United States Environmental Protection Agency , Duluth, Minnesota 55804, United States
| | - Hongxia Yu
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, People's Republic of China
| |
Collapse
|
18
|
Antignani A, Mathews Griner L, Guha R, Simon N, Pasetto M, Keller J, Huang M, Angelus E, Pastan I, Ferrer M, FitzGerald DJ, Thomas CJ. Chemical Screens Identify Drugs that Enhance or Mitigate Cellular Responses to Antibody-Toxin Fusion Proteins. PLoS One 2016; 11:e0161415. [PMID: 27556570 PMCID: PMC4996465 DOI: 10.1371/journal.pone.0161415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/04/2016] [Indexed: 01/03/2023] Open
Abstract
The intersection of small molecular weight drugs and antibody-based therapeutics is rarely studied in large scale. Both types of agents are currently part of the cancer armamentarium. However, very little is known about how to combine them in optimal ways. Immunotoxins are antibody-toxin gene fusion proteins engineered to target cancer cells via antibody binding to surface antigens. For fusion proteins derived from Pseudomonas exotoxin (PE), potency relies on the enzymatic domain of the toxin which catalyzes the ADP-ribosylation of EF2 causing inhibition of protein synthesis leading to cell death. Candidate immunotoxins have demonstrated clear value in clinical trials but generally have not been curative as single agents. Therefore we undertook three screens to discover effective combinations that could act synergistically. From the MIPE-3 library of compounds we identified various enhancers of immunotoxin action and at least one major class of inhibitor. Follow-up experiments confirmed the screening data and suggested that immunotoxins when administered with everolimus or nilotinib exhibit favorable combinatory activity and would be candidates for preclinical development. Mechanistic studies revealed that everolimus-immunotoxin combinations acted synergistically on elements of the protein synthetic machinery, including S61 kinase and 4E-BP1 of the mTORC1 pathway. Conversely, PARP inhibitors antagonized immunotoxins and also blocked the toxicity due to native ADP-ribosylating toxins. Thus, our goal of investigating a chemical library was justified based on the identification of several approved compounds that could be developed preclinically as ‘enhancers’ and at least one class of mitigator to be avoided.
Collapse
Affiliation(s)
- Antonella Antignani
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892–4264, United States of America
| | - Lesley Mathews Griner
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, 20850, United States of America
| | - Rajarshi Guha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, 20850, United States of America
| | - Nathan Simon
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892–4264, United States of America
| | - Matteo Pasetto
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892–4264, United States of America
| | - Jonathan Keller
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, 20850, United States of America
| | - Manjie Huang
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892–4264, United States of America
| | - Evan Angelus
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892–4264, United States of America
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892–4264, United States of America
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, 20850, United States of America
| | - David J. FitzGerald
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892–4264, United States of America
- * E-mail: (DF); (CJT)
| | - Craig J. Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, 20850, United States of America
- * E-mail: (DF); (CJT)
| |
Collapse
|
19
|
Ali-Rahmani F, FitzGerald DJ, Martin S, Patel P, Prunotto M, Ormanoglu P, Thomas C, Pastan I. Anticancer Effects of Mesothelin-Targeted Immunotoxin Therapy Are Regulated by Tyrosine Kinase DDR1. Cancer Res 2016; 76:1560-8. [PMID: 26719540 PMCID: PMC4794364 DOI: 10.1158/0008-5472.can-15-2401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/22/2015] [Indexed: 02/04/2023]
Abstract
Recombinant immunotoxins (RIT) have been highly successful in cancer therapy due, in part, to the high cancer-specific expression of cell surface antigens such as mesothelin, which is overexpressed in mesothelioma, ovarian, lung, breast, and pancreatic cancers, but is limited in normal cells. RG7787 is a clinically optimized RIT consisting of a humanized anti-mesothelin Fab fused to domain III of Pseudomonas exotoxin A, in which immunogenic B-cell epitopes are silenced. To enhance the therapeutic efficacy of RITs, we conducted a kinome RNAi sensitization screen, which identified discoidin domain receptor 1 (DDR1), a collagen-activated tyrosine kinase, as a potential target. The collagen/DDR1 axis is implicated in tumor-stromal interactions and potentially affects tumor response to therapy. Therefore, we investigated the effects of DDR1 on RIT. Knockdown of DDR1 by siRNA or treatment with inhibitor, 7rh, greatly enhanced the cytotoxic activity of RG7787 in several cancer cell lines. Investigation into the mechanism of action showed DDR1 silencing was associated with decreased expression of several ribosomal proteins and enhanced inhibition of protein synthesis. Conversely, induction of DDR1 expression or collagen-stimulated DDR1 activity protected cancer cells from RG7787 killing. Moreover, the combination of RG7787 and DDR1 inhibitor caused greater shrinkage of tumor xenografts than either agent alone. These data demonstrate that DDR1 is a key modulator of RIT activity and represents a novel therapeutic strategy to improve targeting of mesothelin-expressing cancers.
Collapse
Affiliation(s)
- Fatima Ali-Rahmani
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - David J FitzGerald
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Scott Martin
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland
| | - Paresma Patel
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland
| | - Marco Prunotto
- Discovery Technologies, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Pinar Ormanoglu
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland
| | - Craig Thomas
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland.
| |
Collapse
|
20
|
Liu X, Müller F, Wayne AS, Pastan I. Protein Kinase Inhibitor H89 Enhances the Activity of Pseudomonas Exotoxin A-Based Immunotoxins. Mol Cancer Ther 2016; 15:1053-62. [PMID: 26939705 DOI: 10.1158/1535-7163.mct-15-0828] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/04/2016] [Indexed: 12/14/2022]
Abstract
HA22 (Moxetumomab pasudotox) is a recombinant immunotoxin (RIT), composed of an anti-CD22 Fv fused to a truncated portion of Pseudomonas exotoxin A. HA22 is in clinical trials to treat patients with hairy cell leukemia and acute lymphoblastic leukemia (ALL). LMB-11 is an improved variant of HA22 with reduced immunogenicity, has a longer half-life in the blood and high activity in vitro and in a Burkitt lymphoma model in vivo Searching for RIT enhancing combination therapies, we found the protein kinase A inhibitor H89 to enhance LMB-11 and HA22 activity 5- to 10-fold on ALL cell lines and on patient-derived ALL samples. In addition, H89 increased the activity of mesothelin-targeting RITs SS1P (38-fold) and RG7787 (7-fold) against the cervical cancer cell line KB31. Unexpectedly we found that the enhancement by H89 was not because of inhibition of protein kinase A; it was partially recapitulated by inhibition of S6K1, which led to inactivation of its downstream targets rpS6 and GSK3β, resulting in a fall in MCL1 levels. H89 increased the rate of ADP-ribosylation of eukaryotic elongation factor 2, enhancing the arrest of protein synthesis and the reduction of MCL1 in synergy with the RIT. In summary, H89 increased RIT activity by enhancing the two key events: ADP-ribosylation of eEF2 and reduction of MCL1 levels. Significant enhancement was seen with both CD22- and mesothelin-targeting RITs, indicating that H89 might be a potent addition to RIT treatment of CD22-positive ALL and mesothelin-expressing solid tumors. Mol Cancer Ther; 15(5); 1053-62. ©2016 AACR.
Collapse
Affiliation(s)
- Xiufen Liu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Fabian Müller
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alan S Wayne
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
21
|
Lilienthal N, Lohmann G, Crispatzu G, Vasyutina E, Zittrich S, Mayer P, Herling CD, Tur MK, Hallek M, Pfitzer G, Barth S, Herling M. A Novel Recombinant Anti-CD22 Immunokinase Delivers Proapoptotic Activity of Death-Associated Protein Kinase (DAPK) and Mediates Cytotoxicity in Neoplastic B Cells. Mol Cancer Ther 2016; 15:971-84. [PMID: 26826117 DOI: 10.1158/1535-7163.mct-15-0685] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/13/2016] [Indexed: 11/16/2022]
Abstract
The serine/threonine death-associated protein kinases (DAPK) provide pro-death signals in response to (oncogenic) cellular stresses. Lost DAPK expression due to (epi)genetic silencing is found in a broad spectrum of cancers. Within B-cell lymphomas, deficiency of the prototypic family member DAPK1 represents a predisposing or early tumorigenic lesion and high-frequency promoter methylation marks more aggressive diseases. On the basis of protein studies and meta-analyzed gene expression profiling data, we show here that within the low-level context of B-lymphocytic DAPK, particularly CLL cells have lost DAPK1 expression. To target this potential vulnerability, we conceptualized B-cell-specific cytotoxic reconstitution of the DAPK1 tumor suppressor in the format of an immunokinase. After rounds of selections for its most potent cytolytic moiety and optimal ligand part, a DK1KD-SGIII fusion protein containing a constitutive DAPK1 mutant, DK1KD, linked to the scFv SGIII against the B-cell-exclusive endocytic glyco-receptor CD22 was created. Its high purity and large-scale recombinant production provided a stable, selectively binding, and efficiently internalizing construct with preserved robust catalytic activity. DK1KD-SGIII specifically and efficiently killed CD22-positive cells of lymphoma lines and primary CLL samples, sparing healthy donor- or CLL patient-derived non-B cells. The mode of cell death was predominantly PARP-mediated and caspase-dependent conventional apoptosis as well as triggering of an autophagic program. The notoriously high apoptotic threshold of CLL could be overcome by DK1KD-SGIII in vitro also in cases with poor prognostic features, such as therapy resistance. The manufacturing feasibility of the novel CD22-targeting DAPK immunokinase and its selective antileukemic efficiency encourage intensified studies towards specific clinical application. Mol Cancer Ther; 15(5); 971-84. ©2016 AACR.
Collapse
MESH Headings
- Antineoplastic Agents/administration & dosage
- Apoptosis/drug effects
- Cell Line, Tumor
- Death-Associated Protein Kinases/antagonists & inhibitors
- Death-Associated Protein Kinases/chemistry
- Death-Associated Protein Kinases/genetics
- Death-Associated Protein Kinases/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Multigene Family
- Mutation
- Phosphorylation
- Protein Interaction Domains and Motifs/genetics
- Recombinant Fusion Proteins/administration & dosage
- Sialic Acid Binding Ig-like Lectin 2/antagonists & inhibitors
- Single-Chain Antibodies/administration & dosage
Collapse
Affiliation(s)
- Nils Lilienthal
- Laboratory of Lymphocyte Signaling and Oncoproteome, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany. Federal Institute for Drugs and Devices (BfArM), Bonn, Germany
| | - Gregor Lohmann
- Laboratory of Lymphocyte Signaling and Oncoproteome, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Giuliano Crispatzu
- Laboratory of Lymphocyte Signaling and Oncoproteome, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Elena Vasyutina
- Laboratory of Lymphocyte Signaling and Oncoproteome, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Stefan Zittrich
- Institute of Vegetative Physiology; University of Cologne, Köln, Germany
| | - Petra Mayer
- Laboratory of Lymphocyte Signaling and Oncoproteome, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Carmen Diana Herling
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, and CECAD, University of Cologne, Köln, Germany
| | - Mehmet Kemal Tur
- Institute of Pathology, University Hospital, Justus Liebig University Gießen, Gießen, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, and CECAD, University of Cologne, Köln, Germany
| | - Gabriele Pfitzer
- Institute of Vegetative Physiology; University of Cologne, Köln, Germany
| | - Stefan Barth
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, RWTH Aachen, Aachen, Germany. South African Research Chair in Cancer Biotechnology, Institute of Infectious Disease and Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Marco Herling
- Laboratory of Lymphocyte Signaling and Oncoproteome, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany. Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, and CECAD, University of Cologne, Köln, Germany.
| |
Collapse
|
22
|
Bononi A, Napolitano A, Pass HI, Yang H, Carbone M. Latest developments in our understanding of the pathogenesis of mesothelioma and the design of targeted therapies. Expert Rev Respir Med 2015; 9:633-54. [PMID: 26308799 DOI: 10.1586/17476348.2015.1081066] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Malignant mesothelioma is an aggressive cancer whose pathogenesis is causally linked to occupational exposure to asbestos. Familial clusters of mesotheliomas have been observed in settings of genetic predisposition. Mesothelioma incidence is anticipated to increase worldwide in the next two decades. Novel treatments are needed, as current treatment modalities may improve the quality of life, but have shown modest effects in improving overall survival. Increasing knowledge on the molecular characteristics of mesothelioma has led to the development of novel potential therapeutic strategies, including: molecular targeted approaches, that is the inhibition of vascular endothelial growth factor with bevacizumab; immunotherapy with chimeric monoclonal antibody, immunotoxin, antibody drug conjugate, vaccine and viruses; inhibition of asbestos-induced inflammation, that is aspirin inhibition of HMGB1 activity may decrease or delay mesothelioma onset and/or growth. We elaborate on the rationale behind new therapeutic strategies, and summarize available preclinical and clinical results, as well as efforts still ongoing.
Collapse
Affiliation(s)
- Angela Bononi
- a 1 University of Hawai'i Cancer Center, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Andrea Napolitano
- a 1 University of Hawai'i Cancer Center, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA.,b 2 Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Harvey I Pass
- c 3 Department of Cardiothoracic Surgery, Division of Thoracic Surgery, Langone Medical Center, New York University, New York, USA
| | - Haining Yang
- a 1 University of Hawai'i Cancer Center, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Michele Carbone
- a 1 University of Hawai'i Cancer Center, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| |
Collapse
|