1
|
Mohammadi H, Zeidler A, Youngman RE, Fischer HE, Salmon PS. Pressure dependent structure of amorphous magnesium aluminosilicates: The effect of replacing magnesia by alumina at the enstatite composition. J Chem Phys 2024; 160:064501. [PMID: 38341794 DOI: 10.1063/5.0189392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/07/2024] [Indexed: 02/13/2024] Open
Abstract
The effect of replacing magnesia by alumina on the pressure-dependent structure of amorphous enstatite was investigated by applying in situ high-pressure neutron diffraction with magnesium isotope substitution to glassy (MgO)0.375(Al2O3)0.125(SiO2)0.5. The replacement leads to a factor of 2.4 increase in the rate-of-change of the Mg-O coordination number with pressure, which increases from 4.76(4) at ambient pressure to 6.51(4) at 8.2 GPa, and accompanies a larger probability of magnesium finding bridging oxygen atoms as nearest-neighbors. The Al-O coordination number increases from 4.17(7) to 5.24(8) over the same pressure interval at a rate that increases when the pressure is above ∼3.5 GPa. On recovering the glass to ambient conditions, the Mg-O and Al-O coordination numbers reduce to 5.32(4) and 4.42(6), respectively. The Al-O value is in accordance with the results from solid-state 27Al nuclear magnetic resonance spectroscopy, which show the presence of six-coordinated aluminum species that are absent in the uncompressed material. These findings explain the appearance of distinct pressure-dependent structural transformation regimes in the preparation of permanently densified magnesium aluminosilicate glasses. They also indicate an anomalous minimum in the pressure dependence of the bulk modulus with an onset that suggests a pressure-dependent threshold for transitioning between scratch-resistant and crack-resistant material properties.
Collapse
Affiliation(s)
| | - Anita Zeidler
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | - Randall E Youngman
- Science and Technology Division, Corning Incorporated, Corning, New York 14831, USA
| | - Henry E Fischer
- Institut Laue Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Philip S Salmon
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
2
|
Yin K, Belonoshko AB, Li Y, Lu X. Davemaoite as the mantle mineral with the highest melting temperature. SCIENCE ADVANCES 2023; 9:eadj2660. [PMID: 38055828 DOI: 10.1126/sciadv.adj2660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Knowledge of high-pressure melting curves of silicate minerals is critical for modeling the thermal-chemical evolution of rocky planets. However, the melting temperature of davemaoite, the third most abundant mineral in Earth's lower mantle, is still controversial. Here, we investigate the melting curves of two minerals, MgSiO3 bridgmanite and CaSiO3 davemaoite, under their stability field in the mantle by performing first-principles molecular dynamics simulations based on the density functional theory. The melting curve of bridgmanite is in excellent agreement with previous studies, confirming a general consensus on its melting temperature. However, we predict a much higher melting curve of davemaoite than almost all previous estimates. Melting temperature of davemaoite at the pressure of core-mantle boundary (~136 gigapascals) is about 7700(150) K, which is approximately 2000 K higher than that of bridgmanite. The ultrarefractory nature of davemaoite is critical to reconsider many models in the deep planetary interior, for instance, solidification of early magma ocean and geodynamical behavior of mantle rocks.
Collapse
Affiliation(s)
- Kun Yin
- Research Center for Planetary Science, College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China
| | - Anatoly B Belonoshko
- Frontiers Science Center for Critical Earth Material Cycling, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
- Condensed Matter Theory, Department of Physics, AlbaNova University Center, Royal Institute of Technology (KTH), 10691 Stockholm, Sweden
- National Research University Higher School of Economics, 123458 Moscow, Russia
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Yonghui Li
- National Supercomputing Center in Chengdu, Chengdu 610299, China
| | - Xiancai Lu
- State Key Laboratory for Mineral Deposit Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Shim SH, Ko B, Sokaras D, Nagler B, Lee HJ, Galtier E, Glenzer S, Granados E, Vinci T, Fiquet G, Dolinschi J, Tappan J, Kulka B, Mao WL, Morard G, Ravasio A, Gleason A, Alonso-Mori R. Ultrafast x-ray detection of low-spin iron in molten silicate under deep planetary interior conditions. SCIENCE ADVANCES 2023; 9:eadi6153. [PMID: 37862409 PMCID: PMC10588943 DOI: 10.1126/sciadv.adi6153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/20/2023] [Indexed: 10/22/2023]
Abstract
The spin state of Fe can alter the key physical properties of silicate melts, affecting the early differentiation and the dynamic stability of the melts in the deep rocky planets. The low-spin state of Fe can increase the affinity of Fe for the melt over the solid phases and the electrical conductivity of melt at high pressures. However, the spin state of Fe has never been measured in dense silicate melts due to experimental challenges. We report detection of dominantly low-spin Fe in dynamically compressed olivine melt at 150 to 256 gigapascals and 3000 to 6000 kelvin using laser-driven shock wave compression combined with femtosecond x-ray diffraction and x-ray emission spectroscopy using an x-ray free electron laser. The observation of dominantly low-spin Fe supports gravitationally stable melt in the deep mantle and generation of a dynamo from the silicate melt portion of rocky planets.
Collapse
Affiliation(s)
- Sang-Heon Shim
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Byeongkwan Ko
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Dimosthenis Sokaras
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Bob Nagler
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - He Ja Lee
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Eric Galtier
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Siegfried Glenzer
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Eduardo Granados
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Tommaso Vinci
- Laboratoire pour l’Utilisation des Lasers Intenses (LULI), Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France
| | - Guillaume Fiquet
- Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Museum National d’Histoire Naturelle, UMR CNRS 7590, 4 Place Jussieu, 75005 Paris, France
| | - Jonathan Dolinschi
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Jackie Tappan
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Britany Kulka
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Wendy L. Mao
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
- Department of Earth and Planetary Sciences, Stanford University, Stanford CA 94305, USA
| | - Guillaume Morard
- Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Museum National d’Histoire Naturelle, UMR CNRS 7590, 4 Place Jussieu, 75005 Paris, France
- Université Grenoble Alpes, Universé Savoie Mont Blanc, CNRS, IRD, Université Gustave Eiffel, ISTerre, 38000 Grenoble, France
| | - Alessandra Ravasio
- Laboratoire pour l’Utilisation des Lasers Intenses (LULI), Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France
| | - Arianna Gleason
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
- Department of Earth and Planetary Sciences, Stanford University, Stanford CA 94305, USA
| | - Roberto Alonso-Mori
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| |
Collapse
|
4
|
Hong X, Newville M, Ding Y. Local structural investigation of non-crystalline materials at high pressure: the case of GeO 2glass. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:164001. [PMID: 36764002 DOI: 10.1088/1361-648x/acbb4c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Local structures play a crucial role in the structural polyamorphism and novel electronic properties of amorphous materials, but their accurate measurement at high pressure remains a formidable challenge. In this article, we use the local structure of network-forming GeO2glass as an example, to present our recent approaches and advances in high-energy x-ray diffraction, high-pressure x-ray absorption fine structure, andab initiofirst-principles density functional theory calculations and simulations. Although GeO2glass is one of the best studied materials in the field of high pressure research due to its importance in glass theory and geophysical significance, there are still some long-standing puzzles, such as the existence of appreciable distinct fivefold[5]Ge coordination at low pressure and the sixfold-plus[6+]Ge coordination at ultrahigh pressure. Our work sheds light on the origin of pressure-induced polyamorphism of GeO2glass, and the[5]Ge polyhedral units may be the dominant species in the densification mechanism of network-forming glasses from tetrahedral to octahedral amorphous structures.
Collapse
Affiliation(s)
- Xinguo Hong
- Center for High Pressure Science and Technology Advanced Research, Beijing 100193, People's Republic of China
| | - Matt Newville
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, United States of America
| | - Yang Ding
- Center for High Pressure Science and Technology Advanced Research, Beijing 100193, People's Republic of China
| |
Collapse
|
5
|
Lobanov SS, Speziale S, Winkler B, Milman V, Refson K, Schifferle L. Electronic, Structural, and Mechanical Properties of SiO_{2} Glass at High Pressure Inferred from its Refractive Index. PHYSICAL REVIEW LETTERS 2022; 128:077403. [PMID: 35244414 DOI: 10.1103/physrevlett.128.077403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/29/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
We report the first direct measurements of the refractive index of silica glass up to 145 GPa that allowed quantifying its density, bulk modulus, Lorenz-Lorentz polarizability, and band gap. These properties show two major anomalies at ∼10 and ∼40 GPa. The anomaly at ∼10 GPa signals the onset of the increase in Si coordination, and the anomaly at ∼40 GPa corresponds to a nearly complete vanishing of fourfold Si. More generally, we show that the compressibility and density of noncrystalline solids can be accurately measured in simple optical experiments up to at least 110 GPa.
Collapse
Affiliation(s)
- Sergey S Lobanov
- Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, 14473 Potsdam, Germany
- Institut für Geowissenschaften, Universität Potsdam, Karl-Liebknecht-Str. 24-25, Golm 14476, Germany
| | - Sergio Speziale
- Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, 14473 Potsdam, Germany
| | - Björn Winkler
- Institut für Geowissenschaften, Goethe-Universität Frankfurt, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
| | - Victor Milman
- Dassault Systèmes BIOVIA, 334 Science Park, Cambridge CB4 0WN, United Kingdom
| | - Keith Refson
- ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Lukas Schifferle
- Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, 14473 Potsdam, Germany
- Institut für Geowissenschaften, Universität Potsdam, Karl-Liebknecht-Str. 24-25, Golm 14476, Germany
| |
Collapse
|
6
|
Drewitt JWE. Liquid structure under extreme conditions: high-pressure x-ray diffraction studies. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:503004. [PMID: 34544063 DOI: 10.1088/1361-648x/ac2865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Under extreme conditions of high pressure and temperature, liquids can undergo substantial structural transformations as their atoms rearrange to minimise energy within a more confined volume. Understanding the structural response of liquids under extreme conditions is important across a variety of disciplines, from fundamental physics and exotic chemistry to materials and planetary science.In situexperiments and atomistic simulations can provide crucial insight into the nature of liquid-liquid phase transitions and the complex phase diagrams and melting relations of high-pressure materials. Structural changes in natural magmas at the high-pressures experienced in deep planetary interiors can have a profound impact on their physical properties, knowledge of which is important to inform geochemical models of magmatic processes. Generating the extreme conditions required to melt samples at high-pressure, whilst simultaneously measuring their liquid structure, is a considerable challenge. The measurement, analysis, and interpretation of structural data is further complicated by the inherent disordered nature of liquids at the atomic-scale. However, recent advances in high-pressure technology mean that liquid diffraction measurements are becoming more routinely feasible at synchrotron facilities around the world. This topical review examines methods for high pressure synchrotron x-ray diffraction of liquids and the wide variety of systems which have been studied by them, from simple liquid metals and their remarkable complex behaviour at high-pressure, to molecular-polymeric liquid-liquid transitions in pnicogen and chalcogen liquids, and density-driven structural transformations in water and silicate melts.
Collapse
Affiliation(s)
- James W E Drewitt
- School of Physics, University of Bristol, H H Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom
| |
Collapse
|
7
|
Fedotenko T, Souza DS, Khandarkhaeva S, Dubrovinsky L, Dubrovinskaia N. Isothermal equation of state of crystalline and glassy materials from optical measurements in diamond anvil cells. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:063907. [PMID: 34243540 DOI: 10.1063/5.0050190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/05/2021] [Indexed: 06/13/2023]
Abstract
Here, we present a method to study the equation of state of opaque amorphous and crystalline materials in diamond anvil cells. The approach is based on measurements of sample dimensions using high-resolution optical microscopy. Data on the volumetric strain as a function of pressure allow deriving the isothermal equation of state of the studied material. The analysis of optical images is fully automatized and allows measuring the sample dimensions with the precision of about 60 nm. The methodology was validated by studying isothermal compression of ω-Ti up to 30 GPa in a Ne pressure transmitting medium. Within the accuracy of the measurements, the bulk modulus of ω-Ti determined using optical microscopy was similar to that obtained from x-ray diffraction. For glassy carbon compressed to ∼30 GPa, the previously unknown bulk modulus was found to be equal to K0 = 28 (2) GPa [K' = 5.5(5)].
Collapse
Affiliation(s)
- T Fedotenko
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, D-95440 Bayreuth, Germany
| | - D S Souza
- Bayerisches Geoinstitut Universität Bayreuth, D-95440 Bayreuth, Germany
| | - S Khandarkhaeva
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, D-95440 Bayreuth, Germany
| | - L Dubrovinsky
- Bayerisches Geoinstitut Universität Bayreuth, D-95440 Bayreuth, Germany
| | - N Dubrovinskaia
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
8
|
Morard G, Hernandez JA, Guarguaglini M, Bolis R, Benuzzi-Mounaix A, Vinci T, Fiquet G, Baron MA, Shim SH, Ko B, Gleason AE, Mao WL, Alonso-Mori R, Lee HJ, Nagler B, Galtier E, Sokaras D, Glenzer SH, Andrault D, Garbarino G, Mezouar M, Schuster AK, Ravasio A. In situ X-ray diffraction of silicate liquids and glasses under dynamic and static compression to megabar pressures. Proc Natl Acad Sci U S A 2020; 117:11981-11986. [PMID: 32414927 PMCID: PMC7275726 DOI: 10.1073/pnas.1920470117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Properties of liquid silicates under high-pressure and high-temperature conditions are critical for modeling the dynamics and solidification mechanisms of the magma ocean in the early Earth, as well as for constraining entrainment of melts in the mantle and in the present-day core-mantle boundary. Here we present in situ structural measurements by X-ray diffraction of selected amorphous silicates compressed statically in diamond anvil cells (up to 157 GPa at room temperature) or dynamically by laser-generated shock compression (up to 130 GPa and 6,000 K along the MgSiO3 glass Hugoniot). The X-ray diffraction patterns of silicate glasses and liquids reveal similar characteristics over a wide pressure and temperature range. Beyond the increase in Si coordination observed at 20 GPa, we find no evidence for major structural changes occurring in the silicate melts studied up to pressures and temperatures exceeding Earth's core mantle boundary conditions. This result is supported by molecular dynamics calculations. Our findings reinforce the widely used assumption that the silicate glasses studies are appropriate structural analogs for understanding the atomic arrangement of silicate liquids at these high pressures.
Collapse
Affiliation(s)
- Guillaume Morard
- Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Museum National d'Histoire Naturelle, UMR CNRS 7590, 75005 Paris, France;
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Institut de Recherche pour le Développement, Institut Français des Sciences et Technologies des Transports, de L'aménagement et des Réseaux, ISTerre, 38000 Grenoble, France
| | - Jean-Alexis Hernandez
- Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, CNRS, Commissariat à l'Energie Atomique, Sorbonne Université, 91128 Palaiseau, France
- Centre for Earth Evolution and Dynamics, University of Oslo, N-0315 Oslo, Norway
| | - Marco Guarguaglini
- Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, CNRS, Commissariat à l'Energie Atomique, Sorbonne Université, 91128 Palaiseau, France
| | - Riccardo Bolis
- Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, CNRS, Commissariat à l'Energie Atomique, Sorbonne Université, 91128 Palaiseau, France
| | - Alessandra Benuzzi-Mounaix
- Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, CNRS, Commissariat à l'Energie Atomique, Sorbonne Université, 91128 Palaiseau, France
| | - Tommaso Vinci
- Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, CNRS, Commissariat à l'Energie Atomique, Sorbonne Université, 91128 Palaiseau, France
| | - Guillaume Fiquet
- Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Museum National d'Histoire Naturelle, UMR CNRS 7590, 75005 Paris, France
| | - Marzena A Baron
- Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Museum National d'Histoire Naturelle, UMR CNRS 7590, 75005 Paris, France
| | - Sang Heon Shim
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287
| | - Byeongkwan Ko
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287
| | - Arianna E Gleason
- Geological Sciences, Stanford University, Stanford, CA 94305-2115
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Wendy L Mao
- Geological Sciences, Stanford University, Stanford, CA 94305-2115
| | | | - Hae Ja Lee
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Bob Nagler
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Eric Galtier
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | | | | | - Denis Andrault
- Université Clermont Auvergne, CNRS, Institut de Recherche pour le Développement, Observatoire Physique du Globe de Clermont-Ferrand, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France
| | | | - Mohamed Mezouar
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Anja K Schuster
- Helmholtz-Zentrum Dresden Rossendorf, D-01328 Dresden, Germany
| | - Alessandra Ravasio
- Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, CNRS, Commissariat à l'Energie Atomique, Sorbonne Université, 91128 Palaiseau, France
| |
Collapse
|
9
|
Intraplate volcanism originating from upwelling hydrous mantle transition zone. Nature 2020; 579:88-91. [PMID: 32103183 DOI: 10.1038/s41586-020-2045-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/02/2019] [Indexed: 11/08/2022]
Abstract
Most magmatism occurring on Earth is conventionally attributed to passive mantle upwelling at mid-ocean ridges, to slab devolatilization at subduction zones, or to mantle plumes. However, the widespread Cenozoic intraplate volcanism in northeast China1-3 and the young petit-spot volcanoes4-7 offshore of the Japan Trench cannot readily be associated with any of these mechanisms. In addition, the mantle beneath these types of volcanism is characterized by zones of anomalously low seismic velocity above and below the transition zone8-12 (a mantle level located at depths between 410 and 660 kilometres). A comprehensive interpretation of these phenomena is lacking. Here we show that most (or possibly all) of the intraplate and petit-spot volcanism and low-velocity zones around the Japanese subduction zone can be explained by the Cenozoic interaction of the subducting Pacific slab with a hydrous mantle transition zone. Numerical modelling indicates that 0.2 to 0.3 weight per cent of water dissolved in mantle minerals that are driven out from the transition zone in response to subduction and retreat of a tectonic plate is sufficient to reproduce the observations. This suggests that a critical amount of water may have accumulated in the transition zone around this subduction zone, as well as in others of the Tethyan tectonic belt13 that are characterized by intraplate or petit-spot volcanism and low-velocity zones in the underlying mantle.
Collapse
|
10
|
Density of NaAlSi2O6 Melt at High Pressure and Temperature Measured by In-Situ X-ray Microtomography. MINERALS 2020. [DOI: 10.3390/min10020161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, the volumetric compression of jadeite (NaAlSi2O6) melt at high pressures was determined by three-dimensional volume imaging using the synchrotron-based X-ray microtomography technique in a rotation-anvil device. Combined with the sample mass, measured using a high-precision analytical balance prior to the high-pressure experiment, the density of jadeite melt was obtained at high pressures and high temperatures up to 4.8 GPa and 1955 K. The density data were fitted to a third-order Birch-Murnaghan equation of state, resulting in a best-fit isothermal bulk modulus K T 0 of 10.8 − 5.3 + 1.9 GPa and its pressure derivative K T 0 ′ of 3.4 − 0.4 + 6.6 . Comparison with data for silicate melts of various compositions from the literature shows that alkali-rich, polymerized melts are generally more compressible than alkali-poor, depolymerized ones. The high compressibility of jadeite melt at high pressures implies that polymerized sodium aluminosilicate melts, if generated by low-degree partial melting of mantle peridotite at ~250–400 km depth in the deep upper mantle, are likely denser than surrounding mantle materials, and thus gravitationally stable.
Collapse
|
11
|
Xie L, Yoneda A, Yamazaki D, Manthilake G, Higo Y, Tange Y, Guignot N, King A, Scheel M, Andrault D. Formation of bridgmanite-enriched layer at the top lower-mantle during magma ocean solidification. Nat Commun 2020; 11:548. [PMID: 31992697 PMCID: PMC6987212 DOI: 10.1038/s41467-019-14071-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 12/10/2019] [Indexed: 11/09/2022] Open
Abstract
Thermochemical heterogeneities detected today in the Earth’s mantle could arise from ongoing partial melting in different mantle regions. A major open question, however, is the level of chemical stratification inherited from an early magma-ocean (MO) solidification. Here we show that the MO crystallized homogeneously in the deep mantle, but with chemical fractionation at depths around 1000 km and in the upper mantle. Our arguments are based on accurate measurements of the viscosity of melts with forsterite, enstatite and diopside compositions up to ~30 GPa and more than 3000 K at synchrotron X-ray facilities. Fractional solidification would induce the formation of a bridgmanite-enriched layer at ~1000 km depth. This layer may have resisted to mantle mixing by convection and cause the reported viscosity peak and anomalous dynamic impedance. On the other hand, fractional solidification in the upper mantle would have favored the formation of the first crust. Following the impact of the protoplanet Theia, planet Earth likely transformed into a magma ocean. New high temperature and pressure experiments by Xie et al. suggest that a layer enriched in bridgmanite formed during the magma ocean phase of Earth–remnants of this ancient layer today may be responsible for the viscosity peak between 660 and 1500 km in present solid mantle.
Collapse
Affiliation(s)
- Longjian Xie
- Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan. .,Bayerisches Geoinstitut, University of Bayreuth, 95440, Bayreuth, Germany.
| | - Akira Yoneda
- Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Daisuke Yamazaki
- Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Geeth Manthilake
- Laboratoire Magmas et Volcans, Université Clermont Auvergne, CNRS, IRD, OPGC, F‑63000, Clermont-Ferrand, France
| | - Yuji Higo
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo, 689-5198, Japan
| | - Yoshinori Tange
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo, 689-5198, Japan
| | | | | | | | - Denis Andrault
- Laboratoire Magmas et Volcans, Université Clermont Auvergne, CNRS, IRD, OPGC, F‑63000, Clermont-Ferrand, France
| |
Collapse
|
12
|
Hölzl C, Kibies P, Imoto S, Noetzel J, Knierbein M, Salmen P, Paulus M, Nase J, Held C, Sadowski G, Marx D, Kast SM, Horinek D. Structure and thermodynamics of aqueous urea solutions from ambient to kilobar pressures: From thermodynamic modeling, experiments, and first principles simulations to an accurate force field description. Biophys Chem 2019; 254:106260. [PMID: 31522071 DOI: 10.1016/j.bpc.2019.106260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022]
Abstract
Molecular simulations based on classical force fields are a powerful method for shedding light on the complex behavior of biomolecules in solution. When cosolutes are present in addition to water and biomolecules, subtle balances of weak intermolecular forces have to be accounted for. This imposes high demands on the quality of the underlying force fields, and therefore force field development for small cosolutes is still an active field. Here, we present the development of a new urea force field from studies of urea solutions at ambient and elevated hydrostatic pressures based on a combination of experimental and theoretical approaches. Experimental densities and solvation shell properties from ab initio molecular dynamics simulations at ambient conditions served as the target properties for the force field optimization. Since urea is present in many marine life forms, elevated hydrostatic pressure was rigorously addressed: densities at high pressure were measured by vibrating tube densitometry up to 500 bar and by X-ray absorption up to 5 kbar. Densities were determined by the perturbed-chain statistical associating fluid theory equation of state. Solvation properties were determined by embedded cluster integral equation theory and ab initio molecular dynamics. Our new force field is able to capture the properties of urea solutions at high pressures without further high-pressure adaption, unlike trimethylamine-N-oxide, for which a high-pressure adaption is necessary.
Collapse
Affiliation(s)
- Christoph Hölzl
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany
| | - Patrick Kibies
- Physikalische Chemie III, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Sho Imoto
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Jan Noetzel
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Michael Knierbein
- Laboratory of Thermodynamics, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Paul Salmen
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Michael Paulus
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Julia Nase
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Christoph Held
- Laboratory of Thermodynamics, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Gabriele Sadowski
- Laboratory of Thermodynamics, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Stefan M Kast
- Physikalische Chemie III, Technische Universität Dortmund, 44227 Dortmund, Germany.
| | - Dominik Horinek
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
13
|
Knierbein M, Held C, Hölzl C, Horinek D, Paulus M, Sadowski G, Sternemann C, Nase J. Density variations of TMAO solutions in the kilobar range: Experiments, PC-SAFT predictions, and molecular dynamics simulations. Biophys Chem 2019; 253:106222. [PMID: 31421516 DOI: 10.1016/j.bpc.2019.106222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 01/12/2023]
Abstract
We present measurements, molecular dynamics (MD) simulations, and predictions using Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) of the density of aqueous solutions in a pressure range from 1 bar to 5000 bar, a pressure regime that is highly relevant for both biochemical applications and the fundamental understanding of solvation. The accurate determination of density data of pressurized solutions remains challenging. We determined relative density changes from the variations in X-ray absorption through the sample and developed a new water parameter set for PC-SAFT modeling that is appropriate for high pressure conditions in the kilobar regime. As a showcase, we studied trimethylamine N-oxide (TMAO) solutions and demonstrated that their compressibility decreases with the TMAO content. This result is linked to the stabilizing effect of TMAO on the local H-bond network of water. Experiments and calculations, which represent two independent methods, are in very good agreement and are in accordance with results of force field molecular dynamics simulations of the same systems.
Collapse
Affiliation(s)
- Michael Knierbein
- Technische Universität Dortmund, Laboratory of Thermodynamics, D-44221 Dortmund, Germany
| | - Christoph Held
- Technische Universität Dortmund, Laboratory of Thermodynamics, D-44221 Dortmund, Germany
| | - Christoph Hölzl
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany
| | - Dominik Horinek
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany
| | - Michael Paulus
- Technische Universität Dortmund, Fakultät Physik/DELTA, D-44221 Dortmund, Germany
| | - Gabriele Sadowski
- Technische Universität Dortmund, Laboratory of Thermodynamics, D-44221 Dortmund, Germany
| | - Christian Sternemann
- Technische Universität Dortmund, Fakultät Physik/DELTA, D-44221 Dortmund, Germany
| | - Julia Nase
- Technische Universität Dortmund, Fakultät Physik/DELTA, D-44221 Dortmund, Germany.
| |
Collapse
|
14
|
Bykova E, Bykov M, Černok A, Tidholm J, Simak SI, Hellman O, Belov MP, Abrikosov IA, Liermann HP, Hanfland M, Prakapenka VB, Prescher C, Dubrovinskaia N, Dubrovinsky L. Metastable silica high pressure polymorphs as structural proxies of deep Earth silicate melts. Nat Commun 2018; 9:4789. [PMID: 30442940 PMCID: PMC6237875 DOI: 10.1038/s41467-018-07265-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/19/2018] [Indexed: 11/24/2022] Open
Abstract
Modelling of processes involving deep Earth liquids requires information on their structures and compression mechanisms. However, knowledge of the local structures of silicates and silica (SiO2) melts at deep mantle conditions and of their densification mechanisms is still limited. Here we report the synthesis and characterization of metastable high-pressure silica phases, coesite-IV and coesite-V, using in situ single-crystal X-ray diffraction and ab initio simulations. Their crystal structures are drastically different from any previously considered models, but explain well features of pair-distribution functions of highly densified silica glass and molten basalt at high pressure. Built of four, five-, and six-coordinated silicon, coesite-IV and coesite-V contain SiO6 octahedra, which, at odds with 3rd Pauling's rule, are connected through common faces. Our results suggest that possible silicate liquids in Earth's lower mantle may have complex structures making them more compressible than previously supposed.
Collapse
Affiliation(s)
- E Bykova
- Photon Sciences, Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607, Hamburg, Germany.
- Bayerisches Geoinstitut, University of Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany.
| | - M Bykov
- Bayerisches Geoinstitut, University of Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany
- Materials Modeling and Development Laboratory, National University of Science and Technology 'MISIS', Leninsky Avenue 4, 119049, Moscow, Russia
| | - A Černok
- Bayerisches Geoinstitut, University of Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany
- School of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - J Tidholm
- Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - S I Simak
- Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - O Hellman
- Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
- Department of Applied Physics and Materials Science, California Institute of Technology, 1200 East California Boulevard, Pasadena, California, 91125, USA
| | - M P Belov
- Materials Modeling and Development Laboratory, National University of Science and Technology 'MISIS', Leninsky Avenue 4, 119049, Moscow, Russia
| | - I A Abrikosov
- Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - H-P Liermann
- Photon Sciences, Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607, Hamburg, Germany
| | - M Hanfland
- European Synchrotron Radiation Facility (ESRF), 6 Rue Jules Horowitz, 38000, Grenoble, France
| | - V B Prakapenka
- Center for Advanced Radiation Sources, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois, 60637, USA
| | - C Prescher
- Center for Advanced Radiation Sources, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois, 60637, USA
- Institute of Geology and Mineralogy, Universität zu Köln, Zülpicher Straße 49b, 50674, Köln, Germany
| | - N Dubrovinskaia
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany
| | - L Dubrovinsky
- Bayerisches Geoinstitut, University of Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany
| |
Collapse
|
15
|
Pressure-induced structural change in MgSiO 3 glass at pressures near the Earth's core-mantle boundary. Proc Natl Acad Sci U S A 2018; 115:1742-1747. [PMID: 29432162 DOI: 10.1073/pnas.1716748115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Knowledge of the structure and properties of silicate magma under extreme pressure plays an important role in understanding the nature and evolution of Earth's deep interior. Here we report the structure of MgSiO3 glass, considered an analog of silicate melts, up to 111 GPa. The first (r1) and second (r2) neighbor distances in the pair distribution function change rapidly, with r1 increasing and r2 decreasing with pressure. At 53-62 GPa, the observed r1 and r2 distances are similar to the Si-O and Si-Si distances, respectively, of crystalline MgSiO3 akimotoite with edge-sharing SiO6 structural motifs. Above 62 GPa, r1 decreases, and r2 remains constant, with increasing pressure until 88 GPa. Above this pressure, r1 remains more or less constant, and r2 begins decreasing again. These observations suggest an ultrahigh-pressure structural change around 88 GPa. The structure above 88 GPa is interpreted as having the closest edge-shared SiO6 structural motifs similar to those of the crystalline postperovskite, with densely packed oxygen atoms. The pressure of the structural change is broadly consistent with or slightly lower than that of the bridgmanite-to-postperovskite transition in crystalline MgSiO3 These results suggest that a structural change may occur in MgSiO3 melt under pressure conditions corresponding to the deep lower mantle.
Collapse
|
16
|
Iron diapirs entrain silicates to the core and initiate thermochemical plumes. Nat Commun 2018; 9:71. [PMID: 29302028 PMCID: PMC5754369 DOI: 10.1038/s41467-017-02503-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/05/2017] [Indexed: 11/08/2022] Open
Abstract
Segregation of the iron core from rocky silicates is a massive evolutionary event in planetary accretion, yet the process of metal segregation remains obscure, due to obstacles in simulating the extreme physical properties of liquid iron and silicates at finite length scales. We present new experimental results studying gravitational instability of an emulsified liquid gallium layer, initially at rest at the interface between two glucose solutions. Metal settling coats liquid metal drops with a film of low density material. The emulsified metal pond descends as a coherent Rayleigh-Taylor instability with a trailing fluid-filled conduit. Scaling to planetary interiors and high pressure mineral experiments indicates that molten silicates and volatiles are entrained toward the iron core and initiate buoyant thermochemical plumes that later oxidize and hydrate the upper mantle. Surface volcanism from thermochemical plumes releases oxygen and volatiles linking atmospheric growth to the Earth's mantle and core processes.
Collapse
|
17
|
Petitgirard S, Malfait WJ, Journaux B, Collings IE, Jennings ES, Blanchard I, Kantor I, Kurnosov A, Cotte M, Dane T, Burghammer M, Rubie DC. SiO_{2} Glass Density to Lower-Mantle Pressures. PHYSICAL REVIEW LETTERS 2017; 119:215701. [PMID: 29219420 DOI: 10.1103/physrevlett.119.215701] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Indexed: 06/07/2023]
Abstract
The convection or settling of matter in the deep Earth's interior is mostly constrained by density variations between the different reservoirs. Knowledge of the density contrast between solid and molten silicates is thus of prime importance to understand and model the dynamic behavior of the past and present Earth. SiO_{2} is the main constituent of Earth's mantle and is the reference model system for the behavior of silicate melts at high pressure. Here, we apply our recently developed x-ray absorption technique to the density of SiO_{2} glass up to 110 GPa, doubling the pressure range for such measurements. Our density data validate recent molecular dynamics simulations and are in good agreement with previous experimental studies conducted at lower pressure. Silica glass rapidly densifies up to 40 GPa, but the density trend then flattens to become asymptotic to the density of SiO_{2} minerals above 60 GPa. The density data present two discontinuities at ∼17 and ∼60 GPa that can be related to a silicon coordination increase from 4 to a mixed 5/6 coordination and from 5/6 to sixfold, respectively. SiO_{2} glass becomes denser than MgSiO_{3} glass at ∼40 GPa, and its density becomes identical to that of MgSiO_{3} glass above 80 GPa. Our results on SiO_{2} glass may suggest that a variation of SiO_{2} content in a basaltic or pyrolitic melt with pressure has at most a minor effect on the final melt density, and iron partitioning between the melts and residual solids is the predominant factor that controls melt buoyancy in the lowermost mantle.
Collapse
Affiliation(s)
| | - Wim J Malfait
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Empa, 8600 Dübendorf, Switzerland
| | - Baptiste Journaux
- Institut des Géosciences de l'Environnement-UMR 5001, Université Grenoble Alpes CS 40700, 38 058 Grenoble Cedex 9, France
| | - Ines E Collings
- Laboratory of Crystallography, University of Bayreuth, Bayreuth D-95440, Germany
- European Synchrotron Radiation Facility, BP 220, Grenoble F-38043, France
| | - Eleanor S Jennings
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth D-95440, Germany
| | - Ingrid Blanchard
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth D-95440, Germany
| | | | - Alexander Kurnosov
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth D-95440, Germany
| | - Marine Cotte
- European Synchrotron Radiation Facility, BP 220, Grenoble F-38043, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8220, Laboratoire d'archéologie moléculaire et structurale (LAMS), 4 Place Jussieu 75005 Paris, France
| | - Thomas Dane
- European Synchrotron Radiation Facility, BP 220, Grenoble F-38043, France
| | - Manfred Burghammer
- European Synchrotron Radiation Facility, BP 220, Grenoble F-38043, France
| | - David C Rubie
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth D-95440, Germany
| |
Collapse
|
18
|
Petitgirard S, Spiekermann G, Weis C, Sahle C, Sternemann C, Wilke M. Miniature diamond anvils for X-ray Raman scattering spectroscopy experiments at high pressure. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:276-282. [PMID: 28009567 DOI: 10.1107/s1600577516017112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
X-ray Raman scattering (XRS) spectroscopy is an inelastic scattering method that uses hard X-rays of the order of 10 keV to measure energy-loss spectra at absorption edges of light elements (Si, Mg, O etc.), with an energy resolution below 1 eV. The high-energy X-rays employed with this technique can penetrate thick or dense sample containers such as the diamond anvils employed in high-pressure cells. Here, we describe the use of custom-made conical miniature diamond anvils of less than 500 µm thickness which allow pressure generation of up to 70 GPa. This set-up overcomes the limitations of the XRS technique in very high-pressure measurements (>10 GPa) by drastically improving the signal-to-noise ratio. The conical shape of the base of the diamonds gives a 70° opening angle, enabling measurements in both low- and high-angle scattering geometry. This reduction of the diamond thickness to one-third of the classical diamond anvils considerably lowers the attenuation of the incoming and the scattered beams and thus enhances the signal-to-noise ratio significantly. A further improvement of the signal-to-background ratio is obtained by a recess of ∼20 µm that is milled in the culet of the miniature anvils. This recess increases the sample scattering volume by a factor of three at a pressure of 60 GPa. Examples of X-ray Raman spectra collected at the O K-edge and Si L-edge in SiO2 glass at high pressures up to 47 GPa demonstrate the significant improvement and potential for spectroscopic studies of low-Z elements at high pressure.
Collapse
Affiliation(s)
- Sylvain Petitgirard
- University of Bayreuth, Bayerisches Geoinstitut, Universitätsstrasse 30, Bayreuth, 95447, Germany
| | | | - Christopher Weis
- Fakultät Physik / DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | | | - Christian Sternemann
- Fakultät Physik / DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Max Wilke
- Universität Potsdam, Potsdam, Germany
| |
Collapse
|
19
|
Sahle CJ, Rosa AD, Rossi M, Cerantola V, Spiekermann G, Petitgirard S, Jacobs J, Huotari S, Moretti Sala M, Mirone A. Direct tomography imaging for inelastic X-ray scattering experiments at high pressure. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:269-275. [PMID: 28009566 DOI: 10.1107/s1600577516017100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
A method to separate the non-resonant inelastic X-ray scattering signal of a micro-metric sample contained inside a diamond anvil cell (DAC) from the signal originating from the high-pressure sample environment is described. Especially for high-pressure experiments, the parasitic signal originating from the diamond anvils, the gasket and/or the pressure medium can easily obscure the sample signal or even render the experiment impossible. Another severe complication for high-pressure non-resonant inelastic X-ray measurements, such as X-ray Raman scattering spectroscopy, can be the proximity of the desired sample edge energy to an absorption edge energy of elements constituting the DAC. It is shown that recording the scattered signal in a spatially resolved manner allows these problems to be overcome by separating the sample signal from the spurious scattering of the DAC without constraints on the solid angle of detection. Furthermore, simple machine learning algorithms facilitate finding the corresponding detector pixels that record the sample signal. The outlined experimental technique and data analysis approach are demonstrated by presenting spectra of the Si L2,3-edge and O K-edge of compressed α-quartz. The spectra are of unprecedented quality and both the O K-edge and the Si L2,3-edge clearly show the existence of a pressure-induced phase transition between 10 and 24 GPa.
Collapse
Affiliation(s)
- Ch J Sahle
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - A D Rosa
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - M Rossi
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - V Cerantola
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - G Spiekermann
- Institute of Earth and Environmental Science, Universität Potsdam, Potsdam, Germany
| | - S Petitgirard
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany
| | - J Jacobs
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - S Huotari
- Department of Physics, POB 64, FI-00014, University of Helsinki, Helsinki, Finland
| | - M Moretti Sala
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - A Mirone
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
20
|
Ghosh DB, Karki BB. Solid-liquid density and spin crossovers in (Mg, Fe)O system at deep mantle conditions. Sci Rep 2016; 6:37269. [PMID: 27872491 PMCID: PMC5118715 DOI: 10.1038/srep37269] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 10/27/2016] [Indexed: 11/08/2022] Open
Abstract
The low/ultralow-velocity zones in the Earth's mantle can be explained by the presence of partial melting, critically depending on density contrast between the melt and surrounding solid mantle. Here, first-principles molecular dynamics simulations of (Mg, Fe) O ferropericlase in the solid and liquid states show that their densities increasingly approach each other as pressure increases. The isochemical density difference between them diminishes from 0.78 (±0.7) g/cm3 at zero pressure (3000 K) to 0.16 (±0.04) g/cm3 at 135 GPa (4000 K) for pure and alloyed compositions containing up to 25% iron. The simulations also predict a high-spin to low-spin transition of iron in the liquid ferropericlase gradually occurring over a pressure interval centered at 55 GPa (4000 K) accompanied by a density increase of 0.14 (±0.02) g/cm3. Temperature tends to widen the transition to higher pressure. The estimated iron partition coefficient between the solid and liquid ferropericlase varies from 0.3 to 0.6 over the pressure range of 23 to 135 GPa. Based on these results, an excess of as low as 5% iron dissolved in the liquid could cause the solid-liquid density crossover at conditions of the lowermost mantle.
Collapse
Affiliation(s)
- Dipta B. Ghosh
- School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, LA 70803
| | - Bijaya B. Karki
- School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, LA 70803
- Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA 70803
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803
| |
Collapse
|