1
|
Norris AC, Oberg C, Spangler LC, Scholes GD, Schlau-Cohen GS. Discovery of Multiple Light-Harvesting States of the Photosynthetic Protein PE545. J Am Chem Soc 2024; 146:27373-27381. [PMID: 39325132 DOI: 10.1021/jacs.4c06307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Cryptophytes are photosynthetic microalga that flourish in a remarkable diversity of natural environments by using pigment-containing proteins with absorption maxima tuned to each ecological niche. While this diversity in the absorption has been well established, the subsequent photophysics is highly sensitive to the local protein environment and so may exhibit similar variation. Thermal fluctuations of the protein conformation are expected to introduce photophysical heterogeneity of the pigments that may have evolved important functional properties in a manner similar to that of the absorption. However, such heterogeneity is averaged out in ensemble measurements and, therefore, has not yet been probed. Here, we report single-molecule measurements of phycoerythrin 545 (PE545), the prototypical cryptophyte antenna protein, in its native dimeric form. A conformational ensemble was resolved consisting of distinct photophysical states with different light-harvesting properties. Proteins that did not quench, partially quenched, or fully quenched absorbed light were observed. Light intensity increased the quenched-state population of the dimer, potentially as a mechanism to deal with the extreme light intensities found in aqueous environments. Cross-linking, which mimics local interactions, introduces this light-dependent functionality while also suppressing other conformational dynamics. The cellular organization can, therefore, actively modulate the protein conformation and dynamics, selecting for distinct levels of light harvesting. Thus, the complex conformational equilibrium provides an additional mechanism for cryptophytes and likely other photosynthetic organisms to optimize solar energy capture and conversion.
Collapse
Affiliation(s)
- Audrey C Norris
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Catrina Oberg
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Leah C Spangler
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Gabriela S Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Cupellini L, Gwizdala M, Krüger TPJ. Energetic Landscape and Terminal Emitters of Phycobilisome Cores from Quantum Chemical Modeling. J Phys Chem Lett 2024; 15:9746-9756. [PMID: 39288324 DOI: 10.1021/acs.jpclett.4c02005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Phycobilisomes (PBs) are giant antenna supercomplexes of cyanobacteria that use phycobilin pigments to capture sunlight and transfer the collected energy to membrane-bound photosystems. In the PB core, phycobilins are bound to particular allophycocyanin (APC) proteins. Some phycobilins are thought to be terminal emitters (TEs) with red-shifted fluorescence. However, the precise identification of TEs is still under debate. In this work, we employ multiscale quantum-mechanical calculations to disentangle the excitation energy landscape of PB cores. Using the recent atomistic PB structures from Synechoccoccus PCC 7002 and Synechocystis PCC 6803, we compute the spectral properties of different APC trimers and assign the low-energy pigments. We show that the excitation energy of APC phycobilins is determined by geometric and electrostatic factors and is tuned by the specific protein-protein interactions within the core. Our findings challenge the simple picture of a few red-shifted bilins in the PB core and instead suggest that the red-shifts are established by the entire TE-containing APC trimers. Our work provides a theoretical microscopic basis for the interpretation of energy migration and time-resolved spectroscopy in phycobilisomes.
Collapse
Affiliation(s)
- Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Michal Gwizdala
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
| | - Tjaart P J Krüger
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
- National Institute of Theoretical and Computational Sciences (NITheCS), https://nithecs.ac.za/
| |
Collapse
|
3
|
Chu J, Ejaz A, Lin KM, Joseph MR, Coraor AE, Drummond DA, Squires AH. Single-molecule fluorescence multiplexing by multi-parameter spectroscopic detection of nanostructured FRET labels. NATURE NANOTECHNOLOGY 2024; 19:1150-1157. [PMID: 38750166 PMCID: PMC11329371 DOI: 10.1038/s41565-024-01672-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 04/05/2024] [Indexed: 05/28/2024]
Abstract
Multiplexed, real-time fluorescence detection at the single-molecule level can reveal the stoichiometry, dynamics and interactions of multiple molecular species in mixtures and other complex samples. However, fluorescence-based sensing is typically limited to the detection of just 3-4 colours at a time due to low signal-to-noise ratio, high spectral overlap and the need to maintain the chemical compatibility of dyes. Here we engineered a palette of several dozen composite fluorescent labels, called FRETfluors, for multiplexed spectroscopic measurements at the single-molecule level. FRETfluors are compact nanostructures constructed from three chemical components (DNA, Cy3 and Cy5) with tunable spectroscopic properties due to variations in geometry, fluorophore attachment chemistry and DNA sequence. We demonstrate FRETfluor labelling and detection for low-concentration (<100 fM) mixtures of mRNA, dsDNA and proteins using an anti-Brownian electrokinetic trap. In addition to identifying the unique spectroscopic signature of each FRETfluor, this trap differentiates FRETfluors attached to a target from unbound FRETfluors, enabling wash-free sensing. Although usually considered an undesirable complication of fluorescence, here the inherent sensitivity of fluorophores to the local physicochemical environment provides a new design axis complementary to changing the FRET efficiency. As a result, the number of distinguishable FRETfluor labels can be combinatorically increased while chemical compatibility is maintained, expanding prospects for spectroscopic multiplexing at the single-molecule level using a minimal set of chemical building blocks.
Collapse
Affiliation(s)
- Jiachong Chu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Ayesha Ejaz
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Kyle M Lin
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL, USA
- Interdisicplinary Scientist Training Program, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Madeline R Joseph
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Aria E Coraor
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - D Allan Drummond
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL, USA
- Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Allison H Squires
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Assefa GT, Botha JL, van Heerden B, Kyeyune F, Krüger TPJ, Gwizdala M. ApcE plays an important role in light-induced excitation energy dissipation in the Synechocystis PCC6803 phycobilisomes. PHOTOSYNTHESIS RESEARCH 2024; 160:17-29. [PMID: 38407779 PMCID: PMC11006782 DOI: 10.1007/s11120-024-01078-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/18/2024] [Indexed: 02/27/2024]
Abstract
Phycobilisomes (PBs) play an important role in cyanobacterial photosynthesis. They capture light and transfer excitation energy to the photosynthetic reaction centres. PBs are also central to some photoprotective and photoregulatory mechanisms that help sustain photosynthesis under non-optimal conditions. Amongst the mechanisms involved in excitation energy dissipation that are activated in response to excessive illumination is a recently discovered light-induced mechanism that is intrinsic to PBs and has been the least studied. Here, we used single-molecule spectroscopy and developed robust data analysis methods to explore the role of a terminal emitter subunit, ApcE, in this intrinsic, light-induced mechanism. We isolated the PBs from WT Synechocystis PCC 6803 as well as from the ApcE-C190S mutant of this strain and compared the dynamics of their fluorescence emission. PBs isolated from the mutant (i.e., ApcE-C190S-PBs), despite not binding some of the red-shifted pigments in the complex, showed similar global emission dynamics to WT-PBs. However, a detailed analysis of dynamics in the core revealed that the ApcE-C190S-PBs are less likely than WT-PBs to enter quenched states under illumination but still fully capable of doing so. This result points to an important but not exclusive role of the ApcE pigments in the light-induced intrinsic excitation energy dissipation mechanism in PBs.
Collapse
Affiliation(s)
- Gonfa Tesfaye Assefa
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| | - Joshua L Botha
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| | - Bertus van Heerden
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), Stellenbosch, South Africa
| | - Farooq Kyeyune
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
- Department of Physics, Faculty of Science, Kyambogo University, P.O. Box 1, Kyambogo, Kampala, Uganda
| | - Tjaart P J Krüger
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), Stellenbosch, South Africa
| | - Michal Gwizdala
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa.
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa.
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860, Spain.
| |
Collapse
|
5
|
Li Y, Li Q, Gillilan RE, Abbaspourrad A. Reversible disassembly-reassembly of C-phycocyanin in pressurization-depressurization cycles of high hydrostatic pressure. Int J Biol Macromol 2023; 253:127623. [PMID: 37879586 PMCID: PMC10842036 DOI: 10.1016/j.ijbiomac.2023.127623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
Hydrostatic pressure can reversibly modulate protein-protein and protein-chromophore interactions of C-phycocyanin (C-PC) from Spirulina platensis. Small-angle X-ray scattering combined with UV-Vis spectrophotometry and protein modeling was used to explore the color and structural changes of C-PC under high pressure conditions at different pH levels. It was revealed that pressures up to 350 MPa were enough to fully disassemble C-PC from trimers to monomers at pH 7.0, or from monomers to detached subunits at pH 9.0. These disassemblies were accompanied by protein unfolding that caused these high-pressure induced structures to be more extended. These changes were reversible following depressurization. The trimer-to-monomer transition proceeded through a collection of previously unrecognized, L-shaped intermediates resembling C-PC dimers. Additionally, pressurized C-PC showed decayed Q-band absorption and fortified Soret-band absorption. This was evidence that the folded tetrapyrroles, which had folded at ambient pressure, formed semicyclic unfolded conformations at a high pressure. Upon depressurization, the peak intensity and shift all recovered stepwise, showing pressure can precisely manipulate C-PC's structure as well as its color. Overall, a protein-chromophore regulatory theory of C-PC was unveiled. The pressure-tunability could be harnessed to modify and stabilize C-PC's structure and photochemical properties for designing new delivery and optical materials.
Collapse
Affiliation(s)
- Ying Li
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Qike Li
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Richard E Gillilan
- Cornell High Energy Synchrotron Source (MacCHESS), Cornell University, Ithaca, NY, USA
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
6
|
Manna P, Hoffmann M, Davies T, Richardson KH, Johnson MP, Schlau-Cohen GS. Energetic driving force for LHCII clustering in plant membranes. SCIENCE ADVANCES 2023; 9:eadj0807. [PMID: 38134273 PMCID: PMC10745693 DOI: 10.1126/sciadv.adj0807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Plants capture and convert solar energy in a complex network of membrane proteins. Under high light, the luminal pH drops and induces a reorganization of the protein network, particularly clustering of the major light-harvesting complex (LHCII). While the structures of the network have been resolved in exquisite detail, the thermodynamics that control the assembly and reorganization had not been determined, largely because the interaction energies of membrane proteins have been inaccessible. Here, we describe a method to quantify these energies and its application to LHCII. Using single-molecule measurements, LHCII proteoliposomes, and statistical thermodynamic modeling, we quantified the LHCII-LHCII interaction energy as ~-5 kBT at neutral pH and at least -7 kBT at acidic pH. These values revealed an enthalpic thermodynamic driving force behind LHCII clustering. Collectively, this work captures the interactions that drive the organization of membrane protein networks from the perspective of equilibrium statistical thermodynamics, which has a long and rich tradition in biology.
Collapse
Affiliation(s)
- Premashis Manna
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Madeline Hoffmann
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas Davies
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | | | - Matthew P. Johnson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
7
|
Moya R, Norris AC, Spangler LC, Scholes GD, Schlau-Cohen GS. Observation of conformational dynamics in single light-harvesting proteins from cryptophyte algae. J Chem Phys 2022; 157:035102. [PMID: 35868944 PMCID: PMC9894659 DOI: 10.1063/5.0095763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Photosynthetic organisms use pigment-protein complexes to capture the sunlight that powers most life on earth. Within these complexes, the position of the embedded pigments is all optimized for light harvesting. At the same time, the protein scaffold undergoes thermal fluctuations that vary the structure, and, thus, photophysics, of the complexes. While these variations are averaged out in ensemble measurements, single-molecule spectroscopy provides the ability to probe these conformational changes. We used single-molecule fluorescence spectroscopy to identify the photophysical substates reflective of distinct conformations and the associated conformational dynamics in phycoerythrin 545 (PE545), a pigment-protein complex from cryptophyte algae. Rapid switching between photophysical states was observed, indicating that ensemble measurements average over a conformational equilibrium. A highly quenched conformation was also identified, and its population increased under high light. This discovery establishes that PE545 has the characteristics to serve as a photoprotective site. Finally, unlike homologous proteins from the evolutionarily related cyanobacteria and red algae, quenching was not observed upon photobleaching, which may allow for robust photophysics without the need for rapid repair or replacement machinery. Collectively, these observations establish the presence of a rich and robust set of conformational states of PE545. Cryptophytes exhibit particularly diverse energetics owing to the variety of microenvironments in which they survive, and the conformational states and dynamics reported here may provide photophysical flexibility that contributes to their remarkable ability to flourish under diverse conditions.
Collapse
Affiliation(s)
- Raymundo Moya
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Audrey C. Norris
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Leah C. Spangler
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Gregory D. Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA,Author to whom correspondence should be addressed:
| |
Collapse
|
8
|
van Heerden B, Vickers NA, Krüger TPJ, Andersson SB. Real-Time Feedback-Driven Single-Particle Tracking: A Survey and Perspective. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107024. [PMID: 35758534 PMCID: PMC9308725 DOI: 10.1002/smll.202107024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/07/2022] [Indexed: 05/14/2023]
Abstract
Real-time feedback-driven single-particle tracking (RT-FD-SPT) is a class of techniques in the field of single-particle tracking that uses feedback control to keep a particle of interest in a detection volume. These methods provide high spatiotemporal resolution on particle dynamics and allow for concurrent spectroscopic measurements. This review article begins with a survey of existing techniques and of applications where RT-FD-SPT has played an important role. Each of the core components of RT-FD-SPT are systematically discussed in order to develop an understanding of the trade-offs that must be made in algorithm design and to create a clear picture of the important differences, advantages, and drawbacks of existing approaches. These components are feedback tracking and control, ranging from simple proportional-integral-derivative control to advanced nonlinear techniques, estimation to determine particle location from the measured data, including both online and offline algorithms, and techniques for calibrating and characterizing different RT-FD-SPT methods. Then a collection of metrics for RT-FD-SPT is introduced to help guide experimentalists in selecting a method for their particular application and to help reveal where there are gaps in the techniques that represent opportunities for further development. Finally, this review is concluded with a discussion on future perspectives in the field.
Collapse
Affiliation(s)
- Bertus van Heerden
- Department of Physics, University of Pretoria, Pretoria, 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Nicholas A Vickers
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
| | - Tjaart P J Krüger
- Department of Physics, University of Pretoria, Pretoria, 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Sean B Andersson
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
- Division of Systems Engineering, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
9
|
Sielaff H, Dienerowitz F, Dienerowitz M. Single-molecule FRET combined with electrokinetic trapping reveals real-time enzyme kinetics of individual F-ATP synthases. NANOSCALE 2022; 14:2327-2336. [PMID: 35084006 DOI: 10.1039/d1nr05754e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Single-molecule Förster resonance energy transfer (smFRET) is a key technique to observe conformational changes in molecular motors and to access the details of single-molecule static and dynamic disorder during catalytic processes. However, studying freely diffusing molecules in solution is limited to a few tens of milliseconds, while surface attachment often bears the risk to restrict their natural motion. In this paper we combine smFRET and electrokinetic trapping (ABEL trap) to non-invasively hold single FOF1-ATP synthases for up to 3 s within the detection volume, thereby extending the observation time by a factor of 10 as compared to Brownian diffusion without surface attachment. In addition, we are able to monitor complete reaction cycles and to selectively trap active molecules based on their smFRET signal, thus speeding up the data acquisition process. We demonstrate the capability of our method to study the dynamics of single molecules by recording the ATP-hydrolysis driven rotation of individual FOF1-ATP synthase molecules over numerous reaction cycles and extract their kinetic rates. We argue that our method is not limited to motor proteins. Instead, it can be applied to monitor conformational changes with millisecond time resolution for a wide range of enzymes, thereby making it a versatile tool for studying protein dynamics.
Collapse
Affiliation(s)
- Hendrik Sielaff
- Department of Chemistry, Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, 117557 Singapore, Singapore
| | - Frank Dienerowitz
- Ernst-Abbe-Hochschule Jena, University of Applied Sciences, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
| | - Maria Dienerowitz
- Single-Molecule Microscopy Group, Universitätsklinikum Jena, Nonnenplan 2-4, 07743 Jena, Germany.
| |
Collapse
|
10
|
Moya R, Norris AC, Kondo T, Schlau-Cohen GS. Observation of robust energy transfer in the photosynthetic protein allophycocyanin using single-molecule pump-probe spectroscopy. Nat Chem 2022; 14:153-159. [PMID: 34992285 PMCID: PMC9977402 DOI: 10.1038/s41557-021-00841-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/20/2021] [Indexed: 01/26/2023]
Abstract
Photosynthetic organisms convert sunlight to electricity with near unity quantum efficiency. Absorbed photoenergy transfers through a network of chromophores positioned within protein scaffolds, which fluctuate due to thermal motion. The resultant variation in the individual energy transfer steps has not yet been measured, and so how the efficiency is robust to this variation has not been determined. Here, we describe single-molecule pump-probe spectroscopy with facile spectral tuning and its application to the ultrafast dynamics of single allophycocyanin, a light-harvesting protein from cyanobacteria. We disentangled the energy transfer and energetic relaxation from nuclear motion using the spectral dependence of the dynamics. We observed an asymmetric distribution of timescales for energy transfer and a slower and more heterogeneous distribution of timescales for energetic relaxation, which was due to the impact of the protein environment. Collectively, these results suggest that energy transfer is robust to protein fluctuations, a prerequisite for efficient light harvesting.
Collapse
Affiliation(s)
- Raymundo Moya
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Audrey C. Norris
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Toru Kondo
- Department of Life Science and Technology, Tokyo Institute of Technology,PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA,To whom correspondence should be addressed;
| |
Collapse
|
11
|
Squires A, Wang Q, Dahlberg P, Moerner WE. A bottom-up perspective on photodynamics and photoprotection in light-harvesting complexes using anti-Brownian trapping. J Chem Phys 2022; 156:070901. [DOI: 10.1063/5.0079042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Quan Wang
- Genomics, Princeton University, United States of America
| | | | - W. E. Moerner
- Department of Chemistry, Stanford University, United States of America
| |
Collapse
|
12
|
Hirota Y, Serikawa H, Kawakami K, Ueno M, Kamiya N, Kosumi D. Ultrafast energy transfer dynamics of phycobilisome from Thermosynechococcus vulcanus, as revealed by ps fluorescence and fs pump-probe spectroscopies. PHOTOSYNTHESIS RESEARCH 2021; 148:181-190. [PMID: 33997927 DOI: 10.1007/s11120-021-00844-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Cyanobacterial photosynthetic systems efficiently capture sunlight using the pigment-protein megacomplexes, phycobilisome (PBS). The energy is subsequently transferred to photosystem I (PSI) and II (PSII), to produce electrochemical potentials. In the present study, we performed picosecond (ps) time-resolved fluorescence and femtosecond (fs) pump-probe spectroscopies on the intact PBS from a thermophilic cyanobacterium, Thermosynechococcus vulcanus, to reveal excitation energy transfer dynamics in PBS. The photophysical properties of the intact PBS were well characterized by spectroscopic measurements covering wide temporal range from femtoseconds to nanoseconds. The ps fluorescence measurements excited at 570 nm, corresponding to the higher energy of the phycocyanin (PC) absorption band, demonstrated the excitation energy transfer from the PC rods to the allophycocyanin (APC) core complex as well as the energy transfer in the APC core complex. Then, the fs pump-probe measurements revealed the detailed energy transfer dynamics in the PC rods taking place in an ultrafast time scale. The results obtained in this study provide the full picture of the funnel-type excitation energy transfer with rate constants of (0.57 ps)-1 → (7.3 ps)-1 → (53 ps)-1 → (180 ps)-1 → (1800 ps)-1.
Collapse
Affiliation(s)
- Yuma Hirota
- Department of Physics, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Hiroki Serikawa
- Department of Physics, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Keisuke Kawakami
- Biostructual Mechanism Laboratory, RIKEN Spring-8 Center, 1-1-1, Sayo, Kouto, Hyougo, 679-5148, Japan.
| | - Masato Ueno
- Department of Physics, Faculty of Science, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Nobuo Kamiya
- The OCU Research Center for Artificial Photosynthesis, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Daisuke Kosumi
- Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.
| |
Collapse
|
13
|
Dienerowitz M, Howard JAL, Quinn SD, Dienerowitz F, Leake MC. Single-molecule FRET dynamics of molecular motors in an ABEL trap. Methods 2021; 193:96-106. [PMID: 33571667 DOI: 10.1016/j.ymeth.2021.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Single-molecule Förster resonance energy transfer (smFRET) of molecular motors provides transformative insights into their dynamics and conformational changes both at high temporal and spatial resolution simultaneously. However, a key challenge of such FRET investigations is to observe a molecule in action for long enough without restricting its natural function. The Anti-Brownian ELectrokinetic Trap (ABEL trap) sets out to combine smFRET with molecular confinement to enable observation times of up to several seconds while removing any requirement of tethered surface attachment of the molecule in question. In addition, the ABEL trap's inherent ability to selectively capture FRET active molecules accelerates the data acquisition process. In this work we exemplify the capabilities of the ABEL trap in performing extended timescale smFRET measurements on the molecular motor Rep, which is crucial for removing protein blocks ahead of the advancing DNA replication machinery and for restarting stalled DNA replication. We are able to monitor single Rep molecules up to 6 seconds with sub-millisecond time resolution capturing multiple conformational switching events during the observation time. Here we provide a step-by-step guide for the rational design, construction and implementation of the ABEL trap for smFRET detection of Rep in vitro. We include details of how to model the electric potential at the trap site and use Hidden Markov analysis of the smFRET trajectories.
Collapse
Affiliation(s)
- Maria Dienerowitz
- Single-Molecule Microscopy Group, Universitätsklinikum Jena, Nonnenplan 2 - 4, 07743 Jena, Germany.
| | - Jamieson A L Howard
- Department of Physics, University of York, Heslington, York YO10 5DD, UK; Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Steven D Quinn
- Department of Physics, University of York, Heslington, York YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| | - Frank Dienerowitz
- Ernst-Abbe-Hochschule Jena, University of Applied Sciences, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
| | - Mark C Leake
- Department of Physics, University of York, Heslington, York YO10 5DD, UK; Department of Biology, University of York, Heslington, York YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
14
|
Sarrou I, Feiler CG, Falke S, Peard N, Yefanov O, Chapman H. C-phycocyanin as a highly attractive model system in protein crystallography: unique crystallization properties and packing-diversity screening. Acta Crystallogr D Struct Biol 2021; 77:224-236. [PMID: 33559611 PMCID: PMC7869899 DOI: 10.1107/s2059798320016071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/09/2020] [Indexed: 01/08/2023] Open
Abstract
The unique crystallization properties of the antenna protein C-phycocyanin (C-PC) from the thermophilic cyanobacterium Thermosynechococcus elongatus are reported and discussed. C-PC crystallizes in hundreds of significantly different conditions within a broad pH range and in the presence of a wide variety of precipitants and additives. Remarkably, the crystal dimensions vary from a few micrometres, as used in serial crystallography, to several hundred micrometres, with a very diverse crystal morphology. More than 100 unique single-crystal X-ray diffraction data sets were collected from randomly selected crystals and analysed. The addition of small-molecule additives revealed three new crystal packings of C-PC, which are discussed in detail. The high propensity of this protein to crystallize, combined with its natural blue colour and its fluorescence characteristics, make it an excellent candidate as a superior and highly adaptable model system in crystallography. C-PC can be used in technical and methods development approaches for X-ray and neutron diffraction techniques, and as a system for comprehending the fundamental principles of protein crystallography.
Collapse
Affiliation(s)
- Iosifina Sarrou
- Centre for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Christian G. Feiler
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Sven Falke
- Laboratory for Structural Biology of Infection and Inflammation, Universität Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
| | - Nolan Peard
- Centre for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Oleksandr Yefanov
- Centre for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Henry Chapman
- Centre for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
| |
Collapse
|
15
|
Kirilovsky D. Modulating Energy Transfer from Phycobilisomes to Photosystems: State Transitions and OCP-Related Non-Photochemical Quenching. PHOTOSYNTHESIS IN ALGAE: BIOCHEMICAL AND PHYSIOLOGICAL MECHANISMS 2020. [DOI: 10.1007/978-3-030-33397-3_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Bespalova MI, Mahanta S, Krishnan M. Single-molecule trapping and measurement in solution. Curr Opin Chem Biol 2019; 51:113-121. [DOI: 10.1016/j.cbpa.2019.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/01/2019] [Accepted: 05/13/2019] [Indexed: 01/27/2023]
|
17
|
Squires A, Lavania AA, Dahlberg PD, Moerner WE. Interferometric Scattering Enables Fluorescence-Free Electrokinetic Trapping of Single Nanoparticles in Free Solution. NANO LETTERS 2019; 19:4112-4117. [PMID: 31117762 PMCID: PMC6604838 DOI: 10.1021/acs.nanolett.9b01514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/13/2019] [Indexed: 05/05/2023]
Abstract
Anti-Brownian traps confine single particles in free solution by closed-loop feedback forces that directly counteract Brownian motion. Extended-duration measurements on trapped objects allow detailed characterization of photophysical and transport properties as well as observation of infrequent or rare dynamics. However, this approach has been generally limited to particles that can be tracked by fluorescence emission. Here we present the Interferometric Scattering Anti-Brownian ELectrokinetic (ISABEL) trap, which uses interferometric scattering rather than fluorescence to monitor particle position. By decoupling the ability to track (and therefore trap) a particle from collection of its spectroscopic data, the ISABEL trap enables confinement and extended study of single particles that do not fluoresce, only weakly fluoresce, or exhibit intermittent fluorescence or photobleaching. This new technique significantly expands the range of nanoscale objects that may be investigated at the single-particle level in free solution.
Collapse
Affiliation(s)
- Allison
H. Squires
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Abhijit A. Lavania
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Department
of Applied Physics, Stanford University, Stanford, California 94305, United States
| | - Peter D. Dahlberg
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - W. E. Moerner
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Department
of Applied Physics, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
18
|
Squires AH, Dahlberg PD, Liu H, Magdaong NCM, Blankenship RE, Moerner WE. Single-molecule trapping and spectroscopy reveals photophysical heterogeneity of phycobilisomes quenched by Orange Carotenoid Protein. Nat Commun 2019; 10:1172. [PMID: 30862823 PMCID: PMC6414729 DOI: 10.1038/s41467-019-09084-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/15/2019] [Indexed: 11/09/2022] Open
Abstract
The Orange Carotenoid Protein (OCP) is a cytosolic photosensor that is responsible for non-photochemical quenching (NPQ) of the light-harvesting process in most cyanobacteria. Upon photoactivation by blue-green light, OCP binds to the phycobilisome antenna complex, providing an excitonic trap to thermally dissipate excess energy. At present, both the binding site and NPQ mechanism of OCP are unknown. Using an Anti-Brownian ELectrokinetic (ABEL) trap, we isolate single phycobilisomes in free solution, both in the presence and absence of activated OCP, to directly determine the photophysics and heterogeneity of OCP-quenched phycobilisomes. Surprisingly, we observe two distinct OCP-quenched states, with lifetimes 0.09 ns (6% of unquenched brightness) and 0.21 ns (11% brightness). Photon-by-photon Monte Carlo simulations of exciton transfer through the phycobilisome suggest that the observed quenched states are kinetically consistent with either two or one bound OCPs, respectively, underscoring an additional mechanism for excitation control in this key photosynthetic unit. Upon photoactivation the Orange Carotenoid Protein (OCP) binds to the phycobilisome and prevents damage by thermally dissipating excess energy. Here authors use an Anti-Brownian ELectrokinetic trap to determine the photophysics of single OCP-quenched phycobilisomes and observe two distinct OCP-quenched states with either one or two OCPs bound.
Collapse
Affiliation(s)
- Allison H Squires
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Peter D Dahlberg
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Haijun Liu
- Departments of Biology and Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Nikki Cecil M Magdaong
- Departments of Biology and Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Robert E Blankenship
- Departments of Biology and Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
19
|
Foote AK, Manger LH, Holden MR, Margittai M, Goldsmith RH. Time-resolved multirotational dynamics of single solution-phase tau proteins reveals details of conformational variation. Phys Chem Chem Phys 2019; 21:1863-1871. [PMID: 30632561 PMCID: PMC6449148 DOI: 10.1039/c8cp06971a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Intrinsically disordered proteins (IDPs) are crucial to many cellular processes and have been linked to neurodegenerative diseases. Single molecules of tau, an IDP associated with Alzheimer's disease, are trapped in solution using a microfluidic device, and a time-resolved fluorescence anisotropy decay is recorded for each molecule. Multiple rotational components are resolved and a novel k-means algorithm is used to sort the molecules into two families of conformations. Differences in rotational dynamics suggest a change in the rigidity and steric hindrance surrounding a sequence (306VQIVYK311) which is central to paired helical filament formation. This single-molecule approach can be applied to other IDPs to resolve heterogeneous populations and underlying differences in conformational dynamics.
Collapse
Affiliation(s)
- Alexander K Foote
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
20
|
van Stokkum IHM, Gwizdala M, Tian L, Snellenburg JJ, van Grondelle R, van Amerongen H, Berera R. A functional compartmental model of the Synechocystis PCC 6803 phycobilisome. PHOTOSYNTHESIS RESEARCH 2018; 135:87-102. [PMID: 28721458 PMCID: PMC5784004 DOI: 10.1007/s11120-017-0424-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/11/2017] [Indexed: 05/28/2023]
Abstract
In the light-harvesting antenna of the Synechocystis PCC 6803 phycobilisome (PB), the core consists of three cylinders, each composed of four disks, whereas each of the six rods consists of up to three hexamers (Arteni et al., Biochim Biophys Acta 1787(4):272-279, 2009). The rods and core contain phycocyanin and allophycocyanin pigments, respectively. Together these pigments absorb light between 400 and 650 nm. Time-resolved difference absorption spectra from wild-type PB and rod mutants have been measured in different quenching and annihilation conditions. Based upon a global analysis of these data and of published time-resolved emission spectra, a functional compartmental model of the phycobilisome is proposed. The model describes all experiments with a common set of parameters. Three annihilation time constants are estimated, 3, 25, and 147 ps, which represent, respectively, intradisk, interdisk/intracylinder, and intercylinder annihilation. The species-associated difference absorption and emission spectra of two phycocyanin and two allophycocyanin pigments are consistently estimated, as well as all the excitation energy transfer rates. Thus, the wild-type PB containing 396 pigments can be described by a functional compartmental model of 22 compartments. When the interhexamer equilibration within a rod is not taken into account, this can be further simplified to ten compartments, which is the minimal model. In this model, the slowest excitation energy transfer rates are between the core cylinders (time constants 115-145 ps), and between the rods and the core (time constants 68-115 ps).
Collapse
Affiliation(s)
- Ivo H M van Stokkum
- Faculty of Sciences, Institute for Lasers, Life and Biophotonics, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| | - Michal Gwizdala
- Faculty of Sciences, Institute for Lasers, Life and Biophotonics, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
- Department of Physics, University of Pretoria, Pretoria, South Africa
| | - Lijin Tian
- Faculty of Sciences, Institute for Lasers, Life and Biophotonics, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
| | - Joris J Snellenburg
- Faculty of Sciences, Institute for Lasers, Life and Biophotonics, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Faculty of Sciences, Institute for Lasers, Life and Biophotonics, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | | | - Rudi Berera
- Faculty of Sciences, Institute for Lasers, Life and Biophotonics, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
- Department of Food Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa, 761-0795, Japan
| |
Collapse
|
21
|
Direct single-molecule measurements of phycocyanobilin photophysics in monomeric C-phycocyanin. Proc Natl Acad Sci U S A 2017; 114:9779-9784. [PMID: 28847963 DOI: 10.1073/pnas.1705435114] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phycobilisomes are highly organized pigment-protein antenna complexes found in the photosynthetic apparatus of cyanobacteria and rhodophyta that harvest solar energy and transport it to the reaction center. A detailed bottom-up model of pigment organization and energy transfer in phycobilisomes is essential to understanding photosynthesis in these organisms and informing rational design of artificial light-harvesting systems. In particular, heterogeneous photophysical behaviors of these proteins, which cannot be predicted de novo, may play an essential role in rapid light adaptation and photoprotection. Furthermore, the delicate architecture of these pigment-protein scaffolds sensitizes them to external perturbations, for example, surface attachment, which can be avoided by study in free solution or in vivo. Here, we present single-molecule characterization of C-phycocyanin (C-PC), a three-pigment biliprotein that self-assembles to form the midantenna rods of cyanobacterial phycobilisomes. Using the Anti-Brownian Electrokinetic (ABEL) trap to counteract Brownian motion of single particles in real time, we directly monitor the changing photophysical states of individual C-PC monomers from Spirulina platensis in free solution by simultaneous readout of their brightness, fluorescence anisotropy, fluorescence lifetime, and emission spectra. These include single-chromophore emission states for each of the three covalently bound phycocyanobilins, providing direct measurements of the spectra and photophysics of these chemically identical molecules in their native protein environment. We further show that a simple Förster resonant energy transfer (FRET) network model accurately predicts the observed photophysical states of C-PC and suggests highly variable quenching behavior of one of the chromophores, which should inform future studies of higher-order complexes.
Collapse
|
22
|
Bao H, Melnicki MR, Kerfeld CA. Structure and functions of Orange Carotenoid Protein homologs in cyanobacteria. CURRENT OPINION IN PLANT BIOLOGY 2017; 37:1-9. [PMID: 28391046 DOI: 10.1016/j.pbi.2017.03.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 06/07/2023]
Abstract
Rapidly-induced photoprotection in cyanobacteria involves thermal dissipation of excess energy absorbed by the phycobilisome (PBS), the primary light-harvesting antenna. This process is called non-photochemical quenching (NPQ), and is mediated by a water-soluble photoactive protein, the Orange Carotenoid Protein (OCP). The OCP is structurally and functionally modular, consisting of a sensor domain, an effector domain, and a carotenoid. Blue-green light induces a structural transition of the OCP from the orange inactive form, OCPo, to the red active form, OCPR. Translocation of the carotenoid into the effector domain accompanies photoactivation. The OCPR binds to the PBS core, where it triggers dissipation of excitation energy and quenches fluorescence. To recover the antenna capacity under low light conditions, the Fluorescence Recovery Protein (FRP) participates in detaching the OCP from the PBS and accelerates back-conversion of OCPR to OCPo. Increased sequencing of cyanobacterial genomes has allowed the identification of new paralogous families of the OCP and its domain homologs, the Helical Carotenoid Proteins (HCPs), which have been found distributed widely among taxonomically and ecophysiologically diverse cyanobacteria. Distinct functions from the canonical OCP have been revealed for some of these paralogs by recent structural and functional studies.
Collapse
Affiliation(s)
- Han Bao
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Matthew R Melnicki
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
23
|
Eisenberg I, Caycedo-Soler F, Harris D, Yochelis S, Huelga SF, Plenio MB, Adir N, Keren N, Paltiel Y. Regulating the Energy Flow in a Cyanobacterial Light-Harvesting Antenna Complex. J Phys Chem B 2017; 121:1240-1247. [DOI: 10.1021/acs.jpcb.6b10590] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ido Eisenberg
- Applied
Physics Department and The Center for Nano-Science and Nano-Technology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Felipe Caycedo-Soler
- Institute
of Theoretical Physics, Ulm University, Albert Einstein Alle 11, 89069 Ulm, Germany
| | - Dvir Harris
- Schulich
Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Shira Yochelis
- Applied
Physics Department and The Center for Nano-Science and Nano-Technology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Susana F. Huelga
- Institute
of Theoretical Physics, Ulm University, Albert Einstein Alle 11, 89069 Ulm, Germany
| | - Martin B. Plenio
- Institute
of Theoretical Physics, Ulm University, Albert Einstein Alle 11, 89069 Ulm, Germany
| | - Noam Adir
- Schulich
Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Nir Keren
- Department
of Plant and Environmental Sciences, Alexander Silberman Institute
of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel
| | - Yossi Paltiel
- Applied
Physics Department and The Center for Nano-Science and Nano-Technology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
24
|
Kondo T, Chen WJ, Schlau-Cohen GS. Single-Molecule Fluorescence Spectroscopy of Photosynthetic Systems. Chem Rev 2017; 117:860-898. [DOI: 10.1021/acs.chemrev.6b00195] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Toru Kondo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Wei Jia Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| |
Collapse
|
25
|
Multi-dimensional super-resolution imaging enables surface hydrophobicity mapping. Nat Commun 2016; 7:13544. [PMID: 27929085 PMCID: PMC5155161 DOI: 10.1038/ncomms13544] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/13/2016] [Indexed: 12/20/2022] Open
Abstract
Super-resolution microscopy allows biological systems to be studied at the nanoscale, but has been restricted to providing only positional information. Here, we show that it is possible to perform multi-dimensional super-resolution imaging to determine both the position and the environmental properties of single-molecule fluorescent emitters. The method presented here exploits the solvatochromic and fluorogenic properties of nile red to extract both the emission spectrum and the position of each dye molecule simultaneously enabling mapping of the hydrophobicity of biological structures. We validated this by studying synthetic lipid vesicles of known composition. We then applied both to super-resolve the hydrophobicity of amyloid aggregates implicated in neurodegenerative diseases, and the hydrophobic changes in mammalian cell membranes. Our technique is easily implemented by inserting a transmission diffraction grating into the optical path of a localization-based super-resolution microscope, enabling all the information to be extracted simultaneously from a single image plane.
Many super-resolution imaging techniques use fluorescence emission intensity to obtain precise positional information, but other spectral information is ignored. Here, the authors develop a method that records the spectrum and position of single dye molecules to map the hydrophobicity of a surface.
Collapse
|
26
|
Kirilovsky D, Kerfeld CA. Cyanobacterial photoprotection by the orange carotenoid protein. NATURE PLANTS 2016; 2:16180. [PMID: 27909300 DOI: 10.1038/nplants.2016.180] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/20/2016] [Indexed: 05/18/2023]
Abstract
In photosynthetic organisms, the production of dangerous oxygen species is stimulated under high irradiance. To cope with this stress, these organisms have evolved photoprotective mechanisms. One type of mechanism functions to decrease the energy arriving at the photochemical centres by increasing thermal dissipation at the level of antennae. In cyanobacteria, the trigger for this mechanism is the photoactivation of a soluble carotenoid protein, the orange carotenoid protein (OCP), which is a structurally and functionally modular protein. The inactive orange form (OCPo) is compact and globular, with the carotenoid spanning the effector and the regulatory domains. In the active red form (OCPr), the two domains are completely separated and the carotenoid has translocated entirely into the effector domain. The activated OCPr interacts with the phycobilisome (PBS), the cyanobacterial antenna, and induces excitation-energy quenching. A second protein, the fluorescence recovery protein (FRP), dislodges the active OCPr from the PBSs and accelerates its conversion to the inactive OCP.
Collapse
Affiliation(s)
- Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique (CEA), 91191 Gif-sur-Yvette, France
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Berkeley Synthetic Biology Institute, Berkeley, California 94720, USA
| |
Collapse
|
27
|
Melnicki MR, Leverenz RL, Sutter M, López-Igual R, Wilson A, Pawlowski EG, Perreau F, Kirilovsky D, Kerfeld CA. Structure, Diversity, and Evolution of a New Family of Soluble Carotenoid-Binding Proteins in Cyanobacteria. MOLECULAR PLANT 2016; 9:1379-1394. [PMID: 27392608 DOI: 10.1016/j.molp.2016.06.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/25/2016] [Accepted: 06/20/2016] [Indexed: 05/15/2023]
Abstract
Using a phylogenomic approach, we have identified and subclassified a new family of carotenoid-binding proteins. These proteins have sequence homology to the N-terminal domain (NTD) of the Orange Carotenoid Protein (OCP), and are referred to as Helical Carotenoid Proteins (HCPs). These proteins comprise at least nine distinct clades and are found in diverse organisms, frequently as multiple paralogs representing the distinct clades. These seem to be out-paralogs maintained from ancient duplications associated with subfunctionalization. All of the HCPs share conservation of the residues for carotenoid binding, and we confirm that carotenoid binding is a fundamental property of HCPs. We solved two crystal structures of the Nostoc sp. PCC 7120 HCP1 protein, each binding a different carotenoid, suggesting that the proteins flexibly bind a range of carotenoids. Based on a comprehensive phylogenetic analysis, we propose that one of the HCP subtypes is likely the evolutionary ancestor of the NTD of the OCP, which arose following a domain fusion event. However, we predict that the majority of HCPs have functions distinct from the NTD of the OCP. Our results demonstrate that the HCPs are a new family of functionally diverse carotenoid-binding proteins found among ecophysiologically diverse cyanobacteria.
Collapse
Affiliation(s)
- Matthew R Melnicki
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ryan L Leverenz
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Markus Sutter
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Rocío López-Igual
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; Commissariat à l'Energie Atomique (CEA), Institut de Biologie et Technologies de Saclay (iBiTec-S), 91191 Gif-sur-Yvette, France
| | - Adjélé Wilson
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; Commissariat à l'Energie Atomique (CEA), Institut de Biologie et Technologies de Saclay (iBiTec-S), 91191 Gif-sur-Yvette, France
| | - Emily G Pawlowski
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - François Perreau
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, 78026 Versailles, France
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; Commissariat à l'Energie Atomique (CEA), Institut de Biologie et Technologies de Saclay (iBiTec-S), 91191 Gif-sur-Yvette, France
| | - Cheryl A Kerfeld
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
28
|
Gwizdala M, Berera R, Kirilovsky D, van Grondelle R, Krüger TP. Controlling Light Harvesting with Light. J Am Chem Soc 2016; 138:11616-22. [DOI: 10.1021/jacs.6b04811] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Michal Gwizdala
- Department
of Physics and Astronomy, VU Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Rudi Berera
- Department
of Food Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| | - Diana Kirilovsky
- Centre National de la Recherche Scientifique (CNRS), I2BC, UMR 9198, 91191 Gif-sur-Yvette, France
- Commissariat
à l’Energie Atomique (CEA), Institut de Biologie et Technologies de Saclay (iBiTec-S), 91191 Gif-sur-Yvette, France
| | - Rienk van Grondelle
- Department
of Physics and Astronomy, VU Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department
of Physics, University of Pretoria, 0028 Hatfield, South Africa
| | - Tjaart P.J. Krüger
- Department
of Physics, University of Pretoria, 0028 Hatfield, South Africa
| |
Collapse
|
29
|
Banterle N, Lemke EA. Nanoscale devices for linkerless long-term single-molecule observation. Curr Opin Biotechnol 2016; 39:105-112. [PMID: 26990172 PMCID: PMC7611743 DOI: 10.1016/j.copbio.2016.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 01/07/2023]
Abstract
Total internal reflection fluorescence microscopy (TIRFM) can offer favorably high signal-to-noise observation of biological mechanisms. TIRFM can be used routinely to observe even single fluorescent molecules for a long duration (several seconds) at millisecond time resolution. However, to keep the investigated sample in the evanescent field, chemical surface immobilization techniques typically need to be implemented. In this review, we describe some of the recently developed novel nanodevices that overcome this limitation enabling long-term observation of free single molecules and outline their biological applications. The working concept of many devices is compatible with high-throughput strategies, which will further help to establish unbiased single molecule observation as a routine tool in biology to study the molecular underpinnings of even the most complex biological mechanisms.
Collapse
Affiliation(s)
- Niccolò Banterle
- Structural and Computational Biology Unit and Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Edward A Lemke
- Structural and Computational Biology Unit and Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
30
|
Miao D, Ding WL, Zhao BQ, Lu L, Xu QZ, Scheer H, Zhao KH. Adapting photosynthesis to the near-infrared: non-covalent binding of phycocyanobilin provides an extreme spectral red-shift to phycobilisome core-membrane linker from Synechococcus sp. PCC7335. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:688-94. [DOI: 10.1016/j.bbabio.2016.03.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 03/10/2016] [Accepted: 03/31/2016] [Indexed: 12/11/2022]
|
31
|
Orange carotenoid protein burrows into the phycobilisome to provide photoprotection. Proc Natl Acad Sci U S A 2016; 113:E1655-62. [PMID: 26957606 DOI: 10.1073/pnas.1523680113] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In cyanobacteria, photoprotection from overexcitation of photochemical centers can be obtained by excitation energy dissipation at the level of the phycobilisome (PBS), the cyanobacterial antenna, induced by the orange carotenoid protein (OCP). A single photoactivated OCP bound to the core of the PBS affords almost total energy dissipation. The precise mechanism of OCP energy dissipation is yet to be fully determined, and one question is how the carotenoid can approach any core phycocyanobilin chromophore at a distance that can promote efficient energy quenching. We have performed intersubunit cross-linking using glutaraldehyde of the OCP and PBS followed by liquid chromatography coupled to tandem mass spectrometry (LC/MS-MS) to identify cross-linked residues. The only residues of the OCP that cross-link with the PBS are situated in the linker region, between the N- and C-terminal domains and a single C-terminal residue. These links have enabled us to construct a model of the site of OCP binding that differs from previous models. We suggest that the N-terminal domain of the OCP burrows tightly into the PBS while leaving the OCP C-terminal domain on the exterior of the complex. Further analysis shows that the position of the small core linker protein ApcC is shifted within the cylinder cavity, serving to stabilize the interaction between the OCP and the PBS. This is confirmed by a ΔApcC mutant. Penetration of the N-terminal domain can bring the OCP carotenoid to within 5-10 Å of core chromophores; however, alteration of the core structure may be the actual source of energy dissipation.
Collapse
|
32
|
Abstract
As of 2015, it has been 26 years since the first optical detection and spectroscopy of single molecules in condensed matter. This area of science has expanded far beyond the early low temperature studies in crystals to include single molecules in cells, polymers, and in solution. The early steps relied upon high-resolution spectroscopy of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral fine structure arising directly from the position-dependent fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 1990s, a variety of fascinating physical effects were observed for individual molecules, including imaging of the light from single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency. In the room temperature regime, researchers showed that bursts of light from single molecules could be detected in solution, leading to imaging and microscopy by a variety of methods. Studies of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. All of these early steps provided important fundamentals underpinning the development of super-resolution microscopy based on single-molecule localization and active control of emitting concentration. Current thrust areas include extensions to three-dimensional imaging with high precision, orientational analysis of single molecules, and direct measurements of photodynamics and transport properties for single molecules trapped in solution by suppression of Brownian motion. Without question, a huge variety of studies of single molecules performed by many talented scientists all over the world have extended our knowledge of the nanoscale and many microscopic mechanisms previously hidden by ensemble averaging.
Collapse
Affiliation(s)
- W E Moerner
- Department of Chemistry, Stanford University, Stanford, California 94305, USA.
| | | | | |
Collapse
|
33
|
Structural and functional dynamics of photosynthetic antenna complexes. Proc Natl Acad Sci U S A 2015; 112:13751-2. [PMID: 26556885 DOI: 10.1073/pnas.1519063112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|