1
|
Sahoo SS, Erlacher M, Wlodarski MW. Genetic and clinical spectrum of SAMD9 and SAMD9L syndromes: from variant interpretation to patient management. Blood 2025; 145:475-485. [PMID: 39475954 PMCID: PMC11826520 DOI: 10.1182/blood.2022017717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/18/2024] [Indexed: 01/31/2025] Open
Abstract
ABSTRACT Sterile alpha motif domain-containing protein 9 (SAMD9) and SAMD9-like (SAMD9L) are paralogous genes encoding antiviral proteins that negatively regulate cell proliferation. Heterozygous germ line gain-of-function (GoF) SAMD9/9L variants cause multisystem syndromes with variable manifestations. The unifying features are cytopenia, immunodeficiency, infections, bone marrow failure, myelodysplasia, and monosomy 7. Nonhematopoietic presentations can affect almost every organ system. Growth impairment and adrenal insufficiency are typical in SAMD9, whereas progressive neurologic deficits characterize SAMD9L. Most patients (>90%) carry germ line missense GoF variants. A subgroup of patients presenting with SAMD9L-associated inflammatory disease carry frameshift-truncating variants that are also GoF. Somatic genetic rescue occurs in two-third of patients or more and involves monosomy 7, which may spontaneously disappear (transient monosomy 7) or progress to myelodysplastic syndrome (MDS)/leukemia, and adaptive clones with somatic SAMD9/9L compensatory mutations or uniparental disomy 7q (UPD7q), both associated with remission. This manuscript examines the clinical and genetic spectrum, therapies, and outcome based on 243 published patients compiled in our registry, with additional genetic information on 62 unpublished cases. We consolidate the diverse clinical manifestations and diagnostic challenges of SAMD9/9L syndromes to enhance recognition and improve patient care. We highlight the knowledge gaps in pathomechanisms and emphasize the importance of genetic surveillance assessing disease remission vs disease progression. Insights are provided into variant curation and the necessity of testing for somatic SAMD9/9L mutations and UPD7q. Multidisciplinary care in specialized centers is critical to manage these complex disorders. Future natural history studies, especially in patients with monosomy 7, will help formulate evidence-based surveillance protocols and optimize transplant timing and outcomes.
Collapse
Affiliation(s)
- Sushree S. Sahoo
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Miriam Erlacher
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Marcin W. Wlodarski
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
2
|
Embry A, Gammon DB. Abortive Infection of Animal Cells: What Goes Wrong. Annu Rev Virol 2024; 11:193-213. [PMID: 38631917 PMCID: PMC11427174 DOI: 10.1146/annurev-virology-100422-023037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Even if a virus successfully binds to a cell, defects in any of the downstream steps of the viral life cycle can preclude the production of infectious virus particles. Such abortive infections are likely common in nature and can provide fundamental insights into the cell and host tropism of viral pathogens. Research over the past 60 years has revealed an incredible diversity of abortive infections by DNA and RNA viruses in various animal cell types. Here we discuss the general causes of abortive infections and provide specific examples from the literature to illustrate the range of abortive infections that have been reported. We also discuss how abortive infections can have critical roles in shaping host immune responses and in the development of virus-induced cancers. Finally, we describe how abortive infections can be applied to basic and clinical research, underscoring the importance of understanding these fascinating aspects of virus biology.
Collapse
Affiliation(s)
- Aaron Embry
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| | - Don B Gammon
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| |
Collapse
|
3
|
Shan KJ, Wu C, Tang X, Lu R, Hu Y, Tan W, Lu J. Molecular Evolution of Protein Sequences and Codon Usage in Monkeypox Viruses. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzad003. [PMID: 38862422 PMCID: PMC11425058 DOI: 10.1093/gpbjnl/qzad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 06/13/2024]
Abstract
The monkeypox virus (mpox virus, MPXV) epidemic in 2022 has posed a significant public health risk. Yet, the evolutionary principles of MPXV remain largely unknown. Here, we examined the evolutionary patterns of protein sequences and codon usage in MPXV. We first demonstrated the signal of positive selection in OPG027, specifically in the Clade I lineage of MPXV. Subsequently, we discovered accelerated protein sequence evolution over time in the variants responsible for the 2022 outbreak. Furthermore, we showed strong epistasis between amino acid substitutions located in different genes. The codon adaptation index (CAI) analysis revealed that MPXV genes tended to use more non-preferred codons compared to human genes, and the CAI decreased over time and diverged between clades, with Clade I > IIa and IIb-A > IIb-B. While the decrease in fatality rate among the three groups aligned with the CAI pattern, it remains unclear whether this correlation was coincidental or if the deoptimization of codon usage in MPXV led to a reduction in fatality rates. This study sheds new light on the mechanisms that govern the evolution of MPXV in human populations.
Collapse
Affiliation(s)
- Ke-Jia Shan
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
- Sinovac Biotech Ltd., Beijing 100085, China
| | - Changcheng Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Roujian Lu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Yaling Hu
- Sinovac Biotech Ltd., Beijing 100085, China
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Yang CH, Song AL, Qiu Y, Ge XY. Cross-species transmission and host range genes in poxviruses. Virol Sin 2024; 39:177-193. [PMID: 38272237 PMCID: PMC11074647 DOI: 10.1016/j.virs.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The persistent epidemic of human mpox, caused by mpox virus (MPXV), raises concerns about the future spread of MPXV and other poxviruses. MPXV is a typical zoonotic virus which can infect human and cause smallpox-like symptoms. MPXV belongs to the Poxviridae family, which has a relatively broad host range from arthropods to vertebrates. Cross-species transmission of poxviruses among different hosts has been frequently reported and resulted in numerous epidemics. Poxviruses have a complex linear double-strand DNA genome that encodes hundreds of proteins. Genes related to the host range of poxvirus are called host range genes (HRGs). This review briefly introduces the taxonomy, phylogeny and hosts of poxviruses, and then comprehensively summarizes the current knowledge about the cross-species transmission of poxviruses. In particular, the HRGs of poxvirus are described and their impacts on viral host range are discussed in depth. We hope that this review will provide a comprehensive perspective about the current progress of researches on cross-species transmission and HRG variation of poxviruses, serving as a valuable reference for academic studies and disease control in the future.
Collapse
Affiliation(s)
- Chen-Hui Yang
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410012, China
| | - A-Ling Song
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410012, China
| | - Ye Qiu
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410012, China.
| | - Xing-Yi Ge
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410012, China.
| |
Collapse
|
5
|
Zhang F, Ji Q, Chaturvedi J, Morales M, Mao Y, Meng X, Dong L, Deng J, Qian SB, Xiang Y. Human SAMD9 is a poxvirus-activatable anticodon nuclease inhibiting codon-specific protein synthesis. SCIENCE ADVANCES 2023; 9:eadh8502. [PMID: 37285440 PMCID: PMC10246899 DOI: 10.1126/sciadv.adh8502] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023]
Abstract
As a defense strategy against viruses or competitors, some microbes use anticodon nucleases (ACNases) to deplete essential tRNAs, effectively halting global protein synthesis. However, this mechanism has not been observed in multicellular eukaryotes. Here, we report that human SAMD9 is an ACNase that specifically cleaves phenylalanine tRNA (tRNAPhe), resulting in codon-specific ribosomal pausing and stress signaling. While SAMD9 ACNase activity is normally latent in cells, it can be activated by poxvirus infection or rendered constitutively active by SAMD9 mutations associated with various human disorders, revealing tRNAPhe depletion as an antiviral mechanism and a pathogenic condition in SAMD9 disorders. We identified the N-terminal effector domain of SAMD9 as the ACNase, with substrate specificity primarily determined by a eukaryotic tRNAPhe-specific 2'-O-methylation at the wobble position, making virtually all eukaryotic tRNAPhe susceptible to SAMD9 cleavage. Notably, the structure and substrate specificity of SAMD9 ACNase differ from known microbial ACNases, suggesting convergent evolution of a common immune defense strategy targeting tRNAs.
Collapse
Affiliation(s)
- Fushun Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Quanquan Ji
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Juhi Chaturvedi
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Marisol Morales
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Xiangzhi Meng
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Leiming Dong
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Junpeng Deng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Yan Xiang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
6
|
Mutz P, Resch W, Faure G, Senkevich TG, Koonin EV, Moss B. Exaptation of Inactivated Host Enzymes for Structural Roles in Orthopoxviruses and Novel Folds of Virus Proteins Revealed by Protein Structure Modeling. mBio 2023; 14:e0040823. [PMID: 37017580 PMCID: PMC10128050 DOI: 10.1128/mbio.00408-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 04/06/2023] Open
Abstract
Viruses with large, double-stranded DNA genomes captured the majority of their genes from their hosts at different stages of evolution. The origins of many virus genes are readily detected through significant sequence similarity with cellular homologs. In particular, this is the case for virus enzymes, such as DNA and RNA polymerases or nucleotide kinases, that retain their catalytic activity after capture by an ancestral virus. However, a large fraction of virus genes have no readily detectable cellular homologs, meaning that their origins remain enigmatic. We explored the potential origins of such proteins that are encoded in the genomes of orthopoxviruses, a thoroughly studied virus genus that includes major human pathogens. To this end, we used AlphaFold2 to predict the structures of all 214 proteins that are encoded by orthopoxviruses. Among the proteins of unknown provenance, structure prediction yielded clear indications of origin for 14 of them and validated several inferences that were previously made via sequence analysis. A notable emerging trend is the exaptation of enzymes from cellular organisms for nonenzymatic, structural roles in virus reproduction that is accompanied by the disruption of catalytic sites and by an overall drastic divergence that precludes homology detection at the sequence level. Among the 16 orthopoxvirus proteins that were found to be inactivated enzyme derivatives are the poxvirus replication processivity factor A20, which is an inactivated NAD-dependent DNA ligase; the major core protein A3, which is an inactivated deubiquitinase; F11, which is an inactivated prolyl hydroxylase; and more similar cases. For nearly one-third of the orthopoxvirus virion proteins, no significantly similar structures were identified, suggesting exaptation with subsequent major structural rearrangement that yielded unique protein folds. IMPORTANCE Protein structures are more strongly conserved in evolution than are amino acid sequences. Comparative structural analysis is particularly important for inferring the origins of viral proteins that typically evolve at high rates. We used a powerful protein structure modeling method, namely, AlphaFold2, to model the structures of all orthopoxvirus proteins and compared them to all available protein structures. Multiple cases of recruitment of host enzymes for structural roles in viruses, accompanied by the disruption of catalytic sites, were discovered. However, many viral proteins appear to have evolved unique structural folds.
Collapse
Affiliation(s)
- Pascal Mutz
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Wolfgang Resch
- Center for Information Technology, National Institutes of Health, Bethesda, Maryland, USA
| | - Guilhem Faure
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Tatiana G. Senkevich
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Instutes of Health, Bethesda, Maryland, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Instutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Gahr S, Perinetti Casoni G, Falk-Paulsen M, Maschkowitz G, Bryceson YT, Voss M. Viral host range factors antagonize pathogenic SAMD9 and SAMD9L variants. Exp Cell Res 2023; 425:113541. [PMID: 36894052 DOI: 10.1016/j.yexcr.2023.113541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
SAMD9 and SAMD9L encode homologous interferon-induced genes that can inhibit cellular translation as well as proliferation and can restrict viral replication. Gain-of-function (GoF) variants in these ancient, yet rapidly evolving genes are associated with life-threatening disease in humans. Potentially driving population sequence diversity, several viruses have evolved host range factors that antagonize cell-intrinsic SAMD9/SAMD9L function. Here, to gain insights into the molecular regulation of SAMD9/SAMD9L activity and to explore the prospect of directly counteracting the activity of pathogenic variants, we examined whether dysregulated activity of pathogenic SAMD9/SAMD9L variants can be modulated by the poxviral host range factors M062, C7 and K1 in a co-expression system. We established that the virally encoded proteins retain interactions with select SAMD9/SAMD9L missense GoF variants. Furthermore, expression of M062, C7 and K1 could principally ameliorate the translation-inhibiting and growth-restrictive effect instigated by ectopically expressed SAMD9/SAMD9L GoF variants, yet with differences in potency. K1 displayed the greatest potency and almost completely restored cellular proliferation and translation in cells co-expressing SAMD9/SAMD9L GoF variants. However, neither of the viral proteins tested could antagonize a truncated SAMD9L variant associated with severe autoinflammation. Our study demonstrates that pathogenic SAMD9/SAMD9L missense variants can principally be targeted through molecular interactions, opening an opportunity for therapeutic modulation of their activity. Moreover, it provides novel insights into the complex intramolecular regulation of SAMD9/SAMD9L activity.
Collapse
Affiliation(s)
- Stine Gahr
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, D-24118, Kiel, Germany
| | - Giovanna Perinetti Casoni
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology, Kiel University, D-24098, Kiel, Germany
| | - Gregor Maschkowitz
- Institute for Infection Medicine, Kiel University & University Hospital Schleswig-Holstein, Kiel, Germany
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden; Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, 5021, Bergen, Norway
| | - Matthias Voss
- Institute of Biochemistry, Kiel University, Rudolf-Höber-Str. 1, D-24118, Kiel, Germany.
| |
Collapse
|
8
|
Rahman MM, McFadden G. Role of cytokines in poxvirus host tropism and adaptation. Curr Opin Virol 2022; 57:101286. [PMID: 36427482 PMCID: PMC9704024 DOI: 10.1016/j.coviro.2022.101286] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022]
Abstract
Poxviruses are a diverse family of double-stranded DNA viruses that cause mild-to-severe disease in selective hosts, including humans. Although most poxviruses are restricted to their hosts, some members can leap host species and cause zoonotic diseases and, therefore, are genuine threats to human and animal health. The recent global spread of monkeypox in humans suggests that zoonotic poxviruses can adapt to a new host, spread rapidly in the new host, and evolve to better evade host innate barriers. Unlike many other viruses, poxviruses express an extensive repertoire of self-defense proteins that play a vital role in the evasion of host innate and adaptive immune responses in their newest host species. The function of these viral immune modulators and host-specific cytokine responses can result in different host tropism and poxvirus disease progression. Here, we review the role of different cytokines that control poxvirus host tropism and adaptation.
Collapse
|
9
|
Suntharalingham JP, Ishida M, Del Valle I, Stalman SE, Solanky N, Wakeling E, Moore GE, Achermann JC, Buonocore F. Emerging phenotypes linked to variants in SAMD9 and MIRAGE syndrome. Front Endocrinol (Lausanne) 2022; 13:953707. [PMID: 36060959 PMCID: PMC9433874 DOI: 10.3389/fendo.2022.953707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background Heterozygous de novo variants in SAMD9 cause MIRAGE syndrome, a complex multisystem disorder involving Myelodysplasia, Infection, Restriction of growth, Adrenal hypoplasia, Genital phenotypes, and Enteropathy. The range of additional clinical associations is expanding and includes disrupted placental development, poor post-natal growth and endocrine features. Increasingly, milder phenotypic features such as hypospadias in small for gestational age (SGA) boys and normal adrenal function are reported. Some children present with isolated myelodysplastic syndrome (MDS/monosomy 7) without MIRAGE features. Objective We aimed to investigate: 1) the range of reported SAMD9 variants, clinical features, and possible genotype-phenotype correlations; 2) whether SAMD9 disruption affects placental function and leads to pregnancy loss/recurrent miscarriage (RM); 3) and if pathogenic variants are associated with isolated fetal growth restriction (FGR). Methods Published data were analyzed, particularly reviewing position/type of variant, pregnancy, growth data, and associated endocrine features. Genetic analysis of SAMD9 was performed in products of conception (POC, n=26), RM couples, (couples n=48; individuals n=96), children with FGR (n=44), SGA (n=20), and clinical Silver-Russell Syndrome (SRS, n=8), (total n=194). Results To date, SAMD9 variants are reported in 116 individuals [MDS/monosomy 7, 64 (55.2%); MIRAGE, 52 (44.8%)]. Children with MIRAGE features are increasingly reported without an adrenal phenotype (11/52, 21.2%). Infants without adrenal dysfunction were heavier at birth (median 1515 g versus 1020 g; P < 0.05) and born later (median 34.5 weeks versus 31.0; P < 0.05) compared to those with adrenal insufficiency. In MIRAGE patients, hypospadias is a common feature. Additional endocrinopathies include hypothyroidism, hypo- and hyper-glycemia, short stature and panhypopituitarism. Despite this increasing range of phenotypes, genetic analysis did not reveal any likely pathogenic variants/enrichment of specific variants in SAMD9 in the pregnancy loss/growth restriction cohorts studied. Conclusion MIRAGE syndrome is more phenotypically diverse than originally reported and includes growth restriction and multisystem features, but without adrenal insufficiency. Endocrinopathies might be overlooked or develop gradually, and may be underreported. As clinical features including FGR, severe infections, anemia and lung problems can be non-specific and are often seen in neonatal medicine, SAMD9-associated conditions may be underdiagnosed. Reaching a specific diagnosis of MIRAGE syndrome is critical for personalized management.
Collapse
Affiliation(s)
- Jenifer P. Suntharalingham
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Miho Ishida
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Ignacio Del Valle
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Susanne E. Stalman
- Department of Pediatrics, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Nita Solanky
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Emma Wakeling
- North East Thames Regional Genetic Service, Great Ormond Street Hospital, London, United Kingdom
| | - Gudrun E. Moore
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - John C. Achermann
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Federica Buonocore
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
10
|
Águeda-Pinto A, Kraberger S, Everts A, Gutierrez-Jensen A, Glenn HL, Dalton KP, Podadera A, Parra F, Martinez-Haro M, Viñuelas JA, Varsani A, McFadden G, Rahman MM, Esteves PJ. Identification of a Novel Myxoma Virus C7-Like Host Range Factor That Enabled a Species Leap from Rabbits to Hares. mBio 2022; 13:e0346121. [PMID: 35352978 PMCID: PMC9040879 DOI: 10.1128/mbio.03461-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/23/2022] [Indexed: 01/04/2023] Open
Abstract
Myxoma virus (MYXV) is naturally found in rabbit Sylvilagus species and is known to cause lethal myxomatosis in European rabbits (Oryctolagus cuniculus). In 2019, an MYXV strain (MYXV strain Toledo [MYXV-Tol]) causing myxomatosis-like disease in Iberian hares (Lepus granatensis) was identified. MYXV-Tol acquired a recombinant region of ∼2.8 kb harboring several new genes, including a novel host range gene (M159) that we show to be an orthologous member of the vaccinia virus C7 host range family. Here, to test whether M159 alone has enabled MYXV to alter its host range to Iberian hares, several recombinant viruses were generated, including an MYXV-Tol ΔM159 (knockout) strain. While MYXV-Tol underwent fully productive infection in hare HN-R cells, neither the wild-type MYXV-Lau strain (lacking M159) nor vMyxTol-ΔM159 (deleted for M159) was able to infect and replicate, showing that the ability of MYXV-Tol to infect these cells and replicate depends on the presence of M159. Similar to other C7L family members, M159 was shown to be expressed as an early/late gene but was translocated into the nucleus at later time points, indicating that further studies are needed to elucidate its role in the nucleus. Finally, in rabbit cells, the M159 protein did not contribute to increased replication but was able to upregulate the replication levels of MYXV in nonpermissive and semipermissive human cancer cells, suggesting that the M159-targeted pathway is conserved across mammalian species. Altogether, these observations demonstrate that the M159 protein plays a critical role in determining the host specificity of MYXV-Tol in hare and human cells by imparting new host range functions. IMPORTANCE The coevolution of European rabbit populations and MYXV is a textbook example of an arms race between a pathogen and a host. Recently, a recombinant MYXV (MYXV-Tol) crossed the species barrier by jumping from leporid species to another species, causing lethal myxomatosis-like disease. Given the highly pathogenic nature of this new virus in hares and the incidences of other poxvirus cross-species spillovers into other animals, including humans, it is important to understand how and why MYXV-Tol was able to become virulent in a new host species. The results presented clearly demonstrate that M159 is the key factor allowing MYXV-Tol replication in hare cells by imparting new host range functions. These results have the potential to improve current knowledge about the virulence of poxviruses and provide a platform to better understand the new MYXV-Tol, rendering the virus capable of leaping into a new host species.
Collapse
Affiliation(s)
- Ana Águeda-Pinto
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Center for Immunotherapy, Vaccines and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ , USA
| | - Anne Everts
- Center for Immunotherapy, Vaccines and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Ami Gutierrez-Jensen
- Center for Immunotherapy, Vaccines and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Honor L. Glenn
- Center for Immunotherapy, Vaccines and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Kevin P. Dalton
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Campus El Cristo, Oviedo, Spain
| | - Ana Podadera
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Campus El Cristo, Oviedo, Spain
| | - Francisco Parra
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Campus El Cristo, Oviedo, Spain
| | - Monica Martinez-Haro
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), CIAG del Chaparrillo, Ciudad Real, Spain
| | - José Alberto Viñuelas
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), CIAG del Chaparrillo, Ciudad Real, Spain
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ , USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Grant McFadden
- Center for Immunotherapy, Vaccines and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Masmudur M. Rahman
- Center for Immunotherapy, Vaccines and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Pedro J. Esteves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- CITS—Centro de Investigação em Tecnologias da Saúde, IPSN, CESPU, Gandra, Portugal
| |
Collapse
|
11
|
Sahoo SS, Pastor VB, Goodings C, Voss RK, Kozyra EJ, Szvetnik A, Noellke P, Dworzak M, Starý J, Locatelli F, Masetti R, Schmugge M, De Moerloose B, Catala A, Kállay K, Turkiewicz D, Hasle H, Buechner J, Jahnukainen K, Ussowicz M, Polychronopoulou S, Smith OP, Fabri O, Barzilai S, de Haas V, Baumann I, Schwarz-Furlan S, Niewisch MR, Sauer MG, Burkhardt B, Lang P, Bader P, Beier R, Müller I, Albert MH, Meisel R, Schulz A, Cario G, Panda PK, Wehrle J, Hirabayashi S, Derecka M, Durruthy-Durruthy R, Göhring G, Yoshimi-Noellke A, Ku M, Lebrecht D, Erlacher M, Flotho C, Strahm B, Niemeyer CM, Wlodarski MW. Clinical evolution, genetic landscape and trajectories of clonal hematopoiesis in SAMD9/SAMD9L syndromes. Nat Med 2021; 27:1806-1817. [PMID: 34621053 PMCID: PMC9330547 DOI: 10.1038/s41591-021-01511-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 08/17/2021] [Indexed: 02/06/2023]
Abstract
Germline SAMD9 and SAMD9L mutations (SAMD9/9Lmut) predispose to myelodysplastic syndromes (MDS) with propensity for somatic rescue. In this study, we investigated a clinically annotated pediatric MDS cohort (n = 669) to define the prevalence, genetic landscape, phenotype, therapy outcome and clonal architecture of SAMD9/9L syndromes. In consecutively diagnosed MDS, germline SAMD9/9Lmut accounted for 8% and were mutually exclusive with GATA2 mutations present in 7% of the cohort. Among SAMD9/9Lmut cases, refractory cytopenia was the most prevalent MDS subtype (90%); acquired monosomy 7 was present in 38%; constitutional abnormalities were noted in 57%; and immune dysfunction was present in 28%. The clinical outcome was independent of germline mutations. In total, 67 patients had 58 distinct germline SAMD9/9Lmut clustering to protein middle regions. Despite inconclusive in silico prediction, 94% of SAMD9/9Lmut suppressed HEK293 cell growth, and mutations expressed in CD34+ cells induced overt cell death. Furthermore, we found that 61% of SAMD9/9Lmut patients underwent somatic genetic rescue (SGR) resulting in clonal hematopoiesis, of which 95% was maladaptive (monosomy 7 ± cancer mutations), and 51% had adaptive nature (revertant UPD7q, somatic SAMD9/9Lmut). Finally, bone marrow single-cell DNA sequencing revealed multiple competing SGR events in individual patients. Our findings demonstrate that SGR is common in SAMD9/9Lmut MDS and exemplify the exceptional plasticity of hematopoiesis in children.
Collapse
Affiliation(s)
- Sushree S Sahoo
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Victor B Pastor
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Charnise Goodings
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rebecca K Voss
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Emilia J Kozyra
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Amina Szvetnik
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Noellke
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Dworzak
- Department of Pediatrics, St. Anna Children's Hospital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria
| | - Jan Starý
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza University of Rome, Rome, Italy
| | - Riccardo Masetti
- Paediatric Oncology and Haematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Markus Schmugge
- Department of Hematology and Oncology, University Children's Hospital, Zurich, Switzerland
| | - Barbara De Moerloose
- Department of Paediatric Haematology-Oncology, Ghent University Hospital Ghent, Ghent, Belgium
| | - Albert Catala
- Department of Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Krisztián Kállay
- Department of Pediatric Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest - National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Dominik Turkiewicz
- Department of Pediatric Oncology/Hematology, Skåne University Hospital, Lund, Sweden
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Jochen Buechner
- Department of Pediatric Hematology and Oncology, Oslo University Hospital, Oslo, Norway
| | - Kirsi Jahnukainen
- Division of Hematology-Oncology and SCT Children's Hospital, University of Helsinki and Helsinki University Hospital, Hus, Finland
| | - Marek Ussowicz
- Department of Paediatric Bone Marrow Transplantation, Oncology and Hematology, Wroclaw Medical University, Wroclaw, Poland
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology/Oncology, Aghia Sophia Children's Hospital, Athens, Greece
| | - Owen P Smith
- Department of Pediatric Haematology/Oncology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Oksana Fabri
- Department. of Haematology and Transfusiology, National Institute of Children's Diseases Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Shlomit Barzilai
- Pediatric Hematology Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Valerie de Haas
- Dutch Childhood Oncology Group, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Irith Baumann
- Institute of Pathology, Klinikum Kaufbeuren-Ravensburg, Kaufbeuren, Germany
| | - Stephan Schwarz-Furlan
- Institute of Pathology, Klinikum Kaufbeuren-Ravensburg, Kaufbeuren, Germany
- Institute of Pathology, University Hospital Erlangen, Erlangen, Germany
| | - Marena R Niewisch
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin G Sauer
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Birgit Burkhardt
- Pediatric Hematology and Oncology, University Hospital Muenster, Muenster, Germany
| | - Peter Lang
- Department of Hematology/Oncology and General Pediatrics, Children's University Hospital, University of Tübingen, Tübingen, Germany
| | - Peter Bader
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Rita Beier
- University Hospital Essen, Pediatric Haematology and Oncology, Essen, Germany
| | - Ingo Müller
- Division of Pediatric Hematology and Oncology, Clinic of Pedatric Hematology and Oncology, University Medical Center of Hamburg-Eppendorf, Hamburg, Germany
| | - Michael H Albert
- Department of Pediatrics, Dr. von Hauner Children´s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Roland Meisel
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Division of Pediatric Stem Cell Therapy, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Ansgar Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Gunnar Cario
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Pritam K Panda
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julius Wehrle
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Digitalization in Medicine, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Shinsuke Hirabayashi
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marta Derecka
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Ayami Yoshimi-Noellke
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Manching Ku
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dirk Lebrecht
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam Erlacher
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Heidelberg and Freiburg, Germany
| | - Christian Flotho
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Heidelberg and Freiburg, Germany
| | - Brigitte Strahm
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Charlotte M Niemeyer
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Heidelberg and Freiburg, Germany
| | - Marcin W Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
12
|
Park C, Peng C, Rahman MJ, Haller SL, Tazi L, Brennan G, Rothenburg S. Orthopoxvirus K3 orthologs show virus- and host-specific inhibition of the antiviral protein kinase PKR. PLoS Pathog 2021; 17:e1009183. [PMID: 33444388 PMCID: PMC7840043 DOI: 10.1371/journal.ppat.1009183] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/27/2021] [Accepted: 11/25/2020] [Indexed: 01/06/2023] Open
Abstract
The antiviral protein kinase R (PKR) is an important host restriction factor, which poxviruses must overcome to productively infect host cells. To inhibit PKR, many poxviruses encode a pseudosubstrate mimic of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2), designated K3 in vaccinia virus. Although the interaction between PKR and eIF2α is highly conserved, some K3 orthologs from host-restricted poxviruses were previously shown to inhibit PKR in a species-specific manner. To better define this host range function, we compared the sensitivity of PKR from 17 mammals to inhibition by K3 orthologs from closely related orthopoxviruses, a genus with a generally broader host range. The K3 orthologs showed species-specific inhibition of PKR and exhibited three distinct inhibition profiles. In some cases, PKR from closely related species showed dramatic differences in their sensitivity to K3 orthologs. Vaccinia virus expressing the camelpox virus K3 ortholog replicated more than three orders of magnitude better in human and sheep cells than a virus expressing vaccinia virus K3, but both viruses replicated comparably well in cow cells. Strikingly, in site-directed mutagenesis experiments between the variola virus and camelpox virus K3 orthologs, we found that different amino acid combinations were necessary to mediate improved or diminished inhibition of PKR derived from different host species. Because there is likely a limited number of possible variations in PKR that affect K3-interactions but still maintain PKR/eIF2α interactions, it is possible that by chance PKR from some potential new hosts may be susceptible to K3-mediated inhibition from a virus it has never previously encountered. We conclude that neither the sensitivity of host proteins to virus inhibition nor the effectiveness of viral immune antagonists can be inferred from their phylogenetic relatedness but must be experimentally determined. Most virus families are composed of large numbers of virus species. However, in general, only a few prototypic viruses are experimentally studied in-depth, and it is often assumed that the obtained results are representative of other viruses in the same family. In order to test this assumption, we compared the sensitivity of the antiviral protein kinase PKR from various mammals to inhibition by multiple orthologs of K3, a PKR inhibitor expressed by several closely related orthopoxviruses. We found strong differences in PKR inhibition by the K3 orthologs, demonstrating that sensitivity to a specific inhibitor was not indicative of broad sensitivity to orthologs of these inhibitors from closely related viruses. We also show that PKR from even closely related species displayed markedly different sensitivities to these poxvirus inhibitors. Furthermore, we identified amino acid residues in these K3 orthologs that are critical for enhanced or decreased PKR inhibition and found that distinct amino acid combinations affected PKRs from various species differently. Our study shows that even closely related inhibitors of an antiviral protein can vary dramatically in their inhibitory potential, and cautions that results from host-virus interaction studies of a prototypic virus genus member cannot necessarily be extrapolated to other viruses in the same genus without experimental verification.
Collapse
Affiliation(s)
- Chorong Park
- School of Medicine, University of California Davis, Department of Medial Microbiology and Immunology, Davis, California, United States of America
| | - Chen Peng
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Laboratory of Viral Diseases, Bethesda, Maryland, United States of America
| | - M. Julhasur Rahman
- School of Medicine, University of California Davis, Department of Medial Microbiology and Immunology, Davis, California, United States of America
| | - Sherry L. Haller
- University of Texas Medical Branch at Galveston, Department of Microbiology and Immunology, Galveston, Texas, United States of America
| | - Loubna Tazi
- School of Medicine, University of California Davis, Department of Medial Microbiology and Immunology, Davis, California, United States of America
| | - Greg Brennan
- School of Medicine, University of California Davis, Department of Medial Microbiology and Immunology, Davis, California, United States of America
| | - Stefan Rothenburg
- School of Medicine, University of California Davis, Department of Medial Microbiology and Immunology, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Germline predisposition in myeloid neoplasms: Unique genetic and clinical features of GATA2 deficiency and SAMD9/SAMD9L syndromes. Best Pract Res Clin Haematol 2020; 33:101197. [PMID: 33038986 PMCID: PMC7388796 DOI: 10.1016/j.beha.2020.101197] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022]
Abstract
Increasing awareness about germline predisposition and the widespread application of unbiased whole exome sequencing contributed to the discovery of new clinical entities with high risk for the development of haematopoietic malignancies. The revised 2016 WHO classification introduced a novel category of "myeloid neoplasms with germline predisposition" with GATA2, CEBPA, DDX41, RUNX1, ANKRD26 and ETV6 genes expanding the spectrum of hereditary myeloid neoplasms (MN). Since then, more germline causes of MN were identified, including SAMD9, SAMD9L, and ERCC6L2. This review describes the genetic and clinical spectrum of predisposition to MN. The main focus lies in delineation of phenotypes, genetics and management of GATA2 deficiency and the novel SAMD9/SAMD9L-related disorders. Combined, GATA2 and SAMD9/SAMD9L (SAMD9/9L) syndromes are recognized as most frequent causes of primary paediatric myelodysplastic syndromes, particularly in setting of monosomy 7. To date, ~550 cases with germline GATA2 mutations, and ~130 patients with SAMD9/9L mutations had been reported in literature. GATA2 deficiency is a highly penetrant disorder with a progressive course that often rapidly necessitates bone marrow transplantation. In contrast, SAMD9/9L disorders show incomplete penetrance with various clinical outcomes ranging from spontaneous haematological remission observed in young children to malignant progression.
Collapse
|
14
|
Zhao Y, Zhao L, Huang P, Ren J, Zhang P, Tian H, Tan W. Non-replicating Vaccinia Virus TianTan Strain (NTV) Translation Arrest of Viral Late Protein Synthesis Associated With Anti-viral Host Factor SAMD9. Front Cell Infect Microbiol 2020; 10:116. [PMID: 32266167 PMCID: PMC7098914 DOI: 10.3389/fcimb.2020.00116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/02/2020] [Indexed: 11/13/2022] Open
Abstract
NTV is a highly attenuated virus that was created by genetically deleting 26 genes related to host range and virulence from TianTan strain. Since NTV is highly attenuated, it has been used widely as an optimizing viral vector. In this study, we explored the biological characteristics in vitro and the host restriction mechanism of NTV. Most cell lines do not support sufficient dissemination and replication of NTV, and in non-permissive cell line HeLa, the replication block of NTV occurred at the translation stage of viral late protein expression. Lack of PKR activity was not sufficient to rescue expression of viral late proteins and replication, even though the phosphorylation level of eIF2α increased in NTV-infected HeLa cells. Moreover, the translation inhibition of NTV in HeLa cells was dependent upon a SAMD9 signaling pathway, as demonstrated by silencing SAMD9 expression with siRNA and observing the colocalization of SAMD9 and AVGs. Reinserting C7L or K1L into NTV rescued the late viral protein expression and replication of NTV in HeLa cells. Among the genes deleted in NTV, C7L or/and K1L gene was mainly responsible for its replication defect. Protein C7 interacted with SAMD9, which antagonized the antiviral response of SAMD9 to ensure viral protein translation and replication of NTV in non-permissive cell lines. Our finding will serve as a baseline for modification of NTV in future application.
Collapse
Affiliation(s)
- Ying Zhao
- NHC Key Laboratory of Medical Virology and Viral Disease, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Li Zhao
- NHC Key Laboratory of Medical Virology and Viral Disease, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Panpan Huang
- NHC Key Laboratory of Medical Virology and Viral Disease, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| | - Jiao Ren
- NHC Key Laboratory of Medical Virology and Viral Disease, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Peng Zhang
- NHC Key Laboratory of Medical Virology and Viral Disease, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Houwen Tian
- NHC Key Laboratory of Medical Virology and Viral Disease, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Wenjie Tan
- NHC Key Laboratory of Medical Virology and Viral Disease, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| |
Collapse
|
15
|
Rahman MM, McFadden G. Oncolytic Virotherapy with Myxoma Virus. J Clin Med 2020; 9:jcm9010171. [PMID: 31936317 PMCID: PMC7020043 DOI: 10.3390/jcm9010171] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/25/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Oncolytic viruses are one of the most promising novel therapeutics for malignant cancers. They selectively infect and kill cancer cells while sparing the normal counterparts, expose cancer- specific antigens and activate the host immune system against both viral and tumor determinants. Oncolytic viruses can be used as monotherapy or combined with existing cancer therapies to become more potent. Among the many types of oncolytic viruses that have been developed thus far, members of poxviruses are the most promising candidates against diverse cancer types. This review summarizes recent advances that are made with oncolytic myxoma virus (MYXV), a member of the Leporipoxvirus genus. Unlike other oncolytic viruses, MYXV infects only rabbits in nature and causes no harm to humans or any other non-leporid animals. However, MYXV can selectively infect and kill cancer cells originating from human, mouse and other host species. This selective cancer tropism and safety profile have led to the testing of MYXV in various types of preclinical cancer models. The next stage will be successful GMP manufacturing and clinical trials that will bring MYXV from bench to bedside for the treatment of currently intractable malignancies.
Collapse
|
16
|
Zhang F, Meng X, Townsend MB, Satheshkumar PS, Xiang Y. Identification of CP77 as the Third Orthopoxvirus SAMD9 and SAMD9L Inhibitor with Unique Specificity for a Rodent SAMD9L. J Virol 2019; 93:e00225-19. [PMID: 30918078 PMCID: PMC6613757 DOI: 10.1128/jvi.00225-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/20/2019] [Indexed: 11/20/2022] Open
Abstract
Orthopoxviruses (OPXVs) have a broad host range in mammalian cells, but Chinese hamster ovary (CHO) cells are nonpermissive for vaccinia virus (VACV). Here, we revealed a species-specific difference in host restriction factor SAMD9L as the cause for the restriction and identified orthopoxvirus CP77 as a unique inhibitor capable of antagonizing Chinese hamster SAMD9L (chSAMD9L). Two known VACV inhibitors of SAMD9 and SAMD9L (SAMD9&L), K1 and C7, can bind human and mouse SAMD9&L, but neither can bind chSAMD9L. Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 knockout of chSAMD9L from CHO cells removed the restriction for VACV, while ectopic expression of chSAMD9L imposed the restriction for VACV in a human cell line, demonstrating that chSAMD9L is a potent restriction factor for VACV. In contrast to K1 and C7, cowpox virus CP77 can bind chSAMD9L and rescue VACV replication in cells expressing chSAMD9L, indicating that CP77 is yet another SAMD9L inhibitor but has a unique specificity for chSAMD9L. Binding studies showed that the N-terminal 382 amino acids of CP77 were sufficient for binding chSAMD9L and that both K1 and CP77 target a common internal region of SAMD9L. Growth studies with nearly all OPXV species showed that the ability of OPXVs to antagonize chSAMD9L correlates with CP77 gene status and that a functional CP77 ortholog was maintained in many OPXVs, including monkeypox virus. Our data suggest that a species-specific difference in rodent SAMD9L poses a barrier for cross-species OPXV infection and that OPXVs have evolved three SAMD9&L inhibitors with different specificities to overcome this barrier.IMPORTANCE Several OPXV species, including monkeypox virus and cowpox virus, cause zoonotic infection in humans. They are believed to use wild rodents as the reservoir or intermediate hosts, but the host or viral factors that are important for OPXV host range in rodents are unknown. Here, we showed that the abortive replication of several OPXV species in a Chinese hamster cell line was caused by a species-specific difference in the host antiviral factor SAMD9L, suggesting that SAMD9L divergence in different rodent species poses a barrier for cross-species OPXV infection. While the Chinese hamster SAMD9L could not be inhibited by two previously identified OPXV inhibitors of human and mouse SAMD9&L, it can be inhibited by cowpox virus CP77, indicating that OPXVs encode three SAMD9&L inhibitors with different specificities. Our data suggest that OPXV host range in broad rodent species depends on three SAMD9&L inhibitors with different specificities.
Collapse
Affiliation(s)
- Fushun Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Xiangzhi Meng
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Michael B Townsend
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Panayampalli Subbian Satheshkumar
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yan Xiang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
17
|
Human Host Range Restriction of the Vaccinia Virus C7/K1 Double Deletion Mutant Is Mediated by an Atypical Mode of Translation Inhibition. J Virol 2018; 92:JVI.01329-18. [PMID: 30209174 DOI: 10.1128/jvi.01329-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/10/2018] [Indexed: 01/09/2023] Open
Abstract
Replication of vaccinia virus in human cells depends on the viral C7 or K1 protein. A previous human genome-wide short interfering RNA (siRNA) screen with a C7/K1 double deletion mutant revealed SAMD9 as a principal host range restriction factor along with additional candidates, including WDR6 and FTSJ1. To compare their abilities to restrict replication, the cellular genes were individually inactivated by CRISPR/Cas9 mutagenesis. The C7/K1 deletion mutant exhibited enhanced replication in each knockout (KO) cell line but reached wild-type levels only in SAMD9 KO cells. SAMD9 was not depleted in either WDR6 or FTSJ1 KO cells, suggesting less efficient alternative rescue mechanisms. Using the SAMD9 KO cells as controls, we verified a specific block in host and viral intermediate and late protein synthesis in HeLa cells and demonstrated that the inhibition could be triggered by events preceding viral DNA replication. Inhibition of cap-dependent and -independent protein synthesis occurred primarily at the translational level, as supported by DNA and mRNA transfection experiments. Concurrent with collapse of polyribosomes, viral mRNA was predominantly in 80S and lighter ribonucleoprotein fractions. We confirmed the accumulation of cytoplasmic granules in HeLa cells infected with the C7/K1 deletion mutant and further showed that viral mRNA was sequestered with SAMD9. RNA granules were still detected in G3BP KO U2OS cells, which remained nonpermissive for the C7/K1 deletion mutant. Inhibition of cap-dependent and internal ribosome entry site-mediated translation, sequestration of viral mRNA, and failure of PKR, RNase L, or G3BP KO cells to restore protein synthesis support an unusual mechanism of host restriction.IMPORTANCE A dynamic relationship exists between viruses and their hosts in which each ostensibly attempts to exploit the other's vulnerabilities. A window is opened into the established condition, which evolved over millennia, if loss-of-function mutations occur in either the virus or host. Thus, the inability of viral host range mutants to replicate in specific cells can be overcome by identifying and inactivating the opposing cellular gene. Here, we investigated a C7/K1 host range mutant of vaccinia virus in which the cellular gene SAMD9 serves as the principal host restriction factor. Host restriction was triggered early in infection and manifested as a block in translation of viral mRNAs. Features of the block include inhibition of cap-dependent and internal ribosome entry site-mediated translation, sequestration of viral RNA, and inability to overcome the inhibition by inactivation of protein kinase R, ribonuclease L, or G3 binding proteins, suggesting a novel mechanism of host restriction.
Collapse
|
18
|
Meng X, Zhang F, Yan B, Si C, Honda H, Nagamachi A, Sun LZ, Xiang Y. A paralogous pair of mammalian host restriction factors form a critical host barrier against poxvirus infection. PLoS Pathog 2018; 14:e1006884. [PMID: 29447249 PMCID: PMC5831749 DOI: 10.1371/journal.ppat.1006884] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/28/2018] [Accepted: 01/17/2018] [Indexed: 11/18/2022] Open
Abstract
Host restriction factors constitute a formidable barrier for viral replication to which many viruses have evolved counter-measures. Human SAMD9, a tumor suppressor and a restriction factor for poxviruses in cell lines, is antagonized by two classes of poxvirus proteins, represented by vaccinia virus (VACV) K1 and C7. A paralog of SAMD9, SAMD9L, is also encoded by some mammals, while only one of two paralogs is retained by others. Here, we show that SAMD9L functions similarly to SAMD9 as a restriction factor and that the two paralogs form a critical host barrier that poxviruses must overcome to establish infection. In mice, which naturally lack SAMD9, overcoming SAMD9L restriction with viral inhibitors is essential for poxvirus replication and pathogenesis. While a VACV deleted of both K1 and C7 (vK1L-C7L-) was restricted by mouse cells and highly attenuated in mice, its replication and virulence were completely restored in SAMD9L-/- mice. In humans, both SAMD9 and SAMD9L are poxvirus restriction factors, although the latter requires interferon induction in many cell types. While knockout of SAMD9 with Crispr-Cas9 was sufficient for abolishing the restriction for vK1L-C7L- in many human cells, knockout of both paralogs was required for abolishing the restriction in interferon-treated cells. Both paralogs are antagonized by VACV K1, C7 and C7 homologs from diverse mammalian poxviruses, but mouse SAMD9L is resistant to the C7 homolog encoded by a group of poxviruses with a narrow host range in ruminants, indicating that host species-specific difference in SAMD9/SAMD9L genes serves as a barrier for cross-species poxvirus transmission. Zoonotic viral infections represent a major threat to public health. For many viruses, host species-specific difference in viral entry receptors presents a major hurdle for cross-species transmission. Poxviruses, however, can enter nearly any animal cell. Why many poxviruses show strict host species specificity and what it would take for them to jump to new hosts are less clear. Here, we present data suggesting that SAMD9 and its paralog, SAMD9L, constitute a critical host barrier against poxvirus infection and pathogenesis. We also discovered some host species-specific difference in SAMD9/SAMD9L and some poxvirus-specific difference in antagonizing SAMD9/SAMD9L, suggesting that these differences serve as a barrier for cross-species poxvirus infection. The knowledge is fundamental for understanding the determinants of poxvirus host-range.
Collapse
Affiliation(s)
- Xiangzhi Meng
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Institute of Immunology and Molecular Medicine, Jining Medical College, Jining, Shandong, China
| | - Fushun Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Bo Yan
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Chuanping Si
- Institute of Immunology and Molecular Medicine, Jining Medical College, Jining, Shandong, China
| | - Hiroaki Honda
- Institute of Laboratory Animals, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo, Japan
| | - Akiko Nagamachi
- Department of Molecular Oncology and Leukemia Program Project, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Lu-Zhe Sun
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Yan Xiang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
19
|
Mekhedov SL, Makarova KS, Koonin EV. The complex domain architecture of SAMD9 family proteins, predicted STAND-like NTPases, suggests new links to inflammation and apoptosis. Biol Direct 2017; 12:13. [PMID: 28545555 PMCID: PMC5445408 DOI: 10.1186/s13062-017-0185-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/16/2017] [Indexed: 01/09/2023] Open
Abstract
We report a comprehensive computational dissection of the domain architecture of the SAMD9 family proteins that are involved in antivirus and antitumor response in humans. We show that the SAMD9 protein family is represented in most animals and also, unexpectedly, in bacteria, in particular actinomycetes. From the N to C terminus, the core SAMD9 family architecture includes DNA/RNA-binding AlbA domain, a variant Sir2-like domain, a STAND-like P-loop NTPase, an array of TPR repeats and an OB-fold domain with predicted RNA-binding properties. Vertebrate SAMD9 family proteins contain the eponymous SAM domain capable of polymerization, whereas some family members from other animals instead contain homotypic adaptor domains of the DEATH superfamily, known as dedicated components of apoptosis networks. Such complex domain architecture is reminiscent of the STAND superfamily NTPases that are involved in various signaling processes, including programmed cell death, in both eukaryotes and prokaryotes. These findings suggest that SAMD9 is a hub of a novel, evolutionarily conserved defense network that remains to be characterized. REVIEWERS This article was reviewed by Igor B. Zhulin and Mensur Dlakic.
Collapse
Affiliation(s)
- Sergei L Mekhedov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
20
|
Nounamo B, Li Y, O'Byrne P, Kearney AM, Khan A, Liu J. An interaction domain in human SAMD9 is essential for myxoma virus host-range determinant M062 antagonism of host anti-viral function. Virology 2017; 503:94-102. [PMID: 28157624 DOI: 10.1016/j.virol.2017.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/08/2017] [Accepted: 01/09/2017] [Indexed: 11/26/2022]
Abstract
In humans, deleterious mutations in the sterile α motif domain protein 9 (SAMD9) gene are associated with cancer, inflammation, weakening of the immune response, and developmental arrest. However, the biological function of SAMD9 and its sequence-structure relationships remain to be characterized. Previously, we found that an essential host range factor, M062 protein from myxoma virus (MYXV), antagonized the function of human SAMD9. In this study, we examine the interaction between M062 and human SAMD9 to identify regions that are critical to SAMD9 function. We also characterize the in vitro kinetics of the interaction. In an infection assay, exogenous expression of SAMD9 N-terminus leads to a potent inhibition of wild-type MYXV infection. We reason that this effect is due to the sequestration of viral M062 by the exogenously expressed N-terminal SAMD9 region. Our studies reveal the first molecular insight into viral M062-dependent mechanisms that suppress human SAMD9-associated antiviral function.
Collapse
Affiliation(s)
- Bernice Nounamo
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yibo Li
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Peter O'Byrne
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Aoife M Kearney
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Amir Khan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland.
| | - Jia Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA; The Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
21
|
Liem J, Liu J. Stress Beyond Translation: Poxviruses and More. Viruses 2016; 8:v8060169. [PMID: 27314378 PMCID: PMC4926189 DOI: 10.3390/v8060169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/24/2016] [Accepted: 06/08/2016] [Indexed: 02/06/2023] Open
Abstract
Poxviruses are large double-stranded DNA viruses that form viral factories in the cytoplasm of host cells. These viruses encode their own transcription machinery, but rely on host translation for protein synthesis. Thus, poxviruses have to cope with and, in most cases, reprogram host translation regulation. Granule structures, called antiviral granules (AVGs), have been observed surrounding poxvirus viral factories. AVG formation is associated with abortive poxvirus infection, and AVGs contain proteins that are typically found in stress granules (SGs). With certain mutant poxviruses lack of immunoregulatory factor(s), we can specifically examine the mechanisms that drive the formation of these structures. In fact, cytoplasmic macromolecular complexes form during many viral infections and contain sensing molecules that can help reprogram transcription. More importantly, the similarity between AVGs and cytoplasmic structures formed during RNA and DNA sensing events prompts us to reconsider the cause and consequence of these AVGs. In this review, we first summarize recent findings regarding how poxvirus manipulates host translation. Next, we compare and contrast SGs and AVGs. Finally, we review recent findings regarding RNA- and especially DNA-sensing bodies observed during viral infection.
Collapse
Affiliation(s)
- Jason Liem
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
| | - Jia Liu
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
| |
Collapse
|