1
|
Wang Y, Li Y, Zeng L, Li W, Dong X, Guo J, Meng X, Lu J, Xu J. A novel approach to detecting microduplication in split hand/foot malformation type 3 at the single-cell level: SHFM as a case study. Orphanet J Rare Dis 2024; 19:406. [PMID: 39482735 PMCID: PMC11526726 DOI: 10.1186/s13023-024-03386-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/25/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Split hand/foot malformation (SHFM) is a congenital limb deficiency characterized by missing or shortened central digits. Several gene loci have been associated with SHFM. Identifying microduplications at the single-cell level is challenging in clinical practice, and traditional detection methods may lead to misdiagnoses in embryos and pregnant women. RESULTS In this research, we utilized a low cell count and whole-genome amplification products to employ single nucleotide polymorphism arrays, next-generation sequencing, and third-generation sequencing methods to detect copy number variants of microduplications in a SHFM3 case with limited DNA. Additionally, Karyomapping and combined linkage analysis were conducted to validate the results. CONCLUSIONS This study establishes a new strategy for identifying microduplications or microdeletions at the single-cell level in clinical preimplantation genetic testing, enhancing the efficiency and accuracy of diagnosing microduplication or microdeletion diseases during IVF-PGT and prenatal diagnosis.
Collapse
Affiliation(s)
- Yaqian Wang
- The First Affiliated Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University and Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, China
- NHC Key Laboratory of Birth Defects Prevention, Zhengzhou, China
| | - Yang Li
- The First Affiliated Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University and Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, China
- NHC Key Laboratory of Birth Defects Prevention, Zhengzhou, China
| | - Lidong Zeng
- Shenzhen GeneMind Biosciences Co., Ltd, Shenzhen, China
| | - Wenbo Li
- The First Affiliated Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University and Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, China
- NHC Key Laboratory of Birth Defects Prevention, Zhengzhou, China
| | - Xin Dong
- The First Affiliated Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University and Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, China
- NHC Key Laboratory of Birth Defects Prevention, Zhengzhou, China
| | - Jia Guo
- The First Affiliated Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University and Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, China
- NHC Key Laboratory of Birth Defects Prevention, Zhengzhou, China
| | - Xiangrui Meng
- The First Affiliated Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University and Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, China
- NHC Key Laboratory of Birth Defects Prevention, Zhengzhou, China
| | - Jiacheng Lu
- The First Affiliated Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University and Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, China
- NHC Key Laboratory of Birth Defects Prevention, Zhengzhou, China
| | - Jiawei Xu
- The First Affiliated Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University and Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, China.
- NHC Key Laboratory of Birth Defects Prevention, Zhengzhou, China.
| |
Collapse
|
2
|
Ma C, Long X, Yan L, Zhu X, Chen L, Li R, Wang Y, Qiao J. Effects of ovarian stimulation on embryo euploidy: an analysis of 12 874 oocytes and 3106 blastocysts in cycles with preimplantation genetic testing for monogenic disorders. Hum Reprod Open 2024; 2024:hoae054. [PMID: 39399299 PMCID: PMC11470209 DOI: 10.1093/hropen/hoae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/16/2024] [Indexed: 10/15/2024] Open
Abstract
STUDY QUESTION Does ovarian stimulation and the ovarian response affect embryo euploidy? SUMMARY ANSWER Ovarian stimulation and the ovarian response in women undergoing preimplantation genetic testing for monogenic disorders (PGT-M) cycles did not affect the rates of blastocyst euploidy. WHAT IS KNOWN ALREADY Whether or not ovarian stimulation in IVF-embryo transfer has potential effects on embryo euploidy is controversial among studies for several reasons: (i) heterogeneity of the study populations, (ii) biopsies being performed at different stages of embryo development and (iii) evolution of the platforms utilized for ploidy assessment. Patients who undergo PGT-M cycles typically have no additional risks of aneuploidy, providing an ideal study population for exploring this issue. STUDY DESIGN SIZE DURATION A retrospective cohort study including embryos undergoing PGT-M was conducted at a single academically affiliated fertility clinic between June 2014 and July 2021. PARTICIPANTS/MATERIALS SETTING METHODS A total of 617 women with 867 PGT-M cycles involving 12 874 retrieved oocytes and 3106 trophectoderm biopsies of blastocysts were included. The primary outcome of the study was median euploidy rate, which was calculated by dividing the number of euploid blastocysts by the total number of biopsied blastocysts for each cycle. Secondary outcomes included the median normal fertilization rate (two-pronuclear (2PN) embryos/metaphase II oocytes) and median blastulation rate (blastocyst numbers/2PN embryos). MAIN RESULTS AND THE ROLE OF CHANCE Comparable euploidy rates and fertilization rates were observed across all age groups, regardless of variations in ovarian stimulation protocols, gonadotropin dosages (both the starting and total dosages), stimulation durations, the inclusion of human menopausal gonadotrophin supplementation, or the number of oocytes retrieved (all P > 0.05). Blastulation rates declined with increasing starting doses of gonadotropins in women aged 31-34 years old (P = 0.005) but increased with increasing gonadotrophin starting doses in women aged 35-37 years old (P = 0.017). In women aged 31-34, 35-37, and 38-40 years old, blastulation rates were significantly reduced with increases in the number of oocytes retrieved (P = 0.001, <0.001, and 0.012, respectively). LIMITATIONS REASONS FOR CAUTION Limitations include the study's retrospective nature and the relatively small number of patients of advanced age, especially patients older than 40 years old, leading to quite low statistical power. Second, as we considered euploidy rates as outcome measures, we did not analyze the effects of ovarian stimulation on uniform aneuploidy and mosaicism, respectively. Finally, we did not consider the effects of paternal characteristics on embryo euploidy status due to the fact that blastocyst aneuploidy primarily originates from maternal meiosis. However, sperm factors might have an effect on embryo development and the blastulation rate, and therefore also the number of blastocysts analyzed. The exclusion of patients with severe teratozoospermia and the fact that only ICSI was used as the insemination technique for women undergoing PGT-M contributed to minimize the effect of paternal factors. WIDER IMPLICATIONS OF THE FINDINGS Ovarian stimulation and response to stimulation did not affect blastocyst euploidy rates in women undergoing PGT-M cycles. However, in women aged 31-40 years old, there was a significant decline in blastulation rates as the number of retrieved oocytes increased. STUDY FUNDING/COMPETING INTERESTS This study was supported by the National Natural Science Foundation of China (Grant No. 81701407, 82301826); the National Key Research and Development Program of China (2022YFC2702901, 2022YFC2703004); China Postdoctoral Science Foundation (2022M710261), and China Postdoctoral Innovation Talent Support Program (BX20220020). There is no conflict of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Congcong Ma
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xiaoyu Long
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Liying Yan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xiaohui Zhu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Lixue Chen
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Rong Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Beijing Advanced Innovation Center for Genomics, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
3
|
Ren J, Peng C, Chen H, Zhou F, Keqie Y, Li Y, Yang H, Zhang H, Du Z, Hu T, Zhang X, Luo S, Fan W, Wang Y, Wang H, Chen X, Liu S. Asian Screening Array and Next-Generation Sequencing Based Panels Applied to Preimplantation Genetic Testing for Monogenic Disorders Preclinical Workup in 294 Families: A Retrospective Analysis. Prenat Diagn 2024; 44:1344-1353. [PMID: 39072792 DOI: 10.1002/pd.6639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/07/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE Currently, the most commonly used methods for linkage analysis of pre-implantation genetic testing for monogenic disorders (PGT-M) are next generation sequencing (NGS) and SNP array. We aim to investigate whether the application efficacy of Asian screening array (ASA) in PGT-M preclinical workup for the Chinese population is superior to NGS based single nucleotide polymorphism (SNP) panels. METHODS We conducted a retrospective analysis by reviewing 294 couples from a single center over the past 4 years and compared the detection results between NGS-based SNP panels and ASA. Using the numbers of informative SNPs upstream and downstream flanking of variants, we assessed the detection efficiency of both methods in monogenic diseases, chromosomal microdeletion syndrome and males with de novo variants, among other scenarios. RESULTS Results indicate that ASA offers a greater number of informative SNPs compared with NGS-based SNP panels. Additionally, data analysis for ASA is generally more straightforward and may require less computational resources. While ASA can address most PGT-M challenges, we have also identified certain genes in previous tests that are not suitable for PGT-M using ASA. CONCLUSION The application of ASA in PGT-M preclinical workup for Chinese populations has good practical value as it can perform linkage analysis for most genetic variants. However, for certain variants, NGS or other testing methods, such as mutated allele revealed by sequencing with aneuploidy and linkage analysis (MARSALA), may still be necessary for completion.
Collapse
Affiliation(s)
- Jun Ren
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Cuiting Peng
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Han Chen
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Fan Zhou
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yuezhi Keqie
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yutong Li
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Hong Yang
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Haixia Zhang
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Ze Du
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Ting Hu
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xuemei Zhang
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Shan Luo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wei Fan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yan Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - He Wang
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xinlian Chen
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Shanling Liu
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
4
|
Capalbo A, de Wert G, Mertes H, Klausner L, Coonen E, Spinella F, Van de Velde H, Viville S, Sermon K, Vermeulen N, Lencz T, Carmi S. Screening embryos for polygenic disease risk: a review of epidemiological, clinical, and ethical considerations. Hum Reprod Update 2024; 30:529-557. [PMID: 38805697 PMCID: PMC11369226 DOI: 10.1093/humupd/dmae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/25/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND The genetic composition of embryos generated by in vitro fertilization (IVF) can be examined with preimplantation genetic testing (PGT). Until recently, PGT was limited to detecting single-gene, high-risk pathogenic variants, large structural variants, and aneuploidy. Recent advances have made genome-wide genotyping of IVF embryos feasible and affordable, raising the possibility of screening embryos for their risk of polygenic diseases such as breast cancer, hypertension, diabetes, or schizophrenia. Despite a heated debate around this new technology, called polygenic embryo screening (PES; also PGT-P), it is already available to IVF patients in some countries. Several articles have studied epidemiological, clinical, and ethical perspectives on PES; however, a comprehensive, principled review of this emerging field is missing. OBJECTIVE AND RATIONALE This review has four main goals. First, given the interdisciplinary nature of PES studies, we aim to provide a self-contained educational background about PES to reproductive specialists interested in the subject. Second, we provide a comprehensive and critical review of arguments for and against the introduction of PES, crystallizing and prioritizing the key issues. We also cover the attitudes of IVF patients, clinicians, and the public towards PES. Third, we distinguish between possible future groups of PES patients, highlighting the benefits and harms pertaining to each group. Finally, our review, which is supported by ESHRE, is intended to aid healthcare professionals and policymakers in decision-making regarding whether to introduce PES in the clinic, and if so, how, and to whom. SEARCH METHODS We searched for PubMed-indexed articles published between 1/1/2003 and 1/3/2024 using the terms 'polygenic embryo screening', 'polygenic preimplantation', and 'PGT-P'. We limited the review to primary research papers in English whose main focus was PES for medical conditions. We also included papers that did not appear in the search but were deemed relevant. OUTCOMES The main theoretical benefit of PES is a reduction in lifetime polygenic disease risk for children born after screening. The magnitude of the risk reduction has been predicted based on statistical modelling, simulations, and sibling pair analyses. Results based on all methods suggest that under the best-case scenario, large relative risk reductions are possible for one or more diseases. However, as these models abstract several practical limitations, the realized benefits may be smaller, particularly due to a limited number of embryos and unclear future accuracy of the risk estimates. PES may negatively impact patients and their future children, as well as society. The main personal harms are an unindicated IVF treatment, a possible reduction in IVF success rates, and patient confusion, incomplete counselling, and choice overload. The main possible societal harms include discarded embryos, an increasing demand for 'designer babies', overemphasis of the genetic determinants of disease, unequal access, and lower utility in people of non-European ancestries. Benefits and harms will vary across the main potential patient groups, comprising patients already requiring IVF, fertile people with a history of a severe polygenic disease, and fertile healthy people. In the United States, the attitudes of IVF patients and the public towards PES seem positive, while healthcare professionals are cautious, sceptical about clinical utility, and concerned about patient counselling. WIDER IMPLICATIONS The theoretical potential of PES to reduce risk across multiple polygenic diseases requires further research into its benefits and harms. Given the large number of practical limitations and possible harms, particularly unnecessary IVF treatments and discarded viable embryos, PES should be offered only within a research context before further clarity is achieved regarding its balance of benefits and harms. The gap in attitudes between healthcare professionals and the public needs to be narrowed by expanding public and patient education and providing resources for informative and unbiased genetic counselling.
Collapse
Affiliation(s)
- Antonio Capalbo
- Juno Genetics, Department of Reproductive Genetics, Rome, Italy
- Center for Advanced Studies and Technology (CAST), Department of Medical Genetics, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Guido de Wert
- Department of Health, Ethics & Society, CAPHRI-School for Public Health and Primary Care and GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Heidi Mertes
- Department of Philosophy and Moral Sciences, Ghent University, Ghent, Belgium
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Liraz Klausner
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Edith Coonen
- Departments of Clinical Genetics and Reproductive Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
- School for Oncology and Developmental Biology, GROW, Maastricht University, Maastricht, The Netherlands
| | - Francesca Spinella
- Eurofins GENOMA Group Srl, Molecular Genetics Laboratories, Department of Scientific Communication, Rome, Italy
| | - Hilde Van de Velde
- Research Group Genetics Reproduction and Development (GRAD), Vrije Universiteit Brussel, Brussel, Belgium
- Brussels IVF, UZ Brussel, Brussel, Belgium
| | - Stephane Viville
- Laboratoire de Génétique Médicale LGM, Institut de Génétique Médicale d’Alsace IGMA, INSERM UMR 1112, Université de Strasbourg, France
- Laboratoire de Diagnostic Génétique, Unité de Génétique de l’infertilité (UF3472), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Karen Sermon
- Research Group Genetics Reproduction and Development (GRAD), Vrije Universiteit Brussel, Brussel, Belgium
| | | | - Todd Lencz
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Departments of Psychiatry and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Shai Carmi
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
5
|
Janssen AEJ, Koeck RM, Essers R, Cao P, van Dijk W, Drüsedau M, Meekels J, Yaldiz B, van de Vorst M, de Koning B, Hellebrekers DMEI, Stevens SJC, Sun SM, Heijligers M, de Munnik SA, van Uum CMJ, Achten J, Hamers L, Naghdi M, Vissers LELM, van Golde RJT, de Wert G, Dreesen JCFM, de Die-Smulders C, Coonen E, Brunner HG, van den Wijngaard A, Paulussen ADC, Zamani Esteki M. Clinical-grade whole genome sequencing-based haplarithmisis enables all forms of preimplantation genetic testing. Nat Commun 2024; 15:7164. [PMID: 39223156 PMCID: PMC11369272 DOI: 10.1038/s41467-024-51508-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
High-throughput sequencing technologies have increasingly led to discovery of disease-causing genetic variants, primarily in postnatal multi-cell DNA samples. However, applying these technologies to preimplantation genetic testing (PGT) in nuclear or mitochondrial DNA from single or few-cells biopsied from in vitro fertilised (IVF) embryos is challenging. PGT aims to select IVF embryos without genetic abnormalities. Although genotyping-by-sequencing (GBS)-based haplotyping methods enabled PGT for monogenic disorders (PGT-M), structural rearrangements (PGT-SR), and aneuploidies (PGT-A), they are labour intensive, only partially cover the genome and are troublesome for difficult loci and consanguineous couples. Here, we devise a simple, scalable and universal whole genome sequencing haplarithmisis-based approach enabling all forms of PGT in a single assay. In a comparison to state-of-the-art GBS-based PGT for nuclear DNA, shallow sequencing-based PGT, and PCR-based PGT for mitochondrial DNA, our approach alleviates technical limitations by decreasing whole genome amplification artifacts by 68.4%, increasing breadth of coverage by at least 4-fold, and reducing wet-lab turn-around-time by ~2.5-fold. Importantly, this method enables trio-based PGT-A for aneuploidy origin, an approach we coin PGT-AO, detects translocation breakpoints, and nuclear and mitochondrial single nucleotide variants and indels in base-resolution.
Collapse
Affiliation(s)
- Anouk E J Janssen
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW Research Institute Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Rebekka M Koeck
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW Research Institute Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Rick Essers
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW Research Institute Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Ping Cao
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW Research Institute Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Wanwisa van Dijk
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Marion Drüsedau
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Jeroen Meekels
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Burcu Yaldiz
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Maartje van de Vorst
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Bart de Koning
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Debby M E I Hellebrekers
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Servi J C Stevens
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Su Ming Sun
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Malou Heijligers
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Sonja A de Munnik
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Chris M J van Uum
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Jelle Achten
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Lars Hamers
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Marjan Naghdi
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW Research Institute Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
- Faculty of Psychology and Neuroscience, Section Applied Social Psychology, Maastricht University, Maastricht, The Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ron J T van Golde
- Department of Obstetrics and Gynaecology, GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Guido de Wert
- Department of Health, Ethics and Society, GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
- CAPHRI Research Institute for Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands
| | - Jos C F M Dreesen
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Christine de Die-Smulders
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW Research Institute Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Edith Coonen
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
- Department of Obstetrics and Gynaecology, GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Han G Brunner
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW Research Institute Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arthur van den Wijngaard
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Aimee D C Paulussen
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW Research Institute Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Masoud Zamani Esteki
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.
- Department of Genetics and Cell Biology, GROW Research Institute Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention & Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
6
|
Go M, Shim SH. Genomic aspects in reproductive medicine. Clin Exp Reprod Med 2024; 51:91-101. [PMID: 38263590 PMCID: PMC11140259 DOI: 10.5653/cerm.2023.06303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 01/25/2024] Open
Abstract
Infertility is a complex disease characterized by extreme genetic heterogeneity, compounded by various environmental factors. While there are exceptions, individual genetic and genomic variations related to infertility are typically rare, often family-specific, and may serve as susceptibility factors rather than direct causes of the disease. Consequently, identifying the cause of infertility and developing prevention and treatment strategies based on these factors remain challenging tasks, even in the modern genomic era. In this review, we first examine the genetic and genomic variations associated with infertility, and subsequently summarize the concepts and methods of preimplantation genetic testing in light of advances in genome analysis technology.
Collapse
Affiliation(s)
- Minyeon Go
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Republic of Korea
| | - Sung Han Shim
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Republic of Korea
| |
Collapse
|
7
|
Huang Q, Yan W, Mao L, Wang C, Lin J, Liu Y, Wang Z. Dichorionic diamniotic twin pregnancy after preimplantation genetic testing and single blastocyst transfer. Birth Defects Res 2024; 116:e2366. [PMID: 38872403 DOI: 10.1002/bdr2.2366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/25/2024] [Accepted: 05/19/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND In addition to the potential for multiple pregnancies, natural conception occurring in preimplantation genetic testing (PGT) increases undesired genetic risk. Some studies showed that a dichorionic diamniotic twin pregnancy after a single blastocyst transfer could be caused by embryo splitting or concurrent spontaneous conception. CASE We describe a patient undergoing PGT who had a dichorionic diamniotic twin pregnancy after single blastocyst transfer in a natural cycle. In this case, we recommended to determine genetic status of the twins by prenatal diagnosis. The results showed that karyotype, chromosome copy number variation, and parental ACAT1 variation of the twins were all normal and similar. To investigate the origin of pregnancy, we used the genotype data of single-nucleotide polymorphisms typical of genome-wide association studies. Dizygotic twins were inferred by robust estimation of kinship coefficients, which confirmed the occurrence of a spontaneous conception. CONCLUSIONS This case strengthens the importance of genetic counseling to inform couples with reproductive genetic risk, such as those who undergo PGT, that intercourse should be avoided, especially in natural transfer cycles. Moreover, prenatal diagnosis remains essential and is strongly recommended to avoid genetic risks.
Collapse
Affiliation(s)
- Qiuxiang Huang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Fuzong Clinical College of Fujian Medical University (900th Hospital of the Joint Logistics Support Force), Fuzhou, China
| | - Wei Yan
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Fuzong Clinical College of Fujian Medical University (900th Hospital of the Joint Logistics Support Force), Fuzhou, China
| | - Lihua Mao
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Fuzong Clinical College of Fujian Medical University (900th Hospital of the Joint Logistics Support Force), Fuzhou, China
| | - Caixia Wang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Fuzong Clinical College of Fujian Medical University (900th Hospital of the Joint Logistics Support Force), Fuzhou, China
| | - Juan Lin
- Laboratory of Basic Medicine, Fuzong Clinical College of Fujian Medical University (900th Hospital of the Joint Logistics Support Force), Fuzhou, China
| | - Yun Liu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Fuzong Clinical College of Fujian Medical University (900th Hospital of the Joint Logistics Support Force), Fuzhou, China
| | - Zhihong Wang
- Laboratory of Basic Medicine, Fuzong Clinical College of Fujian Medical University (900th Hospital of the Joint Logistics Support Force), Fuzhou, China
| |
Collapse
|
8
|
Li L, Zhang T, Hua Z, Wang J, Sun H, Chen Q, Zhou Y, Wang L. Reprogramming the future: Capitalizing on in vitro embryo culture by advancing stem cell technologies in the fight against rare genetic disorders. Intractable Rare Dis Res 2024; 13:117-120. [PMID: 38836180 PMCID: PMC11145405 DOI: 10.5582/irdr.2023.01074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024] Open
Abstract
Capitalizing on breakthroughs in reproductive genetics, the utilization of in vitro embryo culture and stem cell technologies heralds a transformative era in addressing global challenges posed by rare genetic diseases. These cutting-edge practices illuminate the intricacies of early human development, elucidate the mechanisms behind rare diseases, and guide the development of potential therapies. Balancing this remarkable innovation with necessary ethical considerations, these technologies have the potential to revolutionize the trajectory of rare genetic disorders, transforming the landscape of diagnosis, treatment, and genetic counseling while offering renewed hope for affected individuals and families worldwide.
Collapse
Affiliation(s)
- Lisha Li
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Taiwei Zhang
- Research Center of Obstetrical Eugenics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guizhou, China
| | - Zhaozhao Hua
- Department of Obstetrics, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guizhou, China
| | - Jing Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Hongmei Sun
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Qian Chen
- Research Center of Obstetrical Eugenics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guizhou, China
| | - Yiyuan Zhou
- Research Center of Obstetrical Eugenics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guizhou, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| |
Collapse
|
9
|
Tung NT, Sang TT, Khoa TV, Phong NV, Phuong TH. Preimplantation Genetic Diagnosis of Androgen Resistance Syndrome Caused by Mutation on the AR Gene in Vietnam. Appl Clin Genet 2024; 17:47-56. [PMID: 38737445 PMCID: PMC11082556 DOI: 10.2147/tacg.s457634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024] Open
Abstract
Background Androgen resistance syndrome or androgen insensitivity syndrome (AIS - Androgen Insensitivity Syndrome, OMIM 300068) is an X-linked recessive genetic syndrome causing disorders of sexual development in males. This disease is caused by mutations in the AR gene located on the X chromosome, which encodes the protein that structures the androgen receptor, with the role of receiving androgens. Mutation of the AR gene causes complete or partial loss of androgen receptor function, thereby androgen not being obtained and exerting its effect on target organs, resulting in abnormalities of the male reproductive system due to this organ system, differentiating towards feminization under the influence of estrogen. Disease prevention can be achieved by using pre-implantation genetic diagnosis, which enables couples carrying the mutation to have healthy offspring. Aim To carry out preimplantation genetic diagnosis of androgen resistance syndrome. Methods Sanger sequencing was used to detect the mutation in the blood samples of the couple, their son, and 01 embryo that were biopsied on the fifth day based on the findings of next-generation sequencing (NGS) of the affected son. We combined Sanger sequencing and linkage analysis using short tandem repeats (STR) to provide diagnostic results. Results We performed preimplantation genetic diagnosis for AIS on an embryo from a couple who had previously had an affected son. Consequently, one healthy embryo was diagnosed without the variant NM_000044: c.796del (p.Asp266IlefsTer30). Conclusion We report on a novel variant (NM_000044: c.796del (p.Asp266IlefsTer30)) in the AR gene discovered in Vietnam. The developed protocol was helpful for the preimplantation genetic diagnosis process to help families with the monogenic disease of AIS but wish to have healthy children.
Collapse
Affiliation(s)
- Nguyen Thanh Tung
- Military Institute of Clinical Embryology and Histology, Vietnam Military Medical University, Hanoi, 10000, Vietnam
| | - Trieu Tien Sang
- Department of Biology and Medical Genetics, Vietnam Military Medical University, Hanoi, 10000, Vietnam
| | - Tran Van Khoa
- Department of Biology and Medical Genetics, Vietnam Military Medical University, Hanoi, 10000, Vietnam
| | - Nguyen Van Phong
- Department of Biology and Medical Genetics, Vietnam Military Medical University, Hanoi, 10000, Vietnam
| | - Tran Hoang Phuong
- Department of Oncology, 108 Military Central Hospital, Hanoi, 10000, Vietnam
| |
Collapse
|
10
|
Zou W, Li M, Wang X, Lu H, Hao Y, Chen D, Zhu S, Ji D, Zhang Z, Zhou P, Cao Y. Preimplantation genetic testing for monogenic disorders (PGT-M) offers an alternative strategy to prevent children from being born with hereditary neurological diseases or metabolic diseases dominated by nervous system phenotypes: a retrospective study. J Assist Reprod Genet 2024; 41:1245-1259. [PMID: 38470552 PMCID: PMC11143151 DOI: 10.1007/s10815-024-03057-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Preimplantation genetic testing for monogenic disorders (PGT-M) is now widely used as an effective strategy to prevent various monogenic or chromosomal diseases. MATERIAL AND METHODS In this retrospective study, couples with a family history of hereditary neurological diseases or metabolic diseases dominated by nervous system phenotypes and/or carrying the pathogenic genes underwent PGT-M to prevent children from inheriting disease-causing gene mutations from their parents and developing known genetic diseases. After PGT-M, unaffected (i.e., normal) embryos after genetic detection were transferred into the uterus of their corresponding mothers. RESULTS A total of 43 carrier couples with the following hereditary neurological diseases or metabolic diseases dominated by nervous system phenotypes underwent PGT-M: Duchenne muscular dystrophy (13 families); methylmalonic acidemia (7 families); spinal muscular atrophy (5 families); infantile neuroaxonal dystrophy and intellectual developmental disorder (3 families each); Cockayne syndrome (2 families); Menkes disease, spinocerebellar ataxia, glycine encephalopathy with epilepsy, Charcot-Marie-Tooth disease, mucopolysaccharidosis, Aicardi-Goutieres syndrome, adrenoleukodystrophy, phenylketonuria, amyotrophic lateral sclerosis, and Dravet syndrome (1 family each). After 53 PGT-M cycles, the final transferable embryo rate was 12.45%, the clinical pregnancy rate was 74.19%, and the live birth rate was 89.47%; a total of 18 unaffected (i.e., healthy) children were born to these families. CONCLUSIONS This study highlights the importance of PGT-M in preventing children born with hereditary neurological diseases or metabolic diseases dominated by nervous system phenotypes.
Collapse
Affiliation(s)
- Weiwei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Min Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaolei Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hedong Lu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yan Hao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dawei Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shasha Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dongmei Ji
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
11
|
Zhao W, Song Y, Huang C, Xu S, Luo Q, Yao R, Sun N, Liang B, Fei J, Gao F, Huang J, Qu S. Development of preimplantation genetic testing for monogenic reference materials using next-generation sequencing. BMC Med Genomics 2024; 17:33. [PMID: 38262988 PMCID: PMC10807056 DOI: 10.1186/s12920-024-01803-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
OBJECTIVE Preimplantation genetic testing for monogenic disorders (PGT-M) has been used for over 20 years to detect many serious genetic conditions. However, there is still a lack of reference materials (RMs) to validate the test performance during the development and quality control of PGT-M. METHOD Sixteen thalassemia cell lines from four thalassemia families were selected to establish the RMs. Each family consisted of parents with heterozygous mutations for α- and/or β-thalassemia and two children, at least one of whom carried a homozygous thalassemia mutation (proband). The RM panel consisted of 12 DNA samples (parents and probands in 4 families) and 4 simulated embryos (cell lines constructed from blood samples from the four nonproband children). Four accredited genetics laboratories that offer verification of thalassemia samples were invited to evaluate the performance of the RM panel. Furthermore, the stability of the RMs was determined by testing after freeze‒thaw cycles and long-term storage. RESULTS PGT-M reference materials containing 12 genome DNA (gDNA) reference materials and 4 simulated embryo reference materials for thalassemia testing were successfully established. Next-generation sequencing was performed on the samples. The genotypes and haplotypes of all 16 PGT-M reference materials were concordant across the four labs, which used various testing workflows. These well-characterized PGT-M reference materials retained their stability even after 3 years of storage. CONCLUSION The establishment of PGT-M reference materials for thalassemia will help with the standardization and accuracy of PGT-M in clinical use.
Collapse
Affiliation(s)
- Weihua Zhao
- Department of Obstetrics, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health, Shenzhen, Guangdong, China
| | | | - Chuanfeng Huang
- Division of Physical and Chemical Testing, Division of in Vitro Diagnostic Reagents, National Institutes for food and drug Control (NIFDC), Beijing, China
| | - Shan Xu
- BGI-Shenzhen, Guangdong, Shenzhen, China
| | - Qi Luo
- Department of Obstetrics, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health, Shenzhen, Guangdong, China
| | - Runsi Yao
- Department of Obstetrics, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health, Shenzhen, Guangdong, China
| | - Nan Sun
- Division of Physical and Chemical Testing, Division of in Vitro Diagnostic Reagents, National Institutes for food and drug Control (NIFDC), Beijing, China
| | - Bo Liang
- Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Microbial Metabolism, Shanghai, China
- Basecare Medical Device Co., Ltd, Jiangsu, China
| | - Jia Fei
- Peking Jabrehoo Med Tech Co., Ltd, Beijing, China
| | | | - Jie Huang
- Division of Physical and Chemical Testing, Division of in Vitro Diagnostic Reagents, National Institutes for food and drug Control (NIFDC), Beijing, China.
| | - Shoufang Qu
- Division of Physical and Chemical Testing, Division of in Vitro Diagnostic Reagents, National Institutes for food and drug Control (NIFDC), Beijing, China.
| |
Collapse
|
12
|
Parikh F, Athalye A, Madon P, Khandeparkar M, Naik D, Sanap R, Udumudi A. Genetic counseling for pre-implantation genetic testing of monogenic disorders (PGT-M). FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1213546. [PMID: 38162012 PMCID: PMC10755023 DOI: 10.3389/frph.2023.1213546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Pre-implantation genetic testing (PGT) is a vital tool in preventing chromosomal aneuploidies and other genetic disorders including those that are monogenic in origin. It is performed on embryos created by intracytoplasmic sperm injection (ICSI). Genetic counseling in the area of assisted reproductive technology (ART) has also evolved along with PGT and is considered an essential and integral part of Reproductive Medicine. While PGT has the potential to prevent future progeny from being affected by genetic conditions, genetic counseling helps couples understand and adapt to the medical, psychological, familial and social implications of the genetic contribution to disease. Genetic counseling is particularly helpful for couples with recurrent miscarriages, advanced maternal age, a partner with a chromosome translocation or inversion, those in a consanguineous marriage, and those using donor gametes. Partners with a family history of genetic conditions including hereditary cancer, late onset neurological diseases and with a carrier status for monogenic disorders can benefit from genetic counseling when undergoing PGT for monogenic disorders (PGT-M). Genetic counseling for PGT is useful in cases of Mendelian disorders, autosomal dominant and recessive conditions and sex chromosome linked disorders and for the purposes of utilizing HLA matching technology for creating a savior sibling. It also helps in understanding the importance of PGT in cases of variants of uncertain significance (VUS) and variable penetrance. The possibilities and limitations are discussed in detail during the sessions of genetic counseling.
Collapse
Affiliation(s)
- Firuza Parikh
- Department of Assisted Reproduction and Genetics, Jaslok-FertilTree International Fertility Centre, Jaslok Hospital and Research Centre, Mumbai, India
| | - Arundhati Athalye
- Department of Assisted Reproduction and Genetics, Jaslok-FertilTree International Fertility Centre, Jaslok Hospital and Research Centre, Mumbai, India
| | - Prochi Madon
- Department of Assisted Reproduction and Genetics, Jaslok-FertilTree International Fertility Centre, Jaslok Hospital and Research Centre, Mumbai, India
| | - Meenal Khandeparkar
- Department of Assisted Reproduction and Genetics, Jaslok-FertilTree International Fertility Centre, Jaslok Hospital and Research Centre, Mumbai, India
| | - Dattatray Naik
- Department of Assisted Reproduction and Genetics, Jaslok-FertilTree International Fertility Centre, Jaslok Hospital and Research Centre, Mumbai, India
| | - Rupesh Sanap
- Department of Assisted Reproduction and Genetics, Jaslok-FertilTree International Fertility Centre, Jaslok Hospital and Research Centre, Mumbai, India
| | | |
Collapse
|
13
|
Gupta P, Arvinden VR, Thakur P, Bhoyar RC, Saravanakumar V, Gottumukkala NV, Goswami SG, Nafiz M, Iyer AR, Vignesh H, Soni R, Bhargava N, Gunda P, Jain S, Gupta V, Sivasubbu S, Scaria V, Ramalingam S. Scalable noninvasive amplicon-based precision sequencing (SNAPseq) for genetic diagnosis and screening of β-thalassemia and sickle cell disease using a next-generation sequencing platform. Front Mol Biosci 2023; 10:1244244. [PMID: 38152111 PMCID: PMC10751313 DOI: 10.3389/fmolb.2023.1244244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/16/2023] [Indexed: 12/29/2023] Open
Abstract
β-hemoglobinopathies such as β-thalassemia (BT) and Sickle cell disease (SCD) are inherited monogenic blood disorders with significant global burden. Hence, early and affordable diagnosis can alleviate morbidity and reduce mortality given the lack of effective cure. Currently, Sanger sequencing is considered to be the gold standard genetic test for BT and SCD, but it has a very low throughput requiring multiple amplicons and more sequencing reactions to cover the entire HBB gene. To address this, we have demonstrated an extraction-free single amplicon-based approach for screening the entire β-globin gene with clinical samples using Scalable noninvasive amplicon-based precision sequencing (SNAPseq) assay catalyzing with next-generation sequencing (NGS). We optimized the assay using noninvasive buccal swab samples and simple finger prick blood for direct amplification with crude lysates. SNAPseq demonstrates high sensitivity and specificity, having a 100% agreement with Sanger sequencing. Furthermore, to facilitate seamless reporting, we have created a much simpler automated pipeline with comprehensive resources for pathogenic mutations in BT and SCD through data integration after systematic classification of variants according to ACMG and AMP guidelines. To the best of our knowledge, this is the first report of the NGS-based high throughput SNAPseq approach for the detection of both BT and SCD in a single assay with high sensitivity in an automated pipeline.
Collapse
Affiliation(s)
- Pragya Gupta
- CSIR- Institute for Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - V. R. Arvinden
- CSIR- Institute for Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Priya Thakur
- CSIR- Institute for Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rahul C. Bhoyar
- CSIR- Institute for Genomics and Integrative Biology, New Delhi, India
| | | | | | - Sangam Giri Goswami
- CSIR- Institute for Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mehwish Nafiz
- CSIR- Institute for Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aditya Ramdas Iyer
- CSIR- Institute for Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Harie Vignesh
- CSIR- Institute for Genomics and Integrative Biology, New Delhi, India
| | - Rajat Soni
- CSIR- Institute for Genomics and Integrative Biology, New Delhi, India
| | - Nupur Bhargava
- CSIR- Institute for Genomics and Integrative Biology, New Delhi, India
| | - Padma Gunda
- Thalassemia and Sickle Cell Society, Hyderabad, India
| | - Suman Jain
- Thalassemia and Sickle Cell Society, Hyderabad, India
| | - Vivek Gupta
- Government Institute of Medical Sciences (GIMS), Greater Noida, India
| | - Sridhar Sivasubbu
- CSIR- Institute for Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vinod Scaria
- CSIR- Institute for Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sivaprakash Ramalingam
- CSIR- Institute for Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
14
|
Chen C, Shi H, Niu W, Bao X, Yang J, Jin H, Song W, Sun Y. The preimplantation genetic testing for monogenic disorders strategy for blocking the transmission of hereditary cancers through haplotype linkage analysis by karyomapping. J Assist Reprod Genet 2023; 40:2933-2943. [PMID: 37751120 PMCID: PMC10656414 DOI: 10.1007/s10815-023-02939-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/09/2023] [Indexed: 09/27/2023] Open
Abstract
PURPOSE Providing feasible preimplantation genetic testing strategies for monogenic disorders (PGT-M) for prevention and control of genetic cancers. METHODS Inclusion of families with a specific pathogenic mutation or a clear family history of genetic cancers. Identification of the distribution of hereditary cancer-related mutations in families through genetic testing. After a series of assisted reproductive measures such as down-regulation, stimulation, egg retrieval, and in vitro fertilization, a biopsy of trophectoderm cells from a blastocyst was performed for single-cell level whole-genome amplification (WGA). Then, the detection of chromosomal aneuploidies was performed by karyomapping. Construction of a haplotype-based linkage analysis to determine whether the embryo carries the mutation. Meanwhile, we performed CNV testing. Finally, embryos can be selected for transfer, and the results will be verified in 18-22 weeks after pregnancy. RESULTS Six couples with a total of 7 cycles were included in our study. Except for cycle 1 of case 5 which did not result in a transferable embryo, the remaining 6 cycles produced transferable embryos and had a successful pregnancy. Four couples have had amniotic fluid tests to confirm that the fetus does not carry the mutation, while 1 couple was not tested due to insufficient pregnancy weeks. And the remaining couples had to induce labor due to fetal megacystis during pregnancy. CONCLUSION Our strategy has been proven to be feasible. It can effectively prevent transmission of hereditary cancer-related mutations to offspring during the prenatal stage.
Collapse
Affiliation(s)
- Chuanju Chen
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Cenetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hao Shi
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Cenetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wenbin Niu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Cenetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiao Bao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Cenetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jingya Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Cenetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Haixia Jin
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Cenetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wenyan Song
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Cenetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Key Laboratory of Reproduction and Cenetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
15
|
Chen X, Wang Y, Guan S, Yan Z, Zhu X, Kuo Y, Wang N, Zhi X, Lian Y, Huang J, Liu P, Li R, Yan L, Qiao J. Application of the PGT-M strategy using single sperm and/or affected embryos as probands for linkage analysis in males with hereditary tumor syndromes without family history. J Hum Genet 2023; 68:813-821. [PMID: 37592134 DOI: 10.1038/s10038-023-01188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/03/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023]
Abstract
Hereditary tumor syndromes have garnered substantial attention due to their adverse effects on both the physical and psychological health of patients, as well as the elevated risk of transmission to subsequent generations. This has prompted a growing interest in exploring preimplantation genetic testing (PGT) as a treatment option to mitigate and eliminate these impacts. Several studies have demonstrated that de novo variants have become a great cause of many hereditary tumor syndromes, which introduce certain difficulties to PGT. In the absence of adequate genetic linkage information (parents and offspring), haplotype construction seems unrealizable. In the study, researchers used single sperm or affected embryos as proband to perform single-nucleotide polymorphism linkage analysis for cases with de novo variants. For complicated variants, the strategy that sperm combined with embryo detection will increase accuracy while avoiding the limitations and potential failures of using a single detection material. The study recruited 11 couples with male de novo carriers, including 3 tumor types and 4 genes. To date, 4 couples have been clinically confirmed as pregnant and three healthy babies have been born. The results of amniocentesis or umbilical cord blood verification were consistent with the results of PGT-M. The study aims to introduce the application of the PGT-M strategy in hereditary tumor syndromes.
Collapse
Affiliation(s)
- Xi Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Yuqian Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China
| | - Shuo Guan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Zhiqiang Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xiaohui Zhu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Ying Kuo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Nan Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xu Zhi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Ying Lian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Jin Huang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Ping Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China.
- Beijing Advanced Innovation Center for Genomics, Beijing, 100191, China.
| |
Collapse
|
16
|
Backenroth D, Altarescu G, Zahdeh F, Mann T, Murik O, Renbaum P, Segel R, Zeligson S, Hakam-Spector E, Carmi S, Zeevi DA. SHaploseek is a sequencing-only, high-resolution method for comprehensive preimplantation genetic testing. Sci Rep 2023; 13:18036. [PMID: 37865712 PMCID: PMC10590366 DOI: 10.1038/s41598-023-45292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023] Open
Abstract
Recent advances in genomic technologies expand the scope and efficiency of preimplantation genetic testing (PGT). We previously developed Haploseek, a clinically-validated, variant-agnostic comprehensive PGT solution. Haploseek is based on microarray genotyping of the embryo's parents and relatives, combined with low-pass sequencing of the embryos. Here, to increase throughput and versatility, we aimed to develop a sequencing-only implementation of Haploseek. Accordingly, we developed SHaploseek, a universal PGT method to determine genome-wide haplotypes of each embryo based on low-pass (≤ 5x) sequencing of the parents and relative(s) along with ultra-low-pass (0.2-0.4x) sequencing of the embryos. We used SHaploseek to analyze five single lymphoblast cells and 31 embryos. We validated the genome-wide haplotype predictions against either bulk DNA, Haploseek, or, at focal genomic sites, PCR-based PGT results. SHaploseek achieved > 99% concordance with bulk DNA in two families from which single cells were derived from grown-up children. In embryos from 12 PGT families, all of SHaploseek's focal site haplotype predictions were concordant with clinical PCR-based PGT results. Genome-wide, there was > 99% median concordance between Haploseek and SHaploseek's haplotype predictions. Concordance remained high at all assayed sequencing depths ≥ 2x, as well as with only 1ng of parental DNA input. In subtelomeric regions, significantly more haplotype predictions were high-confidence in SHaploseek compared to Haploseek. In summary, SHaploseek constitutes a single-platform, accurate, and cost-effective comprehensive PGT solution.
Collapse
Affiliation(s)
- Daniel Backenroth
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gheona Altarescu
- PGT Unit, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Fouad Zahdeh
- Translational Genomics Lab, Medical Genetics Institute, Shaare Zedek Medical Center, Bayit Str. 12, P.O.Box 3235, 91031, Jerusalem, Israel
| | - Tzvia Mann
- Translational Genomics Lab, Medical Genetics Institute, Shaare Zedek Medical Center, Bayit Str. 12, P.O.Box 3235, 91031, Jerusalem, Israel
| | - Omer Murik
- Translational Genomics Lab, Medical Genetics Institute, Shaare Zedek Medical Center, Bayit Str. 12, P.O.Box 3235, 91031, Jerusalem, Israel
| | - Paul Renbaum
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Reeval Segel
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Sharon Zeligson
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | - Shai Carmi
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David A Zeevi
- Translational Genomics Lab, Medical Genetics Institute, Shaare Zedek Medical Center, Bayit Str. 12, P.O.Box 3235, 91031, Jerusalem, Israel.
| |
Collapse
|
17
|
Liu Y, Ren Y, Feng H, Wang Y, Yan L, Qiao J, Liu P. Development of preimplantation genetic testing for monogenic diseases in China. HUM FERTIL 2023; 26:879-886. [PMID: 38059330 DOI: 10.1080/14647273.2023.2284153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023]
Abstract
Preimplantation genetic testing for monogenic diseases (PGT-M) can effectively interrupt the transmission of genetic diseases from parents to the offspring before pregnancy. In China, there are over ten million individuals afflicted with monogenic disorders. This literature review summarizes the development of PGT-M in China for the past 24 years, covering the general steps such as the indications and contraindications, genetic and reproductive counselling, biopsy methods, detecting techniques and strategies during PGT-M application in China. The ethical considerations of PGT-M are also be emphasized, including sexual selection, transferring for mosaic embryos, the three-parent baby, and the different opinions for serious adult-onset conditions. Some key policies of the Chinese government for the application of PGT-M are also considered. Methods for regulation of this technique, as well as specific management to increase the accuracy and reliability of PGT-M, are regarded as priority issues in China. The third-generation sequencing and variants testing from RNA level, and non-invasive preimplantation genetic testing using blastocoel fluid and free DNA particles within spent blastocyst medium might be potential techniques and strategies for PGT-M in future.
Collapse
Affiliation(s)
- Yujun Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, P. R. China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, P. R. China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, P. R. China
| | - Yixin Ren
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, P. R. China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, P. R. China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, P. R. China
| | - Hao Feng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, P. R. China
| | - Yuqian Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, P. R. China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, P. R. China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, P. R. China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, P. R. China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, P. R. China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, P. R. China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, P. R. China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, P. R. China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, P. R. China
| | - Ping Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, P. R. China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, P. R. China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, P. R. China
| |
Collapse
|
18
|
Xie XS. Round-Trip Journey of a Physical Chemist. J Phys Chem B 2023; 127:7800-7809. [PMID: 37731371 DOI: 10.1021/acs.jpcb.3c05597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Affiliation(s)
- Xiaoliang Sunney Xie
- Biomedical Pioneering Innovation Center, Peking University, 5 Yiheyuan Road, Beijing 100871, China
| |
Collapse
|
19
|
Wen X, Du J, Li Z, Liu N, Huo J, Li J, Ke W, Wu J, Fang X, Lin X. Establishment of linkage phase, using Oxford Nanopore Technologies, for preimplantation genetic testing of Coffin-Lowry syndrome with a de novo RPS6KA3 mutation. Front Genet 2023; 14:1169868. [PMID: 37779904 PMCID: PMC10538565 DOI: 10.3389/fgene.2023.1169868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Background: This study aimed to perform preimplantation genetic testing (PGT) for a female Coffin-Lowry Syndrome (CLS) patient with a de novo mutation (DNM) in RPS6KA3. It was challenging to establish the haplotype in this family because of the lack of information from affected family members. Hence, we explored a new and reliable strategy for the detection of the DNM in PGT, using Oxford Nanopore Technologies (ONT) and the MARSALA platform. Methods: We performed whole-exome sequencing (WES) on the proband and confirmed the pathogenic mutation by Sanger sequencing. The proband then underwent PGT to prevent the transmission of the pathogenic mutation to her offspring. We diverged from the conventional methods and used long-read sequencing (LRS) on the ONT platform to directly detect the mutation and nearby SNPs, for construction of the haplotype in the preclinical phase of PGT. In the clinical phase of embryo diagnosis, the MARSALA method was used to detect both the SNP-based haplotype and chromosome copy number variations (CNVs), in each blastocyst. Finally, a normal embryo was selected by comparison to the haplotype of the proband and transferred into the uterus. Sanger sequencing and karyotyping were performed by amniocentesis, at 17 weeks of gestation, to confirm the accuracy of PGT. Results: Using WES, we found the novel, heterozygous, pathogenic c.1496delG (p.Gly499Valfs*25) mutation of RPS6KA3 in the proband. The SNP-based haplotype that was linked to the pathogenic mutation site was successfully established in the proband, without the need for other family members to be tested with ONT. Eight blastocysts were biopsied to perform PGT and were assessed with a haplotype linkage analysis (30 SNP sites selected), to give results that were consistent with direct mutation detection using Sanger sequencing. The results of PGT showed that three of the eight blastocysts were normal, without the DNM. Moreover, the patient had a successful pregnancy, after transfer of a normal blastocyst into the uterus, and delivered a healthy baby. Conclusion: The ONT platform, combined with the MARSALA method, can be used to perform PGT for DNM patients without the need for other samples as a reference.
Collapse
Affiliation(s)
- Xiaojun Wen
- Reproductive Medicine Center, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China
| | - Jing Du
- Reproductive Medicine Center, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China
| | - Zhiming Li
- Reproductive Medicine Center, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China
| | - Nengqing Liu
- Reproductive Medicine Center, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China
| | - Junye Huo
- Reproductive Medicine Center, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China
| | - Jieliang Li
- Reproductive Medicine Center, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China
| | - Wanna Ke
- Reproductive Medicine Center, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China
| | - Jiaqi Wu
- Reproductive Medicine Center, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China
| | - Xiaowu Fang
- Reproductive Medicine Center, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China
| | - Xiufeng Lin
- Reproductive Medicine Center, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Bi Q, Huang S, Wang H, Gao X, Ma M, Han M, Lu S, Kang D, Nourbakhsh A, Yan D, Blanton S, Liu X, Yuan Y, Yao Y, Dai P. Preimplantation genetic testing for hereditary hearing loss in Chinese population. J Assist Reprod Genet 2023:10.1007/s10815-023-02753-8. [PMID: 37017887 PMCID: PMC10352472 DOI: 10.1007/s10815-023-02753-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/13/2023] [Indexed: 04/06/2023] Open
Abstract
PURPOSE To evaluate the clinical validity of preimplantation genetic testing (PGT) to prevent hereditary hearing loss (HL) in Chinese population. METHODS A PGT procedure combining multiple annealing and looping-based amplification cycles (MALBAC) and single-nucleotide polymorphisms (SNPs) linkage analyses with a single low-depth next-generation sequencing run was implemented. Forty-three couples carried pathogenic variants in autosomal recessive non-syndromic HL genes, GJB2 and SLC26A4, and four couples carried pathogenic variants in rare HL genes: KCNQ4, PTPN11, PAX3, and USH2A were enrolled. RESULTS Fifty-four in vitro fertilization (IVF) cycles were implemented, 340 blastocysts were cultured, and 303 (89.1%) of these received a definite diagnosis of a disease-causing variant testing, linkage analysis and chromosome screening. A clinical pregnancy of 38 implanted was achieved, and 34 babies were born with normal hearing. The live birth rate was 61.1%. CONCLUSIONS AND RELEVANCE In both the HL population and in hearing individuals at risk of giving birth to offspring with HL in China, there is a practical need for PGT. The whole genome amplification combined with NGS can simplify the PGT process, and the efficiency of PGT process can be improved by establishing a universal SNP bank of common disease-causing gene in particular regions and nationalities. This PGT procedure was demonstrated to be effective and lead to satisfactory clinical outcomes.
Collapse
Affiliation(s)
- Qingling Bi
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, Key Lab of Hearing Impairment Science of Ministry of Education, Key Lab of Hearing Impairment Prevention and Treatment of Beijing, #28 Fuxing Road, Beijing, 100853, China
- Departments of Otolaryngology Head & Neck Surgery, China-Japan Friendship Hospital, 2#Yinghua Road, Beijing, 100029, China
| | - Shasha Huang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, Key Lab of Hearing Impairment Science of Ministry of Education, Key Lab of Hearing Impairment Prevention and Treatment of Beijing, #28 Fuxing Road, Beijing, 100853, China
| | - Hui Wang
- Reproductive Center, Chinese PLA General Hospital, 28#Fuxing Road, Beijing, 100853, China
| | - Xue Gao
- Department of Otolaryngology, PLA Rocket Force Characteristic Medical Center, 16# XinWai Da Jie, Beijing, 100088, China
| | - Minyue Ma
- Reproductive Center, Chinese PLA General Hospital, 28#Fuxing Road, Beijing, 100853, China
| | - Mingyu Han
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, Key Lab of Hearing Impairment Science of Ministry of Education, Key Lab of Hearing Impairment Prevention and Treatment of Beijing, #28 Fuxing Road, Beijing, 100853, China
| | - Sijia Lu
- Department of Clinical Research, Yikon Genomics, 1698 Wangyuan Road, Fengxian District Shanghai, 201400, China
| | - Dongyang Kang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, Key Lab of Hearing Impairment Science of Ministry of Education, Key Lab of Hearing Impairment Prevention and Treatment of Beijing, #28 Fuxing Road, Beijing, 100853, China
| | - Aida Nourbakhsh
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Susan Blanton
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Yongyi Yuan
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, Key Lab of Hearing Impairment Science of Ministry of Education, Key Lab of Hearing Impairment Prevention and Treatment of Beijing, #28 Fuxing Road, Beijing, 100853, China.
| | - Yuanqing Yao
- Reproductive Center, Chinese PLA General Hospital, 28#Fuxing Road, Beijing, 100853, China.
| | - Pu Dai
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, Key Lab of Hearing Impairment Science of Ministry of Education, Key Lab of Hearing Impairment Prevention and Treatment of Beijing, #28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
21
|
Development of an artificial intelligence based model for predicting the euploidy of blastocysts in PGT-A treatments. Sci Rep 2023; 13:2322. [PMID: 36759639 PMCID: PMC9911600 DOI: 10.1038/s41598-023-29319-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
The euploidy of embryos is unpredictable before transfer in in vitro fertilisation (IVF) treatments without pre-implantation genetic testing (PGT). Previous studies have suggested that morphokinetic characteristics using an artificial intelligence (AI)-based model in the time-lapse monitoring (TLM) system were correlated with the outcomes of frozen embryo transfer (FET), but the predictive effectiveness of the model for euploidy remains to be perfected. In this study, we combined morphokinetic characteristics, morphological characteristics of blastocysts, and clinical parameters of patients to build a model to predict the euploidy of blastocysts and live births in PGT for aneuploidy treatments. The model was effective in predicting euploidy (AUC = 0.879) but was ineffective in predicting live birth after FET. These results provide a potential method for the selection of embryos for IVF treatments with non-PGT.
Collapse
|
22
|
Translational Bioinformatics for Human Reproductive Biology Research: Examples, Opportunities and Challenges for a Future Reproductive Medicine. Int J Mol Sci 2022; 24:ijms24010004. [PMID: 36613446 PMCID: PMC9819745 DOI: 10.3390/ijms24010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Since 1978, with the first IVF (in vitro fertilization) baby birth in Manchester (England), more than eight million IVF babies have been born throughout the world, and many new techniques and discoveries have emerged in reproductive medicine. To summarize the modern technology and progress in reproductive medicine, all scientific papers related to reproductive medicine, especially papers related to reproductive translational medicine, were fully searched, manually curated and reviewed. Results indicated whether male reproductive medicine or female reproductive medicine all have made significant progress, and their markers have experienced the progress from karyotype analysis to single-cell omics. However, due to the lack of comprehensive databases, especially databases collecting risk exposures, disease markers and models, prevention drugs and effective treatment methods, the application of the latest precision medicine technologies and methods in reproductive medicine is limited.
Collapse
|
23
|
Bai H, Li X, Liu X, Shi W, He B, Wei R, Shi J. Preimplantation genetic testing for recurrent autosomal dominant osteogenesis imperfecta associated with paternal gonosomal mosaicism. Front Genet 2022; 13:1011833. [PMID: 36276971 PMCID: PMC9579439 DOI: 10.3389/fgene.2022.1011833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022] Open
Abstract
Research Question: How to prevent the transfer of a mutation causing osteogenesis imperfecta (OI) to offspring in a couple with recurrent adverse pregnancy outcomes, when the male partner is a gonosomal mosaic carrier. Design: High-throughput sequencing and first-generation DNA sequencing were performed using the tissues from an aborted fetus and its parents. Regions 2 Mb upstream and downstream of the COL1A1 gene were subjected to multiplex PCR to identify single nucleotide polymorphisms (SNPs) and family haplotypes associated with the disease-causing mutation. Single-cell whole-genome amplification and sequencing were performed on trophoblasts cultured in vitro for 5–6 days to construct embryonic SNP haplotypes, and first-generation sequencing was used for pathogenic locus verification and aneuploidy screening. Preimplantation genetic testing for monogenic disorders (PGT-M) was also performed. Results: The aborted fetus was heterozygous for the COL1A1 mutation c.1454G>A (chr17-48272089, p.Gly485Asp) suspected to cause OI. The variant was also detected in the peripheral blood cells and sperm of the male partner, who appeared to be a gonosomal mosaic carrier of the mutation. Three morphologically usable blastocysts were obtained in vitro and successfully expanded after a trophectoderm biopsy. Two blastocysts were unusable owing to aneuploidy; however, one was euploid and did not carry the paternal mutation. Post-transfer gestation was confirmed by systematic B-scan ultrasound, and amniocentesis findings were consistent with the PGT-M results. Conclusion: Parental gonadal mosaicism was the cause of recurrent terminated pregnancies due to fetal skeletal dysplasia. Using PGT-M to select embryos without the paternal pathogenic mutation prevented the vertical transmission of OI in this family, and a successful pregnancy was achieved.
Collapse
Affiliation(s)
- Haiyan Bai
- The ART Center, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Xiaofang Li
- The ART Center, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Xitong Liu
- The ART Center, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Wenhao Shi
- The ART Center, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Bin He
- Genetic Medical Center, Xi’an, Jiangsu, China
| | | | - Juanzi Shi
- The ART Center, Northwest Women’s and Children’s Hospital, Xi’an, China
- *Correspondence: Juanzi Shi,
| |
Collapse
|
24
|
Yang L, Xu Y, Xia J, Yan H, Ding C, Shi Q, Wu Y, Liu P, Pan J, Zeng Y, Zhang Y, Chen F, Jiang H, Xu Y, Li W, Zhou C, Gao Y. Simultaneous detection of genomic imbalance in patients receiving preimplantation genetic testing for monogenic diseases (PGT-M). Front Genet 2022; 13:976131. [PMID: 36246639 PMCID: PMC9559864 DOI: 10.3389/fgene.2022.976131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Preimplantation genetic test for monogenic disorders (PGT-M) has been used to select genetic disease-free embryos for implantation during in vitro fertilization (IVF) treatment. However, embryos tested by PGT-M have risks of harboring chromosomal aneuploidy. Hence, a universal method to detect monogenic diseases and genomic imbalances is required. Methods: Here, we report a novel PGT-A/M procedure allowing simultaneous detection of monogenic diseases and genomic imbalances in one experiment. Library was prepared in a special way that multiplex polymerase chain reaction (PCR) was integrated into the process of whole genome amplification. The resulting library was used for one-step low-pass whole genome sequencing (WGS) and high-depth target enrichment sequencing (TES). Results: The TAGs-seq PGT-A/M was first validated with genomic DNA (gDNA) and the multiple displacement amplification (MDA) products of a cell line. Over 90% of sequencing reads covered the whole-genome region with around 0.3–0.4 × depth, while around 5.4%–7.3% of reads covered target genes with >10000 × depth. Then, for clinical validation, 54 embryos from 8 women receiving PGT-M of β-thalassemia were tested by the TAGs-seq PGT-A/M. In each embryo, an average of 20.0 million reads with 0.3 × depth of the whole-genome region was analyzed for genomic imbalance, while an average of 0.9 million reads with 11260.0 × depth of the target gene HBB were analyzed for β-thalassemia. Eventually, 18 embryos were identified with genomic imbalance with 81.1% consistency to karyomapping results. 10 embryos contained β-thalassemia with 100% consistency to conventional PGT-M method. Conclusion: TAGs-seq PGT-A/M simultaneously detected genomic imbalance and monogenic disease in embryos without dramatic increase of sequencing data output.
Collapse
Affiliation(s)
- Lin Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Yan Xu
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Xia
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | | | - Chenhui Ding
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | | | - Jiafu Pan
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanhong Zeng
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | | | - Yanwen Xu
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Yanwen Xu, ; Wei Li, ; Canquan Zhou, ; Ya Gao,
| | - Wei Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- Hebei Industrial Technology Research Institute of Genomics in Maternal and Child Health, Shijiazhuang, China
- *Correspondence: Yanwen Xu, ; Wei Li, ; Canquan Zhou, ; Ya Gao,
| | - Canquan Zhou
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Yanwen Xu, ; Wei Li, ; Canquan Zhou, ; Ya Gao,
| | - Ya Gao
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Engineering Laboratory for Birth Defects Screening, Shenzhen, China
- *Correspondence: Yanwen Xu, ; Wei Li, ; Canquan Zhou, ; Ya Gao,
| |
Collapse
|
25
|
Liu Q, Chen X, Qiao J. Advances in studying human gametogenesis and embryonic development in China. Biol Reprod 2022; 107:12-26. [PMID: 35788258 DOI: 10.1093/biolre/ioac134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/21/2022] [Accepted: 06/20/2022] [Indexed: 11/12/2022] Open
Abstract
Reproductive medicine in China has developed rapidly since 1988 due to the support from the government and scientific exploration. However, the success rate of assisted reproduction technology (ART) is around 30-40% and many unknown "black boxes" in gametogenesis and embryo development are still present. With the development of single-cell and low-input sequencing technologies, the network of transcriptome and epigenetic regulation (DNA methylation, chromatin accessibility, and histone modifications) during the development of human primordial germ cells (PGCs), gametes and embryos has been investigated in depth. Furthermore, pre-implantation genetic testing (PGT) has also rapidly developed. In this review, we summarize and analyze China's outstanding progress in these fields.
Collapse
Affiliation(s)
- Qiang Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xi Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
26
|
Liu Y, Zhi X. Advances in Genetic Diagnosis of Kallmann Syndrome and Genetic Interruption. Reprod Sci 2022; 29:1697-1709. [PMID: 34231173 PMCID: PMC9110439 DOI: 10.1007/s43032-021-00638-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/25/2021] [Indexed: 11/30/2022]
Abstract
Kallmann syndrome (KS) is a rare hereditary disease with high phenotypic and genetic heterogeneity. Congenital hypogonadotropic hypogonadism and hyposmia/anosmia are the two major characterized phenotypes of KS. Besides, mirror movements, dental agenesis, digital bone abnormalities, unilateral renal agenesis, midline facial defects, hearing loss, and eye movement abnormalities can also be observed in KS patients. Because of the phenotypic heterogeneity, genetic diagnosis become increasingly valuable to distinguish KS from other disorders including normosmic congenital hypogonadotropic hypogonadism, constitutional delay of growth and puberty, CHARGE syndrome, and functional hypogonadotropic hypogonadism. Application of next-generation sequencing has promoted the discovery of novel pathogenic genes in KS pedigrees. Prenatal diagnosis is an effective method in clinical settings to decrease birth defects and block transmission of genetic disorders. However, pregnant women may suffer from physical and psychological distress when fetuses are diagnosed with congenital defects. Preimplantation genetic testing (PGT) is a prospective approach during the in vitro fertilization process that helps to interrupt transmission of hereditary diseases to offspring at an early stage. Thus, genetic testing and counseling are recommended to KS patients with family histories, prenatal diagnosis and PGT are considered to be useful options.
Collapse
Affiliation(s)
- Yujun Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University, Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xu Zhi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University, Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| |
Collapse
|
27
|
Governance of Heritable Human Gene Editing World-Wide and Beyond. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116739. [PMID: 35682323 PMCID: PMC9180052 DOI: 10.3390/ijerph19116739] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/29/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023]
Abstract
To date, the controversy surrounding the unknown risks and consequences of heritable genome editing has grown, with such work raising biosafety and ethical concerns for future generations. However, the current guideline of global governance is limited. In the context of the new framework for the governance of human genome editing developed by the World Health Organization (WHO) committee, this paper presents further analysis by highlighting predicaments of governance on germline engineering that merit the most attention: (1) building a scientific culture informed by a broader set of values and considerations in the internal scientific community at large, such as codes of ethics, and education, in addition to awareness-raising measures; and (2) reflecting on and institutionalizing policies in grassroots practice according to local conditions in external governance, such as the experimentalist governance, which is a multi-layered model of governance that establishes an open-ended framework from the top and offers stakeholders the freedom of discussion. The key to achieving these goals is more democratic deliberation between the public and the inclusive engagement of the global scientific community, which has been extensively used in the Biological and Toxin Weapons Convention (BTWC). On a global scale, we believe that practicing heritable human genome editing in accordance with the WHO and BTWC appears to be a good choice.
Collapse
|
28
|
Volozonoka L, Miskova A, Gailite L. Whole Genome Amplification in Preimplantation Genetic Testing in the Era of Massively Parallel Sequencing. Int J Mol Sci 2022; 23:4819. [PMID: 35563216 PMCID: PMC9102663 DOI: 10.3390/ijms23094819] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 12/16/2022] Open
Abstract
Successful whole genome amplification (WGA) is a cornerstone of contemporary preimplantation genetic testing (PGT). Choosing the most suitable WGA technique for PGT can be particularly challenging because each WGA technique performs differently in combination with different downstream processing and detection methods. The aim of this review is to provide insight into the performance and drawbacks of DOP-PCR, MDA and MALBAC, as well as the hybrid WGA techniques most widely used in PGT. As the field of PGT is moving towards a wide adaptation of comprehensive massively parallel sequencing (MPS)-based approaches, we especially focus our review on MPS parameters and detection opportunities of WGA-amplified material, i.e., mappability of reads, uniformity of coverage and its influence on copy number variation analysis, and genomic coverage and its influence on single nucleotide variation calling. The ability of MDA-based WGA solutions to better cover the targeted genome and the ability of PCR-based solutions to provide better uniformity of coverage are highlighted. While numerous comprehensive PGT solutions exploiting different WGA types and adjusted bioinformatic pipelines to detect copy number and single nucleotide changes are available, the ones exploiting MDA appear more advantageous. The opportunity to fully analyse the targeted genome is influenced by the MPS parameters themselves rather than the solely chosen WGA.
Collapse
Affiliation(s)
- Ludmila Volozonoka
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, LV-1007 Riga, Latvia;
| | - Anna Miskova
- Department of Obstetrics and Gynaecology, Riga Stradins University, LV-1007 Riga, Latvia;
| | - Linda Gailite
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, LV-1007 Riga, Latvia;
| |
Collapse
|
29
|
Györkei Á, Daruka L, Balogh D, Őszi E, Magyar Z, Szappanos B, Fekete G, Fuxreiter M, Horváth P, Pál C, Kintses B, Papp B. Proteome-wide landscape of solubility limits in a bacterial cell. Sci Rep 2022; 12:6547. [PMID: 35449391 PMCID: PMC9023497 DOI: 10.1038/s41598-022-10427-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Proteins are prone to aggregate when expressed above their solubility limits. Aggregation may occur rapidly, potentially as early as proteins emerge from the ribosome, or slowly, following synthesis. However, in vivo data on aggregation rates are scarce. Here, we classified the Escherichia coli proteome into rapidly and slowly aggregating proteins using an in vivo image-based screen coupled with machine learning. We find that the majority (70%) of cytosolic proteins that become insoluble upon overexpression have relatively low rates of aggregation and are unlikely to aggregate co-translationally. Remarkably, such proteins exhibit higher folding rates compared to rapidly aggregating proteins, potentially implying that they aggregate after reaching their folded states. Furthermore, we find that a substantial fraction (~ 35%) of the proteome remain soluble at concentrations much higher than those found naturally, indicating a large margin of safety to tolerate gene expression changes. We show that high disorder content and low surface stickiness are major determinants of high solubility and are favored in abundant bacterial proteins. Overall, our study provides a global view of aggregation rates and hence solubility limits of proteins in a bacterial cell.
Collapse
Affiliation(s)
- Ádám Györkei
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
- Biological Research Centre, Institute of Biochemistry, Synthetic and Systems Biology Unit, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Lejla Daruka
- Biological Research Centre, Institute of Biochemistry, Synthetic and Systems Biology Unit, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Dávid Balogh
- Biological Research Centre, Institute of Biochemistry, Synthetic and Systems Biology Unit, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Erika Őszi
- Biological Research Centre, Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Zoltán Magyar
- Biological Research Centre, Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Balázs Szappanos
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
- Biological Research Centre, Institute of Biochemistry, Synthetic and Systems Biology Unit, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Gergely Fekete
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
- Biological Research Centre, Institute of Biochemistry, Synthetic and Systems Biology Unit, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Mónika Fuxreiter
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Laboratory of Protein Dynamics, University of Debrecen, Debrecen, Hungary
| | - Péter Horváth
- Biological Research Centre, Institute of Biochemistry, Synthetic and Systems Biology Unit, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
- Institute for Molecular Medicine Finland-FIMM, Helsinki Institute of Life Science-HiLIFE, University of Helsinki, Helsinki, Finland
| | - Csaba Pál
- Biological Research Centre, Institute of Biochemistry, Synthetic and Systems Biology Unit, Eötvös Loránd Research Network (ELKH), Szeged, Hungary.
| | - Bálint Kintses
- Biological Research Centre, Institute of Biochemistry, Synthetic and Systems Biology Unit, Eötvös Loránd Research Network (ELKH), Szeged, Hungary.
- HCEMM-BRC Translational Microbiology Research Group, Szeged, Hungary.
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary.
| | - Balázs Papp
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary.
- Biological Research Centre, Institute of Biochemistry, Synthetic and Systems Biology Unit, Eötvös Loránd Research Network (ELKH), Szeged, Hungary.
| |
Collapse
|
30
|
|
31
|
Lencz T, Backenroth D, Granot-Hershkovitz E, Green A, Gettler K, Cho JH, Weissbrod O, Zuk O, Carmi S. Utility of polygenic embryo screening for disease depends on the selection strategy. eLife 2021; 10:e64716. [PMID: 34635206 PMCID: PMC8510582 DOI: 10.7554/elife.64716] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Polygenic risk scores (PRSs) have been offered since 2019 to screen in vitro fertilization embryos for genetic liability to adult diseases, despite a lack of comprehensive modeling of expected outcomes. Here we predict, based on the liability threshold model, the expected reduction in complex disease risk following polygenic embryo screening for a single disease. A strong determinant of the potential utility of such screening is the selection strategy, a factor that has not been previously studied. When only embryos with a very high PRS are excluded, the achieved risk reduction is minimal. In contrast, selecting the embryo with the lowest PRS can lead to substantial relative risk reductions, given a sufficient number of viable embryos. We systematically examine the impact of several factors on the utility of screening, including: variance explained by the PRS, number of embryos, disease prevalence, parental PRSs, and parental disease status. We consider both relative and absolute risk reductions, as well as population-averaged and per-couple risk reductions, and also examine the risk of pleiotropic effects. Finally, we confirm our theoretical predictions by simulating 'virtual' couples and offspring based on real genomes from schizophrenia and Crohn's disease case-control studies. We discuss the assumptions and limitations of our model, as well as the potential emerging ethical concerns.
Collapse
Affiliation(s)
- Todd Lencz
- Departments of Psychiatry and Molecular Medicine, Zucker School of Medicine at Hofstra/NorthwellHempsteadUnited States
- Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of Northwell HealthGlen OaksUnited States
- Institute for Behavioral Science, The Feinstein Institutes for Medical ResearchManhassetUnited States
| | - Daniel Backenroth
- Braun School of Public Health and Community Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Einat Granot-Hershkovitz
- Braun School of Public Health and Community Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Adam Green
- Braun School of Public Health and Community Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Kyle Gettler
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Judy H Cho
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Omer Weissbrod
- Department of Epidemiology, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Or Zuk
- Department of Statistics and Data Science, The Hebrew University of JerusalemJerusalemIsrael
| | - Shai Carmi
- Braun School of Public Health and Community Medicine, The Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
32
|
Parikh FR, Athalye AS, Kulkarni DK, Sanap RR, Dhumal SB, Warang DJ, Naik DJ, Madon PF. Evolution and Utility of Preimplantation Genetic Testing for Monogenic Disorders in Assisted Reproduction - A Narrative Review. J Hum Reprod Sci 2021; 14:329-339. [PMID: 35197677 PMCID: PMC8812395 DOI: 10.4103/jhrs.jhrs_148_21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 11/04/2022] Open
Abstract
Preimplantation genetic testing (PGT) for monogenic disorders and assisted reproductive technology have evolved and progressed in tandem. PGT started with single-cell polymerase chain reaction (PCR) followed by fluorescent in situ hybridisation for a limited number of chromosomes, later called 'preimplantation genetic diagnosis (PGD) version 1'. This review highlights the various molecular genetic techniques that have evolved to detect specific inherited monogenic disorders in the preimplantation embryo. Literature review in English was performed in PubMed from 1990 to 2021, using the term 'preimplantation genetic diagnosis'. With whole-genome amplification, multiple copies of embryonic DNA were created. This helped in avoiding misdiagnosis caused by allele dropout. Multiplex fluorescent PCR analysed informative short tandem repeats (STR) and detected mutations simultaneously on automated capillary electrophoresis sequencers by mini-sequencing. Comparative genomic hybridisation (CGH) and array CGH were used for 24 chromosome aneuploidy screening. Subsequently, aneuploidies were detected by next-generation sequencing using single-nucleotide polymorphism arrays, while STR markers were used for haplotyping. 'PGD version 2' included accurate marker-based diagnosis of most monogenic disorders and detection of aneuploidy of all chromosomes. Human leukocyte antigen matching of embryos has important implications in diagnosis and cure of haemoglobinopathies and immunodeficiencies in children by means of matched related haematopoietic stem cell transplantation from an unaffected 'saviour sibling' obtained by PGT.
Collapse
Affiliation(s)
- Firuza R. Parikh
- Department of Assisted Reproduction and Genetics, Jaslok-FertilTree International Fertility Centre, Jaslok Hospital and Research Centre, Mumbai, Maharashtra, India
| | - Arundhati S. Athalye
- Department of Assisted Reproduction and Genetics, Jaslok-FertilTree International Fertility Centre, Jaslok Hospital and Research Centre, Mumbai, Maharashtra, India
| | - Dhananjaya K. Kulkarni
- Department of Assisted Reproduction and Genetics, Jaslok-FertilTree International Fertility Centre, Jaslok Hospital and Research Centre, Mumbai, Maharashtra, India
| | - Rupesh R. Sanap
- Department of Assisted Reproduction and Genetics, Jaslok-FertilTree International Fertility Centre, Jaslok Hospital and Research Centre, Mumbai, Maharashtra, India
| | - Suresh B. Dhumal
- Department of Assisted Reproduction and Genetics, Jaslok-FertilTree International Fertility Centre, Jaslok Hospital and Research Centre, Mumbai, Maharashtra, India
| | - Dhanashree J. Warang
- Department of Assisted Reproduction and Genetics, Jaslok-FertilTree International Fertility Centre, Jaslok Hospital and Research Centre, Mumbai, Maharashtra, India
| | - Dattatray J. Naik
- Department of Assisted Reproduction and Genetics, Jaslok-FertilTree International Fertility Centre, Jaslok Hospital and Research Centre, Mumbai, Maharashtra, India
| | - Prochi F. Madon
- Department of Assisted Reproduction and Genetics, Jaslok-FertilTree International Fertility Centre, Jaslok Hospital and Research Centre, Mumbai, Maharashtra, India
| |
Collapse
|
33
|
Ren Y, Lian Y, Yan Z, Zhai F, Yang M, Zhu X, Wang Y, Nie Y, Guan S, Kuo Y, Huang J, Shi X, Jia J, Qiao J, Yan L. Clinical application of an NGS-based method in the preimplantation genetic testing for Duchenne muscular dystrophy. J Assist Reprod Genet 2021; 38:1979-1986. [PMID: 33719023 PMCID: PMC8417207 DOI: 10.1007/s10815-021-02126-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 02/22/2021] [Indexed: 01/16/2023] Open
Abstract
PURPOSE To determine whether next-generation sequencing (NGS) could be used to directly detect different mutations of Duchenne muscular dystrophy (DMD) during preimplantation genetic testing (PGT). METHODS From Sep. 2016 to Aug. 2018, a total of six couples participated in this study. Four cases carried DMD exon deletions and two carried exon duplications. Trophectoderm cells were biopsied at day 5 or 6 and NGS was used in the genetic testing of the biopsied cells after whole-genome amplification. We developed a new method-DIRected Embryonic Cell Testing of Exon Deletion/Duplication (DIRECTED) to directly detect the single-gene mutation by NGS. Linage analysis based on single-nucleotide polymorphism (SNP) was used to validate the results from DIRECTED. RESULTS In the four deletion cases, DIRECTED was used to detect DMD exon deletion in 16 biopsied embryos. All DIRECTED results were consistent with linkage analysis, indicating this method was reliable in detecting deletions around 1 Mb. In the two cases carrying exon duplications, no blastocyst was obtained for biopsy. Nonetheless, preliminary experiment results suggested that DIRECTED could also be used for direct detection of exon duplications in embryos. CONCLUSIONS Exon deletions or duplications in DMD of preimplantation embryos could be detected directly by NGS-based methods during PGT.
Collapse
Affiliation(s)
- Yixin Ren
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China
- National Clinical Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Ying Lian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China
- National Clinical Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Zhiqiang Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Fan Zhai
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Ming Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaohui Zhu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China
- National Clinical Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Yuqian Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China
- National Clinical Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Yanli Nie
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Shuo Guan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Ying Kuo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China
- National Clinical Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Jin Huang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Xiaodan Shi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Jialin Jia
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China
- National Clinical Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Beijing, China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China.
- National Clinical Center for Obstetrics and Gynecology, Beijing, China.
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China.
| |
Collapse
|
34
|
Hao Y, Long X, Kong F, Chen L, Chi H, Zhu X, Kuo Y, Zhu Y, Jia J, Yan L, Li R, Liu P, Wang Y, Qiao J. Maternal and neonatal outcomes following blastocyst biopsy for PGT in single vitrified-warmed embryo transfer cycles. Reprod Biomed Online 2021; 44:151-162. [PMID: 34866000 DOI: 10.1016/j.rbmo.2021.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/02/2021] [Accepted: 07/22/2021] [Indexed: 11/25/2022]
Abstract
RESEARCH QUESTION Does blastocyst biopsy for preimplantation genetic testing (PGT) increase the risk of adverse maternal and neonatal outcomes? STUDY DESIGN Retrospective cohort study of 5097 single vitrified-warmed blastocyst transfer cycles from January 2016 to December 2018, with 2061 cycles in the biopsied group and 3036 cycles in the unbiopsied group enrolled in the analyses. Maternal and neonatal outcomes were compared between the two groups. RESULTS The live birth rate in the biopsied group (41.1%) was significantly higher than that in the unbiopsied group (35.6%, adjusted odds ratio [aOR] 1.27, 95% confidence interval [CI] 1.05-1.54, P = 0.012) after adjusting for maternal age, maternal body mass index, gravidity, parity, infertility diagnosis, timing of blastocyst transfer, blastocyst quality, regimen of endometrial preparation, endometrial thickness before transfer and treatment year. The rates of total pregnancy loss (25.4% versus 32.2%, aOR 0.69, 95% CI 0.52-0.91, P = 0.008) and early miscarriage (12.1% versus 17.3%, aOR 0.56, 95% CI 0.38-0.83, P = 0.004) were significantly lower in the biopsied group than in the unbiopsied group. No significant differences were found in sex ratio or the risks of hypertensive disorders in pregnancy, diabetes in pregnancy, placenta previa, preterm premature rupture of membranes, low birthweight, very low birthweight, macrosomia, small for gestational age, large for gestational age or birth defects between the two groups. When the subgroup analyses were conducted based on different types of PGT, similar patterns were found for all types. CONCLUSION Blastocyst biopsy might not increase the risks of adverse maternal and neonatal outcomes in the short term.
Collapse
Affiliation(s)
- Yongxiu Hao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Xiaoyu Long
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Fei Kong
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Lixue Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Hongbin Chi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Xiaohui Zhu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Ying Kuo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Yiru Zhu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Jialin Jia
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Ping Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Yuanyuan Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China.
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China.
| |
Collapse
|
35
|
Zhang S, Lei C, Wu J, Xiao M, Zhou J, Zhu S, Fu J, Lu D, Sun X, Xu C. A comprehensive and universal approach for embryo testing in patients with different genetic disorders. Clin Transl Med 2021; 11:e490. [PMID: 34323405 PMCID: PMC8265165 DOI: 10.1002/ctm2.490] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/01/2021] [Accepted: 06/20/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND In vitro fertilization (IVF) with preimplantation genetic testing (PGT) has markedly improved clinical pregnancy outcomes for carriers of gene mutations or chromosomal structural rearrangements by the selection of embryos free of disease-causing genes and chromosome abnormalities. However, for detecting whole or segmental chromosome aneuploidies, gene variants or balanced chromosome rearrangements in the same embryo require separate procedures, and none of the existing detection platforms is universal for all patients with different genetic disorders. METHODS Here, we report a cost-effective, family-based haplotype phasing approach that can simultaneously evaluate multiple genetic variants, including monogenic disorders, aneuploidy, and balanced chromosome rearrangements in the same embryo with a single test. A total of 12 monogenic diseases carrier couples and either of them carried chromosomal rearrangements were enrolled simultaneously in this present study. Genome-wide genotyping was performed with single-nucleotide polymorphism (SNP)-array, and aneuploidies were analyzed through SNP allele frequency and Log R ratio. Parental haplotypes were phased by an available genotype from a close relative, and the embryonic genome-wide haplotypes were determined through family haplotype linkage analysis (FHLA). Disease-causing genes and chromosomal rearrangements were detected by haplotypes located within the 2 Mb region covering the targeted genes or breakpoint regions. RESULTS Twelve blastocysts were thawed, and then transferred into the uterus of female patients. Nine pregnancies had reached the second trimester and five healthy babies have been born. Fetus validation results, performed with the amniotic fluid or umbilical cord blood samples, were consistent with those at the blastocyst stage diagnosed by PGT. CONCLUSIONS We demonstrate that SNP-based FHLA enables the accurate genetic detection of a wide spectrum of monogenic diseases and chromosome abnormalities in embryos, preventing the transfer of parental genetic abnormalities to the fetus. This method can be implemented as a universal platform for embryo testing in patients with different genetic disorders.
Collapse
Affiliation(s)
- Shuo Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
| | - Caixia Lei
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
| | - Junping Wu
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
| | - Min Xiao
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
| | - Jing Zhou
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
| | - Saijuan Zhu
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
| | - Jing Fu
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
| | - Daru Lu
- State Key Laboratory of Genetic Engineering, School of Life ScienceFudan UniversityShanghaiChina
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family PlanningScience and Technology Research InstituteChongqingChina
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
- Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
| | - Congjian Xu
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
- Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
| |
Collapse
|
36
|
Qiao J, Wang Y, Li X, Jiang F, Zhang Y, Ma J, Song Y, Ma J, Fu W, Pang R, Zhu Z, Zhang J, Qian X, Wang L, Wu J, Chang HM, Leung PCK, Mao M, Ma D, Guo Y, Qiu J, Liu L, Wang H, Norman RJ, Lawn J, Black RE, Ronsmans C, Patton G, Zhu J, Song L, Hesketh T. A Lancet Commission on 70 years of women's reproductive, maternal, newborn, child, and adolescent health in China. Lancet 2021; 397:2497-2536. [PMID: 34043953 DOI: 10.1016/s0140-6736(20)32708-2] [Citation(s) in RCA: 176] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Jie Qiao
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Ministry of Education Key Laboratory of Assisted Reproduction, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
| | - Yuanyuan Wang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Ministry of Education Key Laboratory of Assisted Reproduction, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Xiaohong Li
- National Office for Maternal and Child Health Surveillance of China, National Center for Birth Defect Surveillance of China, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Fan Jiang
- Child Health Advocacy Institute, National Children's Medical Center, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yunting Zhang
- Child Health Advocacy Institute, National Children's Medical Center, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Ma
- Institute of Child and Adolescent Health, Key Laboratory of Reproductive Health, School of Public Health, Peking University, Beijing, China
| | - Yi Song
- Institute of Child and Adolescent Health, Key Laboratory of Reproductive Health, School of Public Health, Peking University, Beijing, China
| | - Jing Ma
- China Program for Health Innovation & Transformation, Department of Population Medicine, Harvard University, Boston, MA, USA
| | - Wei Fu
- China National Health and Development Research Centre, Beijing, China
| | - Ruyan Pang
- China Maternal and Child Health Association, Beijing, China
| | - Zhaofang Zhu
- China National Health and Development Research Centre, Beijing, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Qian
- School of Public Health & Global Health Institute, Fudan University, Shanghai, China
| | - Linhong Wang
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiuling Wu
- National Center for Women and Children's Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hsun-Ming Chang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Ministry of Education Key Laboratory of Assisted Reproduction, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Peter C K Leung
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Ministry of Education Key Laboratory of Assisted Reproduction, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Meng Mao
- National Office for Maternal and Child Health Surveillance of China, National Center for Birth Defect Surveillance of China, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University, Shanghai, China
| | - Yan Guo
- Department of Global Health, School of Public Health, Peking University, Beijing, China
| | - Jie Qiu
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou, China
| | - Li Liu
- Department of Population Family and Reproductive Health, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Haidong Wang
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Robert J Norman
- Robinson Research Institute, Fertility SA, University of Adelaide, Adelaide, SA, Australia
| | - Joy Lawn
- Centre for Maternal, Adolescent, Reproductive and Child Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Robert E Black
- Department of Population Family and Reproductive Health, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Carine Ronsmans
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - George Patton
- Centre for Adolescent Health, Murdoch Children's Research Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Jun Zhu
- National Office for Maternal and Child Health Surveillance of China, National Center for Birth Defect Surveillance of China, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Li Song
- Department of Women and Children Health, National Health Commission of the People's Republic of China, Bejing, China.
| | - Therese Hesketh
- Center for Global Health, School of Medicine, Zhejiang University, Hangzhou, China; and Institute for Global Health, University College London, London, UK
| |
Collapse
|
37
|
Chen S, Yin X, Zhang S, Xia J, Liu P, Xie P, Yan H, Liang X, Zhang J, Chen Y, Fei H, Zhang L, Hu Y, Jiang H, Lin G, Chen F, Xu C. Comprehensive preimplantation genetic testing by massively parallel sequencing. Hum Reprod 2021; 36:236-247. [PMID: 33306794 DOI: 10.1093/humrep/deaa269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 09/15/2020] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Can whole genome sequencing (WGS) offer a relatively cost-effective approach for embryonic genome-wide haplotyping and preimplantation genetic testing (PGT) for monogenic disorders (PGT-M), aneuploidy (PGT-A) and structural rearrangements (PGT-SR)? SUMMARY ANSWER Reliable genome-wide haplotyping, PGT-M, PGT-A and PGT-SR could be performed by WGS with 10× depth of parental and 4× depth of embryonic sequencing data. WHAT IS KNOWN ALREADY Reduced representation genome sequencing with a genome-wide next-generation sequencing haplarithmisis-based solution has been verified as a generic approach for automated haplotyping and comprehensive PGT. Several low-depth massively parallel sequencing (MPS)-based methods for haplotyping and comprehensive PGT have been developed. However, an additional family member, such as a sibling, or a proband, is required for PGT-M haplotyping using low-depth MPS methods. STUDY DESIGN, SIZE, DURATION In this study, 10 families that had undergone traditional IVF-PGT and 53 embryos, including 13 embryos from two PGT-SR families and 40 embryos from eight PGT-M families, were included to evaluate a WGS-based method. There were 24 blastomeres and 29 blastocysts in total. All embryos were used for PGT-A. Karyomapping validated the WGS results. Clinical outcomes of the 10 families were evaluated. PARTICIPANTS/MATERIALS, SETTING, METHODS A blastomere or a few trophectoderm cells from the blastocyst were biopsied, and multiple displacement amplification (MDA) was performed. MDA DNA and bulk DNA of family members were used for library construction. Libraries were sequenced, and data analysis, including haplotype inheritance deduction for PGT-M and PGT-SR and read-count analysis for PGT-A, was performed using an in-house pipeline. Haplotyping with a proband and parent-only haplotyping without additional family members were performed to assess the WGS methodology. Concordance analysis between the WGS results and traditional PGT methods was performed. MAIN RESULTS AND THE ROLE OF CHANCE For the 40 PGT-M and 53 PGT-A embryos, 100% concordance between the WGS and single-nucleotide polymorphism (SNP)-array results was observed, regardless of whether additional family members or a proband was included for PGT-M haplotyping. For the 13 embryos from the two PGT-SR families, the embryonic balanced translocation was detected and 100% concordance between WGS and MicroSeq with PCR-seq was demonstrated. LIMITATIONS, REASONS FOR CAUTION The number of samples in this study was limited. In some cases, the reference embryo for PGT-M or PGT-SR parent-only haplotyping was not available owing to failed direct genotyping. WIDER IMPLICATIONS OF THE FINDINGS WGS-based PGT-A, PGT-M and PGT-SR offered a comprehensive PGT approach for haplotyping without the requirement for additional family members. It provided an improved complementary method to PGT methodologies, such as low-depth MPS- and SNP array-based methods. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by the research grant from the National Key R&D Program of China (2018YFC0910201 and 2018YFC1004900), the Guangdong province science and technology project of China (2019B020226001), the Shenzhen Birth Defect Screening Project Lab (JZF No. [2016] 750) and the Shenzhen Municipal Government of China (JCYJ20170412152854656). This work was also supported by the National Natural Science Foundation of China (81771638, 81901495 and 81971344), the National Key R&D Program of China (2018YFC1004901 and 2016YFC0905103), the Shanghai Sailing Program (18YF1424800), the Shanghai Municipal Commission of Science and Technology Program (15411964000) and the Shanghai 'Rising Stars of Medical Talent' Youth Development Program Clinical Laboratory Practitioners Program (201972). The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Songchang Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Xuyang Yin
- MGI, BGI-Shenzhen, Shenzhen, China.,BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | | | - Jun Xia
- MGI, BGI-Shenzhen, Shenzhen, China.,BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Ping Liu
- MGI, BGI-Shenzhen, Shenzhen, China.,BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Pingyuan Xie
- CITIC-Xiangya Reproductive & Genetic Hospital, Changsha, China
| | | | | | - Junyu Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yiyao Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Hongjun Fei
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Lanlan Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yuting Hu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Jiang
- MGI, BGI-Shenzhen, Shenzhen, China.,BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Ge Lin
- CITIC-Xiangya Reproductive & Genetic Hospital, Changsha, China
| | - Fang Chen
- MGI, BGI-Shenzhen, Shenzhen, China.,BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Chenming Xu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| |
Collapse
|
38
|
Yuan P, Guo Q, Guo H, Lian Y, Zhai F, Yan Z, Long C, Zhu P, Tang F, Qiao J, Yan L. The methylome of a human polar body reflects that of its sibling oocyte and its aberrance may indicate poor embryo development. Hum Reprod 2021; 36:318-330. [PMID: 33313772 DOI: 10.1093/humrep/deaa292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 09/22/2020] [Indexed: 01/09/2023] Open
Abstract
STUDY QUESTION Is it possible to evaluate the methylome of individual oocytes to investigate the DNA methylome alterations in metaphase II (MII) oocytes with reduced embryo developmental potential? SUMMARY ANSWER The DNA methylome of each human first polar body (PB1) closely mirrored that of its sibling MII oocyte; hypermethylated long interspersed nuclear element (LINE) and long terminal repeats (LTRs) and methylation aberrations in PB1 promoter regions may indicate poor embryo development. WHAT IS KNOWN ALREADY The developmental potential of an embryo is determined by the oocyte's developmental competence, and the PB1 is a good substitute to examine the chromosomal status of the corresponding oocyte. However, DNA methylation, a key epigenetic modification, also regulates gene expression and embryo development. STUDY DESIGN, SIZE, DURATION Twelve pairs of PB1s and sibling MII oocytes were biopsied and sequenced to compare their methylomes. To further investigate the methylome of PB1s and the potential epigenetic factors that may affect oocyte quality, MII oocytes (n = 74) were fertilized through ICSI, while PB1s were biopsied and profiled to measure DNA methylation. The corresponding embryos were further cultured to track their development potential. The oocytes and sperm samples used in this study were donated by healthy volunteers with signed informed consent. PARTICIPANTS/MATERIALS, SETTING, METHODS Single-cell methylome sequencing was applied to obtain the DNA methylation profiles of PB1s and oocytes. The DNA methylome of PB1s was compared between the respective group of oocytes that progressed to blastocysts and the group of oocytes that failed to develop. DNA methylation levels of corresponding regions and differentially methylated regions were calculated using customized Perl and R scripts. RNA-seq data were downloaded from a previously published paper and reanalysed. MAIN RESULTS AND THE ROLE OF CHANCE The results from PB1-MII oocyte pair validated that PB1 contains nearly the same methylome (average Pearson correlation is 0.92) with sibling MII oocyte. LINE and LTR expression increased markedly after fertilization. Moreover, the DNA methylation levels in LINE (including LINE1 and LINE2) and LTR were significantly higher in the PB1s of embryos that could not reach the blastocyst stage (Wilcoxon-Matt-Whitney test, P < 0.05). DNA methylation in PB1 promoters correlated negatively with gene expression of MII oocyte. Regarding the methylation status of the promoter regions, 66 genes were hypermethylated in the developmental arrested group, with their related functions (significantly enriched in several Gene Ontology terms) including transcription, positive regulation of adenylate cyclase activity, mitogen-activated protein kinase (MAPK) cascade and intracellular oestrogen receptor signalling pathway. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Data analysis performed in this study focused on the competence of human oocytes and compared them with maternal genetic and epigenetic profiles. Therefore, data regarding the potential regulatory roles of paternal genomes in embryo development are lacking. WIDER IMPLICATIONS OF THE FINDINGS The results from PB1-oocyte pairs demonstrated that PB1s shared similar methylomes with their sibling oocytes. The selection of the good embryos for transfer should not only rely on morphology but also consider the DNA methylation of the corresponding PB1 and therefore MII oocyte. The application of early-stage analysis of PB1 offers an option for high-quality oocyte and embryo selection, which provides an additional tool for elective single embryo transfer in assisted reproduction. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the National Key Research and Development Program of China (2018YFC1004003, 2017YFA0103801), the National Natural Science Foundation of China (81730038, 3187144, 81521002) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16020703). The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- Peng Yuan
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, Third Hospital, Peking University, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China
| | - Qianying Guo
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, Third Hospital, Peking University, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China
| | - Hongshan Guo
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, Third Hospital, Peking University, Beijing, China.,Biomedical Institute for Pioneering Investigation via Convergence, College of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Ying Lian
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, Third Hospital, Peking University, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China
| | - Fan Zhai
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, Third Hospital, Peking University, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China
| | - Zhiqiang Yan
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, Third Hospital, Peking University, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China
| | - Chuan Long
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, Third Hospital, Peking University, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China
| | - Ping Zhu
- Biomedical Institute for Pioneering Investigation via Convergence, College of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Fuchou Tang
- Biomedical Institute for Pioneering Investigation via Convergence, College of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, Third Hospital, Peking University, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China.,Biomedical Institute for Pioneering Investigation via Convergence, College of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Liying Yan
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, Third Hospital, Peking University, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China
| |
Collapse
|
39
|
Chen HF, Chen M, Ho HN. An overview of the current and emerging platforms for preimplantation genetic testing for aneuploidies (PGT-A) in in vitro fertilization programs. Taiwan J Obstet Gynecol 2021; 59:489-495. [PMID: 32653118 DOI: 10.1016/j.tjog.2020.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2020] [Indexed: 01/16/2023] Open
Abstract
Preimplantation genetic testing for aneuploidies (PGT-A) and PGT for monogenic disorders (PGT-M) have currently been used widely, aiming to improve IVF outcomes. Although with many years of unsatisfactory results, PGT-A has been revived because new technologies have been adopted, such as platforms to examine all 24 types of chromosomes in blastocysts. This report compiles current knowledge regarding the available PGT platforms, including quantitative PCR, array CGH, and next-generation sequencing. The diagnostic capabilities of are compared and respective advantages/disadvantages outlined. We also address the limitations of current technologies, such as assignment of embryos with balanced translocation. We also discuss the emerging novel PGT technologies that likely will change our future practice, such as non-invasive PGT examining spent culture medium. Current literature suggest that most platforms can effectively reach concordant results regarding whole-chromosome ploidy status of all 24 types of chromosomes. However, different platforms have different resolutions and experimental complexities; leading to different turnaround time, throughput and differential capabilities of detecting mosaicism, segmental mutations, unbalanced translocations, concurrent PGT-A and PGT-M etc. Based on these information, IVF staff can more appropriately interpret PGT data and counsel patients, and select suitable platforms to meet personalized needs. The present report also concisely discusses some crucial clinical outcomes by PGT, which can clarify the role of applying PGT in daily IVF programs. Finally the up-to-date information about the novel use of current technologies and the newly emerging technologies will also help identify the focus areas for the design of new platforms for PGT in the future.
Collapse
Affiliation(s)
- Hsin-Fu Chen
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Ming Chen
- Department of Medical Genetics, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan; Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan; Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua, Taiwan.
| | - Hong-Nerng Ho
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taiwan.
| |
Collapse
|
40
|
Expanded clinical validation of Haploseek for comprehensive preimplantation genetic testing. Genet Med 2021; 23:1334-1340. [PMID: 33772222 DOI: 10.1038/s41436-021-01145-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE We previously developed Haploseek, a method for comprehensive preimplantation genetic testing (PGT). However, some key features were missing, and the method has not yet been systematically validated. METHODS We extended Haploseek to incorporate DNA from embryo grandparents and to allow testing of variants on chromosome X or in regions where parents share common haplotypes. We then validated Haploseek on 151 embryo biopsies from 27 clinical PGT cases. We sequenced all biopsies to low coverage (0.2×), and performed single-nucleotide polymorphism (SNP) microarray genotyping on the embryos' parents and siblings/grandparents. We used the extended Haploseek to predict chromosome copy-number variants (CNVs) and relevant variant-flanking haplotypes in each embryo. We validated haplotype predictions for each clinical sample against polymerase chain reaction (PCR)-based PGT case results, and CNV predictions against established commercial kits. RESULTS For each of the 151 embryo biopsies, all Haploseek-derived haplotypes and CNVs were concordant with clinical PGT results. The cases included 17 autosomal dominant, 5 autosomal recessive, and 3 X-linked monogenic disorders. In addition, we evaluated 1 Robertsonian and 2 reciprocal translocations, and 17 cases of chromosome copy-number counting were performed. CONCLUSION Our results demonstrate that Haploseek is clinically accurate and fit for all standard clinical PGT applications.
Collapse
|
41
|
Zhang XY, Li TT, Liu YR, Geng SS, Luo AL, Jiang MS, Liang XW, Shang JH, Lu KH, Yang XG. Transcriptome analysis revealed differences in the microenvironment of spermatogonial stem cells in seminiferous tubules between pre-pubertal and adult buffaloes. Reprod Domest Anim 2021; 56:629-641. [PMID: 33492695 DOI: 10.1111/rda.13900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022]
Abstract
The microenvironment in the seminiferous tubules of buffalo changes with age, which affects the self-renewal and growth of spermatogonial stem cells (SSCs) and the process of spermatogenesis, but the mechanism remains to be elucidated. RNA-seq was performed to compare the transcript profiles of pre-pubertal buffalo (PUB) and adult buffalo (ADU) seminiferous tubules. In total, 17,299 genes from PUB and ADU seminiferous tubules identified through RNA-seq, among which 12,271 were expressed in PUB and ADU seminiferous tubules, 4,027 were expressed in only ADU seminiferous tubules, and 956 were expressed in only PUB seminiferous tubules. Of the 17,299 genes, we identified 13,714 genes that had significant differences in expression levels between PUB and ADU through GO enrichment analysis. Among these genes, 5,342 were significantly upregulated and possibly related to the formation or identity of the surface antigen on SSCs during self-renewal; 7,832 genes were significantly downregulated, indicating that genes in PUB seminiferous tubules do not participate in the biological processes of sperm differentiation or formation in this phase compared with those in ADU seminiferous tubules. Subsequently, through the combination with KEGG analysis, we detected enrichment in a number of genes related to the development of spermatogonial stem cells, providing a reference for study of the development mechanism of buffalo spermatogonial stem cells in the future. In conclusion, our data provide detailed information on the mRNA transcriptomes in PUB and ADU seminiferous tubules, revealing the crucial factors involved in maintaining the microenvironment and providing a reference for further in vitro cultivation of SSCs.
Collapse
Affiliation(s)
- Xiao-Yuan Zhang
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Ting-Ting Li
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Animal Science & Technology, Guangxi University, Nanning, China.,HeNan Provincial People's Hospital, China
| | - Ya-Ru Liu
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Shuang-Shuang Geng
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Ao-Lin Luo
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Ming-Sheng Jiang
- College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Xing-Wei Liang
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Jiang-Hua Shang
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Nanning, China
| | - Ke-Huan Lu
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Xiao-Gan Yang
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Animal Science & Technology, Guangxi University, Nanning, China
| |
Collapse
|
42
|
Long N, Qiao Y, Xu Z, Tu J, Lu Z. Recent advances and application in whole-genome multiple displacement amplification. QUANTITATIVE BIOLOGY 2020. [DOI: 10.1007/s40484-020-0217-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Ruan Q, Ruan W, Lin X, Wang Y, Zou F, Zhou L, Zhu Z, Yang C. Digital-WGS: Automated, highly efficient whole-genome sequencing of single cells by digital microfluidics. SCIENCE ADVANCES 2020; 6:6/50/eabd6454. [PMID: 0 PMCID: PMC7725457 DOI: 10.1126/sciadv.abd6454] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/23/2020] [Indexed: 05/03/2023]
Abstract
Single-cell whole-genome sequencing (WGS) is critical for characterizing dynamic intercellular changes in DNA. Current sample preparation technologies for single-cell WGS are complex, expensive, and suffer from high amplification bias and errors. Here, we describe Digital-WGS, a sample preparation platform that streamlines high-performance single-cell WGS with automatic processing based on digital microfluidics. Using the method, we provide high single-cell capture efficiency for any amount and types of cells by a wetted hydrodynamic structure. The digital control of droplets in a closed hydrophobic interface enables the complete removal of exogenous DNA, sufficient cell lysis, and lossless amplicon recovery, achieving the low coefficient of variation and high coverage at multiple scales. The single-cell genomic variations profiling performs the excellent detection of copy number variants with the smallest bin of 150 kb and single-nucleotide variants with allele dropout rate of 5.2%, holding great promise for broader applications of single-cell genomics.
Collapse
Affiliation(s)
- Qingyu Ruan
- Collaborative Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Weidong Ruan
- Collaborative Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Xiaoye Lin
- Collaborative Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Yang Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Fenxiang Zou
- Collaborative Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Leiji Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Zhi Zhu
- Collaborative Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Chaoyong Yang
- Collaborative Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China.
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
44
|
|
45
|
Yuan P, Xia J, Ou S, Liu P, Du T, Zheng L, Yin X, Xie L, Zhang S, Yan H, Gao Y, Zhang Q, Jiang H, Chen F, Wang W. A whole-genome sequencing-based novel preimplantation genetic testing method for de novo mutations combined with chromosomal balanced translocations. J Assist Reprod Genet 2020; 37:2525-2533. [PMID: 32783137 DOI: 10.1007/s10815-020-01921-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/06/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE To explore a new preimplantation genetic testing (PGT) method for de novo mutations (DNMs) combined with chromosomal balanced translocations by whole-genome sequencing (WGS) using the MGISEQ-2000 sequencer. METHODS Two families, one with maternal Olmsted syndrome caused by DNM (c.1246C>T) in TRPV3 and a paternal Robertsonian translocation and one with paternal Marfan syndrome caused by DNM (c.4952_4955delAATG) in FBN1 and a maternal reciprocal translocation, underwent PGT for monogenetic disease (PGT-M), chromosomal aneuploidy, and structural rearrangement. WGS of embryos and family members were performed. Bioinformatics analysis based on gradient sequencing depth was performed, and parent-embryo haplotyping was conducted for DNM diagnosis. Sanger sequencing, karyotyping, and chromosomal microarray analysis were performed using an amniotic fluid sample to confirm the PGT results. RESULTS After 1 PGT cycle, WGS of 2 embryos from the Olmsted syndrome family revealed euploid embryos without DNMs; after 2 cycles, the 11 embryos from the Marfan syndrome family showed only 1 normal embryo without DNM, copy number variations (CNVs), or aneuploidy. Moreover, 1 blastocyst from the Marfan syndrome family was transferred back to the uterus; the amniocentesis test results were confirmed by PGT and a healthy infant was born. CONCLUSIONS WGS based on parent-embryo haplotypes was an effective strategy for PGT of DNMs combined with a chromosomal balanced translocation. Our results indicate this is a reliable and effective diagnostic method that is useful for clinical application in PGT of patients with DNMs.
Collapse
Affiliation(s)
- Ping Yuan
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Jun Xia
- MGI, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
| | - Songbang Ou
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Ping Liu
- MGI, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Tao Du
- Department of Obstetrics, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Lingyan Zheng
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Xuyang Yin
- MGI, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Lin Xie
- MGI, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Sijia Zhang
- MGI, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Huijuan Yan
- MGI, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Ya Gao
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Qingxue Zhang
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Hui Jiang
- MGI, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, Guangdong, China
| | - Fang Chen
- MGI, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China.
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China.
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, Guangdong, China.
| | - Wenjun Wang
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
46
|
De Rycke M, Berckmoes V. Preimplantation Genetic Testing for Monogenic Disorders. Genes (Basel) 2020; 11:E871. [PMID: 32752000 PMCID: PMC7463885 DOI: 10.3390/genes11080871] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022] Open
Abstract
Preimplantation genetic testing (PGT) has evolved into a well-established alternative to invasive prenatal diagnosis, even though genetic testing of single or few cells is quite challenging. PGT-M is in theory available for any monogenic disorder for which the disease-causing locus has been unequivocally identified. In practice, the list of indications for which PGT is allowed may vary substantially from country to country, depending on PGT regulation. Technically, the switch from multiplex PCR to robust generic workflows with whole genome amplification followed by SNP array or NGS represents a major improvement of the last decade: the waiting time for the couples has been substantially reduced since the customized preclinical workup can be omitted and the workload for the laboratories has decreased. Another evolution is that the generic methods now allow for concurrent analysis of PGT-M and PGT-A. As innovative algorithms are being developed and the cost of sequencing continues to decline, the field of PGT moves forward to a sequencing-based, all-in-one solution for PGT-M, PGT-SR, and PGT-A. This will generate a vast amount of complex genetic data entailing new challenges for genetic counseling. In this review, we summarize the state-of-the-art for PGT-M and reflect on its future.
Collapse
Affiliation(s)
- Martine De Rycke
- Center for Medical Genetics, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium;
| | | |
Collapse
|
47
|
Novel PGD strategy based on single sperm linkage analysis for carriers of single gene pathogenic variant and chromosome reciprocal translocation. J Assist Reprod Genet 2020; 37:1239-1250. [PMID: 32350783 DOI: 10.1007/s10815-020-01753-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/17/2020] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Preimplantation genetic diagnosis (PGD) analysis can be challenging for couples who carry more than one genetic condition. In this study, we describe a new PGD strategy to select which embryo(s) to transfer for two clinically challenging cases. Both cases lack essential family members for linkage analysis including de novo mutation combined with reciprocal translocation. METHODS Diverging from conventional method, we performed direct point mutation detection, quantitative analysis of gene copy number, combined with linkage analysis assisted by SNP information from single sperm (or polar bodies), thus establishing an all-in-one protocol for single embryonic cell preimplantation diagnosis for two co-existing genetic conditions (monogenic disease and chromosomal abnormality) on the NGS-based platform. RESULTS Using this newly developed method, 15 embryos from two cases were screened, and two embryos were determined as free of the monogenic disease and specific chromosomal abnormalities created by the prospective father's reciprocal translocations. CONCLUSION This novel PGD strategy could effectively select unaffected embryo(s) for couples affected with or carrying a monogenetic disease and a reciprocal chromosome translocation concurrently.
Collapse
|
48
|
Brown S. Identity-by-state analysis: a new method for PGT-M. Hum Reprod 2020; 35:485-487. [PMID: 32198500 DOI: 10.1093/humrep/deaa011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Indexed: 01/10/2023] Open
Affiliation(s)
- Stephen Brown
- Department of Obstetrics, Gynecology and Reproductive Science, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| |
Collapse
|
49
|
Shi D, Xu J, Niu W, Liu Y, Shi H, Yao G, Shi S, Li G, Song W, Jin H, Sun Y. Live births following preimplantation genetic testing for dynamic mutation diseases by karyomapping: a report of three cases. J Assist Reprod Genet 2020; 37:539-548. [PMID: 32124191 DOI: 10.1007/s10815-020-01718-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE The preimplantation genetic testing for monogenic defects (PGT-M) is a beneficial strategy for the patients suffering from a Mendelian disease, which could protect their offspring from inheriting the disease. The purpose of this study is to report the effectiveness of PGT-M based on karyomapping for three cases of dynamic mutation diseases with trinucleotide repeat expansion. METHODS PGT-M was carried out on three couples, whose family members were diagnosed with Huntington's disease or spinocerebellar ataxias 2 or 12. The whole genome amplification was obtained using the multiple displacement amplification (MDA) method. Then, karyomapping was performed to detect the allele that is carrying the trinucleotide repeat expansion using single nucleotide polymorphism (SNP) linkage analyses, and the copy number variations (CNVs) of the embryos were also identified. Prenatal diagnosis was performed to validate the accuracy of PGT-M. RESULTS PGT-M was successfully performed on the three couples, and they accepted the transfers of euploid blastocysts without the relevant pathogenic allele. The clinical pregnancies were acquired and the prenatal diagnosis of the three families confirmed the effectiveness of karyomapping. The three born babies were healthy and free of the pathogenic alleles HTT, ATXN2, or PPP2R2B corresponding to Huntington's disease, spinocerebellar ataxias 2 or 12, respectively. CONCLUSION This study shows that karyomapping is a highly powerful and efficient approach for dynamic mutation detection in preimplantation embryos. In this work, we first report the birth of healthy babies that are free of the pathogenic gene for dynamic mutation diseases in patients receiving PGT-M by karyomapping.
Collapse
Affiliation(s)
- Dayuan Shi
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiawei Xu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China. .,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China. .,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China. .,Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wenbin Niu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yidong Liu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hao Shi
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guidong Yao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Senlin Shi
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gang Li
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenyan Song
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haixia Jin
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China. .,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China. .,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China. .,Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
50
|
Genetic and preimplantation diagnosis of cystic kidney disease with ventriculomegaly. J Hum Genet 2020; 65:455-459. [PMID: 32051522 DOI: 10.1038/s10038-020-0731-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/10/2020] [Accepted: 01/22/2020] [Indexed: 11/09/2022]
Abstract
Ventriculomegaly with cystic kidney disease (VMCKD) is a rare and severe disorder characterized by cerebral ventriculomegaly, greatly elevated maternal serum alpha-fetoprotein (MSAFP) or amniotic fluid alpha-fetoprotein (AFAFP) levels and kidney disease similar to Finnish congenital nephrosis. Recessive mutations in the CRB2 (NM_173689) gene have been shown to cause the syndrome. Here, we described a nonconsanguineous Chinese family with two fetuses affected with VMCKD. A novel compound heterozygous mutation was identified in the CRB2 gene with co-segregation. One mutation [c.1960G>C (p.A654P)] was inherited from the father, while another mutation [c.3078_c.3093delGGCGCGGCCCCGGCCC (p.L1026Lfs*110)] was inherited from the mother. Preimplantation genetic testing for monogenic disease (PGT-M) was performed for the carrier couple with full informed consent and successfully blocked the inheritance of the disease. Our study has important implications on molecular diagnosis and genetic counseling for VMCKD and extends the mutation spectrum in CRB2 gene.
Collapse
|