1
|
Shahina Z, Dahms TES. A Comparative Review of Eugenol and Citral Anticandidal Mechanisms: Partners in Crimes Against Fungi. Molecules 2024; 29:5536. [PMID: 39683696 DOI: 10.3390/molecules29235536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Candida albicans is an emerging multidrug-resistant opportunistic pathogen that causes candidiasis, superficial infections on the mucosa, nails or skin, and life-threatening candidemia in deep tissue when disseminated through the bloodstream. Recently, there has been a sharp rise in resistant strains, posing a considerable clinical challenge for the treatment of candidiasis. There has been a resurged interest in the pharmacological properties of essential oils and their active components, for example, monoterpenes with alcohol (-OH) and aldehyde (-CHO) groups. Eugenol and citral have shown promising in vitro and in vivo activity against Candida species. Although there is substantial research on the efficacy of these essential oil components against C. albicans, a detailed knowledge of their mycological mechanisms is lacking. To explore the broad-spectrum effects of EOs, it is more meaningful and rational to study the whole essential oil, along with some of its major components. This review provides a comprehensive overview of eugenol and citral anticandidal and antivirulence activity, alone and together, along with the associated mechanisms and limitations of our current knowledge.
Collapse
Affiliation(s)
- Zinnat Shahina
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Tanya E S Dahms
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| |
Collapse
|
2
|
Das S, Manna A, Majumdar O, Dhara L. M- O-M mediated denaturation resistant P2 tetramer on the infected erythrocyte surface of malaria parasite imports serum fatty acids. iScience 2024; 27:109760. [PMID: 38726364 PMCID: PMC11079477 DOI: 10.1016/j.isci.2024.109760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
In Plasmodium falciparum, DNA replication, and asynchronous nuclear divisions precede cytokinesis during intraerythrocytic schizogony. Regulation of nuclear division through the import of serum components was largely unknown. At the trophozoite stage, P. falciparum ribosomal protein P2 (PfP2) is exported to the infected erythrocyte (IE) cytosol and the surface as a denaturation-resistant tetramer. The inaccessibility of the IE surface exposed PfP2 to its bona fide ligand led to the arrest of nuclear division. Here, we show that at the onset of schizogony, denaturation-resistant PfP2 tetramer on the IE surface imports fatty acids (FAs). Blockage of import reversibly arrested parasite schizogony. In 11Met-O-Met11 mediated denaturation resistant PfP2 tetramer, the 12/53Cys-Cys12/53 redox switch regulates the binding and release of FAs based on oxidized/reduced state of disulfide linkages. This mechanistic insight of FAs import through PfP2 tetramer reveals a unique regulation of nuclear division at the onset of schizogony.
Collapse
Affiliation(s)
- Sudipta Das
- Division of infectious Disease and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Anwesa Manna
- Division of infectious Disease and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Oindrila Majumdar
- Division of infectious Disease and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Lena Dhara
- Division of infectious Disease and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
3
|
Suda K, Moriyama Y, Razali N, Chiu Y, Masukagami Y, Nishimura K, Barbee H, Takase H, Sugiyama S, Yamazaki Y, Sato Y, Higashiyama T, Johmura Y, Nakanishi M, Kono K. Plasma membrane damage limits replicative lifespan in yeast and induces premature senescence in human fibroblasts. NATURE AGING 2024; 4:319-335. [PMID: 38388781 PMCID: PMC10950784 DOI: 10.1038/s43587-024-00575-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
Plasma membrane damage (PMD) occurs in all cell types due to environmental perturbation and cell-autonomous activities. However, cellular outcomes of PMD remain largely unknown except for recovery or death. In this study, using budding yeast and normal human fibroblasts, we found that cellular senescence-stable cell cycle arrest contributing to organismal aging-is the long-term outcome of PMD. Our genetic screening using budding yeast unexpectedly identified a close genetic association between PMD response and replicative lifespan regulations. Furthermore, PMD limits replicative lifespan in budding yeast; upregulation of membrane repair factors ESCRT-III (SNF7) and AAA-ATPase (VPS4) extends it. In normal human fibroblasts, PMD induces premature senescence via the Ca2+-p53 axis but not the major senescence pathway, DNA damage response pathway. Transient upregulation of ESCRT-III (CHMP4B) suppressed PMD-dependent senescence. Together with mRNA sequencing results, our study highlights an underappreciated but ubiquitous senescent cell subtype: PMD-dependent senescent cells.
Collapse
Affiliation(s)
- Kojiro Suda
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yohsuke Moriyama
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Nurhanani Razali
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yatzu Chiu
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yumiko Masukagami
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Koutarou Nishimura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Hunter Barbee
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Hiroshi Takase
- Core Laboratory, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Shinju Sugiyama
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yuta Yamazaki
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Department of Biological Science, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Yoshikazu Johmura
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Keiko Kono
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
4
|
Mamun MAA, Maruyama JI. Fungal transglutaminase domain-containing proteins are involved in hyphal protection at the septal pore against wounding. Mol Biol Cell 2023; 34:ar127. [PMID: 37756125 PMCID: PMC10848947 DOI: 10.1091/mbc.e23-01-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023] Open
Abstract
Transglutaminase (TG) is a ubiquitous enzyme that crosslinks substrates. In humans, TG participates in blood clotting and wound healing. However, the functions related to the cellular protection of microbial TG are unknown. In filamentous fungi, we previously identified SppB, which contains the transglutaminase core (TGc) domain and functions in hyphal protection at the septal pore upon wounding. Here, we further analyzed the cytokinesis-related protein Cyk3 and peptide N-glycanase Png1, as both contain the TGc domain. All three proteins exhibited functional importance in wound-related hyphal protection at the septal pore. Upon wounding, SppB and AoPng1 accumulated at the septal pore, whereas AoCyk3 and AoPng1 normally localized around the septal pore. The putative Cys-His-Asp catalytic triad of SppB is conserved with the human TGc domain-containing kyphoscoliosis peptidase. Catalytic triad disruptive mutants of SppB and AoCyk3 exhibited septal pore plugging defects. Similar to other TGs, SppB underwent wound-induced truncation of the N-terminal region. Notably, TG activity was detected in vivo at the septal pore of wounded hyphae using a fluorescent-labeled substrate; however, the activity was inhibited by the TG inhibitor cystamine. Our study suggests a conserved role for TGc domain-containing proteins in wound-related protection in fungi, similar to that in humans.
Collapse
Affiliation(s)
- Md. Abdulla Al Mamun
- Department of Biotechnology, The University of Tokyo, Tokyo 113-8657, Japan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115
| | - Jun-ichi Maruyama
- Department of Biotechnology, The University of Tokyo, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
5
|
Kono Y, Ishibashi Y, Fukuda S, Higuchi T, Tani M. Simultaneous structural replacement of the sphingoid long-chain base and sterol in budding yeast. FEBS J 2023; 290:5605-5627. [PMID: 37690108 DOI: 10.1111/febs.16949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/25/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
The basic structures of membrane lipids that compose biomembranes differ among species; i.e., in mammals, the primary structure of long-chain base (LCB), the common backbone of ceramides and complex sphingolipids, is sphingosine, whereas, in yeast Saccharomyces cerevisiae, it is phytosphingosine, and S. cerevisiae does not have sphingosine. In addition, the sterol, which is coordinately involved in various functions with complex sphingolipids, is cholesterol in mammals, while in yeast it is ergosterol. Previously, it was found that yeast cells are viable when the structure of LCBs is replaced by sphingosine by supplying an exogenous LCB to cells lacking LCB biosynthesis. Here, we characterized yeast cells having sphingosine instead of phytosphingosine (sphingosine cells). Sphingosine cells exhibited a strong growth defect when biosynthesis of ceramides or complex sphingolipids was inhibited, indicating that, in the sphingosine cells, exogenously added sphingosine is required to be further metabolized. The sphingosine cells exhibited hypersensitivity to various environmental stresses and had abnormal plasma membrane and cell wall properties. Furthermore, we also established a method for simultaneous replacement of both LCB and sterol structures with those of mammals (sphingosine/cholesterol cells). The multiple stress hypersensitivity and abnormal plasma membrane and cell wall properties observed in sphingosine cells were also observed in sphingosine/cholesterol cells, suggesting that simultaneous replacement of both LCB and sterol structures with those of mammals cannot prevent these abnormal phenotypes. This is the first study to our knowledge showing that S. cerevisiae can grow even if LCB and sterol structures are simultaneously replaced with mammalian types.
Collapse
Affiliation(s)
- Yushi Kono
- Department of Chemistry, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Yohei Ishibashi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Shizuka Fukuda
- Department of Chemistry, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Higuchi
- Department of Chemistry, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Motohiro Tani
- Department of Chemistry, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Saiz-Baggetto S, Dolz-Edo L, Méndez E, García-Bolufer P, Marí M, Bañó MC, Fariñas I, Morante-Redolat JM, Igual JC, Quilis I. A Multimodel Study of the Role of Novel PKC Isoforms in the DNA Integrity Checkpoint. Int J Mol Sci 2023; 24:15796. [PMID: 37958781 PMCID: PMC10650207 DOI: 10.3390/ijms242115796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
The protein kinase C (PKC) family plays important regulatory roles in numerous cellular processes. Saccharomyces cerevisiae contains a single PKC, Pkc1, whereas in mammals, the PKC family comprises nine isoforms. Both Pkc1 and the novel isoform PKCδ are involved in the control of DNA integrity checkpoint activation, demonstrating that this mechanism is conserved from yeast to mammals. To explore the function of PKCδ in a non-tumor cell line, we employed CRISPR-Cas9 technology to obtain PKCδ knocked-out mouse embryonic stem cells (mESCs). This model demonstrated that the absence of PKCδ reduced the activation of the effector kinase CHK1, although it suggested that other isoform(s) might contribute to this function. Therefore, we used yeast to study the ability of each single PKC isoform to activate the DNA integrity checkpoint. Our analysis identified that PKCθ, the closest isoform to PKCδ, was also able to perform this function, although with less efficiency. Then, by generating truncated and mutant versions in key residues, we uncovered differences between the activation mechanisms of PKCδ and PKCθ and identified their essential domains. Our work strongly supports the role of PKC as a key player in the DNA integrity checkpoint pathway and highlights the advantages of combining distinct research models.
Collapse
Affiliation(s)
- Sara Saiz-Baggetto
- Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot, Spain; (S.S.-B.); (L.D.-E.); (M.C.B.)
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain (I.F.); (J.M.M.-R.)
| | - Laura Dolz-Edo
- Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot, Spain; (S.S.-B.); (L.D.-E.); (M.C.B.)
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain (I.F.); (J.M.M.-R.)
- Departament de Biologia Cellular, Biologia Funcional i Antropologia Física, Universitat de València, 46100 Burjassot, Spain
| | - Ester Méndez
- Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot, Spain; (S.S.-B.); (L.D.-E.); (M.C.B.)
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain (I.F.); (J.M.M.-R.)
| | - Pau García-Bolufer
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain (I.F.); (J.M.M.-R.)
- Departament de Biologia Cellular, Biologia Funcional i Antropologia Física, Universitat de València, 46100 Burjassot, Spain
| | - Miquel Marí
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain (I.F.); (J.M.M.-R.)
- Departament de Biologia Cellular, Biologia Funcional i Antropologia Física, Universitat de València, 46100 Burjassot, Spain
| | - M. Carmen Bañó
- Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot, Spain; (S.S.-B.); (L.D.-E.); (M.C.B.)
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain (I.F.); (J.M.M.-R.)
| | - Isabel Fariñas
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain (I.F.); (J.M.M.-R.)
- Departament de Biologia Cellular, Biologia Funcional i Antropologia Física, Universitat de València, 46100 Burjassot, Spain
| | - José Manuel Morante-Redolat
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain (I.F.); (J.M.M.-R.)
- Departament de Biologia Cellular, Biologia Funcional i Antropologia Física, Universitat de València, 46100 Burjassot, Spain
| | - J. Carlos Igual
- Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot, Spain; (S.S.-B.); (L.D.-E.); (M.C.B.)
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain (I.F.); (J.M.M.-R.)
| | - Inma Quilis
- Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot, Spain; (S.S.-B.); (L.D.-E.); (M.C.B.)
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain (I.F.); (J.M.M.-R.)
| |
Collapse
|
7
|
Chen X, Wei Y, Zou X, Zhao Z, Jiang S, Chen Y, Xu F, Shao X. β-Glucan Enhances the Biocontrol Efficacy of Marine Yeast Scheffersomyeces spartinae W9 against Botrytis cinerea in Strawberries. J Fungi (Basel) 2023; 9:jof9040474. [PMID: 37108929 PMCID: PMC10142798 DOI: 10.3390/jof9040474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The marine yeast Scheffersomyeces spartinae W9 is a promising biocontrol agent for gray mold caused by Botrytis cinerea in strawberries. Improving the biocontrol efficacy of S. spartinae W9 is necessary for its commercial application. In this study, different concentrations of β-glucan were added to the culture medium to evaluate its effect on the biocontrol efficacy of S. spartinae W9. The results showed that 0.1% β-glucan could increase the biocontrol effect of S. spartinae W9 against B. cinerea in strawberries and in vitro. We found that adding 0.1% β-glucan to the culture medium promoted the growth of S. spartinae W9 in wounds of strawberries, enhanced biofilm formation ability, and secreted more β-1,3-glucanase. In addition, 0.1% β-glucan increased the survival rate of S. spartinae W9 under oxidative, thermal, osmotic, and plasma membrane stressors. Transcriptome analysis revealed 188 differential expressed genes in S. spartinae W9 cultured with or without 0.1% β-glucan, including 120 upregulated and 68 downregulated genes. The upregulated genes were associated with stress response, cell wall formation, energy production, growth, and reproduction. Thus, culturing with 0.1% β-glucan is an effective way to improve the biocontrol ability of S. spartinae W9 against gray mold in strawberries.
Collapse
Affiliation(s)
- Xueyan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Yingying Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xiurong Zou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Henry Fok School of Food Science and Engineering, Shaoguan University, Shaoguan 512005, China
| | - Zichang Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Shu Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Feng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xingfeng Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| |
Collapse
|
8
|
Caydasi AK, Khmelinskii A, Darieva Z, Kurtulmus B, Knop M, Pereira G. SWR1 chromatin remodeling complex prevents mitotic slippage during spindle position checkpoint arrest. Mol Biol Cell 2023; 34:ar11. [PMID: 36542480 PMCID: PMC9930528 DOI: 10.1091/mbc.e20-03-0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Faithful chromosome segregation in budding yeast requires correct positioning of the mitotic spindle along the mother to daughter cell polarity axis. When the anaphase spindle is not correctly positioned, a surveillance mechanism, named as the spindle position checkpoint (SPOC), prevents the progression out of mitosis until correct spindle positioning is achieved. How SPOC works on a molecular level is not well understood. Here we performed a genome-wide genetic screen to search for components required for SPOC. We identified the SWR1 chromatin-remodeling complex (SWR1-C) among several novel factors that are essential for SPOC integrity. Cells lacking SWR1-C were able to activate SPOC upon spindle misorientation but underwent mitotic slippage upon prolonged SPOC arrest. This mitotic slippage required the Cdc14-early anaphase release pathway and other factors including the SAGA (Spt-Ada-Gcn5 acetyltransferase) histone acetyltransferase complex, proteasome components and the mitotic cyclin-dependent kinase inhibitor Sic1. Together, our data establish a novel link between SWR1-C chromatin remodeling and robust checkpoint arrest in late anaphase.
Collapse
Affiliation(s)
- Ayse Koca Caydasi
- Centre for Organismal Studies (COS), University of Heidelberg, Germany,Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | | | - Zoulfia Darieva
- Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Bahtiyar Kurtulmus
- Centre for Organismal Studies (COS), University of Heidelberg, Germany,European Molecular Biology Laboratories (EMBL), Heidelberg, Germany
| | - Michael Knop
- Centre for Molecular Biology (ZMBH), University of Heidelberg, Germany
| | - Gislene Pereira
- Centre for Organismal Studies (COS), University of Heidelberg, Germany,Centre for Molecular Biology (ZMBH), University of Heidelberg, Germany,German Cancer Research Centre (DKFZ), DKFZ-ZMBH Alliance, University of Heidelberg, Germany,*Address correspondence to: Gislene Pereira ()
| |
Collapse
|
9
|
Candida albicans Reactive Oxygen Species (ROS)-Dependent Lethality and ROS-Independent Hyphal and Biofilm Inhibition by Eugenol and Citral. Microbiol Spectr 2022; 10:e0318322. [PMID: 36394350 PMCID: PMC9769929 DOI: 10.1128/spectrum.03183-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Candida albicans is part of the normal human flora but is most frequently isolated as the causative opportunistic pathogen of candidiasis. Plant-based essential oils and their components have been extensively studied as antimicrobials, but their antimicrobial impacts are poorly understood. Phenylpropenoids and monoterpenes, for example, eugenol from clove and citral from lemon grass, are potent antifungals against a wide range of pathogens. We report the cellular response of C. albicans to eugenol and citral, alone and combined, using biochemical and microscopic assays. The MICs of eugenol and citral were 1,000 and 256 μg/mL, respectively, with the two exhibiting additive effects based on a fractional inhibitory concentration index of 0.83 ± 0.14. High concentrations of eugenol caused membrane damage, oxidative stress, vacuole segregation, microtubule dysfunction and cell cycle arrest at the G1/S phase, and while citral had similar impacts, they were reactive oxygen species (ROS) independent. At sublethal concentrations (1/2 to 1/4 MIC), both oils disrupted microtubules and hyphal and biofilm formation in an ROS-independent manner. While both compounds disrupt the cell membrane, eugenol had a greater impact on membrane dysfunction. This study shows that eugenol and citral can induce vacuole and microtubule dysfunction, along with the inhibition of hyphal and biofilm formation. IMPORTANCE Candida albicans is a normal resident on and in the human body that can cause relatively benign infections. However, when our immune system is severely compromised (e.g., cancer chemotherapy patients) or underdeveloped (e.g., newborns), this fungus can become a deadly pathogen, infecting the bloodstream and organs. Since there are only a few effective antifungal agents that can be used to combat fungal infections, these fungi have been exposed to them over and over again, allowing the fungi to develop resistance. Instead of developing antifungal agents that kill the fungi, some of which have undesirable side effects on the human host, researchers have proposed to target the fungal traits that make the fungus more virulent. Here, we show how two components of plant-based essential oils, eugenol and citral, are effective inhibitors of C. albicans virulence traits.
Collapse
|
10
|
Rosemary essential oil and its components 1,8-cineole and α-pinene induce ROS-dependent lethality and ROS-independent virulence inhibition in Candida albicans. PLoS One 2022; 17:e0277097. [DOI: 10.1371/journal.pone.0277097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
The essential oil from Rosmarinus officinalis L., a composite mixture of plant-derived secondary metabolites, exhibits antifungal activity against virulent candidal species. Here we report the impact of rosemary oil and two of its components, the monoterpene α-pinene and the monoterpenoid 1,8-cineole, against Candida albicans, which induce ROS-dependent cell death at high concentrations and inhibit hyphal morphogenesis and biofilm formation at lower concentrations. The minimum inhibitory concentrations (100% inhibition) for both rosemary oil and 1,8-cineole were 4500 μg/ml and 3125 μg/ml for α-pinene, with the two components exhibiting partial synergy (FICI = 0.55 ± 0.07). At MIC and 1/2 MIC, rosemary oil and its components induced a generalized cell wall stress response, causing damage to cellular and organelle membranes, along with elevated chitin production and increased cell surface adhesion and elasticity, leading to complete vacuolar segregation, mitochondrial depolarization, elevated reactive oxygen species, microtubule dysfunction, and cell cycle arrest mainly at the G1/S phase, consequently triggering cell death. Interestingly, the same oils at lower fractional MIC (1/8-1/4) inhibited virulence traits, including reduction of mycelium (up to 2-fold) and biofilm (up to 4-fold) formation, through a ROS-independent mechanism.
Collapse
|
11
|
Koga A, Takayama C, Ishibashi Y, Kono Y, Matsuzaki M, Tani M. Loss of tolerance to multiple environmental stresses due to limitation of structural diversity of complex sphingolipids. Mol Biol Cell 2022; 33:ar105. [PMID: 35895092 DOI: 10.1091/mbc.e22-04-0117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Structural diversity of complex sphingolipids is important for maintenance of various cellular functions; however, the overall picture of the significance of this structural diversity remains largely unknown. To investigate the physiological importance of the structural diversity of complex sphingolipids, we here constructed a complex sphingolipid structural diversity disruption library in budding yeast, which comprises 11 mutants including with combinations of deletions of sphingolipid-metabolizing enzyme genes. The sensitivity of the mutants to various environmental stresses revealed that the more the structural variation of complex sphingolipids is limited, the more stress sensitivity tends to increase. Moreover, it was found that in mutant cells with only one subtype of complex sphingolipid, Slt2 MAP kinase and Msn2/4 transcriptional factors are essential for maintenance of a normal growth and compensation for reduced tolerance of multiple stresses caused by loss of complex sphingolipid diversity. Slt2 and Msn2/4 are involved in compensation for impaired integrity of cell walls and plasma membranes caused by loss of complex sphingolipid diversity, respectively. From these findings, it was suggested that loss of structural diversity of complex sphingolipids affects the environment of the cell surface, including both plasma membranes and cell walls, which could cause multiple environmental stress hypersensitivity.
Collapse
Affiliation(s)
- Ayano Koga
- Department of Chemistry, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Chihiro Takayama
- Department of Chemistry, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yohei Ishibashi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yushi Kono
- Department of Chemistry, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Momoko Matsuzaki
- Department of Chemistry, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Motohiro Tani
- Department of Chemistry, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
12
|
Lee Y, Liston SD, Lee D, Robbins N, Cowen LE. Functional analysis of the Candida albicans kinome reveals Hrr25 as a regulator of antifungal susceptibility. iScience 2022; 25:104432. [PMID: 35663022 PMCID: PMC9160768 DOI: 10.1016/j.isci.2022.104432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022] Open
Abstract
Candida albicans is a leading cause of death due to systemic fungal infections. Poor patient outcomes are attributable to the limited number of antifungal classes and the increasing prevalence of drug resistance. Protein kinases have emerged as rewarding targets in the development of drugs for diverse diseases, yet kinases remain untapped in the quest for new antifungals. Here, we performed a comprehensive analysis of the C. albicans kinome to identify genes for which loss-of-function confers hypersensitivity to the two most widely deployed antifungals, echinocandins and azoles. Through this analysis, we found a role for the casein kinase 1 (CK1) homologue Hrr25 in regulating tolerance to both antifungals as well as target-mediated echinocandin resistance. Follow-up investigations established that Hrr25 regulates these responses through its interaction with the SBF transcription factor. Thus, we provide insights into the circuitry governing cellular responses to antifungals and implicate Hrr25 as a key mediator of drug resistance. Screening Candida albicans kinase mutants reveals 47 regulators of antifungal tolerance Hrr25 is important for growth and cell wall/membrane stress tolerance Hrr25 enables target-mediated echinocandin resistance Hrr25 interacts with the SBF transcription factor complex
Collapse
Affiliation(s)
- Yunjin Lee
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Sean D Liston
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Dongyeob Lee
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
13
|
Sakata KT, Hashii K, Yoshizawa K, Tahara YO, Yae K, Tsuda R, Tanaka N, Maeda T, Miyata M, Tabuchi M. Coordinated regulation of TORC2 signaling by MCC/eisosome-associated proteins, Pil1 and tetraspan membrane proteins during the stress response. Mol Microbiol 2022; 117:1227-1244. [PMID: 35383382 DOI: 10.1111/mmi.14903] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
MCCs are linear invaginations of the yeast plasma membrane that form stable membrane microdomains. Although over 20 proteins are localized in the MCCs, it is not well understood how these proteins coordinately maintain normal MCC function. Pil1 is a core eisosome protein and is responsible for MCC-invaginated structures. In addition, six-tetraspan membrane proteins (6-Tsp) are localized in the MCCs and classified into two families, the Sur7 family and Nce102 family. To understand the coordinated function of these MCC proteins, single and multiple deletion mutants of Pil1 and 6-Tsp were generated and their MCC structure and growth under various stresses were investigated. Genetic interaction analysis revealed that the Sur7 family and Nce102 function in stress tolerance and normal eisosome assembly, respectively, by cooperating with Pil1. To further understand the role of MCCs/eisosomes in stress tolerance, we screened for suppressor mutants using the SDS-sensitive phenotype of pil1Δ 6-tspΔ cells. This revealed that SDS sensitivity is caused by hyperactivation of Tor kinase complex 2 (TORC2)-Ypk1 signaling. Interestingly, inhibition of sphingolipid metabolism, a well-known downstream pathway of TORC2-Ypk1 signaling, did not rescue the SDS-sensitivity of pil1Δ 6-tspΔ cells. These results suggest that Pil1 and 6-Tsp cooperatively regulate TORC2 signaling during the stress response.
Collapse
Affiliation(s)
- Ken-Taro Sakata
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa, Japan
| | - Keisuke Hashii
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa, Japan
| | - Koushiro Yoshizawa
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa, Japan
| | - Yuhei O Tahara
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan
| | - Kaori Yae
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa, Japan
| | - Ryohei Tsuda
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa, Japan
| | - Naotaka Tanaka
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa, Japan
| | - Tatsuya Maeda
- Department of Biology, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka, Japan
| | - Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan.,The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, Japan
| | - Mitsuaki Tabuchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa, Japan
| |
Collapse
|
14
|
Substrates of the MAPK Slt2: Shaping Yeast Cell Integrity. J Fungi (Basel) 2022; 8:jof8040368. [PMID: 35448599 PMCID: PMC9031059 DOI: 10.3390/jof8040368] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
The cell wall integrity (CWI) MAPK pathway of budding yeast Saccharomyces cerevisiae is specialized in responding to cell wall damage, but ongoing research shows that it participates in many other stressful conditions, suggesting that it has functional diversity. The output of this pathway is mainly driven by the activity of the MAPK Slt2, which regulates important processes for yeast physiology such as fine-tuning of signaling through the CWI and other pathways, transcriptional activation in response to cell wall damage, cell cycle, or determination of the fate of some organelles. To this end, Slt2 precisely phosphorylates protein substrates, modulating their activity, stability, protein interaction, and subcellular localization. Here, after recapitulating the methods that have been employed in the discovery of proteins phosphorylated by Slt2, we review the bona fide substrates of this MAPK and the growing set of candidates still to be confirmed. In the context of the complexity of MAPK signaling regulation, we discuss how Slt2 determines yeast cell integrity through phosphorylation of these substrates. Increasing data from large-scale analyses and the available methodological approaches pave the road to early identification of new Slt2 substrates and functions.
Collapse
|
15
|
The CWI Pathway: A Versatile Toolbox to Arrest Cell-Cycle Progression. J Fungi (Basel) 2021; 7:jof7121041. [PMID: 34947023 PMCID: PMC8704918 DOI: 10.3390/jof7121041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 02/02/2023] Open
Abstract
Cell-signaling pathways are essential for cells to respond and adapt to changes in their environmental conditions. The cell-wall integrity (CWI) pathway of Saccharomyces cerevisiae is activated by environmental stresses, compounds, and morphogenetic processes that compromise the cell wall, orchestrating the appropriate cellular response to cope with these adverse conditions. During cell-cycle progression, the CWI pathway is activated in periods of polarized growth, such as budding or cytokinesis, regulating cell-wall biosynthesis and the actin cytoskeleton. Importantly, accumulated evidence has indicated a reciprocal regulation of the cell-cycle regulatory system by the CWI pathway. In this paper, we describe how the CWI pathway regulates the main cell-cycle transitions in response to cell-surface perturbance to delay cell-cycle progression. In particular, it affects the Start transcriptional program and the initiation of DNA replication at the G1/S transition, and entry and progression through mitosis. We also describe the involvement of the CWI pathway in the response to genotoxic stress and its connection with the DNA integrity checkpoint, the mechanism that ensures the correct transmission of genetic material and cell survival. Thus, the CWI pathway emerges as a master brake that stops cell-cycle progression when cells are coping with distinct unfavorable conditions.
Collapse
|
16
|
Micalizzi EW, Golshani A, Smith ML. Propionic acid disrupts endocytosis, cell cycle, and cellular respiration in yeast. BMC Res Notes 2021; 14:335. [PMID: 34454571 PMCID: PMC8403364 DOI: 10.1186/s13104-021-05752-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/20/2021] [Indexed: 12/28/2022] Open
Abstract
Objective We previously identified propionic acid as a microbially-produced volatile organic compound with fungicidal activity against several pathogenic fungi. The purpose of this work is to better understand how propionic acid affects fungi by examining some of the effects of this compound on the yeast cell. Results We show that propionic acid causes a dramatic increase in the uptake of lucifer yellow in yeast cells, which is consistent with enhanced endocytosis. Additionally, using a propidium iodide assay, we show that propionic acid treatment causes a significant increase in the proportion of yeast cells in G1 and a significant decrease in the proportion of cells in G2, suggesting that propionic acid causes a cell cycle arrest in yeast. Finally, we show that the reduction of MTT is attenuated in yeast cells treated with propionic acid, indicating that propionic acid disrupts cellular respiration. Understanding the effects of propionic acid on the yeast cell may aid in assessing the broader utility of this compound. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05752-z.
Collapse
Affiliation(s)
| | - Ashkan Golshani
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Myron L Smith
- Department of Biology, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
17
|
Vítová M, Lanta V, Čížková M, Jakubec M, Rise F, Halskau Ø, Bišová K, Furse S. The biosynthesis of phospholipids is linked to the cell cycle in a model eukaryote. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158965. [PMID: 33992808 PMCID: PMC8202326 DOI: 10.1016/j.bbalip.2021.158965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022]
Abstract
The structural challenges faced by eukaryotic cells through the cell cycle are key for understanding cell viability and proliferation. We tested the hypothesis that the biosynthesis of structural lipids is linked to the cell cycle. If true, this would suggest that the cell's structure is important for progress through and perhaps even control of the cell cycle. Lipidomics (31P NMR and MS), proteomics (Western immunoblotting) and transcriptomics (RT-qPCR) techniques were used to profile the lipid fraction and characterise aspects of its metabolism at seven stages of the cell cycle of the model eukaryote, Desmodesmus quadricauda. We found considerable, transient increases in the abundance of phosphatidylethanolamine during the G1 phase (+35%, ethanolamine phosphate cytidylyltransferase increased 2·5×) and phosphatidylglycerol (+100%, phosphatidylglycerol synthase increased 22×) over the G1/pre-replication phase boundary. The relative abundance of phosphatidylcholine fell by ~35% during the G1. N-Methyl transferases for the conversion of phosphatidylethanolamine into phosphatidylcholine were not found in the de novo transcriptome profile, though a choline phosphate transferase was found, suggesting that the Kennedy pathway is the principal route for the synthesis of PC. The fatty acid profiles of the four most abundant lipids suggested that these lipids were not generally converted between one another. This study shows for the first time that there are considerable changes in the biosynthesis of the three most abundant phospholipid classes in the normal cell cycle of D. quadricauda, by margins large enough to elicit changes to the physical properties of membranes.
Collapse
Affiliation(s)
- Milada Vítová
- Laboratory of Cell Cycles of Algae (Laboratoř buněčných cyklů řas), Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, 379 01 Třeboň, Czech Republic
| | - Vojtěch Lanta
- Laboratory of Cell Cycles of Algae (Laboratoř buněčných cyklů řas), Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, 379 01 Třeboň, Czech Republic; Department of Functional Ecology, Institute of Botany of the Czech Academy of Sciences, Dukelská 135, 379 81 Třeboň, Czech Republic
| | - Mária Čížková
- Laboratory of Cell Cycles of Algae (Laboratoř buněčných cyklů řas), Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, 379 01 Třeboň, Czech Republic
| | - Martin Jakubec
- Department of Molecular Biology, University of Bergen, Thormøhlens gate 55, NO-5008 Bergen, Norway
| | - Frode Rise
- Department of Chemistry, Universitetet i Oslo, P. O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Øyvind Halskau
- Department of Molecular Biology, University of Bergen, Thormøhlens gate 55, NO-5008 Bergen, Norway
| | - Kateřina Bišová
- Laboratory of Cell Cycles of Algae (Laboratoř buněčných cyklů řas), Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, 379 01 Třeboň, Czech Republic
| | - Samuel Furse
- Department of Molecular Biology, University of Bergen, Thormøhlens gate 55, NO-5008 Bergen, Norway; Core Metabolomics and Lipidomics Laboratory, Wellcome Trust-MRL Institute of Metabolic Science, University of Cambridge, Level 4, Pathology Building, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Biological chemistry group, Jodrell laboratory, Royal Botanic Gardens Kew, United Kingdom.
| |
Collapse
|
18
|
Balancing of the mitotic exit network and cell wall integrity signaling governs the development and pathogenicity in Magnaporthe oryzae. PLoS Pathog 2021; 17:e1009080. [PMID: 33411855 PMCID: PMC7817018 DOI: 10.1371/journal.ppat.1009080] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/20/2021] [Accepted: 10/20/2020] [Indexed: 11/25/2022] Open
Abstract
The fungal cell wall plays an essential role in maintaining cell morphology, transmitting external signals, controlling cell growth, and even virulence. Relaxation and irreversible stretching of the cell wall are the prerequisites of cell division and development, but they also inevitably cause cell wall stress. Both Mitotic Exit Network (MEN) and Cell Wall Integrity (CWI) are signaling pathways that govern cell division and cell stress response, respectively, how these pathways cross talk to govern and coordinate cellular growth, development, and pathogenicity remains not fully understood. We have identified MoSep1, MoDbf2, and MoMob1 as the conserved components of MEN from the rice blast fungus Magnaporthe oryzae. We have found that blocking cell division results in abnormal CWI signaling. In addition, we discovered that MoSep1 targets MoMkk1, a conserved key MAP kinase of the CWI pathway, through protein phosphorylation that promotes CWI signaling. Moreover, we provided evidence demonstrating that MoSep1-dependent MoMkk1 phosphorylation is essential for balancing cell division with CWI that maintains the dynamic stability required for virulence of the blast fungus. The cell wall is a relatively rigid structure for supporting the cell shape and against extracellular stresses. However, it also maintains plasticity to cope with cell division, growth, and differentiation. In the rice blast pathogenic fungus Magnaporthe oryzae, such differentiation corresponds directly to its virulence. Thus, how to balance the “strong for shaping” with the “malleable for growth and virulence” poses as an important question of both basic- and applied science of significance. We here report that the protein kinase MoSep1 links the Mitotic Exit Network (MEN) to the Cell Wall Integrity (CWI) signaling through the phosphorylation of the CWI MAP kinase kinase MoMkk1. We found that the MoSep1-dependent phosphorylation of MoMkk1 relieves the cell wall stress caused by cell division and that the MEN-CWI-mediated balance of rigid and remodeling of the cell wall is important in the growth, development, and virulence of the blast fungus. Our study provides a new evidence on how the blast fungus adapts to self-generated stress for growth and virulence and it sheds new light on the crosstalk between MEN and CWI signaling.
Collapse
|
19
|
Lee B, Jeong SG, Jin SH, Mishra R, Peter M, Lee CS, Lee SS. Quantitative analysis of yeast MAPK signaling networks and crosstalk using a microfluidic device. LAB ON A CHIP 2020; 20:2646-2655. [PMID: 32597919 DOI: 10.1039/d0lc00203h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Eukaryotic cells developed complex mitogen-activated protein kinase (MAPK) signaling networks to sense their intra- and extracellular environment and respond to various stress conditions. For example, S. cerevisiae uses five distinct MAP kinase pathways to orchestrate meiosis or respond to mating pheromones, osmolarity changes and cell wall stress. Although each MAPK module has been studied individually, the mechanisms underlying crosstalk between signaling pathways remain poorly understood, in part because suitable experimental systems to monitor cellular outputs when applying different signals are lacking. Here, we investigate the yeast MAPK signaling pathways and their crosstalk, taking advantage of a new microfluidic device coupled to quantitative microscopy. We designed specific micropads to trap yeast cells in a single focal plane, and modulate the magnitude of a given stress signal by microfluidic serial dilution while keeping other signaling inputs constant. This approach enabled us to quantify in single cells nuclear relocation of effectors responding to MAPK activation, like Yap1 for oxidative stress, and expression of stress-specific reporter expression, like pSTL1-qV and pFIG1-qV for high-osmolarity or mating pheromone signaling, respectively. Using this quantitative single-cell analysis, we confirmed bimodal behavior of gene expression in response to Hog1 activation, and quantified crosstalk between the pheromone- and cell wall integrity (CWI) signaling pathways. Importantly, we further observed that oxidative stress inhibits pheromone signaling. Mechanistically, this crosstalk is mediated by Pkc1-dependent phosphorylation of the scaffold protein Ste5 on serine 185, which prevents Ste5 recruitment to the plasma membrane.
Collapse
Affiliation(s)
- Byungjin Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Yuseong-Gu, Daejeon 305-764, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
20
|
Pardo B, Moriel‐Carretero M, Vicat T, Aguilera A, Pasero P. Homologous recombination and Mus81 promote replication completion in response to replication fork blockage. EMBO Rep 2020; 21:e49367. [PMID: 32419301 PMCID: PMC7332989 DOI: 10.15252/embr.201949367] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/19/2022] Open
Abstract
Impediments to DNA replication threaten genome stability. The homologous recombination (HR) pathway has been involved in the restart of blocked replication forks. Here, we used a method to increase yeast cell permeability in order to study at the molecular level the fate of replication forks blocked by DNA topoisomerase I poisoning by camptothecin (CPT). Our results indicate that Rad52 and Rad51 HR factors are required to complete DNA replication in response to CPT. Recombination events occurring during S phase do not generally lead to the restart of DNA synthesis but rather protect blocked forks until they merge with convergent forks. This fusion generates structures requiring their resolution by the Mus81 endonuclease in G2 /M. At the global genome level, the multiplicity of replication origins in eukaryotic genomes and the fork protection mechanism provided by HR appear therefore to be essential to complete DNA replication in response to fork blockage.
Collapse
Affiliation(s)
- Benjamin Pardo
- Institut de Génétique HumaineUniversité de Montpellier‐CNRSMontpellierFrance
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - María Moriel‐Carretero
- Institut de Génétique HumaineUniversité de Montpellier‐CNRSMontpellierFrance
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
- Present address:
Centre de Recherche en Biologie cellulaire de MontpellierUniversité de Montpellier‐CNRSMontpellierFrance
| | - Thibaud Vicat
- Institut de Génétique HumaineUniversité de Montpellier‐CNRSMontpellierFrance
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - Philippe Pasero
- Institut de Génétique HumaineUniversité de Montpellier‐CNRSMontpellierFrance
| |
Collapse
|
21
|
Multiple cellular responses guarantee yeast survival in presence of the cell membrane/wall interfering agent sodium dodecyl sulfate. Biochem Biophys Res Commun 2020; 527:276-282. [PMID: 32446380 DOI: 10.1016/j.bbrc.2020.03.163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 03/29/2020] [Indexed: 11/20/2022]
Abstract
Sodium dodecyl sulfate (SDS), a representative anionic surfactant, is a commonly used reagent in studies of the cell membrane and cell wall. However, the mechanisms through which SDS affects cellular functions have not yet been fully examined. Thus, to gain further insights into the cellular functions and responses to SDS, we tested a haploid library of Saccharomyces cerevisiae single-gene deletion mutants to identify genes required for tolerance to SDS. After two rounds of screening, we found 730 sensitive and 77 resistant mutants. Among the sensitive mutants, mitochondrial gene expression; the mitogen-activated protein kinase signaling pathway; the metabolic pathways involved in glycoprotein, lipid, purine metabolic process, oxidative phosphorylation, cellular amino acid biosynthesis and pentose phosphate pathway were found to be enriched. Additionally, we identified a set of transcription factors related to SDS responses. Among the resistant mutants, disruption of ribosome biogenesis and translation alleviated SDS-induced cytotoxicity. Collectively, our results provided new insights into the mechanisms through which SDS regulates the cell membrane or cell wall.
Collapse
|
22
|
Bacete L, Hamann T. The Role of Mechanoperception in Plant Cell Wall Integrity Maintenance. PLANTS (BASEL, SWITZERLAND) 2020; 9:E574. [PMID: 32369932 PMCID: PMC7285163 DOI: 10.3390/plants9050574] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
The plant cell walls surrounding all plant cells are highly dynamic structures, which change their composition and organization in response to chemical and physical stimuli originating both in the environment and in plants themselves. They are intricately involved in all interactions between plants and their environment while also providing adaptive structural support during plant growth and development. A key mechanism contributing to these adaptive changes is the cell wall integrity (CWI) maintenance mechanism. It monitors and maintains the functional integrity of cell walls by initiating adaptive changes in cellular and cell wall metabolism. Despite its importance, both our understanding of its mode of action and knowledge regarding the molecular components that form it are limited. Intriguingly, the available evidence implicates mechanosensing in the mechanism. Here, we provide an overview of the knowledge available regarding the molecular mechanisms involved in and discuss how mechanoperception and signal transduction may contribute to plant CWI maintenance.
Collapse
Affiliation(s)
| | - Thorsten Hamann
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491 Trondheim, Norway;
| |
Collapse
|
23
|
Amen T, Kaganovich D. Stress granules sense metabolic stress at the plasma membrane and potentiate recovery by storing active Pkc1. Sci Signal 2020; 13:13/623/eaaz6339. [DOI: 10.1126/scisignal.aaz6339] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As the physical barrier between the cell and the outside environment, the plasma membrane is well-positioned to be the first responder to stress. The membrane is also highly vulnerable to many types of perturbation, including heat, force, osmotic pressure, lipid shortage, and starvation. To determine whether the structural changes in the plasma membrane of Saccharomyces cerevisiae brought about by nutrient stress can be communicated to regulatory networks within the cell, we identified proteins that interact with stress granules (SGs), subcellular structures composed of proteins, and nontranslated RNAs that form when cells are stressed. We found that SG proteins interacted with components of eisosomes, which are subcortical membrane structures with a distinct lipid and protein composition. In response to starvation-triggered phosphorylation of eisosome proteins, eisosomes clustered and recruited SG components, including active Pkc1. The absence of eisosomes impaired SG formation, resulting in delayed recovery from nutrient deprivation. Thus, eisosome clustering is an example of interdomain communication in response to stress and identifies a previously unknown mechanism of SG regulation.
Collapse
Affiliation(s)
- Triana Amen
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Daniel Kaganovich
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- 1Base Pharmaceuticals, Boston, MA 02129, USA
| |
Collapse
|
24
|
Ishii A, Kurokawa K, Hotta M, Yoshizaki S, Kurita M, Koyama A, Nakano A, Kimura Y. Role of Atg8 in the regulation of vacuolar membrane invagination. Sci Rep 2019; 9:14828. [PMID: 31616012 PMCID: PMC6794316 DOI: 10.1038/s41598-019-51254-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 09/26/2019] [Indexed: 01/23/2023] Open
Abstract
Cellular heat stress can cause damage, and significant changes, to a variety of cellular structures. When exposed to chronically high temperatures, yeast cells invaginate vacuolar membranes. In this study, we found that the expression of Atg8, an essential autophagy factor, is induced after chronic heat stress. In addition, without Atg8, vacuolar invaginations are induced conspicuously, beginning earlier and invaginating vacuoles more frequently after heat stress. Our results indicate that Atg8's invagination-suppressing functions do not require Atg8 lipidation, in contrast with autophagy, which requires Atg8 lipidation. Genetic analyses of vps24 and vps23 further suggest that full ESCRT machinery is necessary to form vacuolar invaginations irrespective of Atg8. In contrast, through a combined mutation with the vacuole BAR domain protein Ivy1, vacuoles show constitutively enhanced invaginated structures. Finally, we found that the atg8Δivy1Δ mutant is sensitive against agents targeting functions of the vacuole and/or plasma membrane (cell wall). Collectively, our findings revealed that Atg8 maintains vacuolar membrane homeostasis in an autophagy-independent function by coordinating with other cellular factors.
Collapse
Affiliation(s)
- Ayane Ishii
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, 351-0198, Japan
| | - Miyuu Hotta
- Department of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Suzuka Yoshizaki
- Department of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Maki Kurita
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Aya Koyama
- Department of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, 351-0198, Japan
| | - Yoko Kimura
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan. .,Department of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan.
| |
Collapse
|
25
|
Vaahtera L, Schulz J, Hamann T. Cell wall integrity maintenance during plant development and interaction with the environment. NATURE PLANTS 2019; 5:924-932. [PMID: 31506641 DOI: 10.1038/s41477-019-0502-0] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/23/2019] [Indexed: 05/18/2023]
Abstract
Cell walls are highly dynamic structures that provide mechanical support for plant cells during growth, development and adaptation to a changing environment. Thus, it is important for plants to monitor the state of their cell walls and ensure their functional integrity at all times. This monitoring involves perception of physical forces at the cell wall-plasma membrane interphase. These forces are altered during cell division and morphogenesis, as well as in response to various abiotic and biotic stresses. Mechanisms responsible for the perception of physical stimuli involved in these processes have been difficult to separate from other regulatory mechanisms perceiving chemical signals such as hormones, peptides or cell wall fragments. However, recently developed technologies in combination with more established genetic and biochemical approaches are beginning to open up this exciting field of study. Here, we will review our current knowledge of plant cell wall integrity signalling using selected recent findings and highlight how the cell wall-plasma membrane interphase can act as a venue for sensing changes in the physical forces affecting plant development and stress responses. More importantly, we discuss how these signals may be integrated with chemical signals derived from established signalling cascades to control specific adaptive responses during exposure to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Lauri Vaahtera
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Julia Schulz
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Thorsten Hamann
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
26
|
Schroeder L, Ikui AE. Tryptophan confers resistance to SDS-associated cell membrane stress in Saccharomyces cerevisiae. PLoS One 2019; 14:e0199484. [PMID: 30856175 PMCID: PMC6411118 DOI: 10.1371/journal.pone.0199484] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 02/12/2019] [Indexed: 11/18/2022] Open
Abstract
Sodium dodecyl sulfate is a detergent that disrupts cell membranes, activates cell wall integrity signaling and restricts cell growth in Saccharomyces cerevisiae. However, the underlying mechanism of how sodium dodecyl sulfate inhibits cell growth is not fully understood. Previously, we have shown that deletion of the MCK1 gene leads to sensitivity to sodium dodecyl sulfate; thus, we implemented a suppressor gene screening revealing that the overexpression of TAT2 tryptophan permease rescues cell growth in sodium dodecyl sulfate-treated Δmck1 cells. Therefore, we questioned the involvement of tryptophan in the response to sodium dodecyl sulfate treatment. In this work, we show that trp1-1 cells have a disadvantage in the response to sodium dodecyl sulfate compared to auxotrophy for adenine, histidine, leucine or uracil when cells are grown on rich media. While also critical in the response to tea tree oil, TRP1 does not avert growth inhibition due to other cell wall/membrane perturbations that activate cell wall integrity signaling such as Calcofluor White, Congo Red or heat stress. This implicates a distinction from the cell wall integrity pathway and suggests specificity to membrane stress as opposed to cell wall stress. We discovered that tyrosine biosynthesis is also essential upon sodium dodecyl sulfate perturbation whereas phenylalanine biosynthesis appears dispensable. Finally, we observe enhanced tryptophan import within minutes upon exposure to sodium dodecyl sulfate indicating that these cells are not starved for tryptophan. In summary, we conclude that internal concentration of tryptophan and tyrosine makes cells more resistant to detergent such as sodium dodecyl sulfate.
Collapse
Affiliation(s)
- Lea Schroeder
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, The United States of America
| | - Amy E Ikui
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, The United States of America
| |
Collapse
|
27
|
Sellam A, Chaillot J, Mallick J, Tebbji F, Richard Albert J, Cook MA, Tyers M. The p38/HOG stress-activated protein kinase network couples growth to division in Candida albicans. PLoS Genet 2019; 15:e1008052. [PMID: 30921326 PMCID: PMC6456229 DOI: 10.1371/journal.pgen.1008052] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/09/2019] [Accepted: 02/28/2019] [Indexed: 12/26/2022] Open
Abstract
Cell size is a complex trait that responds to developmental and environmental cues. Quantitative size analysis of mutant strain collections disrupted for protein kinases and transcriptional regulators in the pathogenic yeast Candida albicans uncovered 66 genes that altered cell size, few of which overlapped with known size genes in the budding yeast Saccharomyces cerevisiae. A potent size regulator specific to C. albicans was the conserved p38/HOG MAPK module that mediates the osmostress response. Basal HOG activity inhibited the SBF G1/S transcription factor complex in a stress-independent fashion to delay the G1/S transition. The HOG network also governed ribosome biogenesis through the master transcriptional regulator Sfp1. Hog1 bound to the promoters and cognate transcription factors for ribosome biogenesis regulons and interacted genetically with the SBF G1/S machinery, and thereby directly linked cell growth and division. These results illuminate the evolutionary plasticity of size control and identify the HOG module as a nexus of cell cycle and growth regulation.
Collapse
Affiliation(s)
- Adnane Sellam
- Infectious Diseases Research Centre (CRI), CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Julien Chaillot
- Infectious Diseases Research Centre (CRI), CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
| | - Jaideep Mallick
- Institute for Research in Immunology and Cancer (IRIC), Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Faiza Tebbji
- Infectious Diseases Research Centre (CRI), CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
| | - Julien Richard Albert
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael A. Cook
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer (IRIC), Department of Medicine, Université de Montréal, Montréal, Québec, Canada
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| |
Collapse
|
28
|
Gigli-Bisceglia N, Hamann T. Outside-in control - does plant cell wall integrity regulate cell cycle progression? PHYSIOLOGIA PLANTARUM 2018; 164:82-94. [PMID: 29652097 DOI: 10.1111/ppl.12744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 05/12/2023]
Abstract
During recent years it has become accepted that plant cell walls are not inert objects surrounding all plant cells but are instead highly dynamic, plastic structures. They are involved in a large number of cell biological processes and contribute actively to plant growth, development and interaction with environment. Therefore, it is not surprising that cellular processes can control plant cell wall integrity (CWI) while, simultaneously, CWI can influence cellular processes. In yeast and animal cells such a bidirectional relationship also exists between the yeast/animal extracellular matrices and the cell cycle. In yeast, the CWI maintenance mechanism and a dedicated plasma membrane integrity checkpoint are mediating this relationship. Recent research has yielded insights into the mechanism controlling plant cell wall metabolism during cytokinesis. However, the knowledge regarding putative regulatory pathways controlling adaptive modifications in plant cell cycle activity in response to changes in the state of the plant cell wall are not yet identified. In this review, we summarize similarities and differences in regulatory mechanisms coordinating extracellular matrices and cell cycle activity in animal and yeast cells, discuss the available evidence supporting the existence of such a mechanism in plants and suggest that the plant CWI maintenance mechanism might also control cell cycle activity in plant cells.
Collapse
Affiliation(s)
- Nora Gigli-Bisceglia
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Thorsten Hamann
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| |
Collapse
|
29
|
Sukegawa Y, Negishi T, Kikuchi Y, Ishii K, Imanari M, Ghanegolmohammadi F, Nogami S, Ohya Y. Genetic dissection of the signaling pathway required for the cell wall integrity checkpoint. J Cell Sci 2018; 131:jcs.219063. [PMID: 29853633 DOI: 10.1242/jcs.219063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/29/2018] [Indexed: 11/20/2022] Open
Abstract
The cell wall integrity checkpoint monitors synthesis of cell wall materials during the Saccharomyces cerevisiae cell cycle. Upon perturbation of cell wall synthesis, the cell wall integrity checkpoint is activated, downregulating Clb2 transcription. Here, we identified genes involved in this checkpoint by genetic screening of deletion mutants. In addition to the previously identified dynactin complex, the Las17 complex, in particular the Bzz1 and Vrp1 components, plays a role in this checkpoint. We also revealed that the high osmolarity glycerol (HOG) and cell wall integrity mitogen-activated protein kinase (MAPK) signaling pathways are essential for checkpoint function. The defective checkpoint caused by the deficient dynactin and Las17 complexes was rescued by hyperactivation of the cell wall integrity MAPK pathway, but not by the activated form of Hog1, suggesting an order to these signaling pathways. Mutation of Fkh2, a transcription factor important for Clb2 expression, suppressed the checkpoint-defective phenotype of Las17, HOG MAPK and cell wall integrity MAPK mutations. These results provide genetic evidence that signaling from the cell surface regulates the downstream transcriptional machinery to activate the cell wall integrity checkpoint.
Collapse
Affiliation(s)
- Yuko Sukegawa
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8562, Japan.,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Bldg. Kashiwa Research Complex 2, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8565, Japan
| | - Takahiro Negishi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8562, Japan
| | - Yo Kikuchi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8562, Japan
| | - Keiko Ishii
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8562, Japan
| | - Miyuki Imanari
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8562, Japan
| | - Farzan Ghanegolmohammadi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8562, Japan
| | - Satoru Nogami
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8562, Japan
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8562, Japan .,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Bldg. Kashiwa Research Complex 2, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8565, Japan
| |
Collapse
|
30
|
Gene Expression of Pneumocystis murina after Treatment with Anidulafungin Results in Strong Signals for Sexual Reproduction, Cell Wall Integrity, and Cell Cycle Arrest, Indicating a Requirement for Ascus Formation for Proliferation. Antimicrob Agents Chemother 2018; 62:AAC.02513-17. [PMID: 29463544 PMCID: PMC5923105 DOI: 10.1128/aac.02513-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/10/2018] [Indexed: 01/03/2023] Open
Abstract
The echinocandins are a class of antifungal agents that target β-1,3-d-glucan (BG) biosynthesis. In the ascigerous Pneumocystis species, treatment with these drugs depletes the ascus life cycle stage, which contains BG, but large numbers of forms which do not express BG remain in the infected lungs. In the present study, the gene expression profiles of Pneumocystis murina were compared between infected, untreated mice and mice treated with anidulafungin for 2 weeks to understand the metabolism of the persisting forms. Almost 80 genes were significantly up- or downregulated. Like other fungi exposed to echinocandins, genes associated with sexual replication, cell wall integrity, cell cycle arrest, and stress comprised the strongest upregulated signals in P. murina from the treated mice. The upregulation of the P. murina β-1,3-d-glucan endohydrolase and endo-1,3-glucanase was notable and may explain the disappearance of the existing asci in the lungs of treated mice since both enzymes can degrade BG. The biochemical measurement of BG in the lungs of treated mice and fluorescence microscopy with an anti-BG antibody supported the loss of BG. Downregulated signals included genes involved in cell replication, genome stability, and ribosomal biogenesis and function and the Pneumocystis-specific genes encoding the major surface glycoproteins (Msg). These studies suggest that P. murina attempted to undergo sexual replication in response to a stressed environment and was halted in any type of proliferative cycle, likely due to a lack of BG. Asci appear to be a required part of the life cycle stage of Pneumocystis, and BG may be needed to facilitate progression through the life cycle via sexual replication.
Collapse
|
31
|
Gigli-Bisceglia N, Engelsdorf T, Strnad M, Vaahtera L, Khan GA, Jamoune A, Alipanah L, Novák O, Persson S, Hejatko J, Hamann T. Cell wall integrity modulates Arabidopsis thaliana cell cycle gene expression in a cytokinin- and nitrate reductase-dependent manner. Development 2018; 145:dev.166678. [DOI: 10.1242/dev.166678] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022]
Abstract
During plant growth and defense, cell cycle activity needs to be coordinated with cell wall integrity. Little is known about how coordination is achieved. Here we investigated coordination in Arabidopsis thaliana seedlings by studying the impact of cell wall damage (CWD, caused by cellulose biosynthesis inhibition) on cytokinin homeostasis, cell cycle gene expression and shape in root tips. CWD inhibited cell cycle gene expression and increased transition zone cell width in an osmo-sensitive manner. These results were correlated with CWD-induced, osmo-sensitive changes in cytokinin homeostasis. Expression of CYTOKININ OXIDASE/DEHYDROGENASE2 and 3 (CKX2, CKX3), encoding cytokinin-degrading enzymes was induced by CWD and reduced by osmoticum treatment. In nitrate reductase1 nitrate reductase2 (nia1 nia2) seedlings, neither CKX2 and CKX3 transcript levels were increased nor cell cycle gene expression repressed by CWD. Moreover, established CWD-induced responses like jasmonic acid, salicylic acid and lignin production, were also absent, implying a central role of NIA1- and NIA2-mediated processes in regulation of CWD responses. These results suggest that CWD enhances cytokinin degradation rates through a NIA1 and NIA2-mediated process, subsequently attenuating cell cycle gene expression.
Collapse
Affiliation(s)
- Nora Gigli-Bisceglia
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Timo Engelsdorf
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Lauri Vaahtera
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | | - Amel Jamoune
- Laboratory of Molecular Plant Physiology and Functional Genomics and Proteomics of Plants CEITEC-Central European Institute of Technology Masaryk University Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Leila Alipanah
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville VIC 3010, Australia
| | - Jan Hejatko
- Laboratory of Molecular Plant Physiology and Functional Genomics and Proteomics of Plants CEITEC-Central European Institute of Technology Masaryk University Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Thorsten Hamann
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
32
|
Abstract
Cells that proliferate within a confined environment build up mechanical compressive stress. For example, mechanical pressure emerges in the naturally space-limited tumor environment. However, little is known about how cells sense and respond to mechanical compression. We developed microfluidic bioreactors to enable the investigation of the effects of compressive stress on the growth of the genetically tractable model organism Saccharomyces cerevisiae We used this system to determine that compressive stress is partly sensed through a module consisting of the mucin Msb2 and the cell wall protein Sho1, which act together as a sensor module in one of the two major osmosensing pathways in budding yeast. This signal is transmitted via the MAPKKK kinase Ste11. Thus, we term this mechanosensitive pathway the "SMuSh" pathway, for Ste11 through Mucin/Sho1 pathway. The SMuSh pathway delays cells in the G1 phase of the cell cycle and improves cell survival in response to growth-induced pressure. We also found that the cell wall integrity (CWI) pathway contributes to the response to mechanical compressive stress. These latter results are confirmed in complimentary experiments in Mishra et al. [Mishra R, et al. (2017) Proc Natl Acad Sci USA, 10.1073/pnas.1709079114]. When both the SMuSh and the CWI pathways are deleted, cells fail to adapt to compressive stress, and all cells lyse at relatively low pressure when grown in confinement. Thus, we define a network that is essential for cell survival during growth under pressure. We term this mechanosensory system the SCWISh (survival through the CWI and SMuSh) network.
Collapse
|
33
|
Furse S, Shearman GC. Do lipids shape the eukaryotic cell cycle? Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:9-19. [PMID: 28964796 DOI: 10.1016/j.bbalip.2017.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/07/2017] [Accepted: 09/24/2017] [Indexed: 10/18/2022]
Abstract
Successful passage through the cell cycle presents a number of structural challenges to the cell. Inceptive studies carried out in the last five years have produced clear evidence of modulations in the lipid profile (sometimes referred to as the lipidome) of eukaryotes as a function of the cell cycle. This mounting body of evidence indicates that lipids play key roles in the structural transformations seen across the cycle. The accumulation of this evidence coincides with a revolution in our understanding of how lipid composition regulates a plethora of biological processes ranging from protein activity through to cellular signalling and membrane compartmentalisation. In this review, we discuss evidence from biological, chemical and physical studies of the lipid fraction across the cell cycle that demonstrate that lipids are well-developed cellular components at the heart of the biological machinery responsible for managing progress through the cell cycle. Furthermore, we discuss the mechanisms by which this careful control is exercised.
Collapse
Affiliation(s)
- Samuel Furse
- NucReg Research Programme, Molekylærbiologisk institutt, Unversitetet i Bergen, Thormøhlens gate 55, 5008, Bergen, Norway; Core Metabolomics and Lipidomics Laboratory, Department of Biochemistry, University of Cambridge, c/o Level 4, Pathology Building, Addenbrookes Hospital, Cambridge, CB2 0QQ, United Kingdom..
| | - Gemma C Shearman
- Faculty of Science, Engineering and Computing, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, United Kingdom
| |
Collapse
|
34
|
Xie JL, Qin L, Miao Z, Grys BT, Diaz JDLC, Ting K, Krieger JR, Tong J, Tan K, Leach MD, Ketela T, Moran MF, Krysan DJ, Boone C, Andrews BJ, Selmecki A, Ho Wong K, Robbins N, Cowen LE. The Candida albicans transcription factor Cas5 couples stress responses, drug resistance and cell cycle regulation. Nat Commun 2017; 8:499. [PMID: 28894103 PMCID: PMC5593949 DOI: 10.1038/s41467-017-00547-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/06/2017] [Indexed: 12/16/2022] Open
Abstract
The capacity to coordinate environmental sensing with initiation of cellular responses underpins microbial survival and is crucial for virulence and stress responses in microbial pathogens. Here we define circuitry that enables the fungal pathogen Candida albicans to couple cell cycle dynamics with responses to cell wall stress induced by echinocandins, a front-line class of antifungal drugs. We discover that the C. albicans transcription factor Cas5 is crucial for proper cell cycle dynamics and responses to echinocandins, which inhibit β-1,3-glucan synthesis. Cas5 has distinct transcriptional targets under basal and stress conditions, is activated by the phosphatase Glc7, and can regulate the expression of target genes in concert with the transcriptional regulators Swi4 and Swi6. Thus, we illuminate a mechanism of transcriptional control that couples cell wall integrity with cell cycle regulation, and uncover circuitry governing antifungal drug resistance.Cas5 is a transcriptional regulator of responses to cell wall stress in the fungal pathogen Candida albicans. Here, Xie et al. show that Cas5 also modulates cell cycle dynamics and responses to antifungal drugs.
Collapse
Affiliation(s)
- Jinglin L Xie
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
| | - Longguang Qin
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Zhengqiang Miao
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Ben T Grys
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada, M5S 3E1
| | - Jacinto De La Cruz Diaz
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, 14642, USA
| | - Kenneth Ting
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
| | - Jonathan R Krieger
- The Hospital for Sick Children, SPARC Biocentre, Toronto, ON, Canada, M5G 0A4
| | - Jiefei Tong
- The Hospital for Sick Children, Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada, M5G 0A4
| | - Kaeling Tan
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Michelle D Leach
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Abderdeen, AB252ZD, UK
| | - Troy Ketela
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
| | - Michael F Moran
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
- The Hospital for Sick Children, SPARC Biocentre, Toronto, ON, Canada, M5G 0A4
- The Hospital for Sick Children, Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada, M5G 0A4
| | - Damian J Krysan
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, 14642, USA
- Department of Pediatrics and Microbiology/Immunology, University of Rochester, Rochester, NY, 14642, USA
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada, M5S 3E1
| | - Brenda J Andrews
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada, M5S 3E1
| | - Anna Selmecki
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5G 1M1.
| |
Collapse
|
35
|
Clarke DJ. Cell surface damage activates a cell cycle checkpoint (comment on DOI: 10.1002/bies.201600210). Bioessays 2017; 39. [PMID: 28266055 DOI: 10.1002/bies.201700022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Duncan J Clarke
- Department of Genetics Cell Biology & Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
36
|
Kono K, Ikui AE. A new cell cycle checkpoint that senses plasma membrane/cell wall damage in budding yeast. Bioessays 2017; 39. [PMID: 28211950 DOI: 10.1002/bies.201600210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In nature, cells face a variety of stresses that cause physical damage to the plasma membrane and cell wall. It is well established that evolutionarily conserved cell cycle checkpoints monitor various cellular perturbations, including DNA damage and spindle misalignment. However, the ability of these cell cycle checkpoints to sense a damaged plasma membrane/cell wall is poorly understood. To the best of our knowledge, our recent paper described the first example of such a checkpoint, using budding yeast as a model. In this review, we will discuss this important question as well as provide hypothetical explanations to be tested in the future.
Collapse
Affiliation(s)
- Keiko Kono
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Amy E Ikui
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA
| |
Collapse
|
37
|
Ono J, Gerstein AC, Otto SP. Widespread Genetic Incompatibilities between First-Step Mutations during Parallel Adaptation of Saccharomyces cerevisiae to a Common Environment. PLoS Biol 2017; 15:e1002591. [PMID: 28114370 PMCID: PMC5256870 DOI: 10.1371/journal.pbio.1002591] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 12/16/2016] [Indexed: 11/18/2022] Open
Abstract
Independently evolving populations may adapt to similar selection pressures via different genetic changes. The interactions between such changes, such as in a hybrid individual, can inform us about what course adaptation may follow and allow us to determine whether gene flow would be facilitated or hampered following secondary contact. We used Saccharomyces cerevisiae to measure the genetic interactions between first-step mutations that independently evolved in the same biosynthetic pathway following exposure to the fungicide nystatin. We found that genetic interactions are prevalent and predominantly negative, with the majority of mutations causing lower growth when combined in a double mutant than when alone as a single mutant (sign epistasis). The prevalence of sign epistasis is surprising given the small number of mutations tested and runs counter to expectations for mutations arising in a single biosynthetic pathway in the face of a simple selective pressure. Furthermore, in one third of pairwise interactions, the double mutant grew less well than either single mutant (reciprocal sign epistasis). The observation of reciprocal sign epistasis among these first adaptive mutations arising in the same genetic background indicates that partial postzygotic reproductive isolation could evolve rapidly between populations under similar selective pressures, even with only a single genetic change in each. The nature of the epistatic relationships was sensitive, however, to the level of drug stress in the assay conditions, as many double mutants became fitter than the single mutants at higher concentrations of nystatin. We discuss the implications of these results both for our understanding of epistatic interactions among beneficial mutations in the same biochemical pathway and for speciation.
Collapse
Affiliation(s)
- Jasmine Ono
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aleeza C. Gerstein
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah P. Otto
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|