1
|
Meisburger SP, Ando N. Scaling and merging macromolecular diffuse scattering with mdx2. Acta Crystallogr D Struct Biol 2024; 80:299-313. [PMID: 38606664 PMCID: PMC11066883 DOI: 10.1107/s2059798324002705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Diffuse scattering is a promising method to gain additional insight into protein dynamics from macromolecular crystallography experiments. Bragg intensities yield the average electron density, while the diffuse scattering can be processed to obtain a three-dimensional reciprocal-space map that is further analyzed to determine correlated motion. To make diffuse scattering techniques more accessible, software for data processing called mdx2 has been created that is both convenient to use and simple to extend and modify. mdx2 is written in Python, and it interfaces with DIALS to implement self-contained data-reduction workflows. Data are stored in NeXus format for software interchange and convenient visualization. mdx2 can be run on the command line or imported as a package, for instance to encapsulate a complete workflow in a Jupyter notebook for reproducible computing and education. Here, mdx2 version 1.0 is described, a new release incorporating state-of-the-art techniques for data reduction. The implementation of a complete multi-crystal scaling and merging workflow is described, and the methods are tested using a high-redundancy data set from cubic insulin. It is shown that redundancy can be leveraged during scaling to correct systematic errors and obtain accurate and reproducible measurements of weak diffuse signals.
Collapse
Affiliation(s)
- Steve P. Meisburger
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14850, USA
| | - Nozomi Ando
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
2
|
Meisburger SP, Ando N. Scaling and merging macromolecular diffuse scattering with mdx2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575887. [PMID: 38293202 PMCID: PMC10827198 DOI: 10.1101/2024.01.16.575887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Diffuse scattering is a promising method to gain additional insight into protein dynamics from macromolecular crystallography (MX) experiments. Bragg intensities yield the average electron density, while the diffuse scattering can be processed to obtain a three-dimensional reciprocal space map, that is further analyzed to determine correlated motion. To make diffuse scattering techniques more accessible, we have created software for data processing called mdx2 that is both convenient to use and simple to extend and modify. Mdx2 is written in Python, and it interfaces with DIALS to implement self-contained data reduction workflows. Data are stored in NeXus format for software interchange and convenient visualization. Mdx2 can be run on the command line or imported as a package, for instance to encapsulate a complete workflow in a Jupyter notebook for reproducible computing and education. Here, we describe mdx2 version 1.0, a new release incorporating state-of-the-art techniques for data reduction. We describe the implementation of a complete multi-crystal scaling and merging workflow, and test the methods using a high-redundancy dataset from cubic insulin. We show that redundancy can be leveraged during scaling to correct systematic errors, and obtain accurate and reproducible measurements of weak diffuse signals.
Collapse
Affiliation(s)
- Steve P. Meisburger
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14850, USA
| | - Nozomi Ando
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, USA
| |
Collapse
|
3
|
Thompson AL, White NG. Hydrogen atoms in supramolecular chemistry: a structural perspective. Where are they, and why does it matter? Chem Soc Rev 2023; 52:6254-6269. [PMID: 37599586 DOI: 10.1039/d3cs00516j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Hydrogen bonding interactions are ubiquitous across the biochemical and chemical sciences, and are of particular interest to supramolecular chemists. They have been used to assemble hydrogen bonded polymers, cages and frameworks, and are the functional motif in many host-guest systems. Single crystal X-ray diffraction studies are often used as a key support for proposed structures, although this presents challenges as hydrogen atoms interact only weakly with X-rays. In this Tutorial Review, we discuss the information that can be gleaned about hydrogen bonding interactions through crystallographic experiments, key limitations of the data, and emerging techniques to overcome these limitations.
Collapse
Affiliation(s)
- Amber L Thompson
- Chemical Crystallography, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK.
| | - Nicholas G White
- Research School of Chemistry, The Australian National University, Canberra 2601, ACT, Australia.
| |
Collapse
|
4
|
Abstract
Diffuse scattering is a powerful technique to study disorder and dynamics of macromolecules at atomic resolution. Although diffuse scattering is always present in diffraction images from macromolecular crystals, the signal is weak compared with Bragg peaks and background, making it a challenge to visualize and measure accurately. Recently, this challenge has been addressed using the reciprocal space mapping technique, which leverages ideal properties of modern X-ray detectors to reconstruct the complete three-dimensional volume of continuous diffraction from diffraction images of a crystal (or crystals) in many different orientations. This chapter will review recent progress in reciprocal space mapping with a particular focus on the strategy implemented in the mdx-lib and mdx2 software packages. The chapter concludes with an introductory data processing tutorial using Python packages DIALS, NeXpy, and mdx2.
Collapse
Affiliation(s)
- Steve P Meisburger
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY, United States.
| | - Nozomi Ando
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
5
|
Pei X, Bhatt N, Wang H, Ando N, Meisburger SP. Introduction to diffuse scattering and data collection. Methods Enzymol 2023; 688:1-42. [PMID: 37748823 DOI: 10.1016/bs.mie.2023.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
A long-standing goal in X-ray crystallography has been to extract information about the collective motions of proteins from diffuse scattering: the weak, textured signal that is found in the background of diffraction images. In the past few years, the field of macromolecular diffuse scattering has seen dramatic progress, and many of the past challenges in measurement and interpretation are now considered tractable. However, the concept of diffuse scattering is still new to many researchers, and a general set of procedures needed to collect a high-quality dataset has never been described in detail. Here, we provide the first guidelines for performing diffuse scattering experiments, which can be performed at any macromolecular crystallography beamline that supports room-temperature studies with a direct detector. We begin with a brief introduction to the theory of diffuse scattering and then walk the reader through the decision-making processes involved in preparing for and conducting a successful diffuse scattering experiment. Finally, we define quality metrics and describe ways to assess data quality both at the beamline and at home. Data obtained in this way can be processed independently by crystallographic software and diffuse scattering software to produce both a crystal structure, which represents the average atomic coordinates, and a three-dimensional diffuse scattering map that can then be interpreted in terms of models for protein motions.
Collapse
Affiliation(s)
- Xiaokun Pei
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Neti Bhatt
- Department of Physics, Cornell University, Ithaca, NY, United States
| | - Haoyue Wang
- Graduate Field of Biophysics, Cornell University, Ithaca, NY, United States
| | - Nozomi Ando
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States; Department of Physics, Cornell University, Ithaca, NY, United States; Graduate Field of Biophysics, Cornell University, Ithaca, NY, United States.
| | - Steve P Meisburger
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
6
|
Case DA. MD simulations of macromolecular crystals: Implications for the analysis of Bragg and diffuse scattering. Methods Enzymol 2023; 688:145-168. [PMID: 37748825 DOI: 10.1016/bs.mie.2023.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Some of our most detailed information about structure and dynamics of macromolecules comes from X-ray-diffraction studies in crystalline environments. More than 170,000 atomic models have been deposited in the Protein Data Bank, and the number of observations (typically of intensities of Bragg diffraction peaks) is generally quite large, when compared to other experimental methods. Nevertheless, the general agreement between calculated and observed intensities is far outside the experimental precision, and the majority of scattered photons fall between the sharp Bragg peaks, and are rarely taken into account. This chapter considers how molecular dynamics simulations can be used to explore the connections between microscopic behavior in a crystalline lattice and observed scattering intensities, and point the way to new atomic models that could more faithfully recapitulate Bragg intensities and extract useful information from the diffuse scattering that lies between those peaks.
Collapse
Affiliation(s)
- David A Case
- Dept. of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ, United States.
| |
Collapse
|
7
|
Peck A, Lane TJ, Poitevin F. Modeling diffuse scattering with simple, physically interpretable models. Methods Enzymol 2023; 688:169-194. [PMID: 37748826 DOI: 10.1016/bs.mie.2023.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Diffuse scattering has long been proposed to probe protein dynamics relevant for biological function, and more recently, as a tool to aid structure determination. Despite recent advances in measuring and modeling this signal, the field has not been able to routinely use experimental diffuse scattering for either application. A persistent challenge has been to devise models that are sophisticated enough to robustly reproduce experimental diffuse features but remain readily interpretable from the standpoint of structural biology. This chapter presents eryx, a suite of computational tools to evaluate the primary models of disorder that have been used to analyze protein diffuse scattering. By facilitating comparative modeling, eryx aims to provide insights into the physical origins of this signal and help identify the sources of disorder that are critical for reproducing experimental features. This framework also lays the groundwork for the development of more advanced models that integrate different types of disorder without loss of interpretability.
Collapse
Affiliation(s)
- Ariana Peck
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, United States.
| | | | - Frédéric Poitevin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, United States
| |
Collapse
|
8
|
Meisburger SP, Ando N. Processing macromolecular diffuse scattering data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.04.543637. [PMID: 37333125 PMCID: PMC10274731 DOI: 10.1101/2023.06.04.543637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Diffuse scattering is a powerful technique to study disorder and dynamics of macromolecules at atomic resolution. Although diffuse scattering is always present in diffraction images from macromolecular crystals, the signal is weak compared with Bragg peaks and background, making it a challenge to visualize and measure accurately. Recently, this challenge has been addressed using the reciprocal space mapping technique, which leverages ideal properties of modern X-ray detectors to reconstruct the complete three-dimensional volume of continuous diffraction from diffraction images of a crystal (or crystals) in many different orientations. This chapter will review recent progress in reciprocal space mapping with a particular focus on the strategy implemented in the mdx-lib and mdx2 software packages. The chapter concludes with an introductory data processing tutorial using Python packages DIALS, NeXpy , and mdx2 .
Collapse
Affiliation(s)
- Steve P. Meisburger
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14850, USA
| | - Nozomi Ando
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, USA
| |
Collapse
|
9
|
de Sá Ribeiro F, Lima LMTR. Linking B-factor and temperature-induced conformational transition. Biophys Chem 2023; 298:107027. [PMID: 37172417 DOI: 10.1016/j.bpc.2023.107027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
The crystallographic B-factor, also called temperature factor or Debye-Waller factor, has long been used as a surrogate for local protein flexibility. However, the use of the absolute B-factor as a probe for protein motion requires reproducible validation against conformational changes against chemical and physical variables. Here we report the investigation of the thermal dependence of the crystallographic B-factor and its correlation with conformational changes of the protein. We obtained the crystal protein structure coordinates and B-factors at high resolution (1.5 Å) over a broad temperature range (100 K to 325 K). The exponential thermal dependence of B-factor as a function of temperature was equal for both the diffraction intensity data (Wilson B-factor) and for all modeled atoms of the system (protein and non-protein atoms), with a thermal diffusion constant of about 0.0045 K-1, similar for all atoms. The extrapolated B-factor at zero Kelvin (or zero-point fluctuation) varies among the atoms, although with no apparent correlation with temperature-dependent protein conformational changes. These data suggest that the thermal vibration of the atom does not necessarily correlate with the conformational dynamics of the protein.
Collapse
Affiliation(s)
- Fernando de Sá Ribeiro
- Laboratório de Biotecnologia Farmacêutica (pbiotech), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Programa de Pós-Graduação em Química Biológica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Luís Maurício T R Lima
- Laboratório de Biotecnologia Farmacêutica (pbiotech), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Instituto Nacional de Metrologia, Tecnologia e Qualidade (INMETRO), Duque de Caxias, RJ 25250-020, Brazil.
| |
Collapse
|
10
|
Häggström I, Carter LM, Fuchs TJ, Kesner AL. Depth resolved pencil beam radiography using AI - a proof of principle study. JOURNAL OF INSTRUMENTATION : AN IOP AND SISSA JOURNAL 2022; 17:P06012. [PMID: 38938475 PMCID: PMC11210439 DOI: 10.1088/1748-0221/17/06/p06012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
AIMS Clinical radiographic imaging is seated upon the principle of differential keV photon transmission through an object. At clinical x-ray energies the scattering of photons causes signal noise and is utilized solely for transmission measurements. However, scatter - particularly Compton scatter, is characterizable. In this work we hypothesized that modern radiation sources and detectors paired with deep learning techniques can use scattered photon information constructively to resolve superimposed attenuators in planar x-ray imaging. METHODS We simulated a monoenergetic x-ray imaging system consisting of a pencil beam x-ray source directed at an imaging target positioned in front of a high spatial- and energy-resolution detector array. The setup maximizes information capture of transmitted photons by measuring off-axis scatter location and energy. The signal was analyzed by a convolutional neural network, and a description of scattering material along the axis of the beam was derived. The system was virtually designed/tested using Monte Carlo processing of simple phantoms consisting of 10 pseudo-randomly stacked air/bone/water materials, and the network was trained by solving a classification problem. RESULTS From our simulations we were able to resolve traversed material depth information to a high degree, within our simple imaging task. The average accuracy of the material identification along the beam was 0.91±0.01, with slightly higher accuracy towards the entrance/exit peripheral surfaces of the object. The average sensitivity and specificity was 0.91 and 0.95, respectively. CONCLUSIONS Our work provides proof of principle that deep learning techniques can be used to analyze scattered photon patterns which can constructively contribute to the information content in radiography, here used to infer depth information in a traditional 2D planar setup. This principle, and our results, demonstrate that the information in Compton scattered photons may provide a basis for further development. The work was limited by simple testing scenarios and without yet integrating complexities or optimizations. The ability to scale performance to the clinic remains unexplored and requires further study.
Collapse
Affiliation(s)
- Ida Häggström
- Dept. of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
- Dept. of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Lukas M Carter
- Dept. of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Thomas J Fuchs
- Dept. of Pathology, Hasso Plattner Institute for Digital Health, Mount Sinai Medical School, New York, USA
| | - Adam L Kesner
- Dept. of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
11
|
Tsegaye S, Dedefo G, Mehdi M. Biophysical applications in structural and molecular biology. Biol Chem 2021; 402:1155-1177. [PMID: 34218543 DOI: 10.1515/hsz-2021-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/27/2021] [Indexed: 11/15/2022]
Abstract
The main objective of structural biology is to model proteins and other biological macromolecules and link the structural information to function and dynamics. The biological functions of protein molecules and nucleic acids are inherently dependent on their conformational dynamics. Imaging of individual molecules and their dynamic characteristics is an ample source of knowledge that brings new insights about mechanisms of action. The atomic-resolution structural information on most of the biomolecules has been solved by biophysical techniques; either by X-ray diffraction in single crystals or by nuclear magnetic resonance (NMR) spectroscopy in solution. Cryo-electron microscopy (cryo-EM) is emerging as a new tool for analysis of a larger macromolecule that couldn't be solved by X-ray crystallography or NMR. Now a day's low-resolution Cryo-EM is used in combination with either X-ray crystallography or NMR. The present review intends to provide updated information on applications like X-ray crystallography, cryo-EM and NMR which can be used independently and/or together in solving structures of biological macromolecules for our full comprehension of their biological mechanisms.
Collapse
Affiliation(s)
- Solomon Tsegaye
- Department of Biochemistry, College of Health Sciences, Arsi University, Oromia, Ethiopia
| | - Gobena Dedefo
- Department of Medical Laboratory Technology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mohammed Mehdi
- Department of Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
12
|
Abstract
Correlated motions in proteins arising from the collective movements of residues have long been proposed to be fundamentally important to key properties of proteins, from allostery and catalysis to evolvability. Recent breakthroughs in structural biology have made it possible to capture proteins undergoing complex conformational changes, yet intrinsic correlated motions within a conformation remain one of the least understood facets of protein structure. For many decades, the analysis of total X-ray scattering held the promise of animating crystal structures with correlated motions. With recent advances in both X-ray detectors and data interpretation methods, this long-held promise can now be met. In this Perspective, we will introduce how correlated motions are captured in total scattering and provide guidelines for the collection, interpretation, and validation of data. As structural biology continues to push the boundaries, we see an opportunity to gain atomistic insight into correlated motions using total scattering as a bridge between theory and experiment.
Collapse
Affiliation(s)
- Da Xu
- Department of Chemistry and Chemical Biology, Cornell University, 259 East Avenue, Ithaca, New York 14853, United States
| | - Steve P Meisburger
- Department of Chemistry and Chemical Biology, Cornell University, 259 East Avenue, Ithaca, New York 14853, United States
| | - Nozomi Ando
- Department of Chemistry and Chemical Biology, Cornell University, 259 East Avenue, Ithaca, New York 14853, United States
| |
Collapse
|
13
|
Su Z, Dasgupta M, Poitevin F, Mathews II, van den Bedem H, Wall ME, Yoon CH, Wilson MA. Reproducibility of protein x-ray diffuse scattering and potential utility for modeling atomic displacement parameters. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:044701. [PMID: 34258328 PMCID: PMC8270650 DOI: 10.1063/4.0000087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Protein structure and dynamics can be probed using x-ray crystallography. Whereas the Bragg peaks are only sensitive to the average unit-cell electron density, the signal between the Bragg peaks-diffuse scattering-is sensitive to spatial correlations in electron-density variations. Although diffuse scattering contains valuable information about protein dynamics, the diffuse signal is more difficult to isolate from the background compared to the Bragg signal, and the reproducibility of diffuse signal is not yet well understood. We present a systematic study of the reproducibility of diffuse scattering from isocyanide hydratase in three different protein forms. Both replicate diffuse datasets and datasets obtained from different mutants were similar in pairwise comparisons (Pearson correlation coefficient ≥0.8). The data were processed in a manner inspired by previously published methods using custom software with modular design, enabling us to perform an analysis of various data processing choices to determine how to obtain the highest quality data as assessed using unbiased measures of symmetry and reproducibility. The diffuse data were then used to characterize atomic mobility using a liquid-like motions (LLM) model. This characterization was able to discriminate between distinct anisotropic atomic displacement parameter (ADP) models arising from different anisotropic scaling choices that agreed comparably with the Bragg data. Our results emphasize the importance of data reproducibility as a model-free measure of diffuse data quality, illustrate the ability of LLM analysis of diffuse scattering to select among alternative ADP models, and offer insights into the design of successful diffuse scattering experiments.
Collapse
Affiliation(s)
| | - Medhanjali Dasgupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Frédéric Poitevin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Irimpan I. Mathews
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | - Michael E. Wall
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Chun Hong Yoon
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Mark A. Wilson
- Department of Biochemistry and the Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588, USA
| |
Collapse
|
14
|
Affiliation(s)
- David A. Keen
- ISIS Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
| |
Collapse
|
15
|
Thompson MC, Yeates TO, Rodriguez JA. Advances in methods for atomic resolution macromolecular structure determination. F1000Res 2020; 9:F1000 Faculty Rev-667. [PMID: 32676184 PMCID: PMC7333361 DOI: 10.12688/f1000research.25097.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Recent technical advances have dramatically increased the power and scope of structural biology. New developments in high-resolution cryo-electron microscopy, serial X-ray crystallography, and electron diffraction have been especially transformative. Here we highlight some of the latest advances and current challenges at the frontiers of atomic resolution methods for elucidating the structures and dynamical properties of macromolecules and their complexes.
Collapse
Affiliation(s)
- Michael C. Thompson
- Department of Chemistry and Chemical Biology, University of California, Merced, CA, USA
| | - Todd O. Yeates
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA, USA
| | - Jose A. Rodriguez
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA, USA
| |
Collapse
|
16
|
Diffuse X-ray scattering from correlated motions in a protein crystal. Nat Commun 2020; 11:1271. [PMID: 32152274 PMCID: PMC7062842 DOI: 10.1038/s41467-020-14933-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/07/2020] [Indexed: 11/29/2022] Open
Abstract
Protein dynamics are integral to biological function, yet few techniques are sensitive to collective atomic motions. A long-standing goal of X-ray crystallography has been to combine structural information from Bragg diffraction with dynamic information contained in the diffuse scattering background. However, the origin of macromolecular diffuse scattering has been poorly understood, limiting its applicability. We present a finely sampled diffuse scattering map from triclinic lysozyme with unprecedented accuracy and detail, clearly resolving both the inter- and intramolecular correlations. These correlations are studied theoretically using both all-atom molecular dynamics and simple vibrational models. Although lattice dynamics reproduce most of the diffuse pattern, protein internal dynamics, which include hinge-bending motions, are needed to explain the short-ranged correlations revealed by Patterson analysis. These insights lay the groundwork for animating crystal structures with biochemically relevant motions. Protein motion in crystals causes diffuse X-ray scattering, which so far has been very challenging to measure and interpret. Here the authors present a finely sampled diffuse scattering map from triclinic lysozyme, which allows them to resolve inter- and intramolecular correlations and they further analyze the maps using all-atom molecular dynamics simulations and simple vibrational models, revealing the contribution of internal protein motion.
Collapse
|
17
|
Urzhumtsev AG, Lunin VY. Introduction to crystallographic refinement of macromolecular atomic models. CRYSTALLOGR REV 2019. [DOI: 10.1080/0889311x.2019.1631817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alexandre G. Urzhumtsev
- Centre for Integrative Biology, IGBMC, CNRS–INSERM–UdS, Illkirch, France
- Département de Physique, Faculté des Sciences et des Technologies, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Vladimir Y. Lunin
- Institute of Mathematical Problems of Biology RAS, Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
18
|
de Klijn T, Schreurs AMM, Kroon-Batenburg LMJ. Rigid-body motion is the main source of diffuse scattering in protein crystallography. IUCRJ 2019; 6:277-289. [PMID: 30867925 PMCID: PMC6400197 DOI: 10.1107/s2052252519000927] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/18/2019] [Indexed: 05/06/2023]
Abstract
The origin of diffuse X-ray scattering from protein crystals has been the subject of debate over the past three decades regarding whether it arises from correlated atomic motions within the molecule or from rigid-body disorder. Here, a supercell approach to modelling diffuse scattering is presented that uses ensembles of molecular models representing rigid-body motions as well as internal motions as obtained from ensemble refinement. This approach allows oversampling of Miller indices and comparison with equally oversampled diffuse data, thus allowing the maximum information to be extracted from experiments. It is found that most of the diffuse scattering comes from correlated motions within the unit cell, with only a minor contribution from longer-range correlated displacements. Rigid-body motions, and in particular rigid-body translations, make by far the most dominant contribution to the diffuse scattering, and internal motions give only a modest addition. This suggests that modelling biologically relevant protein dynamics from diffuse scattering may present an even larger challenge than was thought.
Collapse
Affiliation(s)
- T. de Klijn
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - A. M. M. Schreurs
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - L. M. J. Kroon-Batenburg
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
19
|
Cerutti DS, Case DA. Molecular Dynamics Simulations of Macromolecular Crystals. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018; 9. [PMID: 31662799 DOI: 10.1002/wcms.1402] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The structures of biological macromolecules would not be known to their present extent without X-ray crystallography. Most simulations of globular proteins in solution begin by surrounding the crystal structure of the monomer in a bath of water molecules, but the standard simulation employing periodic boundary conditions is already close to a crystal lattice environment. With simple protocols, the same software and molecular models can perform simulations of the crystal lattice, including all asymmetric units and solvent to fill the box. Throughout the history of molecular dynamics, studies of crystal lattices have served to investigate the quality of the underlying force fields, correlate the simulated ensembles to experimental structure factors, and extrapolate the behavior in lattices to behavior in solution. Powerful new computers are enabling molecular simulations with greater realism and statistical convergence. Meanwhile, the advent of exciting new methods in crystallography, including femtosecond free-electron lasers and image reconstruction for time-resolved crystallography on slurries of small crystals, is expanding the range of structures accessible to X-ray diffraction. We review past fusions of simulations and crystallography, then look ahead to the ways that simulations of crystal structures will enhance structural biology in the future.
Collapse
Affiliation(s)
- David S Cerutti
- Department of Chemistry and Chemical Biology, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854-8066
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854-8066
| |
Collapse
|
20
|
Gaalswyk K, Muniyat MI, MacCallum JL. The emerging role of physical modeling in the future of structure determination. Curr Opin Struct Biol 2018; 49:145-153. [DOI: 10.1016/j.sbi.2018.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 10/17/2022]
|
21
|
Peck A, Poitevin F, Lane TJ. Intermolecular correlations are necessary to explain diffuse scattering from protein crystals. IUCRJ 2018; 5:211-222. [PMID: 29765611 PMCID: PMC5947726 DOI: 10.1107/s2052252518001124] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/17/2018] [Indexed: 05/22/2023]
Abstract
Conformational changes drive protein function, including catalysis, allostery and signaling. X-ray diffuse scattering from protein crystals has frequently been cited as a probe of these correlated motions, with significant potential to advance our understanding of biological dynamics. However, recent work has challenged this prevailing view, suggesting instead that diffuse scattering primarily originates from rigid-body motions and could therefore be applied to improve structure determination. To investigate the nature of the disorder giving rise to diffuse scattering, and thus the potential applications of this signal, a diverse repertoire of disorder models was assessed for its ability to reproduce the diffuse signal reconstructed from three protein crystals. This comparison revealed that multiple models of intramolecular conformational dynamics, including ensemble models inferred from the Bragg data, could not explain the signal. Models of rigid-body or short-range liquid-like motions, in which dynamics are confined to the biological unit, showed modest agreement with the diffuse maps, but were unable to reproduce experimental features indicative of long-range correlations. Extending a model of liquid-like motions to include disorder across neighboring proteins in the crystal significantly improved agreement with all three systems and highlighted the contribution of intermolecular correlations to the observed signal. These findings anticipate a need to account for intermolecular disorder in order to advance the interpretation of diffuse scattering to either extract biological motions or aid structural inference.
Collapse
Affiliation(s)
- Ariana Peck
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Frédéric Poitevin
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Thomas J. Lane
- Bioscience Division and Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|
22
|
Abstract
Diffuse scattering provides evidence that variations are correlated across molecular boundaries in macromolecular crystals.
Collapse
Affiliation(s)
- Michael E. Wall
- Computer, Computational and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Correspondence e-mail:
| |
Collapse
|
23
|
Wall ME, Wolff AM, Fraser JS. Bringing diffuse X-ray scattering into focus. Curr Opin Struct Biol 2018; 50:109-116. [PMID: 29455056 PMCID: PMC6078797 DOI: 10.1016/j.sbi.2018.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/12/2018] [Accepted: 01/21/2018] [Indexed: 01/01/2023]
Abstract
X-ray crystallography is experiencing a renaissance as a method for probing the protein conformational ensemble. The inherent limitations of Bragg analysis, however, which only reveals the mean structure, have given way to a surge in interest in diffuse scattering, which is caused by structure variations. Diffuse scattering is present in all macromolecular crystallography experiments. Recent studies are shedding light on the origins of diffuse scattering in protein crystallography, and provide clues for leveraging diffuse scattering to model protein motions with atomic detail.
Collapse
Affiliation(s)
- Michael E Wall
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Alexander M Wolff
- Graduate Group in Biophysics, University of California San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
24
|
Chapman HN, Fromme P. Structure determination based on continuous diffraction from macromolecular crystals. Curr Opin Struct Biol 2017; 45:170-177. [PMID: 28917122 DOI: 10.1016/j.sbi.2017.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/14/2017] [Accepted: 07/31/2017] [Indexed: 11/19/2022]
Abstract
Bright and coherent X-ray sources, such free-electron lasers, have spurred large activities in developing new methods to obtain the structures of biological macromolecules. In particular, single-molecule diffraction is highly desired, as it would abolish the need for crystallization. It provides considerably more diffraction intensity information than needed to solve a structure, unlike crystal diffraction, which is usually insufficient for direct phasing. To overcome the challenge of weak scattering signals of single molecules, the direct phasing approaches in coherent diffractive imaging have been combined with crystals in several imaginative ways. One of these, using crystals with translational disorder, has been used to phase continuous femtosecond X-ray diffraction data from photosystem II complexes, offering a paradigm shift in crystallography.
Collapse
Affiliation(s)
- Henry N Chapman
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany; Department of Physics, University of Hamburg, 22761 Hamburg, Germany; Center for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany.
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA; Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
25
|
Chapman HN, Yefanov OM, Ayyer K, White TA, Barty A, Morgan A, Mariani V, Oberthuer D, Pande K. Continuous diffraction of molecules and disordered molecular crystals. J Appl Crystallogr 2017; 50:1084-1103. [PMID: 28808434 PMCID: PMC5541353 DOI: 10.1107/s160057671700749x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/21/2017] [Indexed: 11/25/2022] Open
Abstract
The intensities of far-field diffraction patterns of orientationally aligned molecules obey Wilson statistics, whether those molecules are in isolation (giving rise to a continuous diffraction pattern) or arranged in a crystal (giving rise to Bragg peaks). Ensembles of molecules in several orientations, but uncorrelated in position, give rise to the incoherent sum of the diffraction from those objects, modifying the statistics in a similar way as crystal twinning modifies the distribution of Bragg intensities. This situation arises in the continuous diffraction of laser-aligned molecules or translationally disordered molecular crystals. This paper develops the analysis of the intensity statistics of such continuous diffraction to obtain parameters such as scaling, beam coherence and the number of contributing independent object orientations. When measured, continuous molecular diffraction is generally weak and accompanied by a background that far exceeds the strength of the signal. Instead of just relying upon the smallest measured intensities or their mean value to guide the subtraction of the background, it is shown how all measured values can be utilized to estimate the background, noise and signal, by employing a modified 'noisy Wilson' distribution that explicitly includes the background. Parameters relating to the background and signal quantities can be estimated from the moments of the measured intensities. The analysis method is demonstrated on previously published continuous diffraction data measured from crystals of photosystem II [Ayyer et al. (2016 ▸), Nature, 530, 202-206].
Collapse
Affiliation(s)
- Henry N. Chapman
- Centre for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, 22761 Hamburg, Germany
- Centre for Ultrafast Imaging, 22607 Hamburg, Germany
| | | | - Kartik Ayyer
- Centre for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
| | - Thomas A. White
- Centre for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
| | - Anton Barty
- Centre for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
| | - Andrew Morgan
- Centre for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
| | - Valerio Mariani
- Centre for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
| | - Dominik Oberthuer
- Centre for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
| | - Kanupriya Pande
- Centre for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
| |
Collapse
|
26
|
Slow conformational exchange and overall rocking motion in ubiquitin protein crystals. Nat Commun 2017; 8:145. [PMID: 28747759 PMCID: PMC5529581 DOI: 10.1038/s41467-017-00165-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/07/2017] [Indexed: 01/25/2023] Open
Abstract
Proteins perform their functions in solution but their structures are most frequently studied inside crystals. Here we probe how the crystal packing alters microsecond dynamics, using solid-state NMR measurements and multi-microsecond MD simulations of different crystal forms of ubiquitin. In particular, near-rotary-resonance relaxation dispersion (NERRD) experiments probe angular backbone motion, while Bloch–McConnell relaxation dispersion data report on fluctuations of the local electronic environment. These experiments and simulations reveal that the packing of the protein can significantly alter the thermodynamics and kinetics of local conformational exchange. Moreover, we report small-amplitude reorientational motion of protein molecules in the crystal lattice with an ~3–5° amplitude on a tens-of-microseconds time scale in one of the crystals, but not in others. An intriguing possibility arises that overall motion is to some extent coupled to local dynamics. Our study highlights the importance of considering the packing when analyzing dynamics of crystalline proteins. X-ray crystallography is the main method for protein structure determination. Here the authors combine solid-state NMR measurements and molecular dynamics simulations and show that crystal packing alters the thermodynamics and kinetics of local conformational exchange as well as overall rocking motion of protein molecules in the crystal lattice.
Collapse
|
27
|
Abstract
X-ray scattering is uniquely suited to the study of disordered systems and thus has the potential to provide insight into dynamic processes where diffraction methods fail. In particular, while X-ray crystallography has been a staple of structural biology for more than half a century and will continue to remain so, a major limitation of this technique has been the lack of dynamic information. Solution X-ray scattering has become an invaluable tool in structural and mechanistic studies of biological macromolecules where large conformational changes are involved. Such systems include allosteric enzymes that play key roles in directing metabolic fluxes of biochemical pathways, as well as large, assembly-line type enzymes that synthesize secondary metabolites with pharmaceutical applications. Furthermore, crystallography has the potential to provide information on protein dynamics via the diffuse scattering patterns that are overlaid with Bragg diffraction. Historically, these patterns have been very difficult to interpret, but recent advances in X-ray detection have led to a renewed interest in diffuse scattering analysis as a way to probe correlated motions. Here, we will review X-ray scattering theory and highlight recent advances in scattering-based investigations of protein solutions and crystals, with a particular focus on complex enzymes.
Collapse
Affiliation(s)
- Steve P Meisburger
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - William C Thomas
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Maxwell B Watkins
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Nozomi Ando
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| |
Collapse
|
28
|
Majee SB, Biswas GR. Computational methods in preformulation study for pharmaceutical solid dosage forms of therapeutic proteins. PHYSICAL SCIENCES REVIEWS 2017. [DOI: 10.1515/psr-2017-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractDesign and delivery of protein-based biopharmaceuticals needs detailed planning and strict monitoring of intermediate processing steps, storage conditions and container-closure system to ensure a stable, elegant and biopharmaceutically acceptable dosage form. Selection of manufacturing process variables and conditions along with packaging specifications can be achieved through properly designed preformulation study protocol for the formulation. Thermodynamic stability and biological activity of therapeutic proteins depend on folding–unfolding and three-dimensional packing dynamics of amino acid network in the protein molecule. Lack of favourable environment may cause protein aggregation with loss in activity and even fatal immunological reaction. Although lyophilization can enhance the stability of protein-based formulations in the solid state, it can induce protein unfolding leading to thermodynamic instability. Formulation stabilizers such as preservatives can also result in aggregation of therapeutic proteins. Modern instrumental techniques in conjunction with computational tools enable rapid and accurate prediction of amino acid sequence, thermodynamic parameters associated with protein folding and detection of aggregation “hot-spots.” Globular proteins pose a challenge during investigations on their aggregation propensity. Biobetter therapeutic monoclonal antibodies with enhanced stability, solubility and reduced immunogenic potential can be designed through mutation of aggregation-prone zones. The objective of the present review article is to focus on the various analytical methods and computational approaches used in the study of thermodynamic stability and aggregation tendency of therapeutic proteins, with an aim to develop optimal and marketable formulation. Knowledge of protein dynamics through application of computational tools will provide the essential inputs and relevant information for successful and meaningful completion of preformulation studies on solid dosage forms of therapeutic proteins.
Collapse
|
29
|
Pilla KB, Gaalswyk K, MacCallum JL. Molecular modeling of biomolecules by paramagnetic NMR and computational hybrid methods. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017. [PMID: 28648524 DOI: 10.1016/j.bbapap.2017.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The 3D atomic structures of biomolecules and their complexes are key to our understanding of biomolecular function, recognition, and mechanism. However, it is often difficult to obtain structures, particularly for systems that are complex, dynamic, disordered, or exist in environments like cell membranes. In such cases sparse data from a variety of paramagnetic NMR experiments offers one possible source of structural information. These restraints can be incorporated in computer modeling algorithms that can accurately translate the sparse experimental data into full 3D atomic structures. In this review, we discuss various types of paramagnetic NMR/computational hybrid modeling techniques that can be applied to successful modeling of not only the atomic structure of proteins but also their interacting partners. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
Affiliation(s)
| | - Kari Gaalswyk
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
30
|
Abstract
Over the past century, X-ray crystallography has been defined by a pursuit for perfection and high resolution. The next Holy Grail of crystallography is to embrace imperfection toward a dynamic picture of enzymes.
Collapse
Affiliation(s)
- Steve P. Meisburger
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Nozomi Ando
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
31
|
Weiergräber OH, Schwarten M, Strodel B, Willbold D. Investigating Structure and Dynamics of Atg8 Family Proteins. Methods Enzymol 2016; 587:115-142. [PMID: 28253952 DOI: 10.1016/bs.mie.2016.09.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Atg8 family members were the first autophagy-related proteins to be investigated in structural detail and continue to be among the best-understood molecules of the pathway. In this review, we will first provide a concise outline of the major methods that are being applied for structural characterization of these proteins and the complexes they are involved in. This includes a discussion of the strengths and limitations associated with each method, along with guidelines for successful adoption to a specific problem. Subsequently, we will present examples illustrating the application of these techniques, with a particular focus on the complementarity of information they provide.
Collapse
Affiliation(s)
- O H Weiergräber
- Institute of Complex Systems, ICS-6 (Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - M Schwarten
- Institute of Complex Systems, ICS-6 (Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - B Strodel
- Institute of Complex Systems, ICS-6 (Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - D Willbold
- Institute of Complex Systems, ICS-6 (Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany; Institut für Physikalische Biologie und BMFZ, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
32
|
Grabowski M, Langner KM, Cymborowski M, Porebski PJ, Sroka P, Zheng H, Cooper DR, Zimmerman MD, Elsliger MA, Burley SK, Minor W. A public database of macromolecular diffraction experiments. Acta Crystallogr D Struct Biol 2016; 72:1181-1193. [PMID: 27841751 PMCID: PMC5108346 DOI: 10.1107/s2059798316014716] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/17/2016] [Indexed: 12/28/2022] Open
Abstract
The low reproducibility of published experimental results in many scientific disciplines has recently garnered negative attention in scientific journals and the general media. Public transparency, including the availability of `raw' experimental data, will help to address growing concerns regarding scientific integrity. Macromolecular X-ray crystallography has led the way in requiring the public dissemination of atomic coordinates and a wealth of experimental data, making the field one of the most reproducible in the biological sciences. However, there remains no mandate for public disclosure of the original diffraction data. The Integrated Resource for Reproducibility in Macromolecular Crystallography (IRRMC) has been developed to archive raw data from diffraction experiments and, equally importantly, to provide related metadata. Currently, the database of our resource contains data from 2920 macromolecular diffraction experiments (5767 data sets), accounting for around 3% of all depositions in the Protein Data Bank (PDB), with their corresponding partially curated metadata. IRRMC utilizes distributed storage implemented using a federated architecture of many independent storage servers, which provides both scalability and sustainability. The resource, which is accessible via the web portal at http://www.proteindiffraction.org, can be searched using various criteria. All data are available for unrestricted access and download. The resource serves as a proof of concept and demonstrates the feasibility of archiving raw diffraction data and associated metadata from X-ray crystallographic studies of biological macromolecules. The goal is to expand this resource and include data sets that failed to yield X-ray structures in order to facilitate collaborative efforts that will improve protein structure-determination methods and to ensure the availability of `orphan' data left behind for various reasons by individual investigators and/or extinct structural genomics projects.
Collapse
Affiliation(s)
- Marek Grabowski
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22904, USA
| | - Karol M. Langner
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22904, USA
| | - Marcin Cymborowski
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22904, USA
| | - Przemyslaw J. Porebski
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22904, USA
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Cracow, Poland
| | - Piotr Sroka
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22904, USA
| | - Heping Zheng
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22904, USA
| | - David R. Cooper
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22904, USA
| | - Matthew D. Zimmerman
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22904, USA
| | - Marc-André Elsliger
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 90237, USA
| | - Stephen K. Burley
- RCSB Protein Data Bank; Center for Integrative Proteomics Research; Institute for Quantitative Biomedicine; Rutgers Cancer Institute of New Jersey; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- San Diego Supercomputer Center and Skaggs School of Pharmacological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|