1
|
Gershman SJ. Habituation as optimal filtering. iScience 2024; 27:110523. [PMID: 39175780 PMCID: PMC11340592 DOI: 10.1016/j.isci.2024.110523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/18/2024] [Accepted: 07/12/2024] [Indexed: 08/24/2024] Open
Abstract
Habituation, the reduction of responding to repetitive stimuli, is often conceptualized as a kind of attentional filter, amplifying salient signals at the expense of non-salient signals. No prior account has explicitly formalized filtering principles that can explain the major characteristics of habituation. In this paper, a simple probabilistic model is developed which permits analysis of the optimal filtering problem. This model exhibits the major characteristics of habituation, while also shedding light on other, relatively neglected, characteristics. These results demonstrate that habituation can be understood as a form of optimal filtering.
Collapse
Affiliation(s)
- Samuel J. Gershman
- Department of Psychology and Center for Brain Science, Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
2
|
Wang L, Zhao J, Xiong X, Li L, Zhu T, Pei H. Enzyme-Free Nucleic Acid Circuits for Fold-Change Detection. Chempluschem 2023; 88:e202300083. [PMID: 37005227 DOI: 10.1002/cplu.202300083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023]
Abstract
Fold-change detection is widespread in sensory systems of various organisms. Dynamic DNA nanotechnology provides an important toolbox for reproducing structures and responses of cellular circuits. In this work, we construct an enzyme-free nucleic acid circuit based on the incoherent feed-forward loop using toehold-mediated DNA strand displacement reactions and explore its dynamic behaviors. The mathematical model based on ordinary differential equations is used to evaluate the parameter regime required for fold-change detection. After selecting appropriate parameters, the constructed synthetic circuit exhibits approximate fold-change detection for multiple rounds of inputs with different initial concentrations. This work is anticipated to shed new light on the design of DNA dynamic circuits in the enzyme-free environment.
Collapse
Affiliation(s)
- Likun Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241 (P. R., China
| | - Jiayan Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241 (P. R., China
| | - Xiewei Xiong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241 (P. R., China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241 (P. R., China
| | - Tong Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241 (P. R., China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241 (P. R., China
| |
Collapse
|
3
|
Ricci-Tam C, Kuipa S, Kostman MP, Aronson MS, Sgro AE. Microbial models of development: Inspiration for engineering self-assembled synthetic multicellularity. Semin Cell Dev Biol 2023; 141:50-62. [PMID: 35537929 DOI: 10.1016/j.semcdb.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
Abstract
While the field of synthetic developmental biology has traditionally focused on the study of the rich developmental processes seen in metazoan systems, an attractive alternate source of inspiration comes from microbial developmental models. Microbes face unique lifestyle challenges when forming emergent multicellular collectives. As a result, the solutions they employ can inspire the design of novel multicellular systems. In this review, we dissect the strategies employed in multicellular development by two model microbial systems: the cellular slime mold Dictyostelium discoideum and the biofilm-forming bacterium Bacillus subtilis. Both microbes face similar challenges but often have different solutions, both from metazoan systems and from each other, to create emergent multicellularity. These challenges include assembling and sustaining a critical mass of participating individuals to support development, regulating entry into development, and assigning cell fates. The mechanisms these microbial systems exploit to robustly coordinate development under a wide range of conditions offer inspiration for a new toolbox of solutions to the synthetic development community. Additionally, recreating these phenomena synthetically offers a pathway to understanding the key principles underlying how these behaviors are coordinated naturally.
Collapse
Affiliation(s)
- Chiara Ricci-Tam
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Sophia Kuipa
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Maya Peters Kostman
- Biological Design Center, Boston University, Boston, MA 02215, USA; Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA 02215, USA
| | - Mark S Aronson
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Allyson E Sgro
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA; Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
4
|
Rao R, Musante CJ, Allen R. A quantitative systems pharmacology model of the pathophysiology and treatment of COVID-19 predicts optimal timing of pharmacological interventions. NPJ Syst Biol Appl 2023; 9:13. [PMID: 37059734 PMCID: PMC10102696 DOI: 10.1038/s41540-023-00269-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 02/09/2023] [Indexed: 04/16/2023] Open
Abstract
A quantitative systems pharmacology (QSP) model of the pathogenesis and treatment of SARS-CoV-2 infection can streamline and accelerate the development of novel medicines to treat COVID-19. Simulation of clinical trials allows in silico exploration of the uncertainties of clinical trial design and can rapidly inform their protocols. We previously published a preliminary model of the immune response to SARS-CoV-2 infection. To further our understanding of COVID-19 and treatment, we significantly updated the model by matching a curated dataset spanning viral load and immune responses in plasma and lung. We identified a population of parameter sets to generate heterogeneity in pathophysiology and treatment and tested this model against published reports from interventional SARS-CoV-2 targeting mAb and antiviral trials. Upon generation and selection of a virtual population, we match both the placebo and treated responses in viral load in these trials. We extended the model to predict the rate of hospitalization or death within a population. Via comparison of the in silico predictions with clinical data, we hypothesize that the immune response to virus is log-linear over a wide range of viral load. To validate this approach, we show the model matches a published subgroup analysis, sorted by baseline viral load, of patients treated with neutralizing Abs. By simulating intervention at different time points post infection, the model predicts efficacy is not sensitive to interventions within five days of symptom onset, but efficacy is dramatically reduced if more than five days pass post symptom onset prior to treatment.
Collapse
Affiliation(s)
- Rohit Rao
- Early Clinical Development, Pfizer Worldwide Research, Development and Medical, Cambridge, MA, USA.
| | - Cynthia J Musante
- Early Clinical Development, Pfizer Worldwide Research, Development and Medical, Cambridge, MA, USA
| | - Richard Allen
- Early Clinical Development, Pfizer Worldwide Research, Development and Medical, Cambridge, MA, USA
| |
Collapse
|
5
|
Chou CT. Using transcription-based detectors to emulate the behavior of sequential probability ratio-based concentration detectors. Phys Rev E 2022; 106:054403. [PMID: 36559424 DOI: 10.1103/physreve.106.054403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/04/2022] [Indexed: 12/24/2022]
Abstract
The sequential probability ratio test (SPRT) from statistics is known to have the least mean decision time compared to other sequential or fixed-time tests for given error rates. In some circumstances, cells need to make decisions accurately and quickly, therefore it has been suggested that the SPRT may be used to understand the speed-accuracy tradeoff in cellular decision-making. It is generally thought that in order for cells to make use of the SPRT, it is necessary to find biochemical circuits that can compute the log-likelihood ratio needed for the SPRT. However, this paper takes a different approach. We recognize that the high-level behavior of the SPRT is defined by its positive detection or hit rate, and the computation of the log-likelihood ratio is just one way to realize this behavior. In this paper, we will present a method in which a transcription-based detector is used to emulate the hit rate of the SPRT without computing the exact log-likelihood ratio. We consider the problem of using a promoter with multiple binding sites to accurately and quickly detect whether the concentration of a transcription factor is above a target level. We show that it is possible to find binding and unbinding rates of the transcription factor to the promoter's binding sites so that the probability that the amount of mRNA produced will be higher than a threshold is approximately equal to the hit rate of the SPRT detector. Moreover, we show that the average time that this transcription-based detector needs to make a positive detection is less than or equal to that of the SPRT for a wide range of concentrations. We remark that the last statement does not contradict Wald's optimality result because our transcription-based detector uses an open-ended test.
Collapse
Affiliation(s)
- Chun Tung Chou
- School of Computer Science and Engineering, University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
6
|
Ruach R, Yellinek S, Itskovits E, Deshe N, Eliezer Y, Bokman E, Zaslaver A. A negative feedback loop in the GPCR pathway underlies efficient coding of external stimuli. Mol Syst Biol 2022; 18:e10514. [PMID: 36106925 PMCID: PMC9476886 DOI: 10.15252/msb.202110514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
Efficient navigation based on chemical cues is an essential feature shared by all animals. These cues may be encountered in complex spatiotemporal patterns and with orders of magnitude varying intensities. Nevertheless, sensory neurons accurately extract the relevant information from such perplexing signals. Here, we show how a single sensory neuron in Caenorhabditis elegans animals can cell-autonomously encode complex stimulus patterns composed of instantaneous sharp changes and of slowly changing continuous gradients. This encoding relies on a simple negative feedback in the G-protein-coupled receptor (GPCR) signaling pathway in which TAX-6/Calcineurin plays a key role in mediating the feedback inhibition. This negative feedback supports several important coding features that underlie an efficient navigation strategy, including exact adaptation and adaptation to the magnitude of the gradient's first derivative. A simple mathematical model explains the fine neural dynamics of both wild-type and tax-6 mutant animals, further highlighting how the calcium-dependent activity of TAX-6/Calcineurin dictates GPCR inhibition and response dynamics. As GPCRs are ubiquitously expressed in all sensory neurons, this mechanism may be a general solution for efficient cell-autonomous coding of external stimuli.
Collapse
Affiliation(s)
- Rotem Ruach
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra CampusThe Hebrew UniversityJerusalemIsrael
| | - Shai Yellinek
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra CampusThe Hebrew UniversityJerusalemIsrael
| | - Eyal Itskovits
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra CampusThe Hebrew UniversityJerusalemIsrael
| | - Noa Deshe
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra CampusThe Hebrew UniversityJerusalemIsrael
| | - Yifat Eliezer
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra CampusThe Hebrew UniversityJerusalemIsrael
| | - Eduard Bokman
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra CampusThe Hebrew UniversityJerusalemIsrael
| | - Alon Zaslaver
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra CampusThe Hebrew UniversityJerusalemIsrael
| |
Collapse
|
7
|
Nakamura K, Kobayashi TJ. Connection between the Bacterial Chemotactic Network and Optimal Filtering. PHYSICAL REVIEW LETTERS 2021; 126:128102. [PMID: 33834835 DOI: 10.1103/physrevlett.126.128102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
The chemotactic network of Escherichia coli has been studied extensively both biophysically and information theoretically. Nevertheless, connection between these two aspects is still elusive. In this work, we report such a connection. We derive an optimal filtering dynamics under the assumption that E. coli's sensory system optimally infers the binary information whether it is swimming up or down along an exponential ligand gradient from noisy sensory signals. Then we show that a standard biochemical model of the chemotactic network is mathematically equivalent to this information-theoretically optimal dynamics. Moreover, we demonstrate that an experimentally observed nonlinear response relation can be reproduced from the optimal dynamics. These results suggest that the biochemical network of E. coli chemotaxis is designed to optimally extract the binary information along an exponential gradient in a noisy condition.
Collapse
Affiliation(s)
- Kento Nakamura
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8654, Japan
| | - Tetsuya J Kobayashi
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8654, Japan
| |
Collapse
|
8
|
Molecular switch architecture determines response properties of signaling pathways. Proc Natl Acad Sci U S A 2021; 118:2013401118. [PMID: 33688042 DOI: 10.1073/pnas.2013401118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Many intracellular signaling pathways are composed of molecular switches, proteins that transition between two states-on and off Typically, signaling is initiated when an external stimulus activates its cognate receptor that, in turn, causes downstream switches to transition from off to on using one of the following mechanisms: activation, in which the transition rate from the off state to the on state increases; derepression, in which the transition rate from the on state to the off state decreases; and concerted, in which activation and derepression operate simultaneously. We use mathematical modeling to compare these signaling mechanisms in terms of their dose-response curves, response times, and abilities to process upstream fluctuations. Our analysis elucidates several operating principles for molecular switches. First, activation increases the sensitivity of the pathway, whereas derepression decreases sensitivity. Second, activation generates response times that decrease with signal strength, whereas derepression causes response times to increase with signal strength. These opposing features allow the concerted mechanism to not only show dose-response alignment, but also to decouple the response time from stimulus strength. However, these potentially beneficial properties come at the expense of increased susceptibility to upstream fluctuations. We demonstrate that these operating principles also hold when the models are extended to include additional features, such as receptor removal, kinetic proofreading, and cascades of switches. In total, we show how the architecture of molecular switches govern their response properties. We also discuss the biological implications of our findings.
Collapse
|
9
|
Holmboe SA, Jasuja R, Lawney B, Priskorn L, Joergensen N, Linneberg A, Jensen TK, Skakkebæk NE, Juul A, Andersson AM. Free testosterone and cardiometabolic parameters in men: comparison of algorithms. Endocr Connect 2021; 10:220-229. [PMID: 33544092 PMCID: PMC7983478 DOI: 10.1530/ec-20-0552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Calculating the free testosterone level has gained increasing interest and different indirect algorithms have been suggested. The objective was to compare free androgen index (FAI), free testosterone estimated using the linear binding model (Vermeulen: cFTV) and the binding framework accounting for allosterically coupled SHBG monomers (Zakharov: cFTZ) in relation to cardiometabolic conditions. DESIGN A prospective cohort study including 5350 men, aged 30-70 years, participating in population-based surveys (MONICA I-III and Inter99) from 1982 to 2001 and followed until December 2012 with baseline and follow-up information on cardiometabolic parameters and vital status. RESULTS Using age-standardized hormone levels, FAI was higher among men with baseline cardiometabolic conditions, whereas cFTV and cFTZ levels were lower compared to men without these conditions as also seen for total testosterone. Men in highest quartiles of cFTV or cFTZ had lower risk of developing type 2 diabetes (cFTV: HR = 0.74 (0.49-1.10), cFTZ: HR = 0.59 (0.39-0.91)) than men in lowest quartile. In contrast, men with highest levels of FAI had a 74% (1.17-2.59) increased risk of developing type 2 diabetes compared to men in lowest quartile. CONCLUSION The association of estimated free testosterone and the studied outcomes differ depending on algorithm used. cFTV and cFTZ showed similar associations to baseline and long-term cardiometabolic parameters. In contrast, an empiric ratio, FAI, showed opposite associations to several of the examined parameters and may reflect limited clinical utility.
Collapse
Affiliation(s)
- Stine A Holmboe
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
- The International Research Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ravi Jasuja
- Research Program in Men’s Health: Aging and Metabolism, Brigham and Womens Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian Lawney
- Research Program in Men’s Health: Aging and Metabolism, Brigham and Womens Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lærke Priskorn
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
- The International Research Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Niels Joergensen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
- The International Research Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Allan Linneberg
- Centre for Clinical Research and Prevention, Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Kold Jensen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
- The International Research Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Niels Erik Skakkebæk
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
- The International Research Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
- The International Research Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
- The International Research Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Correspondence should be addressed to A-M Andersson:
| |
Collapse
|
10
|
Yin Z, Ji Z, Zhang W, Taylor EW, Zeng X, Wei J. The Glucose Effect on Direct Electrochemistry and Electron Transfer Reaction of Glucose Oxidase Entrapped in a Carbon Nanotube‐Polymer Matrix. ChemistrySelect 2020. [DOI: 10.1002/slct.202003536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ziyu Yin
- Department of Nanoscience Joint School of Nanoscience and Nanoengineering University of North Carolina at Greensboro Greensboro NC 27401 USA
| | - Zuowei Ji
- Department of Nanoscience Joint School of Nanoscience and Nanoengineering University of North Carolina at Greensboro Greensboro NC 27401 USA
| | - Wendi Zhang
- Department of Nanoscience Joint School of Nanoscience and Nanoengineering University of North Carolina at Greensboro Greensboro NC 27401 USA
| | - E. Will Taylor
- Department of Nanoscience Joint School of Nanoscience and Nanoengineering University of North Carolina at Greensboro Greensboro NC 27401 USA
- Department of Chemistry University of North Carolina at Greensboro Greensboro NC 27402 USA
| | - Xinping Zeng
- Department of Nanoscience Joint School of Nanoscience and Nanoengineering University of North Carolina at Greensboro Greensboro NC 27401 USA
- School of Life Science and Technology Tongji University Shanghai China
| | - Jianjun Wei
- Department of Nanoscience Joint School of Nanoscience and Nanoengineering University of North Carolina at Greensboro Greensboro NC 27401 USA
| |
Collapse
|
11
|
McLamore ES, Palit Austin Datta S, Morgan V, Cavallaro N, Kiker G, Jenkins DM, Rong Y, Gomes C, Claussen J, Vanegas D, Alocilja EC. SNAPS: Sensor Analytics Point Solutions for Detection and Decision Support Systems. SENSORS 2019; 19:s19224935. [PMID: 31766116 PMCID: PMC6891700 DOI: 10.3390/s19224935] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022]
Abstract
In this review, we discuss the role of sensor analytics point solutions (SNAPS), a reduced complexity machine-assisted decision support tool. We summarize the approaches used for mobile phone-based chemical/biological sensors, including general hardware and software requirements for signal transduction and acquisition. We introduce SNAPS, part of a platform approach to converge sensor data and analytics. The platform is designed to consist of a portfolio of modular tools which may lend itself to dynamic composability by enabling context-specific selection of relevant units, resulting in case-based working modules. SNAPS is an element of this platform where data analytics, statistical characterization and algorithms may be delivered to the data either via embedded systems in devices, or sourced, in near real-time, from mist, fog or cloud computing resources. Convergence of the physical systems with the cyber components paves the path for SNAPS to progress to higher levels of artificial reasoning tools (ART) and emerge as data-informed decision support, as a service for general societal needs. Proof of concept examples of SNAPS are demonstrated both for quantitative data and qualitative data, each operated using a mobile device (smartphone or tablet) for data acquisition and analytics. We discuss the challenges and opportunities for SNAPS, centered around the value to users/stakeholders and the key performance indicators users may find helpful, for these types of machine-assisted tools.
Collapse
Affiliation(s)
- Eric S. McLamore
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA or (V.M.); (N.C.); (G.K.); (Y.R.)
- Correspondence: ; Tel.: +1-(352)294-6703
| | - Shoumen Palit Austin Datta
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA or (V.M.); (N.C.); (G.K.); (Y.R.)
- MIT Auto-ID Labs, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- MDPnP Labs, Biomedical Engineering Program, Department of Anesthesiology, Massachusetts General Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Victoria Morgan
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA or (V.M.); (N.C.); (G.K.); (Y.R.)
| | - Nicholas Cavallaro
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA or (V.M.); (N.C.); (G.K.); (Y.R.)
| | - Greg Kiker
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA or (V.M.); (N.C.); (G.K.); (Y.R.)
| | - Daniel M. Jenkins
- Molecular Biosciences and Bioengineering, University of Hawaii Manoa, Honolulu, HI 96822, USA;
| | - Yue Rong
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA or (V.M.); (N.C.); (G.K.); (Y.R.)
| | - Carmen Gomes
- Mechanical Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Jonathan Claussen
- Mechanical Engineering Department, Iowa State University, Ames, IA 50011, USA;
- Ames Laboratory, Ames, IA 50011, USA
| | - Diana Vanegas
- Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Evangelyn C. Alocilja
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA;
- Nano-Biosensors Lab, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
12
|
Rapp O, Yifrach O. Evolutionary and functional insights into the mechanism underlying body-size-related adaptation of mammalian hemoglobin. eLife 2019; 8:e47640. [PMID: 31647054 PMCID: PMC6812962 DOI: 10.7554/elife.47640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/19/2019] [Indexed: 11/24/2022] Open
Abstract
Hemoglobin (Hb) represents a model protein to study molecular adaptation in vertebrates. Although both affinity and cooperativity of oxygen binding to Hb affect tissue oxygen delivery, only the former was thought to determine molecular adaptations of Hb. Here, we suggest that Hb affinity and cooperativity reflect evolutionary and physiological adaptions that optimized tissue oxygen delivery. To test this hypothesis, we derived the relationship between the Hill coefficient and the relative affinity and conformational changes parameters of the Monod-Wymann-Changeux allosteric model and graphed the 'biophysical Hill landscape' describing this relation. We found that mammalian Hb cooperativity values all reside on a ridge of maximum cooperativity along this landscape that allows for both gross- and fine-tuning of tissue oxygen unloading to meet the distinct metabolic requirements of mammalian tissues for oxygen. Our findings reveal the mechanism underlying body size-related adaptation of mammalian Hb. The generality and implications of our findings are discussed.
Collapse
Affiliation(s)
- Olga Rapp
- Department of Life Sciences, Zlotowski Center for NeuroscienceBen-Gurion University of the NegevBeer ShevaIsrael
| | - Ofer Yifrach
- Department of Life Sciences, Zlotowski Center for NeuroscienceBen-Gurion University of the NegevBeer ShevaIsrael
| |
Collapse
|
13
|
Abstract
A handful of core intercellular signaling pathways play pivotal roles in a broad variety of developmental processes. It has remained puzzling how so few pathways can provide the precision and specificity of cell-cell communication required for multicellular development. Solving this requires us to quantitatively understand how developmentally relevant signaling information is actively sensed, transformed and spatially distributed by signaling pathways. Recently, single cell analysis and cell-based reconstitution, among other approaches, have begun to reveal the 'communication codes' through which information is represented in the identities, concentrations, combinations and dynamics of extracellular ligands. They have also revealed how signaling pathways decipher these features and control the spatial distribution of signaling in multicellular contexts. Here, we review recent work reporting the discovery and analysis of communication codes and discuss their implications for diverse developmental processes.
Collapse
Affiliation(s)
- Pulin Li
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Howard Hughes Medical Institute, Pasadena, CA 91125, USA
| |
Collapse
|
14
|
Abstract
Numerous biological systems are known to harbor a form of logarithmic behavior, from Weber's law to bacterial chemotaxis. Such a log-response allows for sensitivity to small relative variations of biochemical inputs over a large range of concentration values. Here we use a genetic algorithm to evolve biochemical networks displaying a logarithmic response. A quasi-perfect log-response implemented by the same core network evolves in a convergent way across our different in silico replications. The best network is able to fit a logarithm over 4 orders of magnitude with an accuracy of the order of 1%. At the heart of this network, we show that a logarithmic approximation may be implemented with one single nonlinear interaction, that can be interpreted either as multisite phosphorylations or as a ligand induced multimerization. We provide an analytical explanation for the effect and exhibit constraints on parameters. Biological log-response might thus be easier to implement than usually assumed.
Collapse
Affiliation(s)
- Mathieu Hemery
- Rutherford Physics Building , 3600 rue University , H3A2T8 Montreal , Québec , Canada.,EPI Lifeware , INRIA Saclay , Palaiseau , France
| | - Paul François
- Rutherford Physics Building , 3600 rue University , H3A2T8 Montreal , Québec , Canada
| |
Collapse
|
15
|
Komorowski M, Tawfik DS. The Limited Information Capacity of Cross-Reactive Sensors Drives the Evolutionary Expansion of Signaling. Cell Syst 2019; 8:76-85.e6. [PMID: 30660612 DOI: 10.1016/j.cels.2018.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/15/2018] [Accepted: 12/10/2018] [Indexed: 01/10/2023]
Abstract
Signaling systems expand by duplications of various components, be it receptors or downstream effectors. However, whether and how duplicated components contribute to higher signaling capacity is unclear, especially because in most cases, their specificities overlap. Using information theory, we found that augmentation of capacity by an increase in the copy number is strongly limited by logarithmic diminishing returns. Moreover, counter to conventional biochemical wisdom, refinements of the response mechanism, e.g., by cooperativity or allostery, do not increase the overall signaling capacity. However, signaling capacity nearly doubles when a promiscuous, non-cognate ligand becomes explicitly recognized via duplication and partial divergence of signaling components. Our findings suggest that expansion of signaling components via duplication and enlistment of promiscuously acting cues is virtually the only accessible evolutionary strategy to achieve overall high-signaling capacity despite overlapping specificities and molecular noise. This mode of expansion also explains the highly cross-wired architecture of signaling pathways.
Collapse
Affiliation(s)
- Michał Komorowski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland.
| | - Dan S Tawfik
- Weizmann Institute of Science, The Department of Biomolecular Sciences, Rehovot 7610001, Israel
| |
Collapse
|
16
|
Chou CT. Detection of persistent signals and its relation to coherent feed-forward loops. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181641. [PMID: 30564429 PMCID: PMC6281907 DOI: 10.1098/rsos.181641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/08/2018] [Indexed: 06/09/2023]
Abstract
Many studies have shown that cells use the temporal dynamics of signalling molecules to encode information. One particular class of temporal dynamics is persistent and transient signals, i.e. signals of long and short duration, respectively. It has been shown that the coherent type-1 feed-forward loop with an AND logic at the output (or C1-FFL for short) can be used to discriminate a persistent input signal from a transient one. This has been done by modelling the C1-FFL, and then using the model to show that persistent and transient input signals give, respectively, a non-zero and zero output. The aim of this paper is to make a connection between the statistical detection of persistent signals and the C1-FFL. We begin by first formulating a statistical detection problem of distinguishing persistent signals from transient ones. The solution of the detection problem is to compute the log-likelihood ratio of observing a persistent signal to a transient signal. We show that, if this log-likelihood ratio is positive, which happens when the signal is likely to be persistent, then it can be approximately computed by a C1-FFL. Although the capability of C1-FFL to discriminate persistent signals is known, this paper adds an information processing interpretation on how a C1-FFL works as a detector of persistent signals.
Collapse
Affiliation(s)
- Chun Tung Chou
- School of Computer Science and Engineering, University of New South Wales, Sydney, Australia
| |
Collapse
|
17
|
Abstract
One challenge in biology is to make sense of the complexity of biological networks. A good system to approach this is signaling pathways, whose well-characterized molecular details allow us to relate the internal processes of each pathway to their input-output behavior. In this study, we analyzed mathematical models of three metazoan signaling pathways: the canonical Wnt, MAPK/ERK, and Tgfβ pathways. We find an unexpected convergence: the three pathways behave in some physiological contexts as linear signal transmitters. Testing the results experimentally, we present direct measurements of linear input-output behavior in the Wnt and ERK pathways. Analytics from each model further reveal that linearity arises through different means in each pathway, which we tested experimentally in the Wnt and ERK pathways. Linearity is a desired property in engineering where it facilitates fidelity and superposition in signal transmission. Our findings illustrate how cells tune different complex networks to converge on the same behavior.
Collapse
Affiliation(s)
- Harry Nunns
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| | - Lea Goentoro
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| |
Collapse
|
18
|
Azevedo LS, Pestana IA, Rocha ARM, Meneguelli-Souza AC, Lima CAI, Almeida MG, Bastos WR, Souza CMM. Drought promotes increases in total mercury and methylmercury concentrations in fish from the lower Paraíba do Sul river, southeastern Brazil. CHEMOSPHERE 2018; 202:483-490. [PMID: 29579683 DOI: 10.1016/j.chemosphere.2018.03.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
Bioaccumulation of mercury and methylmercury in fish represents a serious risk to human beings. Extreme climate events like droughts may increase the trophic transfer of contaminants and net methylation of mercury. The present study assessed the influence of the 2014 drought on total mercury and methylmercury levels in fish from the lower Paraiba do Sul river basin. Contaminant levels were compared for Pimelodus fur, Pachyurus adspersus, Pimelodella lateristriga, Oligosarcus hepsetus, and Crenicichla lacustris captured in five sites in 2013 (N = 212) and 2014 (N = 231). The results indicate that levels of contaminants were higher during the drought in most species. Rainfall was weakly and negatively correlated with total mercury levels in most of the species. The weak relationship between these two variables was due to the indirect influence of rainfall on mercury bioaccumulation. In summary, drought increased the levels of two contaminants in fish.
Collapse
Affiliation(s)
- L S Azevedo
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos Dos Goytacazes, Rio de Janeiro, RJ, CEP: 28013-602, Brazil.
| | - I A Pestana
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos Dos Goytacazes, Rio de Janeiro, RJ, CEP: 28013-602, Brazil
| | - A R M Rocha
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos Dos Goytacazes, Rio de Janeiro, RJ, CEP: 28013-602, Brazil
| | - A C Meneguelli-Souza
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos Dos Goytacazes, Rio de Janeiro, RJ, CEP: 28013-602, Brazil
| | - C A I Lima
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos Dos Goytacazes, Rio de Janeiro, RJ, CEP: 28013-602, Brazil
| | - M G Almeida
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos Dos Goytacazes, Rio de Janeiro, RJ, CEP: 28013-602, Brazil
| | - W R Bastos
- Laboratório de Biogeoquímica Ambiental, Universidade Federal de Rondônia, Porto Velho, Rondônia, RO, CEP: 76815-800, Brazil
| | - C M M Souza
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos Dos Goytacazes, Rio de Janeiro, RJ, CEP: 28013-602, Brazil
| |
Collapse
|
19
|
Abstract
Sensory perception often scales logarithmically with the input level. Similarly, the output response of biochemical systems sometimes scales logarithmically with the input signal that drives the system. How biochemical systems achieve logarithmic sensing remains an open puzzle. This article shows how a biochemical logarithmic sensor can be constructed from the most basic principles of chemical reactions. Assuming that reactions follow the classic Michaelis-Menten kinetics of mass action or the more generalized and commonly observed Hill equation response, the summed output of several simple reactions with different sensitivities to the input will often give an aggregate output response that logarithmically transforms the input. The logarithmic response is robust to stochastic fluctuations in parameter values. This model emphasizes the simplicity and robustness by which aggregate chemical circuits composed of sloppy components can achieve precise response characteristics. Both natural and synthetic designs gain from the power of this aggregate approach.
Collapse
Affiliation(s)
- Steven A. Frank
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697-2525, USA
| |
Collapse
|
20
|
Straube R. Analysis of network motifs in cellular regulation: Structural similarities, input-output relations and signal integration. Biosystems 2017; 162:215-232. [PMID: 29107640 DOI: 10.1016/j.biosystems.2017.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023]
Abstract
Much of the complexity of regulatory networks derives from the necessity to integrate multiple signals and to avoid malfunction due to cross-talk or harmful perturbations. Hence, one may expect that the input-output behavior of larger networks is not necessarily more complex than that of smaller network motifs which suggests that both can, under certain conditions, be described by similar equations. In this review, we illustrate this approach by discussing the similarities that exist in the steady state descriptions of a simple bimolecular reaction, covalent modification cycles and bacterial two-component systems. Interestingly, in all three systems fundamental input-output characteristics such as thresholds, ultrasensitivity or concentration robustness are described by structurally similar equations. Depending on the system the meaning of the parameters can differ ranging from protein concentrations and affinity constants to complex parameter combinations which allows for a quantitative understanding of signal integration in these systems. We argue that this approach may also be extended to larger regulatory networks.
Collapse
Affiliation(s)
- Ronny Straube
- Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg, Sandtorstr. 1, D-39106 Magdeburg, Germany
| |
Collapse
|
21
|
Abstract
One driving motivation of systems biology is the search for general principles that govern the design of biological systems. But questions often arise as to what kind of general principles biology could have. Concepts from engineering such as robustness and modularity are indeed becoming a regular way of describing biological systems. Another source of potential general principles is the emerging similarities found in processes across biological hierarchies. In this piece, I describe several emerging cross-hierarchy similarities. Identification of more cross-hierarchy principles, and understanding the implications these convergence have on the construction of biological systems, I believe, present exciting challenges for systems biology in the decades to come.
Collapse
|
22
|
Bohner G, Venkataraman G. Identifiability, reducibility, and adaptability in allosteric macromolecules. J Gen Physiol 2017; 149:547-560. [PMID: 28416647 PMCID: PMC5412534 DOI: 10.1085/jgp.201611751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/15/2017] [Accepted: 03/08/2017] [Indexed: 11/24/2022] Open
Abstract
Bohner and Venkataraman propose a link between the sensitivity of allosteric macromolecules to their underlying biophysical parameters, the interrelationships between these parameters, and macromolecular adaptability. They argue that “emergent” combinations of parameters yield mechanistic insight that individual parameters cannot. The ability of macromolecules to transduce stimulus information at one site into conformational changes at a distant site, termed “allostery,” is vital for cellular signaling. Here, we propose a link between the sensitivity of allosteric macromolecules to their underlying biophysical parameters, the interrelationships between these parameters, and macromolecular adaptability. We demonstrate that the parameters of a canonical model of the mSlo large-conductance Ca2+-activated K+ (BK) ion channel are non-identifiable with respect to the equilibrium open probability-voltage relationship, a common functional assay. We construct a reduced model with emergent parameters that are identifiable and expressed as combinations of the original mechanistic parameters. These emergent parameters indicate which coordinated changes in mechanistic parameters can leave assay output unchanged. We predict that these coordinated changes are used by allosteric macromolecules to adapt, and we demonstrate how this prediction can be tested experimentally. We show that these predicted parameter compensations are used in the first reported allosteric phenomena: the Bohr effect, by which hemoglobin adapts to varying pH.
Collapse
Affiliation(s)
- Gergő Bohner
- Gatsby Computational Neuroscience Unit, University College London, London WC1E 6BT, England, UK
| | - Gaurav Venkataraman
- Gatsby Computational Neuroscience Unit, University College London, London WC1E 6BT, England, UK.,Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, England, UK
| |
Collapse
|
23
|
Einav T, Phillips R. Monod-Wyman-Changeux Analysis of Ligand-Gated Ion Channel Mutants. J Phys Chem B 2017; 121:3813-3824. [PMID: 28134524 DOI: 10.1021/acs.jpcb.6b12672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We present a framework for computing the gating properties of ligand-gated ion channel mutants using the Monod-Wyman-Changeux (MWC) model of allostery. We derive simple analytic formulas for key functional properties such as the leakiness, dynamic range, half-maximal effective concentration ([EC50]), and effective Hill coefficient, and explore the full spectrum of phenotypes that are accessible through mutations. Specifically, we consider mutations in the channel pore of nicotinic acetylcholine receptor (nAChR) and the ligand binding domain of a cyclic nucleotide-gated (CNG) ion channel, demonstrating how each mutation can be characterized as only affecting a subset of the biophysical parameters. In addition, we show how the unifying perspective offered by the MWC model allows us, perhaps surprisingly, to collapse the plethora of dose-response data from different classes of ion channels into a universal family of curves.
Collapse
Affiliation(s)
- Tal Einav
- Department of Physics, California Institute of Technology , Pasadena, California 91125, United States
| | - Rob Phillips
- Department of Applied Physics and Division of Biology and Biological Engineering, California Institute of Technology , Pasadena, California 91125, United States
| |
Collapse
|
24
|
Adler M, Szekely P, Mayo A, Alon U. Optimal Regulatory Circuit Topologies for Fold-Change Detection. Cell Syst 2017; 4:171-181.e8. [DOI: 10.1016/j.cels.2016.12.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/21/2016] [Accepted: 12/08/2016] [Indexed: 12/29/2022]
|
25
|
Chou CT. Chemical reaction networks for computing logarithm. Synth Biol (Oxf) 2017; 2:ysx002. [PMID: 32995503 PMCID: PMC7513738 DOI: 10.1093/synbio/ysx002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 12/27/2022] Open
Abstract
Living cells constantly process information from their living environment. It has recently been shown that a number of cell signaling mechanisms (e.g. G protein-coupled receptor and epidermal growth factor) can be interpreted as computing the logarithm of the ligand concentration. This suggests that logarithm is a fundamental computation primitive in cells. There is also an increasing interest in the synthetic biology community to implement analog computation and computing the logarithm is one such example. The aim of this article is to study how the computation of logarithm can be realized using chemical reaction networks (CRNs). CRNs cannot compute logarithm exactly. A standard method is to use power series or rational function approximation to compute logarithm approximately. Although CRNs can realize these polynomial or rational function computations in a straightforward manner, the issue is that in order to be able to compute logarithm accurately over a large input range, it is necessary to use high-order approximation that results in CRNs with a large number of reactions. This article proposes a novel method to compute logarithm accurately in CRNs while keeping the number of reactions in CRNs low. The proposed method can create CRNs that can compute logarithm to different levels of accuracy by adjusting two design parameters. In this article, we present the chemical reactions required to realize the CRNs for computing logarithm. The key contribution of this article is a novel method to create CRNs that can compute logarithm accurately over a wide input range using only a small number of chemical reactions.
Collapse
Affiliation(s)
- Chun Tung Chou
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|