1
|
Aleman A, Arteaga MC, Gasca-Pineda J, Bello-Bedoy R. Divergent lineages in a young species: The case of datilillo (Yucca valida), a broadly distributed plant from the Baja California Peninsula. AMERICAN JOURNAL OF BOTANY 2024; 111:e16385. [PMID: 39113241 DOI: 10.1002/ajb2.16385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 11/06/2024]
Abstract
PREMISE Globally, barriers triggered by climatic changes have caused habitat fragmentation and population allopatric divergence. Across North America, oscillations during the Quaternary have played important roles in the distribution of wildlife. Notably, diverse plant species from the Baja California Peninsula in western North America, isolated during the Pleistocene glacial-interglacial cycles, exhibit strong genetic structure and highly concordant divergent lineages across their ranges. A representative plant genus of the peninsula is Yucca, with Y. valida having the widest range. Although a dominant species, it has an extensive distribution discontinuity between 26° N and 27° N, suggesting restricted gene flow. Moreover, historical distribution models indicate the absence of an area with suitable conditions for the species during the Last Interglacial, making it an interesting model for studying genetic divergence. METHODS We assembled 4411 SNPs from 147 plants of Y. valida throughout its range to examine its phylogeography to identify the number of genetic lineages, quantify their genetic differentiation, reconstruct their demographic history and estimate the age of the species. RESULTS Three allopatric lineages were identified based on the SNPs. Our analyses support that genetic drift is the driver of genetic differentiation among these lineages. We estimated an age of less than 1 million years for the common ancestor of Y. valida and its sister species. CONCLUSIONS Habitat fragmentation caused by climatic changes, low dispersal, and an extensive geographical range gap acted as cumulative mechanisms leading to allopatric divergence in Y. valida.
Collapse
Affiliation(s)
- Alberto Aleman
- Departamento de Biología de la Conservación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - Maria Clara Arteaga
- Departamento de Biología de la Conservación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
| | - Jaime Gasca-Pineda
- Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Rafael Bello-Bedoy
- Facultad de Ciencias, Universidad Autónoma de Baja California (UABC), Ensenada, Baja California, Mexico
| |
Collapse
|
2
|
Sánchez-Acevedo V, González-Rodríguez A, Torres-Miranda CA, Rodríguez-Correa H, Valencia-Á S, De-la-Cruz IM, Oyama K. Nuclear and chloroplast DNA phylogeography reveals high genetic diversity and postglacial range expansion in Quercus mexicana. AMERICAN JOURNAL OF BOTANY 2023; 110:e16251. [PMID: 37843974 DOI: 10.1002/ajb2.16251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
PREMISE Phylogeographical studies are fundamental for understanding factors that influence the spatial distribution of genetic lineages within species. Population expansions and contractions, distribution shifts, and climate changes are among the most important factors shaping the genetic compositions of populations. METHODS We investigated the phylogeography of an endemic oak, Quercus mexicana (Fagaceae), which has a restricted distribution in northeastern Mexico along the Sierra Madre Oriental and adjacent areas. Nuclear and chloroplast DNA microsatellite markers were used to describe the genetic diversity and structure of 39 populations of Q. mexicana along its entire distribution area. We tested whether population expansion or contraction events influenced the genetic diversity and structure of the species. We also modeled the historical distributional range of Q. mexicana (for the Mid Holocene, the Last Glacial Maximum, and the Last Interglacial) to estimate the extent to which climate fluctuations have impacted the distribution of this oak species. RESULTS Our results revealed high genetic diversity and low genetic structure in Q. mexicana populations. Ecological niche models suggested historical fluctuations in the distributional range of Q. mexicana. Historical range changes, gene flow, and physical barriers seem to have played an important role in shaping the phylogeographic structure of Q. mexicana. CONCLUSIONS Our study indicates that the genetic structure of Q. mexicana may have been the result of responses of oak trees not only to heterogeneous environments present in the Sierra Madre Oriental and adjacent areas, but also to elevational and latitudinal shifts in response to climate changes in the past.
Collapse
Affiliation(s)
- Vanessa Sánchez-Acevedo
- Escuela Nacional de Estudios Superiores (ENES) Unidad Morelia, Universidad Nacional Autónoma de México (UNAM). Antigua Carretera a Pátzcuaro 8701, Ex-Hacienda de San José del Cerrito, Morelia, Michoacán, México
- Posgrado en Ciencias Biológicas, UNAM. Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P. 04510, CDMX, México
| | - Antonio González-Rodríguez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, UNAM. Antigua Carretera a Pátzcuaro 8701, Ex-Hacienda de San José del Cerrito, Morelia, Michoacán, México
| | - César Andrés Torres-Miranda
- Escuela Nacional de Estudios Superiores (ENES) Unidad Morelia, Universidad Nacional Autónoma de México (UNAM). Antigua Carretera a Pátzcuaro 8701, Ex-Hacienda de San José del Cerrito, Morelia, Michoacán, México
| | - Hernando Rodríguez-Correa
- Escuela Nacional de Estudios Superiores (ENES) Unidad Morelia, Universidad Nacional Autónoma de México (UNAM). Antigua Carretera a Pátzcuaro 8701, Ex-Hacienda de San José del Cerrito, Morelia, Michoacán, México
| | - Susana Valencia-Á
- Facultad de Ciencias, UNAM. Av. Universidad 3000. Coyoacán, Ciudad de México, 04510, México
| | - Ivan M De-la-Cruz
- Escuela Nacional de Estudios Superiores (ENES) Unidad Morelia, Universidad Nacional Autónoma de México (UNAM). Antigua Carretera a Pátzcuaro 8701, Ex-Hacienda de San José del Cerrito, Morelia, Michoacán, México
| | - Ken Oyama
- Escuela Nacional de Estudios Superiores (ENES) Unidad Morelia, Universidad Nacional Autónoma de México (UNAM). Antigua Carretera a Pátzcuaro 8701, Ex-Hacienda de San José del Cerrito, Morelia, Michoacán, México
| |
Collapse
|
3
|
Ramírez-Valiente JA, Solé-Medina A, Robledo-Arnuncio JJ, Ortego J. Genomic data and common garden experiments reveal climate-driven selection on ecophysiological traits in two Mediterranean oaks. Mol Ecol 2023; 32:983-999. [PMID: 36479963 DOI: 10.1111/mec.16816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Improving our knowledge of how past climate-driven selection has acted on present-day trait population divergence is essential to understand local adaptation processes and improve our predictions of evolutionary trajectories in the face of altered selection pressures resulting from climate change. In this study, we investigated signals of selection on traits related to drought tolerance and growth rates in two Mediterranean oak species (Quercus faginea and Q. lusitanica) with contrasting distribution ranges and climatic niches. We genotyped 182 individuals from 24 natural populations of the two species using restriction-site-associated DNA sequencing and conducted a thorough functional characterization in 1602 seedlings from 21 populations cultivated in common garden experiments under contrasting watering treatments. Our genomic data revealed that both Q. faginea and Q. lusitanica have very weak population genetic structure, probably as a result of high rates of pollen-mediated gene flow among populations and large effective population sizes. In contrast, common garden experiments showed evidence of climate-driven divergent selection among populations on traits related to leaf morphology, physiology and growth in both species. Overall, our study suggests that climate is an important selective factor for Mediterranean oaks and that ecophysiological traits have evolved in drought-prone environments even in a context of very high rates of gene flow among populations.
Collapse
Affiliation(s)
- José Alberto Ramírez-Valiente
- Ecological and Forestry Applications Research Centre, CREAF, Campus de Bellaterra (UAB), Cerdanyola del Vallès, Spain
| | - Aida Solé-Medina
- Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Madrid, Spain
| | | | - Joaquín Ortego
- Department of Ecology and Evolution, Estación Biológica de Doñana, EBD-CSIC, Seville, Spain
| |
Collapse
|
4
|
Mao W, Sun Z, Forrestel EJ, Griffin‐Nolan R, Chen A, Smith MD. Using local and regional trait hypervolumes to study the effects of environmental factors on community assembly. Ecosphere 2022. [DOI: 10.1002/ecs2.4253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Wei Mao
- College of Ecology and Environment Hainan University Haikou China
- Department of Biology, Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA
| | - Zhibin Sun
- Natural Resource Ecology Laboratory Colorado State University Fort Collins Colorado USA
| | | | | | - Anping Chen
- Department of Biology, Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA
| | - Melinda D. Smith
- Department of Biology, Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA
| |
Collapse
|
5
|
Hodel RGJ, Massatti R, Bishop SGD, Knowles LL. Testing which axes of species differentiation underlie covariance of phylogeographic similarity among montane sedge species. Evolution 2021; 75:349-364. [PMID: 33386752 DOI: 10.1111/evo.14159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/02/2020] [Accepted: 12/16/2020] [Indexed: 11/30/2022]
Abstract
Co-distributed species may exhibit similar phylogeographic patterns due to shared environmental factors or discordant patterns attributed to the influence of species-specific traits. Although either concordant or discordant patterns could occur due to chance, stark differences in key traits (e.g., dispersal ability) may readily explain differences between species. Multiple species' attributes may affect genetic patterns, and it is difficult to isolate the contribution of each. Here we compare the relative importance of two attributes, range size, and niche breadth, in shaping the spatial structure of genetic variation in four sedge species (genus Carex) from the Rocky Mountains. Within two pairs of co-distributed species, one species exhibits narrow niche breadth, while the other species has broad niche breadth. Furthermore, one pair of co-distributed species has a large geographical distribution, while the other has a small distribution. The four species represent a natural experiment to tease apart how these attributes (i.e., range size and niche breadth) affect phylogeographic patterns. Investigations of genetic variation and structure revealed that range size, but not niche breadth, is related to spatial genetic covariation across species of montane sedges. Our study highlights how isolating key attributes across multiple species can inform their impact on processes driving intraspecific differentiation.
Collapse
Affiliation(s)
- Richard G J Hodel
- Department of Ecology and Evolutionary Biology, Biological Sciences Building, University of Michigan, Ann Arbor, Michigan, 48109.,Present Address: Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, DC, 20013
| | - Rob Massatti
- U.S. Geological Survey, Southwest Biological Science Center, Flagstaff, Arizona, 86001
| | - Sasha G D Bishop
- Department of Ecology and Evolutionary Biology, Biological Sciences Building, University of Michigan, Ann Arbor, Michigan, 48109
| | - L Lacey Knowles
- Department of Ecology and Evolutionary Biology, Biological Sciences Building, University of Michigan, Ann Arbor, Michigan, 48109
| |
Collapse
|
6
|
Nistelberger HM, Tapper S, Coates DJ, McArthur SL, Byrne M. As old as the hills: Pliocene palaeogeographical processes influence patterns of genetic structure in the widespread, common shrub Banksia sessilis. Ecol Evol 2021; 11:1069-1082. [PMID: 33520187 PMCID: PMC7820165 DOI: 10.1002/ece3.7127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 11/04/2020] [Accepted: 11/25/2020] [Indexed: 11/12/2022] Open
Abstract
The impact of Quaternary glaciation on the development of phylogeographic structure in plant species is well documented. In unglaciated landscapes, phylogeographic patterns tend to reflect processes relating to persistence and stochasticity, yet other factors, associated with the palaeogeographical history of the landscape, including geomorphological events, can also have a significant influence. The unglaciated landscape of south-western Western Australia is an ideal location to observe these ancient drivers of lineage diversification, with tectonic activity associated with the Darling Fault in the late Pliocene attributed to patterns of deep phylogeographic divergence in a widespread tree from this region. Interestingly, other species within this region have not shown this pattern and this palaeogeographical boundary therefore presents an opportunity to examine age and historical distribution of plant species endemic to this region. In this study, we assess patterns of genetic diversity and structure across 28 populations of the widespread shrub Banksia sessilis using three cpDNA markers and nine nuclear microsatellite markers. Sixteen cpDNA haplotypes were identified, comprising two major chloroplast DNA lineages that are estimated to have diverged in the Pliocene, approximately 3.3 million years ago. This timing coincides with major geomorphological processes in the landscape, including the separation of the Darling Plateau from the adjacent Swan Coastal Plain, as well as eustatic changes on the Swan Coastal Plain that are likely to have resulted in the physical isolation of historical plant lineages. Chloroplast lineages were broadly aligned with populations associated with older lateritic soils of the Darling Plateau and Geraldton sandplains or the younger sandy soils associated with the Swan Coastal Plain and Southern Coastline. This structural pattern of lateritic versus non-lateritic division was not observed in the nuclear microsatellite data that identified three genetic clades that roughly corresponded to populations in the North, South, and Central portions of the distributions.
Collapse
Affiliation(s)
- Heidi Maria Nistelberger
- Department of Biodiversity, Conservation and AttractionsBiodiversity and Conservation ScienceBentleyWAAustralia
| | - Sarah‐Louise Tapper
- Department of Biodiversity, Conservation and AttractionsBiodiversity and Conservation ScienceBentleyWAAustralia
| | - David J. Coates
- Department of Biodiversity, Conservation and AttractionsBiodiversity and Conservation ScienceBentleyWAAustralia
| | - Shelley L. McArthur
- Department of Biodiversity, Conservation and AttractionsBiodiversity and Conservation ScienceBentleyWAAustralia
| | - Margaret Byrne
- Department of Biodiversity, Conservation and AttractionsBiodiversity and Conservation ScienceBentleyWAAustralia
| |
Collapse
|
7
|
Browne L. Victoria L. Sork—Recipient of the 2020 Molecular Ecology Prize. Mol Ecol 2020. [DOI: 10.1111/mec.15772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luke Browne
- School of the Environment Yale University New Haven CT USA
| |
Collapse
|
8
|
Galuszynski NC, Potts AJ. Do Centres of Endemism provide a spatial context for predicting and preserving plant phylogeographic patterns in the Cape Floristic Region, South Africa? PeerJ 2020; 8:e10045. [PMID: 33024648 PMCID: PMC7519721 DOI: 10.7717/peerj.10045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/04/2020] [Indexed: 11/20/2022] Open
Abstract
Aim The evolutionary forces that gave rise to the exceptional plant species richness of the Cape Floristic Region (CFR) have also likely played a role at the intraspecific level (i.e. plant populations)-and thereby generating shared phylogeographic patterns among taxa. Here we test whether plant populations in the CFR exhibit phylogeographic breaks across the boundaries between Centres of Endemism (CoEs). The boundaries between CoEs (derived from the distribution ranges of endemic taxa and currently mapped at a coarse, Quarter Degree Square scale) represent a spatial proxy for the evolutionary diversifying drivers acting on plant taxa in the CFR. Location The CFR, located along the southern Cape of South Africa. Methods Published phylogeographic literature were compiled and spatial patterns of genetic divergence re-analysed to assess the frequency at which CFR plant taxa exhibit phylogeographic breaks either (1) across or (2) within CoE boundaries. Population pairs from each study were compared across and within CoEs and scored as either exhibiting a phylogeographic break or not. Results Phylogeographic breaks in Cape plants were found to occur across the boundaries of CoEs more often than not. Significantly more population pairs exhibited phylogeographic breaks across CoE boundaries (506 of the 540, χ2 = 886, p < 0.001) and fewer breaks within CoEs (94 of 619, χ2 = 300, p < 0.001) than would be expected if there was equal probability of a genetic break occurring across CoE boundaries. Main conclusions The evolutionary forces that have produced and maintained the exceptional plant diversity in the CFR appear to have operated at the population level, producing similar patterns of phylogeographic structuring of plant lineages regardless of life history or taxonomy. This tendency for Cape plants to exhibit shared patterns of spatially structured genetic diversity that match the distribution of endemic taxa may assist CFR phylogeographers to streamline sampling efforts and test novel hypotheses pertaining to the distribution of genetic diversity among CFR plant taxa. Additionally, the resolution at which CoEs are mapped should be refined, which may provide a valuable tool for future conservation planning and the development of precautionary guidelines for the translocation of genetic material during species reintroductions and commercial cultivation of Cape endemic crops. Thus, to answer the question 'Do Centres of Endemism provide a spatial context for predicting and preserving plant phylogeographic patterns in the Cape Floristic Region, South Africa?'-yes, CoEs do appear to be an important tool for Cape phylogeographers. However, the data is limited and more plant phylogeography work is needed in the CFR.
Collapse
Affiliation(s)
| | - Alastair J Potts
- Botany, Nelson Mandela University, Port Elizabeth, Eastern Cape, South Africa
| |
Collapse
|
9
|
Nistelberger HM, Binks RM, van Leeuwen S, Coates DJ, McArthur SL, Macdonald BM, Hankinson M, Byrne M. Extensive Genetic Connectivity and Historical Persistence Are Features of Two Widespread Tree Species in the Ancient Pilbara Region of Western Australia. Genes (Basel) 2020; 11:E863. [PMID: 32751318 PMCID: PMC7465080 DOI: 10.3390/genes11080863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 11/29/2022] Open
Abstract
Phylogeographic studies can be used as a tool to understand the evolutionary history of a landscape, including the major drivers of species distributions and diversity. Extensive research has been conducted on phylogeographic patterns of species found in northern hemisphere landscapes that were affected by glaciations, yet the body of literature for older, unaffected landscapes is still underrepresented. The Pilbara region of north-western Australia is an ancient and vast landscape that is topographically complex, consisting of plateaus, gorges, valleys, and ranges, and experiences extreme meteorological phenomena including seasonal cyclonic activity. These features are expected to influence patterns of genetic structuring throughout the landscape either by promoting or restricting the movement of pollen and seed. Whilst a growing body of literature exists for the fauna endemic to this region, less is known about the forces shaping the evolution of plant taxa. In this study we investigate the phylogeography of two iconic Pilbara tree species, the Hamersley Bloodwood (Corymbia hamersleyana) and Western Gidgee (Acacia pruinocarpa), by assessing patterns of variation and structure in several chloroplast DNA regions and nuclear microsatellite loci developed for each species. Gene flow was found to be extensive in both taxa and there was evidence of long-distance seed dispersal across the region (pollen to seed ratios of 6.67 and 2.96 for C. hamersleyana and A. pruinocarpa, respectively), which may result from flooding and strong wind gusts associated with extreme cyclonic activity. Both species possessed high levels of cpDNA genetic diversity in comparison to those from formerly glaciated landscapes (C. hamersleyana = 14 haplotypes, A. pruinocarpa = 37 haplotypes) and showed evidence of deep lineage diversification occurring from the late Miocene, a time of intensifying aridity in this landscape that appears to be a critical driver of evolution in Pilbara taxa. In contrast to another study, we did not find evidence for topographic features acting as refugia for the widely sampled C. hamersleyana.
Collapse
Affiliation(s)
- Heidi M. Nistelberger
- Department of Biodiversity, Conservation and Attractions, Biodiversity and Conservation Science, Locked Bag 104, Bentley Delivery Centre, Perth, WA 6983, Australia; (R.M.B.); (S.v.L.); (D.J.C.); (S.L.M.); (B.M.M.); (M.H.); (M.B.)
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Sakaguchi S, Nagano AJ, Yasugi M, Kudoh H, Ishikawa N, Ito M. Genetic consequences of being a dwarf: do evolutionary changes in life-history traits influence gene flow patterns in populations of the world's smallest goldenrod? ANNALS OF BOTANY 2020; 126:163-177. [PMID: 32249287 PMCID: PMC7304467 DOI: 10.1093/aob/mcaa062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS Contrasting life-history traits can evolve through generations of dwarf plant ecotypes, yet such phenotypic changes often involve decreased plant size and reproductive allocation, which can configure seed dispersal patterns and, subsequently, population demography. Therefore, evolutionary transitions to dwarfism can represent good study systems to test the roles of life-history traits in population demography by comparing genetic structure between related but phenotypically divergent ecotypes. METHODS In this study, we examined an ecotypic taxon pair of the world's smallest goldenrod (stem height 2.6 cm) in alpine habitats and its closely related lowland taxon (30-40 cm) found on Yakushima Island, Japan. Genetic variation in chloroplast DNA sequences, nuclear microsatellites and genome-wide single-nucleotide polymorphisms were used to investigate 197 samples from 16 populations, to infer the population genetic demography and compare local genetic structure of the ecotypes. KEY RESULTS We found a pronounced level of genetic differentiation among alpine dwarf populations, which were much less geographically isolated than their lowland counterparts. In particular, several neighbouring dwarf populations (located ~500 m apart) harboured completely different sets of chloroplast haplotypes and nuclear genetic clusters. Demographic modelling revealed that the dwarf populations have not exchanged genes at significant levels after population divergence. CONCLUSIONS These lines of evidence suggest that substantial effects of genetic drift have operated on these dwarf populations. The low-growing stature and reduced fecundity (only 3.1 heads per plant) of the dwarf plants may have reduced gene flow and rare long-distance seed dispersal among habitat patches, although the effects of life-history traits require further evaluation using ecological approaches.
Collapse
Affiliation(s)
- Shota Sakaguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, Japan
| | | | - Masaki Yasugi
- National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
| | - Naoko Ishikawa
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Motomi Ito
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Huang Y, Morrison GR, Brelsford A, Franklin J, Jolles DD, Keeley JE, Parker VT, Saavedra N, Sanders AC, Stoughton TR, Wahlert GA, Litt A. Subspecies differentiation in an enigmatic chaparral shrub species. AMERICAN JOURNAL OF BOTANY 2020; 107:923-940. [PMID: 32498125 DOI: 10.1002/ajb2.1496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/12/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Delimiting biodiversity units is difficult in organisms in which differentiation is obscured by hybridization, plasticity, and other factors that blur phenotypic boundaries. Such work is more complicated when the focal units are subspecies, the definition of which has not been broadly explored in the era of modern genetic methods. Eastwood manzanita (Arctostaphylos glandulosa Eastw.) is a widely distributed and morphologically complex chaparral shrub species with much subspecific variation, which has proven challenging to categorize. Currently 10 subspecies are recognized, however, many of them are not geographically segregated, and morphological intermediates are common. Subspecies delimitation is of particular importance in this species because two of the subspecies are rare. The goal of this study was to apply an evolutionary definition of "subspecies" to characterize structure within Eastwood manzanita. METHODS We used publicly available geospatial environmental data and reduced-representation genome sequencing to characterize environmental and genetic differentiation among subspecies. In addition, we tested whether subspecies could be differentiated by environmentally associated genetic variation. RESULTS Our analyses do not show genetic differentiation among subspecies of Eastwood manzanita, with the exception of one of the two rare subspecies. In addition, our environmental analyses did not show ecological differentiation, though limitations of the analysis prevent strong conclusions. CONCLUSIONS Genetic structure within Eastwood manzanita does not correspond to current subspecies circumscriptions, but rather reflects geographic distribution. Our study suggests that subspecies concepts need to be reconsidered in long-lived plant species, especially in the age of next-generation sequencing.
Collapse
Affiliation(s)
- Yi Huang
- University of California, Riverside, Riverside, CA, 92521
| | | | - Alan Brelsford
- University of California, Riverside, Riverside, CA, 92521
| | - Janet Franklin
- University of California, Riverside, Riverside, CA, 92521
| | | | - Jon E Keeley
- U.S. Geological Survey Western Ecological Research Center, Three Rivers, CA, 93271
| | | | | | | | | | | | - Amy Litt
- University of California, Riverside, Riverside, CA, 92521
| |
Collapse
|
12
|
Feng L, Ruhsam M, Wang YH, Li ZH, Wang XM. Using demographic model selection to untangle allopatric divergence and diversification mechanisms in the Rheum palmatum complex in the Eastern Asiatic Region. Mol Ecol 2020; 29:1791-1805. [PMID: 32306487 DOI: 10.1111/mec.15448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 12/22/2022]
Abstract
Allopatric divergence is often initiated by geological uplift and restriction to sky-islands, climate oscillations, or river capture. However, it can be difficult to establish which mechanism was the most likely to generate the current phylogeographical structure of a species. Recently, genomic data in conjunction with a model testing framework have been applied to address this issue in animals. To test whether such an approach is also likely to be successful in plants, we used population genomic data of the Rheum palmatum complex from the Eastern Asiatic Region, in conjunction with biogeographical reconstruction and demographic model selection, to identify the potential mechanism(s) which have led to the current level of divergence. Our results indicate that the R. palmatum complex originated in the central Hengduan Mts and possibly in regions further east, and then dispersed westward and eastward resulting in genetically distinct lineages. Populations are likely to have diverged in refugia during climate oscillations followed by subsequent expansion and secondary contact. However, model simulations within the western lineage of the R. palmatum complex cannot reject a restriction to sky-islands as a possible mechanism of diversification due to the genetically ambiguous position of one population. This highlights that genetically mixed populations might introduce ambiguity regarding the best diversification model in some cases. Although it might be possible to resolve this ambiguity using other data, sometimes this could prove to be difficult in complex biogeographical areas.
Collapse
Affiliation(s)
- Li Feng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Qiyao Resources and Anti-tumor Activities, Shaanxi Administration of Traditional Chinese Medicine, School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | | | - Yi-Han Wang
- College of Life Sciences, Henan Agriculture University, Zhengzhou, China
| | - Zhong-Hu Li
- College of Life Sciences, Northwest University, Xi'an, China
| | - Xu-Mei Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Qiyao Resources and Anti-tumor Activities, Shaanxi Administration of Traditional Chinese Medicine, School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Kremer A, Hipp AL. Oaks: an evolutionary success story. THE NEW PHYTOLOGIST 2020; 226:987-1011. [PMID: 31630400 PMCID: PMC7166131 DOI: 10.1111/nph.16274] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 09/13/2019] [Indexed: 05/10/2023]
Abstract
The genus Quercus is among the most widespread and species-rich tree genera in the northern hemisphere. The extraordinary species diversity in America and Asia together with the continuous continental distribution of a limited number of European species raise questions about how macro- and microevolutionary processes made the genus Quercus an evolutionary success. Synthesizing conclusions reached during the past three decades by complementary approaches in phylogenetics, phylogeography, genomics, ecology, paleobotany, population biology and quantitative genetics, this review aims to illuminate evolutionary processes leading to the radiation and expansion of oaks. From opposing scales of time and geography, we converge on four overarching explanations of evolutionary success in oaks: accumulation of large reservoirs of diversity within populations and species; ability for rapid migration contributing to ecological priority effects on lineage diversification; high rates of evolutionary divergence within clades combined with convergent solutions to ecological problems across clades; and propensity for hybridization, contributing to adaptive introgression and facilitating migration. Finally, we explore potential future research avenues, emphasizing the integration of microevolutionary and macroevolutionary perspectives.
Collapse
Affiliation(s)
- Antoine Kremer
- BIOGECO, INRA, Université de Bordeaux, 69 Route
d'Arcachon, 33612 Cestas, France
| | - Andrew L. Hipp
- The Morton Arboretum, Lisle IL 60532-1293, USA
- The Field Museum, Chicago IL 60605, USA
| |
Collapse
|
14
|
Fačkovcová Z, Slovák M, Vďačný P, Melichárková A, Zozomová-Lihová J, Guttová A. Spatio-temporal formation of the genetic diversity in the Mediterranean dwelling lichen during the Neogene and Quaternary epochs. Mol Phylogenet Evol 2019; 144:106704. [PMID: 31821879 DOI: 10.1016/j.ympev.2019.106704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 10/14/2019] [Accepted: 12/06/2019] [Indexed: 01/06/2023]
Abstract
Genetic patterns of lichenized fungi often display a mosaic-like and difficult to interpret structure blurring their evolutionary history. The genetic diversity and phylogeographic pattern of a mycobiont of the predominantly Mediterranean dwelling lichen Solenopsora candicans were investigated on the base of extensive sampling (361 individuals, 77 populations) across its entire distribution range. We tested whether the genetic pattern of S. candicans mirrors paleoclimatic and paleogeological events in the Mediterranean and adjacent regions. The divergence time estimates indicated a Tertiary origin for S. candicans, with formation of intraspecific diversity initiated in the Late Miocene. The distribution of the most divergent haplotypes, mostly of a pre-Pleistocene origin, was restricted to the eastern or western extremities of the Mediterranean exhibiting Kiermack disjunction. The population genetic diversity analyses indicated multiple diversity centres and refugia for S. candicans across the entire Mediterranean Basin. While the south Mediterranean regions harboured both the Tertiary and Quaternary born diversity, conforming to the 'cumulative refugia' paradigm, the Apennine and Balkan Peninsulas in the north hosted mostly younger Pleistocene haplotypes and lineages. The recent population expansion of S. candicans might have occurred in the middle Pleistocene with a population burst in the Apennine and Balkan peninsulas. The presence of unique haplotypes in Central Europe indicates the existence of extra-Mediterranean microrefugia. This study presents the first comprehensive lichen phylogeography from the Mediterranean region and simultaneously reports for the first time the glacial survival of a warm-adapted lichen in the temperate zone.
Collapse
Affiliation(s)
- Zuzana Fačkovcová
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523 Bratislava, Slovakia.
| | - Marek Slovák
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523 Bratislava, Slovakia; Department of Botany, Charles University, Benátská 2, 12801 Prague, Czech Republic
| | - Peter Vďačný
- Department of Zoology, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Andrea Melichárková
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523 Bratislava, Slovakia
| | - Judita Zozomová-Lihová
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523 Bratislava, Slovakia
| | - Anna Guttová
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523 Bratislava, Slovakia
| |
Collapse
|
15
|
Morris AB, Shaw J. Markers in time and space: A review of the last decade of plant phylogeographic approaches. Mol Ecol 2019; 27:2317-2333. [PMID: 29675939 DOI: 10.1111/mec.14695] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 01/28/2023]
Abstract
Plant studies comprise a relatively small proportion of the phylogeographic literature, likely as a consequence of the fundamental challenges posed by the complex genomic structures and life history strategies of these organisms. Comparative plastomics (i.e., comparisons of mutation rates within and among regions of the chloroplast genome) across plant lineages has led to an increased understanding of which markers are likely to provide the most information at low taxonomic levels. However, the extent to which the results of such work have influenced the literature has not been fully assessed, nor has the extent to which plant phylogeographers explicitly analyse markers in time and space, both of which are integral components of the field. Here, we reviewed more than 400 publications from the last decade of plant phylogeography to specifically address the following questions: (i) What is the phylogenetic breadth of studies to date? (ii) What molecular markers have been used, and why were they chosen? (iii) What kinds of markers are most frequently used and in what combinations? (iv) How frequently are divergence time estimation and ecological niche modelling used in plant phylogeography? Our results indicate that chloroplast DNA sequence data remain the primary tool of choice, followed distantly by nuclear DNA sequences and microsatellites. Less than half (42%) of all studies use divergence time estimation, while even fewer use ecological niche modelling (14%). We discuss the implications of our findings, as well as the need for community standards on data reporting.
Collapse
Affiliation(s)
- Ashley B Morris
- Department of Biology and Center for Molecular Biosciences, Middle Tennessee State University, Murfreesboro, Tennessee
| | - Joey Shaw
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, Chattanooga, Tennessee
| |
Collapse
|
16
|
Herman JS, Stojak J, Paupério J, Jaarola M, Wójcik JM, Searle JB. Genetic variation in field voles ( Microtus agrestis) from the British Isles: selective sweeps or population bottlenecks? Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/bly213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - Joanna Stojak
- Mammal Research Institute of Polish Academy of Sciences, Białowieża, Poland
| | - Joana Paupério
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Maarit Jaarola
- Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | - Jan M Wójcik
- Mammal Research Institute of Polish Academy of Sciences, Białowieża, Poland
| | - Jeremy B Searle
- Department of Ecology and Evolution, Cornell University, Ithaca, NY, USA
| |
Collapse
|
17
|
de Lafontaine G, Napier JD, Petit RJ, Hu FS. Invoking adaptation to decipher the genetic legacy of past climate change. Ecology 2018; 99:1530-1546. [PMID: 29729183 DOI: 10.1002/ecy.2382] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/27/2018] [Accepted: 04/12/2018] [Indexed: 12/31/2022]
Abstract
Persistence of natural populations during periods of climate change is likely to depend on migration (range shifts) or adaptation. These responses were traditionally considered discrete processes and conceptually divided into the realms of ecology and evolution. In a milestone paper, Davis and Shaw (2001) Science 292:673 argued that the interplay of adaptation and migration was central to biotic responses to Quaternary climate, but since then there has been no synthesis of efforts made to set up this research program. Here we review some of the salient findings from molecular genetic studies assessing ecological and evolutionary responses to Quaternary climate change. These studies have revolutionized our understanding of population processes associated with past species migration. However, knowledge remains limited about the role of natural selection for local adaptation of populations to Quaternary environmental fluctuations and associated range shifts, and for the footprints this might have left on extant populations. Next-generation sequencing technologies, high-resolution paleoclimate analyses, and advances in population genetic theory offer an unprecedented opportunity to test hypotheses about adaptation through time. Recent population genomics studies have greatly improved our understanding of the role of contemporary adaptation to local environments in shaping spatial patterns of genetic diversity across modern-day landscapes. Advances in this burgeoning field provide important conceptual and methodological bases to decipher the historical role of natural selection and assess adaptation to past environmental variation. We suggest that a process called "temporal conditional neutrality" has taken place: some alleles favored in glacial environments become selectively neutral in modern-day conditions, whereas some alleles that had been neutral during glacial periods become under selection in modern environments. Building on this view, we present a new integrative framework for addressing the interplay of demographic and adaptive evolutionary responses to Quaternary climate dynamics, the research agenda initially envisioned by Davis and Shaw (2001) Science 292:673.
Collapse
Affiliation(s)
- Guillaume de Lafontaine
- Canada Research Chair in Integrative Biology of Northern Flora, Université du Québec à Rimouski, Rimouski, Québec, G5L 3A1, Canada.,Department of Plant Biology, University of Illinois, Urbana, Illinois, 61801, USA
| | - Joseph D Napier
- Department of Plant Biology, University of Illinois, Urbana, Illinois, 61801, USA
| | - Rémy J Petit
- Biogeco, INRA, Univ. Bordeaux, Cestas, 33610, France
| | - Feng Sheng Hu
- Department of Plant Biology, University of Illinois, Urbana, Illinois, 61801, USA.,Department of Geology, University of Illinois, Urbana, Illinois, 61801, USA
| |
Collapse
|
18
|
Klimova A, Ortega‐Rubio A, Vendrami DLJ, Hoffman JI. Genotyping by sequencing reveals contrasting patterns of population structure, ecologically mediated divergence, and long-distance dispersal in North American palms. Ecol Evol 2018; 8:5873-5890. [PMID: 29938100 PMCID: PMC6010798 DOI: 10.1002/ece3.4125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/20/2022] Open
Abstract
Comparative studies can provide powerful insights into processes that affect population divergence and thereby help to elucidate the mechanisms by which contemporary populations may respond to environmental change. Furthermore, approaches such as genotyping by sequencing (GBS) provide unprecedented power for resolving genetic differences among species and populations. We therefore used GBS to provide a genomewide perspective on the comparative population structure of two palm genera, Washingtonia and Brahea, on the Baja California peninsula, a region of high landscape and ecological complexity. First, we used phylogenetic analysis to address taxonomic uncertainties among five currently recognized species. We resolved three main clades, the first corresponding to W. robusta and W. filifera, the second to B. brandegeei and B. armata, and the third to B. edulis from Guadalupe Island. Focusing on the first two clades, we then delved deeper by investigating the underlying population structure. Striking differences were found, with GBS uncovering four distinct Washingtonia populations and identifying a suite of loci associated with temperature, consistent with ecologically mediated divergence. By contrast, individual mountain ranges could be resolved in Brahea and few loci were associated with environmental variables, implying a more prominent role of neutral divergence. Finally, evidence was found for long-distance dispersal events in Washingtonia but not Brahea, in line with knowledge of the dispersal mechanisms of these palms including the possibility of human-mediated dispersal. Overall, our study demonstrates the power of GBS together with a comparative approach to elucidate markedly different patterns of genomewide divergence mediated by multiple effectors.
Collapse
Affiliation(s)
- Anastasia Klimova
- Centro de Investigaciones Biologicas del Noroeste S.C.La PazBaja California SurMexico
- Department of Animal BehaviourBielefeld UniversityBielefeldGermany
| | - Alfredo Ortega‐Rubio
- Centro de Investigaciones Biologicas del Noroeste S.C.La PazBaja California SurMexico
| | | | | |
Collapse
|
19
|
Sakaguchi S, Kimura T, Kyan R, Maki M, Nishino T, Ishikawa N, Nagano AJ, Honjo MN, Yasugi M, Kudoh H, Li P, Choi HJ, Chernyagina OA, Ito M. Phylogeographic analysis of the East Asian goldenrod (Solidago virgaurea complex, Asteraceae) reveals hidden ecological diversification with recurrent formation of ecotypes. ANNALS OF BOTANY 2018; 121:489-500. [PMID: 29300816 PMCID: PMC5838820 DOI: 10.1093/aob/mcx182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/13/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS The processes and mechanisms underlying lineage diversification are major topics in evolutionary biology. Eurasian goldenrod species of the Solidago virgaurea complex show remarkable morphological and ecological diversity in the Japanese Archipelago, with ecotypic taxa well adapted to specific environments (climate, edaphic conditions and disturbance regimes). The species complex is a suitable model to investigate the evolutionary processes of actively speciating plant groups, due to its ability to evolve in relation to environmental adaptation and its historical population dynamics. METHODS Two chloroplast markers, 18 nuclear microsatellite markers and ddRAD-sequencing were used to infer population genetic demography of S. virgaurea complex with its related species/genera. KEY RESULTS Our analysis showed that populations in Japan form an evolutionary unit, which was genetically diverged from adjacent continental populations. The phylogenetic structure within the archipelago strongly corresponds to the geography, but interestingly there is no concordance between genetic structure and ecotypic boundaries; neighbouring populations of distinct ecotypes share a genetic background. CONCLUSIONS We propose that the traits specific to the ecotypic entities are maintained by natural selection or are very recently generated and have little effect on the genomes, making genome-wide genetic markers unsuitable for detecting ecotypic differentiation. Furthermore, some sporadically distributed taxa (found as rheophytes and alpine plants) were repeatedly generated from a more widespread taxon in geographically distant areas by means of selection. Overall, this study showed that the goldenrod complex has a high ability to evolve, enabling rapid ecological diversification over a recent timeframe.
Collapse
Affiliation(s)
- Shota Sakaguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, Japan
- For correspondence. E-mail
| | - Takuma Kimura
- Botanical Gardens, Tohoku University, Kawauchi, Sendai, Japan
| | - Ryuta Kyan
- Botanical Gardens, Tohoku University, Kawauchi, Sendai, Japan
| | - Masayuki Maki
- Botanical Gardens, Tohoku University, Kawauchi, Sendai, Japan
| | - Takako Nishino
- Graduate School of Science, Osaka Prefecture University, Osaka, Japan
| | - Naoko Ishikawa
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, Japan
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
- JST CREST, Honcho, Kawaguchi, Saitama, Japan
| | - Mie N Honjo
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
| | - Masaki Yasugi
- National Institute for Basic Biology, Higashiyama, Myodaiji, Okazaki, Aichi, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
| | - Pan Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hyeok Jae Choi
- Department of Biology & Chemistry, Changwon National University, Changwon, Gyeongnam, Korea
| | - Olga A Chernyagina
- Kamchatka Branch of Pacific Geographical Institute, Petropavlovsk-Kamchatskyi, Russia
| | - Motomi Ito
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Sampson J, Tapper S, Coates D, Hankinson M, Mcarthur S, Byrne M. Persistence with episodic range expansion from the early Pleistocene: the distribution of genetic variation in the forest tree Corymbia calophylla (Myrtaceae) in south-western Australia. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/blx168] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Jane Sampson
- Science and Conservation Division, Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, WA, Australia
| | - Sarah Tapper
- Science and Conservation Division, Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, WA, Australia
| | - David Coates
- Science and Conservation Division, Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, WA, Australia
| | - Maggie Hankinson
- Science and Conservation Division, Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, WA, Australia
| | - Shelley Mcarthur
- Science and Conservation Division, Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, WA, Australia
| | - Margaret Byrne
- Science and Conservation Division, Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, WA, Australia
| |
Collapse
|
21
|
|
22
|
Hauser DA, Keuter A, McVay JD, Hipp AL, Manos PS. The evolution and diversification of the red oaks of the California Floristic Province (Quercus section Lobatae, series Agrifoliae). AMERICAN JOURNAL OF BOTANY 2017; 104:1581-1595. [PMID: 29885216 DOI: 10.3732/ajb.1700291] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/19/2017] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY The California Floristic Province (CA-FP) is a unique and diverse region of floral endemism, yet the timing and nature of divergence and diversification of many lineages remain underexplored. We seek to elucidate the evolutionary history of the red oaks of the CA-FP, the Agrifoliae. METHODS We collected PstI-associated RAD-seq data as well as morphometrics from individuals of the four species across their ranges, including varieties and hybrids. Phylogeny and divergence times were estimated. We analyzed morphological differentiation in over 70 plants using PCA and assessed species delimitation and admixture using genotype clustering analysis in over 40 plants. KEY RESULTS We find that the Agrifoliae are monophyletic and sister to all other red oak species. Within the Agrifoliae, all species are supported, with Quercus kelloggii sister to a clade of subevergreen taxa: (Quercus agrifolia - (Q. parvula + Q. wislizeni)). Molecular and morphometric analyses are equivocal for named varieties. Notably, Q. parvula var. tamalpaisensis appears to be part of a hybrid swarm between Q. parvula and Q. wislizeni. Dating estimates were concordant with previous hypotheses and geological evidence, with diversification occurring between 10 and 20 million years ago. CONCLUSIONS The Agrifoliae represent a geographically discrete, early-diverging red oak lineage that diversified during the period of drying and warming associated with Sierran uplift during the middle Miocene. Molecular differentiation within the clade supports the current taxonomy, including an east-west species level pattern (Q. parvula and Q. wislizeni) and north-south intraspecific patterns to some degree, although the latter require additional study.
Collapse
Affiliation(s)
- Duncan A Hauser
- Department of Biology, Duke University, Box 90338, Durham, North Carolina 27708 USA
| | - Al Keuter
- Kenneth S. Norris Center for Natural History, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064 USA
| | - John D McVay
- Department of Biology, Duke University, Box 90338, Durham, North Carolina 27708 USA
| | - Andrew L Hipp
- The Morton Arboretum, 4100 Illinois Route 53, Lisle, Illinois 60532-1293 USA
| | - Paul S Manos
- Department of Biology, Duke University, Box 90338, Durham, North Carolina 27708 USA
| |
Collapse
|
23
|
Dal Grande F, Sharma R, Meiser A, Rolshausen G, Büdel B, Mishra B, Thines M, Otte J, Pfenninger M, Schmitt I. Adaptive differentiation coincides with local bioclimatic conditions along an elevational cline in populations of a lichen-forming fungus. BMC Evol Biol 2017; 17:93. [PMID: 28359299 PMCID: PMC5374679 DOI: 10.1186/s12862-017-0929-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/01/2017] [Indexed: 12/12/2022] Open
Abstract
Background Many fungal species occur across a variety of habitats. Particularly lichens, fungi forming symbioses with photosynthetic partners, have evolved remarkable tolerances for environmental extremes. Despite their ecological importance and ubiquity, little is known about the genetic basis of adaption in lichen populations. Here we studied patterns of genome-wide differentiation in the lichen-forming fungus Lasallia pustulata along an altitudinal gradient in the Mediterranean region. We resequenced six populations as pools and identified highly differentiated genomic regions. We then detected gene-environment correlations while controlling for shared population history and pooled sequencing bias, and performed ecophysiological experiments to assess fitness differences of individuals from different environments. Results We detected two strongly differentiated genetic clusters linked to Mediterranean and temperate-oceanic climate, and an admixture zone, which coincided with the transition between the two bioclimates. High altitude individuals showed ecophysiological adaptations to wetter and more shaded conditions. Highly differentiated genome regions contained a number of genes associated with stress response, local environmental adaptation, and sexual reproduction. Conclusions Taken together our results provide evidence for a complex interplay between demographic history and spatially varying selection acting on a number of key biological processes, suggesting a scenario of ecological speciation. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0929-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
| | - Rahul Sharma
- Institut für Ökologie, Evolution und Diversität, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Anjuli Meiser
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Institut für Ökologie, Evolution und Diversität, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Gregor Rolshausen
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Burkhard Büdel
- Plant Ecology and Systematics, Biology Department, University of Kaiserslautern, 67653, Kaiserslautern, Germany
| | - Bagdevi Mishra
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Marco Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Markus Pfenninger
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Institut für Ökologie, Evolution und Diversität, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany. .,Institut für Ökologie, Evolution und Diversität, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany.
| |
Collapse
|