1
|
Shugarts Devanapally NM, Sathya A, Yi AL, Chan WM, Marre JA, Jose AM. Intergenerational transport of double-stranded RNA in C. elegans can limit heritable epigenetic changes. eLife 2025; 13:RP99149. [PMID: 39902803 PMCID: PMC11793870 DOI: 10.7554/elife.99149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
RNAs in circulation carry sequence-specific regulatory information between cells in plant, animal, and host-pathogen systems. Such RNA can cross generational boundaries, as evidenced by somatic double-stranded RNA (dsRNA) in the nematode Caenorhabditis elegans silencing genes of matching sequence in progeny. Here we dissect the intergenerational path taken by dsRNA from parental circulation and discover that cytosolic import through the dsRNA importer SID-1 in the parental germline and/or developing progeny varies with developmental time and dsRNA substrates. Loss of SID-1 enhances initiation of heritable RNA silencing within the germline and causes changes in the expression of the sid-1-dependent gene sdg-1 that last for more than 100 generations after restoration of SID-1. The SDG-1 protein is enriched in perinuclear germ granules required for heritable RNA silencing but is expressed from a retrotransposon targeted by such silencing. This auto-inhibitory loop suggests how retrotransposons could persist by hosting genes that regulate their own silencing.
Collapse
Affiliation(s)
| | - Aishwarya Sathya
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege ParkUnited States
| | - Andrew L Yi
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege ParkUnited States
| | - Winnie M Chan
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege ParkUnited States
| | - Julia A Marre
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege ParkUnited States
| | - Antony M Jose
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege ParkUnited States
| |
Collapse
|
2
|
Zhou L, Jiang L, Li L, Ma C, Xia P, Ding W, Liu Y. A germline-to-soma signal triggers an age-related decline of mitochondrial stress response. Nat Commun 2024; 15:8723. [PMID: 39379393 PMCID: PMC11461804 DOI: 10.1038/s41467-024-53064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
The abilities of an organism to cope with extrinsic stresses and activate cellular stress responses decline during aging. The signals that modulate stress responses in aged animals remain to be elucidated. Here, we discover that feeding Caenorhabditis elegans (C. elegans) embryo lysates to adult worms enabled the animals to activate the mitochondrial unfolded protein response (UPRmt) upon mitochondrial perturbations. This discovery led to subsequent investigations that unveil a hedgehog-like signal that is transmitted from the germline to the soma in adults to inhibit UPRmt in somatic tissues. Additionally, we find that the levels of germline-expressed piRNAs in adult animals markedly decreased. This reduction in piRNA levels coincides with the production and secretion of a hedgehog-like signal and suppression of the UPRmt in somatic cells. Building upon existing research, our study further elucidates the intricate mechanisms of germline-to-soma signaling and its role in modulating the trade-offs between reproduction and somatic maintenance within the context of organismal aging.
Collapse
Affiliation(s)
- Liankui Zhou
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Liu Jiang
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
| | - Lan Li
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
| | - Chengchuan Ma
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Peixue Xia
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Wanqiu Ding
- Bioinformatics Core Facility, College of Future Technology, Peking University, 100871, Beijing, China
| | - Ying Liu
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.
| |
Collapse
|
3
|
Erdmann EA, Forbes M, Becker M, Perez S, Hundley HA. ADR-2 regulates fertility and oocyte fate in Caenorhabditis elegans. Genetics 2024; 228:iyae114. [PMID: 39028799 PMCID: PMC11457940 DOI: 10.1093/genetics/iyae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 05/24/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
RNA-binding proteins (RBPs) play essential roles in coordinating germline gene expression and development in all organisms. Here, we report that loss of ADR-2, a member of the adenosine deaminase acting on RNA family of RBPs and the sole adenosine-to-inosine RNA-editing enzyme in Caenorhabditis elegans, can improve fertility in multiple genetic backgrounds. First, we show that loss of RNA editing by ADR-2 restores normal embryo production to subfertile animals that transgenically express a vitellogenin (yolk protein) fusion to green fluorescent protein. Using this phenotype, a high-throughput screen was designed to identify RBPs that when depleted yield synthetic phenotypes with loss of adr-2. The screen uncovered a genetic interaction between ADR-2 and SQD-1, a member of the heterogeneous nuclear ribonucleoprotein family of RBPs. Microscopy, reproductive assays, and high-throughput sequencing reveal that sqd-1 is essential for the onset of oogenesis and oogenic gene expression in young adult animals and that loss of adr-2 can counteract the effects of loss of sqd-1 on gene expression and rescue the switch from spermatogenesis to oogenesis. Together, these data demonstrate that ADR-2 can contribute to the suppression of fertility and suggest novel roles for both RNA editing-dependent and RNA editing-independent mechanisms in regulating embryogenesis.
Collapse
Affiliation(s)
- Emily A Erdmann
- Genome, Cell and Developmental Biology Graduate Program, Indiana University, Bloomington, IN 47405, USA
| | - Melanie Forbes
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Margaret Becker
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington IN 47405, USA
| | - Sarina Perez
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Heather A Hundley
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
4
|
Knudsen-Palmer DR, Raman P, Ettefa F, De Ravin L, Jose AM. Target-specific requirements for RNA interference can arise through restricted RNA amplification despite the lack of specialized pathways. eLife 2024; 13:RP97487. [PMID: 39161220 PMCID: PMC11335349 DOI: 10.7554/elife.97487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Since double-stranded RNA (dsRNA) is effective for silencing a wide variety of genes, all genes are typically considered equivalent targets for such RNA interference (RNAi). Yet, loss of some regulators of RNAi in the nematode Caenorhabditis elegans can selectively impair the silencing of some genes. Here, we show that such selective requirements can be explained by an intersecting network of regulators acting on genes with differences in their RNA metabolism. In this network, the Maelstrom domain-containing protein RDE-10, the intrinsically disordered protein MUT-16, and the Argonaute protein NRDE-3 work together so that any two are required for silencing one somatic gene, but each is singly required for silencing another somatic gene, where only the requirement for NRDE-3 can be overcome by enhanced dsRNA processing. Quantitative models and their exploratory simulations led us to find that (1) changing cis-regulatory elements of the target gene can reduce the dependence on NRDE-3, (2) animals can recover from silencing in non-dividing cells, and (3) cleavage and tailing of mRNAs with UG dinucleotides, which makes them templates for amplifying small RNAs, are enriched within 'pUG zones' matching the dsRNA. Similar crosstalk between pathways and restricted amplification could result in apparently selective silencing by endogenous RNAs.
Collapse
Affiliation(s)
- Daphne R Knudsen-Palmer
- Department of Cell Biology and Molecular Genetics, Biological Sciences Graduate Program, University of MarylandCollege ParkUnited States
| | - Pravrutha Raman
- Department of Cell Biology and Molecular Genetics, Biological Sciences Graduate Program, University of MarylandCollege ParkUnited States
| | - Farida Ettefa
- Department of Cell Biology and Molecular Genetics, Biological Sciences Graduate Program, University of MarylandCollege ParkUnited States
| | - Laura De Ravin
- Department of Cell Biology and Molecular Genetics, Biological Sciences Graduate Program, University of MarylandCollege ParkUnited States
| | - Antony M Jose
- Department of Cell Biology and Molecular Genetics, Biological Sciences Graduate Program, University of MarylandCollege ParkUnited States
| |
Collapse
|
5
|
Li Y, Bai H, Liu W, Zhou W, Gu H, Zhao P, Zhu M, Li Y, Yan X, Zhao N, Huang X. Intergenerational epigenetic inheritance mediated by MYS-2/MOF in the pathogenesis of Alzheimer's disease. iScience 2024; 27:110588. [PMID: 39220410 PMCID: PMC11363564 DOI: 10.1016/j.isci.2024.110588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 02/08/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Although autosomal-dominant inheritance is believed an important cause of familial clustering Alzheimer's disease (FAD), it covers only a small proportion of FAD incidence, and so we investigated epigenetic memory as an alternative mechanism to contribute for intergenerational AD pathogenesis. Our data in vivo showed that mys-2 of Caenorhabditis elegans that encodes a putative MYST acetyltransferase responsible for H4K16 acetylation modulated AD occurrence. The phenotypic improvements in the parent generation caused by mys-2 disfunction were passed to their progeny due to epigenetic memory, which resulted in similar H4K16ac levels among the candidate target genes of MYS-2 and similar gene expression patterns of the AD-related pathways. Furthermore, the ROS/CDK-5/ATM pathway functioned as an upstream activator of MYS-2. Our study indicated that MYS-2/MOF could be inherited intergenerationally via epigenetic mechanisms in C. elegans and mammalian cell of AD model, providing a new insight into our understanding of the etiology and inheritance of FAD.
Collapse
Affiliation(s)
- Yuhong Li
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
- College of Biological Resources and Food Engineering, Qujing Normal University, Qujing 655000, China
| | - Hua Bai
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
- School of Public Health, Kunming Medical University, Kunming 650500, China
| | - Wenwen Liu
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Wenhui Zhou
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Huan Gu
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Peiji Zhao
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Man Zhu
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
- College of Biological Resources and Food Engineering, Qujing Normal University, Qujing 655000, China
| | - Yixin Li
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Xinyi Yan
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Ninghui Zhao
- Neurosurgery of the Second Hospital Affiliated with Kunming Medical University, Kunming 650101, China
| | - Xiaowei Huang
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| |
Collapse
|
6
|
Zhao JH, Liu QY, Xie ZM, Guo HS. Exploring the challenges of RNAi-based strategies for crop protection. ADVANCED BIOTECHNOLOGY 2024; 2:23. [PMID: 39883232 PMCID: PMC11740845 DOI: 10.1007/s44307-024-00031-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 01/31/2025]
Abstract
RNA silencing (or RNA interference, RNAi) initiated by double-stranded RNAs is a conserved mechanism for regulating gene expression in eukaryotes. RNAi-based crop protection strategies, including host-induced gene silencing (HIGS), spray-induced gene silencing (SIGS) and microbe-induced gene silencing (MIGS), have been successfully used against various pests and pathogens. Here, we highlight the challenges surrounding dsRNA design, large-scale production of dsRNA and dsRNA delivery systems. Addressing these questions will accelerate the lab-to-field transition of RNAi-based strategies. Moreover, based on studies of exogenous dsRNA-induced RNAi inheritance in Caenorhabditis elegans, we speculate that RNAi-based strategies would confer longer-lasting protection for crops against pests or fungal pathogens.
Collapse
Affiliation(s)
- Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Yan Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Zong-Ming Xie
- Institute of Cotton Research, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Knudsen-Palmer DR, Raman P, Ettefa F, De Ravin L, Jose AM. Target-specific requirements for RNA interference can arise through restricted RNA amplification despite the lack of specialized pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.07.527351. [PMID: 36798330 PMCID: PMC9934570 DOI: 10.1101/2023.02.07.527351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Since double-stranded RNA (dsRNA) is effective for silencing a wide variety of genes, all genes are typically considered equivalent targets for such RNA interference (RNAi). Yet, loss of some regulators of RNAi in the nematode C. elegans can selectively impair the silencing of some genes. Here we show that such selective requirements can be explained by an intersecting network of regulators acting on genes with differences in their RNA metabolism. In this network, the Maelstrom domain-containing protein RDE-10, the intrinsically disordered protein MUT-16, and the Argonaute protein NRDE-3 work together so that any two are required for silencing one somatic gene, but each is singly required for silencing another somatic gene, where only the requirement for NRDE-3 can be overcome by enhanced dsRNA processing. Quantitative models and their exploratory simulations led us to find that (1) changing cis-regulatory elements of the target gene can reduce the dependence on NRDE-3, (2) animals can recover from silencing in non-dividing cells and (3) cleavage and tailing of mRNAs with UG dinucleotides, which makes them templates for amplifying small RNAs, is enriched within 'pUG zones' matching the dsRNA. Similar crosstalk between pathways and restricted amplification could result in apparently selective silencing by endogenous RNAs.
Collapse
Affiliation(s)
- Daphne R. Knudsen-Palmer
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, USA. Biological Sciences Graduate Program, University of Maryland, College Park, USA
| | - Pravrutha Raman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, USA. Biological Sciences Graduate Program, University of Maryland, College Park, USA
- Current address: Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Farida Ettefa
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, USA. Biological Sciences Graduate Program, University of Maryland, College Park, USA
- Current address: Institute for Systems Genetics, New York University School of Medicine, New York, NY, USA
| | - Laura De Ravin
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, USA. Biological Sciences Graduate Program, University of Maryland, College Park, USA
| | - Antony M. Jose
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, USA. Biological Sciences Graduate Program, University of Maryland, College Park, USA
| |
Collapse
|
8
|
Erdmann EA, Forbes M, Becker M, Perez S, Hundley HA. ADR-2 regulates fertility and oocyte fate in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.01.565157. [PMID: 37961348 PMCID: PMC10635048 DOI: 10.1101/2023.11.01.565157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
RNA binding proteins play essential roles in coordinating germline gene expression and development in all organisms. Here, we report that loss of ADR-2, a member of the Adenosine DeAminase acting on RNA (ADAR) family of RNA binding proteins and the sole adenosine-to-inosine RNA editing enzyme in C. elegans, can improve fertility in multiple genetic backgrounds. First, we show that loss of RNA editing by ADR-2 restores normal embryo production to subfertile animals that transgenically express a vitellogenin (yolk protein) fusion to green fluorescent protein. Using this phenotype, a high-throughput screen was designed to identify RNA binding proteins that when depleted yield synthetic phenotypes with loss of adr-2. The screen uncovered a genetic interaction between ADR-2 and SQD-1, a member of the heterogenous nuclear ribonucleoprotein (hnRNP) family of RNA binding proteins. Microscopy, reproductive assays, and high-throughput sequencing reveal that sqd-1 is essential for the onset of oogenesis and oogenic gene expression in young adult animals, and that loss of adr-2 can counteract the effects of loss of sqd-1 on gene expression and rescue the switch from spermatogenesis to oogenesis. Together, these data demonstrate that ADR-2 can contribute to the suppression of fertility and suggest novel roles for both RNA editing-dependent and independent mechanisms in regulating embryogenesis.
Collapse
Affiliation(s)
- Emily A. Erdmann
- Genome, Cell and Developmental Biology Graduate Program, Indiana University, Bloomington IN, US 47405
| | - Melanie Forbes
- Department of Biology, Indiana University, Bloomington IN, US 47405
| | - Margaret Becker
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington IN, US 47405
| | - Sarina Perez
- Department of Biology, Indiana University, Bloomington IN, US 47405
| | | |
Collapse
|
9
|
Jose AM. Heritable epigenetic changes are constrained by the dynamics of regulatory architectures. eLife 2024; 12:RP92093. [PMID: 38717010 PMCID: PMC11078544 DOI: 10.7554/elife.92093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
Interacting molecules create regulatory architectures that can persist despite turnover of molecules. Although epigenetic changes occur within the context of such architectures, there is limited understanding of how they can influence the heritability of changes. Here, I develop criteria for the heritability of regulatory architectures and use quantitative simulations of interacting regulators parsed as entities, their sensors, and the sensed properties to analyze how architectures influence heritable epigenetic changes. Information contained in regulatory architectures grows rapidly with the number of interacting molecules and its transmission requires positive feedback loops. While these architectures can recover after many epigenetic perturbations, some resulting changes can become permanently heritable. Architectures that are otherwise unstable can become heritable through periodic interactions with external regulators, which suggests that mortal somatic lineages with cells that reproducibly interact with the immortal germ lineage could make a wider variety of architectures heritable. Differential inhibition of the positive feedback loops that transmit regulatory architectures across generations can explain the gene-specific differences in heritable RNA silencing observed in the nematode Caenorhabditis elegans. More broadly, these results provide a foundation for analyzing the inheritance of epigenetic changes within the context of the regulatory architectures implemented using diverse molecules in different living systems.
Collapse
|
10
|
Camara H, Inan MD, Vergani-Junior CA, Pinto S, Knittel TL, Salgueiro WG, Tonon-da-Silva G, Ramirez J, de Moraes D, Braga DL, De-Souza EA, Mori MA. Tissue-specific overexpression of systemic RNA interference components limits lifespan in C. elegans. Gene 2024; 895:148014. [PMID: 37984536 DOI: 10.1016/j.gene.2023.148014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
Intertissue RNA transport recently emerged as a novel signaling mechanism. In mammals, mounting evidence suggests that small RNA transfer between cells is widespread and used in various physiological contexts. In the nematode C. elegans, a similar mechanism is conferred by the systemic RNAi pathway. Members of the Systemic RNA Interference Defective (SID) family act at different steps of cellular RNA uptake and export. The limiting step in systemic RNA interference (RNAi) is the import of extracellular RNAs via the conserved double-stranded (dsRNA)-gated dsRNA channel SID-1. To better understand the role of RNAs as intertissue signaling molecules, we modified the function of SID-1 in specific tissues of C. elegans. We observed that sid-1 loss-of-function mutants are as healthy as wild-type worms. Conversely, overexpression of sid-1 in C. elegans intestine, muscle, or neurons rendered worms short-lived. The effects of intestinal sid-1 overexpression were attenuated by silencing the components of systemic RNAi sid-1, sid-2 and sid-5, implicating systemic RNA signaling in the lifespan reduction. Accordingly, tissue-specific overexpression of sid-2 and sid-5 also reduced worm lifespan. Additionally, an RNAi screen for components of several non-coding RNA pathways revealed that silencing the miRNA biogenesis proteins PASH-1 and DCR-1 rendered the lifespan of worms with intestinal sid-1 overexpression similar to controls. Collectively, our data support the notion that systemic RNA signaling must be tightly regulated, and unbalancing that process provokes a reduction in lifespan. We termed this phenomenon Intercellular/Extracellular Systemic RNA imbalance (InExS).
Collapse
Affiliation(s)
- Henrique Camara
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil; Program in Molecular Biology, Universidade Federal de São Paulo, Brazil
| | - Mehmet Dinçer Inan
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Carlos A Vergani-Junior
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Silas Pinto
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil; Program in Molecular Biology, Universidade Federal de São Paulo, Brazil
| | - Thiago L Knittel
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Willian G Salgueiro
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Guilherme Tonon-da-Silva
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Juliana Ramirez
- Program in Molecular Biology, Universidade Federal de São Paulo, Brazil
| | - Diogo de Moraes
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Deisi L Braga
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Evandro A De-Souza
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Molecular Biology, Universidade Federal de São Paulo, Brazil; Program in Molecular Biology and Biotechnology, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil; Program in Molecular Biology, Universidade Federal de São Paulo, Brazil; Obesity and Comorbidities Research Center (OCRC), Universidade Estadual de Campinas, Campinas, SP, Brazil; Experimental Medicine Research Cluster (EMRC), Universidade Estadual de Campinas, Campinas, SP, Brazil.
| |
Collapse
|
11
|
Sato A, Mihirogi Y, Wood C, Suzuki Y, Truebano M, Bishop J. Heterogeneity in maternal mRNAs within clutches of eggs in response to thermal stress during the embryonic stage. BMC Ecol Evol 2024; 24:21. [PMID: 38347459 PMCID: PMC10860308 DOI: 10.1186/s12862-024-02203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND The origin of variation is of central interest in evolutionary biology. Maternal mRNAs govern early embryogenesis in many animal species, and we investigated the possibility that heterogeneity in maternal mRNA provisioning of eggs can be modulated by environmental stimuli. RESULTS We employed two sibling species of the ascidian Ciona, called here types A and B, that are adapted to different temperature regimes and can be hybridized. Previous study showed that hybrids using type B eggs had higher susceptibility to thermal stress than hybrids using type A eggs. We conducted transcriptome analyses of multiple single eggs from crosses using eggs of the different species to compare the effects of maternal thermal stress on heterogeneity in egg provisioning, and followed the effects across generations. We found overall decreases of heterogeneity of egg maternal mRNAs associated with maternal thermal stress. When the eggs produced by the F1 AB generation were crossed with type B sperm and the progeny ('ABB' generation) reared unstressed until maturation, the overall heterogeneity of the eggs produced was greater in a clutch from an individual with a heat-stressed mother compared to one from a non-heat-stressed mother. By examining individual genes, we found no consistent overall effect of thermal stress on heterogeneity of expression in genes involved in developmental buffering. In contrast, heterogeneity of expression in signaling molecules was directly affected by thermal stress. CONCLUSIONS Due to the absence of batch replicates and variation in the number of reads obtained, our conclusions are very limited. However, contrary to the predictions of bet-hedging, the results suggest that maternal thermal stress at the embryo stage is associated with reduced heterogeneity of maternal mRNA provision in the eggs subsequently produced by the stressed individual, but there is then a large increase in heterogeneity in eggs of the next generation, although itself unstressed. Despite its limitations, our study presents a proof of concept, identifying a model system, experimental approach and analytical techniques capable of providing a significant advance in understanding the impact of maternal environment on developmental heterogeneity.
Collapse
Affiliation(s)
- Atsuko Sato
- Department of Biology, Ochanomizu University, Otsuka, Bunkyo-Ku, Tokyo, 112-8610, Japan.
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK.
- Human Life Innovation Center, Ochanomizu University, Otsuka, Bunkyo-Ku, Tokyo, 112-8610, Japan.
- Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki Aza Aoba, Aoba-Ku, Sendai, 980-8578, Japan.
| | - Yukie Mihirogi
- Department of Biology, Ochanomizu University, Otsuka, Bunkyo-Ku, Tokyo, 112-8610, Japan
| | - Christine Wood
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Yutaka Suzuki
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwano-Ha, Chiba, 277-8561, Japan
| | - Manuela Truebano
- Marine Biology and Ecology Research Center, School of Biological and Marine Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK
| | - John Bishop
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| |
Collapse
|
12
|
Kloc M, Halasa M, Kubiak JZ, Ghobrial RM. Invertebrate Immunity, Natural Transplantation Immunity, Somatic and Germ Cell Parasitism, and Transposon Defense. Int J Mol Sci 2024; 25:1072. [PMID: 38256145 PMCID: PMC10815962 DOI: 10.3390/ijms25021072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
While the vertebrate immune system consists of innate and adaptive branches, invertebrates only have innate immunity. This feature makes them an ideal model system for studying the cellular and molecular mechanisms of innate immunity sensu stricto without reciprocal interferences from adaptive immunity. Although invertebrate immunity is evolutionarily older and a precursor of vertebrate immunity, it is far from simple. Despite lacking lymphocytes and functional immunoglobulin, the invertebrate immune system has many sophisticated mechanisms and features, such as long-term immune memory, which, for decades, have been exclusively attributed to adaptive immunity. In this review, we describe the cellular and molecular aspects of invertebrate immunity, including the epigenetic foundation of innate memory, the transgenerational inheritance of immunity, genetic immunity against invading transposons, the mechanisms of self-recognition, natural transplantation, and germ/somatic cell parasitism.
Collapse
Affiliation(s)
- Malgorzata Kloc
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX 77030, USA; (M.H.); (R.M.G.)
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Genetics, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - Marta Halasa
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX 77030, USA; (M.H.); (R.M.G.)
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Jacek Z. Kubiak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine-National Research Institute (WIM-PIB), Szaserow 128, 04-141 Warsaw, Poland;
- Dynamics and Mechanics of Epithelia Group, Faculty of Medicine, Institute of Genetics and Development of Rennes, University of Rennes, CNRS, UMR 6290, 35043 Rennes, France
| | - Rafik M. Ghobrial
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX 77030, USA; (M.H.); (R.M.G.)
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
13
|
Dias BG. Legacies of salient environmental experiences-insights from chemosensation. Chem Senses 2024; 49:bjae002. [PMID: 38219073 PMCID: PMC10825851 DOI: 10.1093/chemse/bjae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Indexed: 01/15/2024] Open
Abstract
Evidence for parental environments profoundly influencing the physiology, biology, and neurobiology of future generations has been accumulating in the literature. Recent efforts to understand this phenomenon and its underlying mechanisms have sought to use species like rodents and insects to model multi-generational legacies of parental experiences like stress and nutritional exposures. From these studies, we have come to appreciate that parental exposure to salient environmental experiences impacts the cadence of brain development, hormonal responses to stress, and the expression of genes that govern cellular responses to stress in offspring. Recent studies using chemosensory exposure have emerged as a powerful tool to shed new light on how future generations come to be influenced by environments to which parents are exposed. With a specific focus on studies that have leveraged such use of salient chemosensory experiences, this review synthesizes our current understanding of the concept, causes, and consequences of the inheritance of chemosensory legacies by future generations and how this field of inquiry informs the larger picture of how parental experiences can influence offspring biology.
Collapse
Affiliation(s)
- Brian G Dias
- Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Los Angeles, CA, United States
- Division of Endocrinology, Diabetes and Metabolism, Children’s Hospital Los Angeles, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
14
|
Ow MC, Hall SE. Inheritance of Stress Responses via Small Non-Coding RNAs in Invertebrates and Mammals. EPIGENOMES 2023; 8:1. [PMID: 38534792 DOI: 10.3390/epigenomes8010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 03/28/2024] Open
Abstract
While reports on the generational inheritance of a parental response to stress have been widely reported in animals, the molecular mechanisms behind this phenomenon have only recently emerged. The booming interest in epigenetic inheritance has been facilitated in part by the discovery that small non-coding RNAs are one of its principal conduits. Discovered 30 years ago in the Caenorhabditis elegans nematode, these small molecules have since cemented their critical roles in regulating virtually all aspects of eukaryotic development. Here, we provide an overview on the current understanding of epigenetic inheritance in animals, including mice and C. elegans, as it pertains to stresses such as temperature, nutritional, and pathogenic encounters. We focus on C. elegans to address the mechanistic complexity of how small RNAs target their cohort mRNAs to effect gene expression and how they govern the propagation or termination of generational perdurance in epigenetic inheritance. Presently, while a great amount has been learned regarding the heritability of gene expression states, many more questions remain unanswered and warrant further investigation.
Collapse
Affiliation(s)
- Maria C Ow
- Department of Biology, Syracuse University, Syracuse, NY 13210, USA
| | - Sarah E Hall
- Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, NY 13210, USA
| |
Collapse
|
15
|
Jose AM. Heritable epigenetic changes are constrained by the dynamics of regulatory architectures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544138. [PMID: 37333369 PMCID: PMC10274868 DOI: 10.1101/2023.06.07.544138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Interacting molecules create regulatory architectures that can persist despite turnover of molecules. Although epigenetic changes occur within the context of such architectures, there is limited understanding of how they can influence the heritability of changes. Here I develop criteria for the heritability of regulatory architectures and use quantitative simulations of interacting regulators parsed as entities, their sensors and the sensed properties to analyze how architectures influence heritable epigenetic changes. Information contained in regulatory architectures grows rapidly with the number of interacting molecules and its transmission requires positive feedback loops. While these architectures can recover after many epigenetic perturbations, some resulting changes can become permanently heritable. Such stable changes can (1) alter steady-state levels while preserving the architecture, (2) induce different architectures that persist for many generations, or (3) collapse the entire architecture. Architectures that are otherwise unstable can become heritable through periodic interactions with external regulators, which suggests that the evolution of mortal somatic lineages with cells that reproducibly interact with the immortal germ lineage could make a wider variety of regulatory architectures heritable. Differential inhibition of the positive feedback loops that transmit regulatory architectures across generations can explain the gene-specific differences in heritable RNA silencing observed in the nematode C. elegans, which range from permanent silencing to recovery from silencing within a few generations and subsequent resistance to silencing. More broadly, these results provide a foundation for analyzing the inheritance of epigenetic changes within the context of the regulatory architectures implemented using diverse molecules in different living systems.
Collapse
|
16
|
Wang W, Sherry T, Cheng X, Fan Q, Cornell R, Liu J, Xiao Z, Pocock R. An intestinal sphingolipid confers intergenerational neuroprotection. Nat Cell Biol 2023; 25:1196-1207. [PMID: 37537365 PMCID: PMC10415181 DOI: 10.1038/s41556-023-01195-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/27/2023] [Indexed: 08/05/2023]
Abstract
In animals, maternal diet and environment can influence the health of offspring. Whether and how maternal dietary choice impacts the nervous system across multiple generations is not well understood. Here we show that feeding Caenorhabditis elegans with ursolic acid, a natural plant product, improves axon transport and reduces adult-onset axon fragility intergenerationally. Ursolic acid provides neuroprotection by enhancing maternal provisioning of sphingosine-1-phosphate, a bioactive sphingolipid. Intestine-to-oocyte sphingosine-1-phosphate transfer is required for intergenerational neuroprotection and is dependent on the RME-2 lipoprotein yolk receptor. Sphingosine-1-phosphate acts intergenerationally by upregulating the transcription of the acid ceramidase-1 (asah-1) gene in the intestine. Spatial regulation of sphingolipid metabolism is critical, as inappropriate asah-1 expression in neurons causes developmental axon outgrowth defects. Our results show that sphingolipid homeostasis impacts the development and intergenerational health of the nervous system. The ability of specific lipid metabolites to act as messengers between generations may have broad implications for dietary choice during reproduction.
Collapse
Affiliation(s)
- Wenyue Wang
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Tessa Sherry
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Xinran Cheng
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Qi Fan
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Rebecca Cornell
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Jie Liu
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Zhicheng Xiao
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
17
|
Ewe CK, Rechavi O. The third barrier to transgenerational inheritance in animals: somatic epigenetic resetting. EMBO Rep 2023; 24:e56615. [PMID: 36862326 PMCID: PMC10074133 DOI: 10.15252/embr.202256615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
After early controversy, it is now increasingly clear that acquired responses to environmental factors may perpetuate across multiple generations-a phenomenon termed transgenerational epigenetic inheritance (TEI). Experiments with Caenorhabditis elegans, which exhibits robust heritable epigenetic effects, demonstrated small RNAs as key factors of TEI. Here, we discuss three major barriers to TEI in animals, two of which, the "Weismann barrier" and germline epigenetic reprogramming, have been known for decades. These are thought to effectively prevent TEI in mammals but not to the same extent in C. elegans. We argue that a third barrier-that we termed "somatic epigenetic resetting"-may further inhibit TEI and, unlike the other two, restricts TEI in C. elegans as well. While epigenetic information can overcome the Weismann barrier and transmit from the soma to the germline, it usually cannot "travel back" directly from the germline to the soma in subsequent generations. Nevertheless, heritable germline memory may still influence the animal's physiology by indirectly modifying gene expression in somatic tissues.
Collapse
Affiliation(s)
- Chee Kiang Ewe
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
Zhang J, Li H, Zhong X, Tian J, Segers A, Xia L, Francis F. Silencing an aphid-specific gene SmDSR33 for aphid control through plant-mediated RNAi in wheat. FRONTIERS IN PLANT SCIENCE 2023; 13:1100394. [PMID: 36699834 PMCID: PMC9868936 DOI: 10.3389/fpls.2022.1100394] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Grain aphid (Sitobion miscanthi) is one of the most dominant and devastating insect pests in wheat, which causes substantial losses to wheat production each year. Engineering transgenic plants expressing double strand RNA (dsRNA) targeting an insect-specific gene has been demonstrated to provide an alternative environmentally friendly strategy for aphid management through plant-mediated RNA interference (RNAi). Here we identified and characterized a novel potential RNAi target gene (SmDSR33) which was a gene encoding a putative salivary protein. We then generated stable transgenic wheat lines expressing dsRNA for targeted silencing of SmDSR33 in grain aphids through plant-mediated RNAi. After feeding on transgenic wheat plants expressing SmDSR33-dsRNA, the attenuated expression levels of SmDSR33 in aphids were observed when compared to aphids feeding on wild-type plants. The decreased SmDSR33 expression levels thus resulted in significantly reduced fecundity and survival, and decreased reproduction of aphids. We also observed altered aphid feeding behaviors such as longer duration of intercellular stylet pathway and shorter duration of passive ingestion in electroneurography assays. Furthermore, both the surviving aphids and their offspring exhibited decreased survival rates and fecundity, indicating that the silencing effect could be persistent and transgenerational in grain aphids. The results demonstrated that SmDSR33 can be selected as an effective RNAi target for wheat aphid control. Silencing of an essential salivary protein gene involved in ingestion through plant-mediated RNAi could be exploited as an effective strategy for aphid control in wheat.
Collapse
Affiliation(s)
- Jiahui Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Huiyuan Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Xue Zhong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Jinfu Tian
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Arnaud Segers
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Lanqin Xia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences/Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| |
Collapse
|
19
|
Wang SY, Kim K, O'Brown ZK, Levan A, Dodson AE, Kennedy SG, Chernoff C, Greer EL. Hypoxia induces transgenerational epigenetic inheritance of small RNAs. Cell Rep 2022; 41:111800. [PMID: 36516753 PMCID: PMC9847139 DOI: 10.1016/j.celrep.2022.111800] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 09/23/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022] Open
Abstract
Animals sense and adapt to decreased oxygen availability, but whether and how hypoxia exposure in ancestors can elicit phenotypic consequences in normoxia-reared descendants are unclear. We show that hypoxia educes an intergenerational reduction in lipids and a transgenerational reduction in fertility in the nematode Caenorhabditis elegans. The transmission of these epigenetic phenotypes is dependent on repressive histone-modifying enzymes and the argonaute HRDE-1. Feeding naive C. elegans small RNAs extracted from hypoxia-treated worms is sufficient to induce a fertility defect. Furthermore, the endogenous small interfering RNA F44E5.4/5 is upregulated intergenerationally in response to hypoxia, and soaking naive normoxia-reared C. elegans with F44E5.4/5 double-stranded RNA (dsRNA) is sufficient to induce an intergenerational fertility defect. Finally, we demonstrate that labeled F44E5.4/5 dsRNA is itself transmitted from parents to children. Our results suggest that small RNAs respond to the environment and are sufficient to transmit non-genetic information from parents to their naive children.
Collapse
Affiliation(s)
- Simon Yuan Wang
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Kathleen Kim
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Zach Klapholz O'Brown
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Aileen Levan
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Anne Elizabeth Dodson
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Scott G Kennedy
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Chaim Chernoff
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Eric Lieberman Greer
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Brenner JL, Jyo EM, Mohammad A, Fox P, Jones V, Mardis E, Schedl T, Maine EM. TRIM-NHL protein, NHL-2, modulates cell fate choices in the C. elegans germ line. Dev Biol 2022; 491:43-55. [PMID: 36063869 PMCID: PMC9922029 DOI: 10.1016/j.ydbio.2022.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/19/2022] [Accepted: 08/27/2022] [Indexed: 12/01/2022]
Abstract
Many tissues contain multipotent stem cells that are critical for maintaining tissue function. In Caenorhabditis elegans, germline stem cells allow gamete production to continue in adulthood. In the gonad, GLP-1/Notch signaling from the distal tip cell niche to neighboring germ cells activates a complex regulatory network to maintain a stem cell population. GLP-1/Notch signaling positively regulates production of LST-1 and SYGL-1 proteins that, in turn, interact with a set of PUF/FBF proteins to positively regulate the stem cell fate. We previously described sog (suppressor of glp-1 loss of function) and teg (tumorous enhancer of glp-1 gain of function) genes that limit the stem cell fate and/or promote the meiotic fate. Here, we show that sog-10 is allelic to nhl-2. NHL-2 is a member of the conserved TRIM-NHL protein family whose members can bind RNA and ubiquitinate protein substrates. We show that NHL-2 acts, at least in part, by inhibiting the expression of PUF-3 and PUF-11 translational repressor proteins that promote the stem cell fate. Two other negative regulators of stem cell fate, CGH-1 (conserved germline helicase) and ALG-5 (Argonaute protein), may work with NHL-2 to modulate the stem cell population. In addition, NHL-2 activity promotes the male germ cell fate in XX animals.
Collapse
Affiliation(s)
- John L Brenner
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Erin M Jyo
- Department of Biology, Syracuse University, Syracuse, NY, 13210, USA
| | - Ariz Mohammad
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Paul Fox
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Vovanti Jones
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Elaine Mardis
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Eleanor M Maine
- Department of Biology, Syracuse University, Syracuse, NY, 13210, USA.
| |
Collapse
|
21
|
Zhai C, Zhang N, Li X, Chen X, Sun F, Dong M. Fusion and expansion of vitellogenin vesicles during Caenorhabditis elegans intestinal senescence. Aging Cell 2022; 21:e13719. [PMID: 36199214 PMCID: PMC9649609 DOI: 10.1111/acel.13719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/20/2022] [Accepted: 09/01/2022] [Indexed: 01/25/2023] Open
Abstract
Some of the most conspicuous aging phenotypes of C. elegans are related to post-reproductive production of vitellogenins (Vtg), which form yolk protein (YP) complexes after processing and lipid loading. Vtg/YP levels show huge increases with age, and inhibition of this extends lifespan, but how subcellular and organism-wide distribution of these proteins changes with age has not been systematically explored. Here, this has been done to understand how vitellogenesis promotes aging. The age-associated changes of intestinal vitellogenin vesicles (VVs), pseudocoelomic yolk patches (PYPs), and gonadal yolk organelles (YOs) have been characterized by immuno-electron microscopy. We find that from reproductive adult day 2 (AD 2) to post-reproductive AD 6 and AD 9, intestinal VVs expand from 0.2 to 3-4 μm in diameter or by >3000 times in volume, PYPs increase by >3 times in YP concentration and volume, while YOs in oocytes shrink slightly from 0.5 to 0.4 μm in diameter or by 49% in volume. In AD 6 and AD 9 worms, mislocalized YOs found in the hypodermis, uterine cells, and the somatic gonadal sheath can reach a size of 10 μm across in the former two tissues. This remarkable size increase of VVs and that of mislocalized YOs in post-reproductive worms are accompanied by extensive fusion between these Vtg/YP-containing vesicular structures in somatic cells. In contrast, no fusion is seen between YOs in oocytes. We propose that in addition to the continued production of Vtg, excessive fusion between VVs and mislocalized YOs in the soma worsen the aging pathologies seen in C. elegans.
Collapse
Affiliation(s)
- Chao Zhai
- School of Life SciencesPeking UniversityBeijingChina,National Institute of Biological SciencesBeijingChina
| | - Nan Zhang
- National Institute of Biological SciencesBeijingChina
| | - Xi‐Xia Li
- Center for Biological Imaging, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Xi Chen
- Institute of AutomationChinese Academy of SciencesBeijingChina
| | - Fei Sun
- Center for Biological Imaging, Institute of BiophysicsChinese Academy of SciencesBeijingChina,National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of BiophysicsChinese Academy of SciencesBeijingChina,University of the Chinese Academy of SciencesBeijingChina
| | - Meng‐Qiu Dong
- National Institute of Biological SciencesBeijingChina
| |
Collapse
|
22
|
Horn T, Narov KD, Panfilio KA. Persistent Parental RNAi in the Beetle Tribolium castaneum Involves Maternal Transmission of Long Double-Stranded RNA. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2100064. [PMID: 36620196 PMCID: PMC9744488 DOI: 10.1002/ggn2.202100064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Indexed: 01/11/2023]
Abstract
Parental RNA interference (pRNAi) is a powerful and widely used method for gene-specific knockdown. Yet in insects its efficacy varies between species, and how the systemic response is transmitted from mother to offspring remains elusive. Using the beetle Tribolium castaneum, an RT-qPCR strategy to distinguish the presence of double-stranded RNA (dsRNA) from endogenous mRNA is reported. It is found that injected dsRNA is directly transmitted into the egg and persists throughout embryogenesis. Despite this depletion of dsRNA from the mother, it is shown that strong pRNAi can persist for months before waning at strain-specific rates. In seeking the receptor proteins for cellular uptake of long dsRNA into the egg, a phylogenomics profiling approach of candidate proteins is also presented. A visualization strategy based on taxonomically hierarchical assessment of orthology clustering data to rapidly assess gene age and copy number changes, refined by sequence-based evidence, is demonstrated. Repeated losses of SID-1-like channel proteins in the arthropods, including wholesale loss in the Heteroptera (true bugs), which are nonetheless highly sensitive to pRNAi, are thereby documented. Overall, practical considerations for insect pRNAi against a backdrop of outstanding questions on the molecular mechanism of dsRNA transmission for long-term, systemic knockdown are elucidated.
Collapse
Affiliation(s)
- Thorsten Horn
- Institute for Zoology: Developmental BiologyUniversity of CologneZülpicher Straße 47b50674CologneGermany
| | - Kalin D. Narov
- School of Life SciencesUniversity of WarwickGibbet Hill CampusCoventryCV4 7ALUK
| | - Kristen A. Panfilio
- Institute for Zoology: Developmental BiologyUniversity of CologneZülpicher Straße 47b50674CologneGermany
- School of Life SciencesUniversity of WarwickGibbet Hill CampusCoventryCV4 7ALUK
| |
Collapse
|
23
|
Legüe M, Caneo M, Aguila B, Pollak B, Calixto A. Interspecies effectors of a transgenerational memory of bacterial infection in Caenorhabditis elegans. iScience 2022; 25:104627. [PMID: 35800768 PMCID: PMC9254006 DOI: 10.1016/j.isci.2022.104627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/16/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
The inheritance of memory is an adaptive trait. Microbes challenge the immunity of organisms and trigger behavioral adaptations that can be inherited, but how bacteria produce inheritance of a trait is unknown. We use Caenorhabditis elegans and its bacteria to study the transgenerational RNA dynamics of interspecies crosstalk leading to a heritable behavior. A heritable response of C. elegans to microbes is the pathogen-induced diapause (PIDF), a state of suspended animation to evade infection. We identify RsmY, a small RNA involved in quorum sensing in Pseudomonas aeruginosa as a trigger of PIDF. The histone methyltransferase (HMT) SET-18/SMYD3 and the argonaute HRDE-1, which promotes multi-generational silencing in the germline, are also needed for PIDF initiation. The HMT SET-25/EHMT2 is necessary for memory maintenance in the transgenerational lineage. Our work is a starting point to understanding microbiome-induced inheritance of acquired traits, and the transgenerational influence of microbes in health and disease.
Collapse
Affiliation(s)
- Marcela Legüe
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile
| | - Mauricio Caneo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile
| | - Blanca Aguila
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile
- Programa de Doctorado en Microbiología, Universidad de Chile, Santiago de Chile, Chile
| | | | - Andrea Calixto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile
| |
Collapse
|
24
|
Braun M, Shoshani S, Teixeira J, Mellul Shtern A, Miller M, Granot Z, Fischer SE, Garcia SMA, Tabach Y. Asymmetric inheritance of RNA toxicity in C. elegans expressing CTG repeats. iScience 2022; 25:104246. [PMID: 35494247 PMCID: PMC9051633 DOI: 10.1016/j.isci.2022.104246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 11/18/2022] Open
Abstract
Nucleotide repeat expansions are a hallmark of over 40 neurodegenerative diseases and cause RNA toxicity and multisystemic symptoms that worsen with age. Through an unclear mechanism, RNA toxicity can trigger severe disease manifestation in infants if the repeats are inherited from their mother. Here we use Caenorhabditis elegans bearing expanded CUG repeats to show that this asymmetric intergenerational inheritance of toxicity contributes to disease pathogenesis. In addition, we show that this mechanism is dependent on small RNA pathways with maternal repeat-derived small RNAs causing transcriptomic changes in the offspring, reduced motility, and shortened lifespan. We rescued the toxicity phenotypes in the offspring by perturbing the RNAi machinery in the affected hermaphrodites. This points to a novel mechanism linking maternal bias and the RNAi machinery and suggests that toxic RNA is transmitted to offspring, causing disease phenotypes through intergenerational epigenetic inheritance. Maternal origin of expanded CUG repeats induces RNA toxicity in Caenorhabditis elegans offspring Offspring of affected hermaphrodites show molecular and phenotypic disease phenotypes The RNAi machinery is directly related to the maternal inheritance of RNA toxicity Altering the RNAi machinery in affected hermaphrodites rescues toxicity in offspring
Collapse
Affiliation(s)
- Maya Braun
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Shachar Shoshani
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Joana Teixeira
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00790 Finland
| | - Anna Mellul Shtern
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Maya Miller
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Sylvia E.J. Fischer
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Susana M.D. A. Garcia
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00790 Finland
- Corresponding author
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Corresponding author
| |
Collapse
|
25
|
Quarato P, Singh M, Bourdon L, Cecere G. Inheritance and maintenance of small RNA-mediated epigenetic effects. Bioessays 2022; 44:e2100284. [PMID: 35338497 DOI: 10.1002/bies.202100284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/04/2022] [Accepted: 03/15/2022] [Indexed: 11/08/2022]
Abstract
Heritable traits are predominantly encoded within genomic DNA, but it is now appreciated that epigenetic information is also inherited through DNA methylation, histone modifications, and small RNAs. Several examples of transgenerational epigenetic inheritance of traits have been documented in plants and animals. These include even the inheritance of traits acquired through the soma during the life of an organism, implicating the transfer of epigenetic information via the germline to the next generation. Small RNAs appear to play a significant role in carrying epigenetic information across generations. This review focuses on how epigenetic information in the form of small RNAs is transmitted from the germline to the embryos through the gametes. We also consider how inherited epigenetic information is maintained across generations in a small RNA-dependent and independent manner. Finally, we discuss how epigenetic traits acquired from the soma can be inherited through small RNAs.
Collapse
Affiliation(s)
- Piergiuseppe Quarato
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris, CNRS UMR3738, Mechanisms of Epigenetic Inheritance, Paris, France
| | - Meetali Singh
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris, CNRS UMR3738, Mechanisms of Epigenetic Inheritance, Paris, France
| | - Loan Bourdon
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris, CNRS UMR3738, Mechanisms of Epigenetic Inheritance, Paris, France
| | - Germano Cecere
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris, CNRS UMR3738, Mechanisms of Epigenetic Inheritance, Paris, France
| |
Collapse
|
26
|
Chen X, Rechavi O. Plant and animal small RNA communications between cells and organisms. Nat Rev Mol Cell Biol 2022; 23:185-203. [PMID: 34707241 PMCID: PMC9208737 DOI: 10.1038/s41580-021-00425-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 01/09/2023]
Abstract
Since the discovery of eukaryotic small RNAs as the main effectors of RNA interference in the late 1990s, diverse types of endogenous small RNAs have been characterized, most notably microRNAs, small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs). These small RNAs associate with Argonaute proteins and, through sequence-specific gene regulation, affect almost every major biological process. Intriguing features of small RNAs, such as their mechanisms of amplification, rapid evolution and non-cell-autonomous function, bestow upon them the capacity to function as agents of intercellular communications in development, reproduction and immunity, and even in transgenerational inheritance. Although there are many types of extracellular small RNAs, and despite decades of research, the capacity of these molecules to transmit signals between cells and between organisms is still highly controversial. In this Review, we discuss evidence from different plants and animals that small RNAs can act in a non-cell-autonomous manner and even exchange information between species. We also discuss mechanistic insights into small RNA communications, such as the nature of the mobile agents, small RNA signal amplification during transit, signal perception and small RNA activity at the destination.
Collapse
Affiliation(s)
- Xuemei Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA.
| | - Oded Rechavi
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
27
|
Cecere G. Small RNAs in epigenetic inheritance: from mechanisms to trait transmission. FEBS Lett 2021; 595:2953-2977. [PMID: 34671979 PMCID: PMC9298081 DOI: 10.1002/1873-3468.14210] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 01/02/2023]
Abstract
Inherited information is transmitted to progeny primarily by the genome through the gametes. However, in recent years, epigenetic inheritance has been demonstrated in several organisms, including animals. Although it is clear that certain post‐translational histone modifications, DNA methylation, and noncoding RNAs regulate epigenetic inheritance, the molecular mechanisms responsible for epigenetic inheritance are incompletely understood. This review focuses on the role of small RNAs in transmitting epigenetic information across generations in animals. Examples of documented cases of transgenerational epigenetic inheritance are discussed, from the silencing of transgenes to the inheritance of complex traits, such as fertility, stress responses, infections, and behavior. Experimental evidence supporting the idea that small RNAs are epigenetic molecules capable of transmitting traits across generations is highlighted, focusing on the mechanisms by which small RNAs achieve such a function. Just as the role of small RNAs in epigenetic processes is redefining the concept of inheritance, so too our understanding of the molecular pathways and mechanisms that govern epigenetic inheritance in animals is radically changing.
Collapse
Affiliation(s)
- Germano Cecere
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR3738, CNRS, Paris, France
| |
Collapse
|
28
|
Hime GR, Stonehouse SLA, Pang TY. Alternative models for transgenerational epigenetic inheritance: Molecular psychiatry beyond mice and man. World J Psychiatry 2021; 11:711-735. [PMID: 34733638 PMCID: PMC8546770 DOI: 10.5498/wjp.v11.i10.711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/19/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Mental illness remains the greatest chronic health burden globally with few in-roads having been made despite significant advances in genomic knowledge in recent decades. The field of psychiatry is constantly challenged to bring new approaches and tools to address and treat the needs of vulnerable individuals and subpopulations, and that has to be supported by a continuous growth in knowledge. The majority of neuropsychiatric symptoms reflect complex gene-environment interactions, with epigenetics bridging the gap between genetic susceptibility and environmental stressors that trigger disease onset and drive the advancement of symptoms. It has more recently been demonstrated in preclinical models that epigenetics underpins the transgenerational inheritance of stress-related behavioural phenotypes in both paternal and maternal lineages, providing further supporting evidence for heritability in humans. However, unbiased prospective studies of this nature are practically impossible to conduct in humans so preclinical models remain our best option for researching the molecular pathophysiologies underlying many neuropsychiatric conditions. While rodents will remain the dominant model system for preclinical studies (especially for addressing complex behavioural phenotypes), there is scope to expand current research of the molecular and epigenetic pathologies by using invertebrate models. Here, we will discuss the utility and advantages of two alternative model organisms-Caenorhabditis elegans and Drosophila melanogaster-and summarise the compelling insights of the epigenetic regulation of transgenerational inheritance that are potentially relevant to human psychiatry.
Collapse
Affiliation(s)
- Gary R Hime
- Department of Anatomy and Physiology, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Sophie LA Stonehouse
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville 3052, VIC, Australia
| | - Terence Y Pang
- Department of Anatomy and Physiology, The University of Melbourne, Parkville 3010, VIC, Australia
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville 3052, VIC, Australia
| |
Collapse
|
29
|
Abstract
More than a century ago, August Weissman defined a distinction between the germline (responsible for propagating heritable information from generation to generation) and the perishable soma. A central motivation for this distinction was to argue against the inheritance of acquired characters, as the germline was partly defined by its protection from external conditions. However, recent decades have seen an explosion of studies documenting the intergenerational and transgenerational effects of environmental conditions, forcing a re-evaluation of how external signals are sensed by, or communicated to, the germline epigenome. Here, motivated by the centrality of small RNAs in paradigms of epigenetic inheritance, we review across species the myriad examples of intercellular RNA trafficking from nurse cells or somatic tissues to developing gametes.
Collapse
|
30
|
Allele-specific mitochondrial stress induced by Multiple Mitochondrial Dysfunctions Syndrome 1 pathogenic mutations modeled in Caenorhabditis elegans. PLoS Genet 2021; 17:e1009771. [PMID: 34449775 PMCID: PMC8428684 DOI: 10.1371/journal.pgen.1009771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/09/2021] [Accepted: 08/10/2021] [Indexed: 01/18/2023] Open
Abstract
Multiple Mitochondrial Dysfunctions Syndrome 1 (MMDS1) is a rare, autosomal recessive disorder caused by mutations in the NFU1 gene. NFU1 is responsible for delivery of iron-sulfur clusters (ISCs) to recipient proteins which require these metallic cofactors for their function. Pathogenic variants of NFU1 lead to dysfunction of its target proteins within mitochondria. To date, 20 NFU1 variants have been reported and the unique contributions of each variant to MMDS1 pathogenesis is unknown. Given that over half of MMDS1 individuals are compound heterozygous for different NFU1 variants, it is valuable to investigate individual variants in an isogenic background. In order to understand the shared and unique phenotypes of NFU1 variants, we used CRISPR/Cas9 gene editing to recreate exact patient variants of NFU1 in the orthologous gene, nfu-1 (formerly lpd-8), in C. elegans. Five mutant C. elegans alleles focused on the presumptive iron-sulfur cluster interaction domain were generated and analyzed for mitochondrial phenotypes including respiratory dysfunction and oxidative stress. Phenotypes were variable between the mutant nfu-1 alleles and generally presented as an allelic series indicating that not all variants have lost complete function. Furthermore, reactive iron within mitochondria was evident in some, but not all, nfu-1 mutants indicating that iron dyshomeostasis may contribute to disease pathogenesis in some MMDS1 individuals. Functional mitochondria are essential to life in eukaryotes, but they can be perterbured by inherent dysfunction of important proteins or stressors. Mitochondrial dysfunction is the root cause of dozens of diseases many of which involve complex phenotypes. One such disease is Multiple Mitochondrial Dysfunctions Syndrome 1, a pediatric-fatal disease that is poorly understood in part due to the lack of clarity about how mutations in the causative gene, NFU1, affect protein function and phenotype development and severity. Here we employ the power of CRISPR/Cas9 gene editing in the small nematode Caenorhabditis elegans to recreate five patient-specific mutations known to cause Multiple Mitochondrial Dysfunctions Syndrome 1. We are able to analyze each of these mutations individually, evaluate how mitochondrial dysfunction differs between them, and whether or not the phenotypes can be improved. We find that there are meaningful differences between each mutation which not only effects the types of stress that develop, but also the ability to rescue deleterious phenotypes. This work thus provides insight into disease pathogenesis and establishes a foundation for potential future therapeutic intervention.
Collapse
|
31
|
Khodakova AS, Vilchis DV, Blackburn D, Amanor F, Samuel BS. Population scale nucleic acid delivery to Caenorhabditis elegans via electroporation. G3 (BETHESDA, MD.) 2021; 11:jkab123. [PMID: 33872353 PMCID: PMC8495937 DOI: 10.1093/g3journal/jkab123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/16/2021] [Indexed: 11/14/2022]
Abstract
The free-living nematode Caenorhabditis elegans remains one of the most robust and flexible genetic systems for interrogating the complexities of animal biology. Targeted genetic manipulations, such as RNA interference (RNAi), CRISPR/Cas9- or array-based transgenesis, all depend on initial delivery of nucleic acids. Delivery of dsRNA by feeding can be effective, but the expression in Escherichia coli is not conducive to experiments intended to remain sterile or with defined microbial communities. Soaking-based delivery requires prolonged exposure of animals to high-material concentrations without a food source and is of limited throughput. Last, microinjection of individual animals can precisely deliver materials to animals' germlines, but is limited by the need to target and inject each animal one-by-one. Thus, we sought to address some of these challenges in nucleic acid delivery by developing a population-scale delivery method. We demonstrate efficient electroporation-mediated delivery of dsRNA throughout the worm and effective RNAi-based silencing, including in the germline. Finally, we show that guide RNA delivered by electroporation can be utilized by transgenic Cas9 expressing worms for population-scale genetic targeting. Together, these methods expand the scale and scope of genetic methodologies that can be applied to the C. elegans system.
Collapse
Affiliation(s)
- Anastasia S Khodakova
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- SMART Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniela Vidal Vilchis
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dana Blackburn
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ferdinand Amanor
- SMART Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Buck S Samuel
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- SMART Program, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
32
|
Devanapally S, Raman P, Chey M, Allgood S, Ettefa F, Diop M, Lin Y, Cho YE, Jose AM. Mating can initiate stable RNA silencing that overcomes epigenetic recovery. Nat Commun 2021; 12:4239. [PMID: 34244495 PMCID: PMC8270896 DOI: 10.1038/s41467-021-24053-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/29/2021] [Indexed: 01/09/2023] Open
Abstract
Stable epigenetic changes appear uncommon, suggesting that changes typically dissipate or are repaired. Changes that stably alter gene expression across generations presumably require particular conditions that are currently unknown. Here we report that a minimal combination of cis-regulatory sequences can support permanent RNA silencing of a single-copy transgene and its derivatives in C. elegans simply upon mating. Mating disrupts competing RNA-based mechanisms to initiate silencing that can last for >300 generations. This stable silencing requires components of the small RNA pathway and can silence homologous sequences in trans. While animals do not recover from mating-induced silencing, they often recover from and become resistant to trans silencing. Recovery is also observed in most cases when double-stranded RNA is used to silence the same coding sequence in different regulatory contexts that drive germline expression. Therefore, we propose that regulatory features can evolve to oppose permanent and potentially maladaptive responses to transient change.
Collapse
Affiliation(s)
| | | | - Mary Chey
- University of Maryland, College Park, MD, USA
| | | | | | | | - Yixin Lin
- University of Maryland, College Park, MD, USA
| | | | | |
Collapse
|
33
|
Manterola M, Palominos MF, Calixto A. The Heritability of Behaviors Associated With the Host Gut Microbiota. Front Immunol 2021; 12:658551. [PMID: 34054822 PMCID: PMC8155505 DOI: 10.3389/fimmu.2021.658551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
What defines whether the interaction between environment and organism creates a genetic memory able to be transferred to subsequent generations? Bacteria and the products of their metabolism are the most ubiquitous biotic environments to which every living organism is exposed. Both microbiota and host establish a framework where environmental and genetic factors are integrated to produce adaptive life traits, some of which can be inherited. Thus, the interplay between host and microbe is a powerful model to study how phenotypic plasticity is inherited. Communication between host and microbe can occur through diverse molecules such as small RNAs (sRNAs) and the RNA interference machinery, which have emerged as mediators and carriers of heritable environmentally induced responses. Notwithstanding, it is still unclear how the organism integrates sRNA signaling between different tissues to orchestrate a systemic bacterially induced response that can be inherited. Here we discuss current evidence of heritability produced by the intestinal microbiota from several species. Neurons and gut are the sensing systems involved in transmitting changes through transcriptional and post-transcriptional modifications to the gonads. Germ cells express inflammatory receptors, and their development and function are regulated by host and bacterial metabolites and sRNAs thus suggesting that the dynamic interplay between host and microbe underlies the host's capacity to transmit heritable behaviors. We discuss how the host detects changes in the microbiota that can modulate germ cells genomic functions. We also explore the nature of the interactions that leave permanent or long-term memory in the host and propose mechanisms by which the microbiota can regulate the development and epigenetic reprogramming of germ cells, thus influencing the inheritance of the host. We highlight the vast contribution of the bacterivore nematode C. elegans and its commensal and pathogenic bacteria to the understanding on how behavioral adaptations can be inter and transgenerational inherited.
Collapse
Affiliation(s)
- Marcia Manterola
- Programa de Genética Humana, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - M. Fernanda Palominos
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
- Programa de Doctorado en Ciencias, mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| | - Andrea Calixto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| |
Collapse
|
34
|
Frolows N, Ashe A. Small RNAs and chromatin in the multigenerational epigenetic landscape of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200112. [PMID: 33866817 DOI: 10.1098/rstb.2020.0112] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
For decades, it was thought that the only heritable information transmitted from one individual to another was that encoded in the DNA sequence. However, it has become increasingly clear that this is not the case and that the transmission of molecules from within the cytoplasm of the gamete also plays a significant role in heritability. The roundworm, Caenorhabditis elegans, has emerged as one of the leading model organisms in which to study the mechanisms of transgenerational epigenetic inheritance (TEI). Collaborative efforts over the past few years have revealed that RNA molecules play a critical role in transmitting transgenerational responses, but precisely how they do so is as yet uncertain. In addition, the role of histone modifications in epigenetic inheritance is increasingly apparent, and RNA and histones interact in a way that we do not yet fully understand. Furthermore, both exogenous and endogenous RNA molecules, as well as other environmental triggers, are able to induce heritable epigenetic changes that affect transcription across the genome. In most cases, these epigenetic changes last only for a handful of generations, but occasionally can be maintained much longer: perhaps indefinitely. In this review, we discuss the current understanding of the role of RNA and histones in TEI, as well as making clear the gaps in our knowledge. We also speculate on the evolutionary implications of epigenetic inheritance, particularly in the context of a short-lived, clonally propagating species. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Natalya Frolows
- School of Life and Environmental Sciences, University of Sydney, New South Wales, 2006, Australia.,CSIRO Health and Biosecurity, Sydney, New South Wales, 2113, Australia
| | - Alyson Ashe
- School of Life and Environmental Sciences, University of Sydney, New South Wales, 2006, Australia
| |
Collapse
|
35
|
Cabej NR. A mechanism of inheritance of acquired traits in animals. Dev Biol 2021; 475:106-117. [PMID: 33741349 DOI: 10.1016/j.ydbio.2021.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/11/2023]
Abstract
Observational and experimental evidence for the inheritance of acquired traits in animals is slowly, but steadily accumulating. The onset and transmission of acquired traits implies the acquisition and transmission from parents to progeny of new information, which is different from the genetic information contained in DNA. The new non-genetic information most commonly is passed on from parents to the offspring via gamete(s), but how it is precisely transmitted to the successive generations is still unknown. Based on adequate empirical evidence presented herein, a hypothesis is proposed of the inheritance of acquired traits in animals and the flow of the relevant parental information to the offspring.
Collapse
Affiliation(s)
- Nelson R Cabej
- University of Tirana Faculty of Medicine, Universiteti i Mjekesise Tirane, Department of Biology, 147 Manhattan Terrace, Dumont, 07628, USA.
| |
Collapse
|
36
|
Ewe CK, Alok G, Rothman JH. Stressful development: integrating endoderm development, stress, and longevity. Dev Biol 2020; 471:34-48. [PMID: 33307045 DOI: 10.1016/j.ydbio.2020.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
In addition to performing digestion and nutrient absorption, the intestine serves as one of the first barriers to the external environment, crucial for protecting the host from environmental toxins, pathogenic invaders, and other stress inducers. The gene regulatory network (GRN) governing embryonic development of the endoderm and subsequent differentiation and maintenance of the intestine has been well-documented in C. elegans. A key regulatory input that initiates activation of the embryonic GRN for endoderm and mesoderm in this animal is the maternally provided SKN-1 transcription factor, an ortholog of the vertebrate Nrf1 and 2, which, like C. elegans SKN-1, perform conserved regulatory roles in mediating a variety of stress responses across metazoan phylogeny. Other key regulatory factors in early gut development also participate in stress response as well as in innate immunity and aging and longevity. In this review, we discuss the intersection between genetic nodes that mediate endoderm/intestine differentiation and regulation of stress and homeostasis. We also consider how direct signaling from the intestine to the germline, in some cases involving SKN-1, facilitates heritable epigenetic changes, allowing transmission of adaptive stress responses across multiple generations. These connections between regulation of endoderm/intestine development and stress response mechanisms suggest that varying selective pressure exerted on the stress response pathways may influence the architecture of the endoderm GRN, thereby leading to genetic and epigenetic variation in early embryonic GRN regulatory events.
Collapse
Affiliation(s)
- Chee Kiang Ewe
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Geneva Alok
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Joel H Rothman
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
37
|
Wu D, Cai W, Zhang X, Lan J, Zou L, Chen SJ, Wu Z, Chen D. Inhibition of PAR-1 delays aging via activating AMPK in C. elegans. Aging (Albany NY) 2020; 12:25700-25717. [PMID: 33232266 PMCID: PMC7803586 DOI: 10.18632/aging.104180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
The antagonistic pleiotropy theory of aging suggests that genes essential for growth and development are likely to modulate aging later in life. Previous studies in C. elegans demonstrate that inhibition of certain developmentally essential genes during adulthood leads to significant lifespan extension. PAR-1, a highly conserved serine/threonine kinase, functions as a key cellular polarity regulator during the embryonic development. However, the role of PAR-1 during adulthood remains unknown. Here we show that inhibition of par-1 either by a temperature-sensitive mutant or by RNAi knockdown only during adulthood is sufficient to extend lifespan in C. elegans. Inhibition of par-1 also improves healthspan, as indicated by increased stress resistance, enhanced proteotoxicity resistance, as well as reduced muscular function decline over time. Additionally, tissue-enriched RNAi knockdown analysis reveals that PAR-1 mainly functions in the epidermis to regulate lifespan. Further genetic epistatic and molecular studies demonstrate that the effect of par-1 on lifespan requires the AMP-activated protein kinase (AMPK), and RNAi knockdown of par-1 results in age-dependent AMPK activation and reduced lipid accumulation in the metabolic tissue. Taken together, our findings reveal a previously undescribed function of PAR-1 in adulthood, which will help to understand the molecular links between development and aging.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Medical School, Nanjing University, Pukou, Nanjing 210061, Jiangsu, China
| | - Waijiao Cai
- Institute of Traditional Chinese and Western Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xuan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Medical School, Nanjing University, Pukou, Nanjing 210061, Jiangsu, China
| | - Jianfeng Lan
- Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Lina Zou
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Medical School, Nanjing University, Pukou, Nanjing 210061, Jiangsu, China
| | - Samuel J Chen
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Zixing Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Medical School, Nanjing University, Pukou, Nanjing 210061, Jiangsu, China
| | - Di Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Medical School, Nanjing University, Pukou, Nanjing 210061, Jiangsu, China
| |
Collapse
|
38
|
Fernandes De Abreu DA, Salinas-Giegé T, Drouard L, Remy JJ. Alanine tRNAs Translate Environment Into Behavior in Caenorhabditis elegans. Front Cell Dev Biol 2020; 8:571359. [PMID: 33195203 PMCID: PMC7662486 DOI: 10.3389/fcell.2020.571359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Caenorhabditis elegans nematodes produce and maintain imprints of attractive chemosensory cues to which they are exposed early in life. Early odor-exposure increases adult chemo-attraction to the same cues. Imprinting is transiently or stably inherited, depending on the number of exposed generations. We show here that the Alanine tRNA (UGC) plays a central role in regulating C. elegans chemo-attraction. Naive worms fed on tRNAAla (UGC) purified from odor-experienced worms, acquire odor-specific imprints. Chemo-attractive responses require the tRNA-modifying Elongator complex sub-units 1 (elpc-1) and 3 (elpc-3) genes. elpc-3 deletions impair chemo-attraction, which is fully restored by wild-type tRNAAla (UGC) feeding. A stably inherited decrease of odor-specific responses ensues from early odor-exposition of elpc-1 deletion mutants. tRNAAla (UGC) may adopt various chemical forms to mediate the cross-talk between innately-programmed and environment-directed chemo-attractive behavior.
Collapse
Affiliation(s)
- Diana Andrea Fernandes De Abreu
- Genes, Environment, Plasticity, Institut Sophia Agrobiotech ISA UMR CNRS 7254, INRAE 1355, Université Nice Côte d’Azur, Sophia-Antipolis, France
| | - Thalia Salinas-Giegé
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, Strasbourg, France
| | - Laurence Drouard
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, Strasbourg, France
| | - Jean-Jacques Remy
- Genes, Environment, Plasticity, Institut Sophia Agrobiotech ISA UMR CNRS 7254, INRAE 1355, Université Nice Côte d’Azur, Sophia-Antipolis, France
| |
Collapse
|
39
|
Johnson LM, Smith OJ, Hahn DA, Baer CF. Short-term heritable variation overwhelms 200 generations of mutational variance for metabolic traits in Caenorhabditis elegans. Evolution 2020; 74:2451-2464. [PMID: 32989734 DOI: 10.1111/evo.14104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/05/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
Metabolic disorders have a large heritable component, and have increased markedly in human populations over the past few generations. Genome-wide association studies of metabolic traits typically find a substantial unexplained fraction of total heritability, suggesting an important role of spontaneous mutation. An alternative explanation is that epigenetic effects contribute significantly to the heritable variation. Here, we report a study designed to quantify the cumulative effects of spontaneous mutation on adenosine metabolism in the nematode Caenorhabditis elegans, including both the activity and concentration of two metabolic enzymes and the standing pools of their associated metabolites. The only prior studies on the effects of mutation on metabolic enzyme activity, in Drosophila melanogaster, found that total enzyme activity presents a mutational target similar to that of morphological and life-history traits. However, those studies were not designed to account for short-term heritable effects. We find that the short-term heritable variance for most traits is of similar magnitude as the variance among MA lines. This result suggests that the potential heritable effects of epigenetic variation in metabolic disease warrant additional scrutiny.
Collapse
Affiliation(s)
- Lindsay M Johnson
- Department of Biology, University of Florida, Gainesville, Florida, 32611.,Ology Bioservices, Inc., Alachua, Florida, 32615
| | - Olivia J Smith
- Department of Biology, University of Florida, Gainesville, Florida, 32611
| | - Daniel A Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, 32611.,University of Florida Genetics Institute, Gainesville, Florida, 32611
| | - Charles F Baer
- Department of Biology, University of Florida, Gainesville, Florida, 32611.,University of Florida Genetics Institute, Gainesville, Florida, 32611
| |
Collapse
|
40
|
Tavares NC, Gava SG, Torres GP, de Paiva CÊS, Moreira BP, Lunkes FMN, Montresor LC, Caldeira RL, Mourão MM. Schistosoma mansoni FES Tyrosine Kinase Involvement in the Mammalian Schistosomiasis Outcome and Miracidia Infection Capability in Biomphalaria glabrata. Front Microbiol 2020; 11:963. [PMID: 32595609 PMCID: PMC7300192 DOI: 10.3389/fmicb.2020.00963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease (NTD) caused by helminthes from the Schistosoma genus. This NTD can cause systemic symptoms induced by the deposition of parasite eggs in the host liver, promoting severe complications. Functional studies to increase knowledge about parasite biology are required for the identification of new drug targets, because the treatment is solely based on praziquantel administration, a drug in which the mechanism of action is still unknown. Protein kinases are important for cellular adaptation and maintenance of many organisms homeostasis and, thus, are considered good drug targets for many pathologies. Accordingly, those proteins are also important for Schistosoma mansoni, as the parasite relies on specific environmental signals to develop into its different stages. However, the specific roles of protein kinases in S. mansoni biology are not well understood. This work aims at investigating the tyrosine-protein kinase FES (Feline Sarcoma) functions in the maintenance of S. mansoni life cycle, especially in the establishment of mammalian and invertebrate hosts' infection. In this regard, the verification of Smfes expression among S. mansoni stages showed that Smfes is more expressed in infective free-living stages: miracidia and cercariae. Schistosomula exposed to SmFES-dsRNA in vitro presented a reduction in movement and size and increased mortality. Mice infected with Smfes-knocked-down schistosomula exhibited a striking reduction in the area of liver granuloma and an increased rate of immature eggs in the intestine. Female adult worms recovered from mice presented a reduced size and changes in the ovary and vitellarium; and males exhibited damage in the gynecophoral canal. Subsequently, miracidia hatched from eggs exposed to SmFES-dsRNA presented changes in its capability to infect and to sense the snail mucus. In addition, the SmFES RNAi effect was stable from miracidia to cercariae. The establishment of infection with those cercariae reproduced the same alterations observed for the knocked-down schistosomula infection. Our findings show that SmFES tyrosine kinase (1) is important in schistosomula development and survival; (2) has a role in adult worms pairing and, consequently, female maturation; (3) might be essential for egg antigen expression, thus responsible for inducing granuloma formation and immunomodulation; and (4) is essential for miracidia infection capability. In addition, this is the first time that a gene is kept knocked down during three different S. mansoni life stages and that a tyrosine kinase is implicated in the parasite reproduction and infection establishment in the mammalian host. Accordingly, SmFES should be explored as an alternative to support schistosomiasis treatment and morbidity control.
Collapse
Affiliation(s)
- Naiara Clemente Tavares
- Grupo de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Sandra Grossi Gava
- Grupo de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Gabriella Parreiras Torres
- Grupo de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Clara Ênia Soares de Paiva
- Grupo de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Bernardo Pereira Moreira
- Grupo de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Felipe Miguel Nery Lunkes
- Grupo de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Langia Colli Montresor
- Moluscário Lobato Paraense, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Roberta Lima Caldeira
- Grupo de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Marina Moraes Mourão
- Grupo de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| |
Collapse
|
41
|
Natural cryptic variation in epigenetic modulation of an embryonic gene regulatory network. Proc Natl Acad Sci U S A 2020; 117:13637-13646. [PMID: 32482879 DOI: 10.1073/pnas.1920343117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Gene regulatory networks (GRNs) that direct animal embryogenesis must respond to varying environmental and physiological conditions to ensure robust construction of organ systems. While GRNs are evolutionarily modified by natural genomic variation, the roles of epigenetic processes in shaping plasticity of GRN architecture are not well understood. The endoderm GRN in Caenorhabditis elegans is initiated by the maternally supplied SKN-1/Nrf2 bZIP transcription factor; however, the requirement for SKN-1 in endoderm specification varies widely among distinct C. elegans wild isotypes, owing to rapid developmental system drift driven by accumulation of cryptic genetic variants. We report here that heritable epigenetic factors that are stimulated by transient developmental diapause also underlie cryptic variation in the requirement for SKN-1 in endoderm development. This epigenetic memory is inherited from the maternal germline, apparently through a nuclear, rather than cytoplasmic, signal, resulting in a parent-of-origin effect (POE), in which the phenotype of the progeny resembles that of the maternal founder. The occurrence and persistence of POE varies between different parental pairs, perduring for at least 10 generations in one pair. This long-perduring POE requires piwi-interacting RNA (piRNA) function and the germline nuclear RNA interference (RNAi) pathway, as well as MET-2 and SET-32, which direct histone H3K9 trimethylation and drive heritable epigenetic modification. Such nongenetic cryptic variation may provide a resource of additional phenotypic diversity through which adaptation may facilitate evolutionary changes and shape developmental regulatory systems.
Collapse
|
42
|
Abstract
Epigenetic effects can be mediated by changes in chromatin state that are transmitted from parent to child via gametes, but support is gathering for maternal yolk, which is deposited into ooctyes, as an extranuclear epigenetic factor that can contribute to phenotypic plasticity across generations in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Robert H Dowen
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Shawn Ahmed
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
43
|
Sala AJ, Bott LC, Brielmann RM, Morimoto RI. Embryo integrity regulates maternal proteostasis and stress resilience. Genes Dev 2020; 34:678-687. [PMID: 32217667 PMCID: PMC7197353 DOI: 10.1101/gad.335422.119] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/10/2020] [Indexed: 12/22/2022]
Abstract
The proteostasis network is regulated by transcellular communication to promote health and fitness in metazoans. In Caenorhabditis elegans, signals from the germline initiate the decline of proteostasis and repression of cell stress responses at reproductive maturity, indicating that commitment to reproduction is detrimental to somatic health. Here we show that proteostasis and stress resilience are also regulated by embryo-to-mother communication in reproductive adults. To identify genes that act directly in the reproductive system to regulate somatic proteostasis, we performed a tissue targeted genetic screen for germline modifiers of polyglutamine aggregation in muscle cells. We found that inhibiting the formation of the extracellular vitelline layer of the fertilized embryo inside the uterus suppresses aggregation, improves stress resilience in an HSF-1-dependent manner, and restores the heat-shock response in the somatic tissues of the parent. This pathway relies on DAF-16/FOXO activation in vulval tissues to maintain stress resilience in the mother, suggesting that the integrity of the embryo is monitored by the vulva to detect damage and initiate an organismal protective response. Our findings reveal a previously undescribed transcellular pathway that links the integrity of the developing progeny to proteostasis regulation in the parent.
Collapse
Affiliation(s)
- Ambre J Sala
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| | - Laura C Bott
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| | - Renee M Brielmann
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| | - Richard I Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
44
|
Wong C, Roy R. AMPK Regulates Developmental Plasticity through an Endogenous Small RNA Pathway in Caenorhabditis elegans. Int J Mol Sci 2020; 21:ijms21062238. [PMID: 32213851 PMCID: PMC7139869 DOI: 10.3390/ijms21062238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/18/2020] [Accepted: 03/22/2020] [Indexed: 01/19/2023] Open
Abstract
Caenorhabditis elegans larvae can undergo developmental arrest upon entry into the dauer stage in response to suboptimal growth conditions. Dauer larvae can exit this stage in replete conditions with no reproductive consequence. During this diapause stage, the metabolic regulator AMP-activated protein kinase (AMPK) ensures that the germ line becomes quiescent to maintain germ cell integrity. Animals that lack all AMPK signalling undergo germline hyperplasia upon entering dauer, while those that recover from this stage become sterile. Neuronal AMPK expression in otherwise AMPK-deficient animals is sufficient for germline quiescence and germ cell integrity and its effects are likely mediated through an endogenous small RNA pathway. Upon impairing small RNA biosynthesis, the post-dauer fertility is restored in AMPK mutants. These data suggest that AMPK may function in neurons to relay a message through small RNAs to the germ cells to alter their quiescence in the dauer stage, thus challenging the permeability of the Weismann barrier.
Collapse
|
45
|
Liu S, Jaouannet M, Dempsey DA, Imani J, Coustau C, Kogel KH. RNA-based technologies for insect control in plant production. Biotechnol Adv 2020; 39:107463. [DOI: 10.1016/j.biotechadv.2019.107463] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 12/23/2022]
|
46
|
Atakan HB, Hof KS, Cornaglia M, Auwerx J, Gijs MAM. The Detection of Early Epigenetic Inheritance of Mitochondrial Stress in C. Elegans with a Microfluidic Phenotyping Platform. Sci Rep 2019; 9:19315. [PMID: 31848454 PMCID: PMC6917781 DOI: 10.1038/s41598-019-55979-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/05/2019] [Indexed: 02/05/2023] Open
Abstract
Fluctuations and deterioration in environmental conditions potentially have a phenotypic impact that extends over generations. Transgenerational epigenetics is the defined term for such intergenerational transient inheritance without an alteration in the DNA sequence. The model organism Caenorhabditis elegans is exceptionally valuable to address transgenerational epigenetics due to its short lifespan, well-mapped genome and hermaphrodite behavior. While the majority of the transgenerational epigenetics on the nematodes focuses on generations-wide heritage, short-term and in-depth analysis of this phenomenon in a well-controlled manner has been lacking. Here, we present a novel microfluidic platform to observe mother-to-progeny heritable transmission in C. elegans at high imaging resolution, under significant automation, and enabling parallelized studies. After approximately 24 hours of culture of L4 larvae under various concentrations and application periods of doxycycline, we investigated if mitochondrial stress was transferred from the mother nematodes to the early progenies. Automated and custom phenotyping algorithms revealed that a minimum doxycycline concentration of 30 µg/mL and a drug exposure time of 15 hours applied to the mothers could induce mitochondrial stress in first embryo progenies indeed, while this inheritance was not clearly observed later in L1 progenies. We believe that our new device could find further usage in transgenerational epigenetic studies modeled on C. elegans.
Collapse
Affiliation(s)
- H B Atakan
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - K S Hof
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - M Cornaglia
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - J Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - M A M Gijs
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
47
|
Xu F, Feng X, Chen X, Weng C, Yan Q, Xu T, Hong M, Guang S. A Cytoplasmic Argonaute Protein Promotes the Inheritance of RNAi. Cell Rep 2019; 23:2482-2494. [PMID: 29791857 DOI: 10.1016/j.celrep.2018.04.072] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/24/2018] [Accepted: 04/16/2018] [Indexed: 01/02/2023] Open
Abstract
RNAi-elicited gene silencing is heritable and can persist for multiple generations after its initial induction in C. elegans. However, the mechanism by which parental-acquired trait-specific information from RNAi is inherited by the progenies is not fully understood. Here, we identified a cytoplasmic Argonaute protein, WAGO-4, necessary for the inheritance of RNAi. WAGO-4 exhibits asymmetrical translocation to the germline during early embryogenesis, accumulates at the perinuclear foci in the germline, and is required for the inheritance of exogenous RNAi targeting both germline- and soma-expressed genes. WAGO-4 binds to 22G-RNAs and their mRNA targets. Interestingly, WAGO-4-associated endogenous 22G-RNAs target the same cohort of germline genes as CSR-1 and contain untemplated addition of uracil at the 3' ends. The poly(U) polymerase CDE-1 is required for the untemplated uridylation of 22G-RNAs and inheritance of RNAi. Therefore, we conclude that, in addition to the nuclear RNAi pathway, the cytoplasmic RNAi machinery also promotes RNAi inheritance.
Collapse
Affiliation(s)
- Fei Xu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xuezhu Feng
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiangyang Chen
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chenchun Weng
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qi Yan
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ting Xu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Minjie Hong
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Shouhong Guang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China; CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
48
|
Ravikumar S, Devanapally S, Jose AM. Gene silencing by double-stranded RNA from C. elegans neurons reveals functional mosaicism of RNA interference. Nucleic Acids Res 2019; 47:10059-10071. [PMID: 31501873 PMCID: PMC6821342 DOI: 10.1093/nar/gkz748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Delivery of double-stranded RNA (dsRNA) into animals can silence genes of matching sequence in diverse cell types through mechanisms that have been collectively called RNA interference. In the nematode Caenorhabditis elegans, dsRNA from multiple sources can trigger the amplification of silencing signals. Amplification occurs through the production of small RNAs by two RNA-dependent RNA polymerases (RdRPs) that are thought to be tissue-specific - EGO-1 in the germline and RRF-1 in somatic cells. Here we demonstrate that EGO-1 can compensate for the lack of RRF-1 when dsRNA from neurons is used to silence genes in intestinal cells. However, the lineal origins of cells that can use EGO-1 varies. This variability could be because random sets of cells can either receive different amounts of dsRNA from the same source or use different RdRPs to perform the same function. Variability is masked in wild-type animals, which show extensive silencing by neuronal dsRNA. As a result, cells appear similarly functional despite underlying differences that vary from animal to animal. This functional mosaicism cautions against inferring uniformity of mechanism based on uniformity of outcome. We speculate that functional mosaicism could contribute to escape from targeted therapies and could allow developmental systems to drift over evolutionary time.
Collapse
Affiliation(s)
- Snusha Ravikumar
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Sindhuja Devanapally
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Antony M Jose
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
49
|
Gaps and barriers: Gap junctions as a channel of communication between the soma and the germline. Semin Cell Dev Biol 2019; 97:167-171. [PMID: 31558347 DOI: 10.1016/j.semcdb.2019.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022]
Abstract
Gap junctions, expressed in most tissues of the body, allow for the cytoplasmic coupling of adjacent cells and promote tissue cooperation. Gap junctions connect also the soma and the germline in many animals, and transmit somatic signals that are crucial for germline maturation and integrity. In this review, we examine the involvement of gap junctions in the relay of information between the soma and the germline, and ask whether such communication could have consequences for the progeny. While the influence of parental experiences on descendants is of great interest, the possibility that gap junctions participate in the transmission of information across generations is largely unexplored.
Collapse
|
50
|
Perez MF, Lehner B. Vitellogenins - Yolk Gene Function and Regulation in Caenorhabditis elegans. Front Physiol 2019; 10:1067. [PMID: 31551797 PMCID: PMC6736625 DOI: 10.3389/fphys.2019.01067] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022] Open
Abstract
Vitellogenins are a family of yolk proteins that are by far the most abundant among oviparous animals. In the model nematode Caenorhabditis elegans, the 6 vitellogenins are among the most highly expressed genes in the adult hermaphrodite intestine, which produces copious yolk to provision eggs. In this article we review what is known about the vitellogenin genes and proteins in C. elegans, in comparison with vitellogenins in other taxa. We argue that the primary purpose of abundant vitellogenesis in C. elegans is to support post-embryonic development and fertility, rather than embryogenesis, especially in harsh environments. Increasing vitellogenin provisioning underlies several post-embryonic phenotypic alterations associated with advancing maternal age, demonstrating that vitellogenins can act as an intergenerational signal mediating the influence of parental physiology on progeny. We also review what is known about vitellogenin regulation - how tissue-, sex- and stage-specificity of expression is achieved, how vitellogenins are regulated by major signaling pathways, how vitellogenin expression is affected by extra-intestinal tissues and how environmental experience affects vitellogenesis. Lastly, we speculate whether C. elegans vitellogenins may play other roles in worm physiology.
Collapse
Affiliation(s)
- Marcos Francisco Perez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|