1
|
Piţur S, Tufar I, Miu AC. Auditory imagery and poetry-elicited emotions: a study on the hard of hearing. Front Psychol 2025; 16:1509793. [PMID: 40207111 PMCID: PMC11979220 DOI: 10.3389/fpsyg.2025.1509793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
Silent reading evokes auditory images of the written text, and there is emerging evidence that these images increase emotional arousal when reading poetry. A novel approach to studying their relevance to poetry-elicited emotions is to explore them in hard of hearing individuals, who may have difficulties generating mental images in this modality. In the present study, we investigated differences in auditory imagery, both as a dispositional trait and as a process that occurs during reading, and the intensity of poetry-elicited emotions between hard of hearing individuals and controls. We also explored whether the effect of hearing loss on arousal can be partially explained by the vividness of the auditory images evoked during reading. For this purpose, participants completed two sessions. First, they filled in a set of questionnaires concerning reading experience and dispositional traits. Second, they read poetry for 30 min, retrospectively rated their emotional responses to the poems and answered questions about socio-affective and cognitive processes during reading. Results showed that, although participants in the hard of hearing group scored significantly lower than controls on every measure of auditory imagery (i.e., trait auditory imagery, auditory imagery for words, and other sounds while reading), their emotions were no less intense. The hard of hearing group also reported lower levels of other dispositional traits (i.e., visual imagery and proneness to fantasizing), but not of any psychological processes during reading. Not much is known about the effects of mental imagery on poetry-elicited emotions, and our findings open a new and promising line of research for exploring their relevance and specificity.
Collapse
Affiliation(s)
- Simina Piţur
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Ioana Tufar
- Department of Special Education, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Andrei C. Miu
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeş-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
2
|
Amaral L, Wang X, Bi Y, Striem-Amit E. Unraveling the impact of congenital deafness on individual brain organization. eLife 2025; 13:RP96944. [PMID: 40072311 PMCID: PMC11903032 DOI: 10.7554/elife.96944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Research on brain plasticity, particularly in the context of deafness, consistently emphasizes the reorganization of the auditory cortex. But to what extent do all individuals with deafness show the same level of reorganization? To address this question, we examined the individual differences in functional connectivity (FC) from the deprived auditory cortex. Our findings demonstrate remarkable differentiation between individuals deriving from the absence of shared auditory experiences, resulting in heightened FC variability among deaf individuals, compared to more consistent FC in the hearing group. Notably, connectivity to language regions becomes more diverse across individuals with deafness. This does not stem from delayed language acquisition; it is found in deaf native signers, who are exposed to natural language since birth. However, comparing FC diversity between deaf native signers and deaf delayed signers, who were deprived of language in early development, we show that language experience also impacts individual differences, although to a more moderate extent. Overall, our research points out the intricate interplay between brain plasticity and individual differences, shedding light on the diverse ways reorganization manifests among individuals. It joins findings of increased connectivity diversity in blindness and highlights the importance of considering individual differences in personalized rehabilitation for sensory loss.
Collapse
Affiliation(s)
- Lenia Amaral
- Department of Neuroscience, Georgetown University Medical CenterWashington DCUnited States
| | - Xiaosha Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
| | - Ella Striem-Amit
- Department of Neuroscience, Georgetown University Medical CenterWashington DCUnited States
| |
Collapse
|
3
|
Barton JJS, Albonico A, Starrfelt R. The lateralization of reading. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:301-325. [PMID: 40074404 DOI: 10.1016/b978-0-443-15646-5.00012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Reports in the 1890s described reading disorders from left hemisphere damage. Subsequent work converging from a variety of research approaches have confirmed a strong dependence of reading on the left ventral occipitotemporal cortex, though there is also evidence for some reading capacity of the right hemisphere. The development of this leftward bias parallels reading acquisition in children and adults and is blunted in developmental dyslexia. Several structural and functional hypotheses have been advanced to explain why reading lateralizes to the left. In the second half of this review we explore the extension of these findings to other forms of reading. Most reading studies used the alphabetic scripts of Europe but there are many writing systems. Comparisons with logographic scripts such as Chinese and kanji have revealed subtle differences. Also, while we often think of reading as the extraction of verbal language from written text, it can be broadened to other types of information extraction from symbols. Reading can occur with visual stimuli that are not written text, as with sign language in the deaf and lip-reading, and with non-visual stimuli that are textual, as with Braille. Musical notation and number reading are other text-based visual forms of reading that do not involve words. Overall, most studies show that the left ventral occipitotemporal cortex is involved in processing these diverse types of reading, with variable contributions from the right hemisphere.
Collapse
Affiliation(s)
- Jason J S Barton
- Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada.
| | - Andrea Albonico
- Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of the Fraser Valley, Abbotsford, BC, Canada
| | - Randi Starrfelt
- Department of Psychology, Center for Visual Cognition, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
4
|
Dhanik K, Pandey HR, Mishra M, Keshri A, Kumar U. Neural adaptations to congenital deafness: enhanced tactile discrimination through cross-modal neural plasticity - an fMRI study. Neurol Sci 2024; 45:5489-5499. [PMID: 38797764 DOI: 10.1007/s10072-024-07615-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND This study explores the compensatory neural mechanisms associated with congenital deafness through an examination of tactile discrimination abilities using high-resolution functional magnetic resonance imaging (fMRI). OBJECTIVE To analyze the neural substrates underlying tactile processing in congenitally deaf individuals and compare them with hearing controls. METHODS Our participant pool included thirty-five congenitally deaf individuals and thirty-five hearing controls. All participants engaged in tactile discrimination tasks involving the identification of common objects by touch. We utilized an analytical suite comprising voxel-based statistics, functional connectivity multivariate/voxel pattern analysis (fc-MVPA), and seed-based connectivity analysis to examine neural activity. RESULTS Our findings revealed pronounced neural activity in congenitally deaf participants within regions typically associated with auditory processing, including the bilateral superior temporal gyrus, right middle temporal gyrus, and right rolandic operculum. Additionally, unique activation and connectivity patterns were observed in the right insula and bilateral supramarginal gyrus, indicating a strategic reorganization of neural pathways for tactile information processing. Behaviorally, both groups demonstrated high accuracy in the tactile tasks, exceeding 90%. However, the deaf participants outperformed their hearing counterparts in reaction times, showcasing significantly enhanced efficiency in tactile information processing. CONCLUSION These insights into the brain's adaptability to sensory loss through compensatory neural reorganization highlight the intricate mechanisms by which tactile discrimination is enhanced in the absence of auditory input. Understanding these adaptations can help develop strategies to harness the brain's plasticity to improve sensory processing in individuals with sensory impairments, ultimately enhancing their quality of life through improved tactile perception and sensory integration.
Collapse
Affiliation(s)
- Kalpana Dhanik
- Centre of Bio-Medical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Lucknow, Uttar Pradesh, 226014, India
| | - Himanshu R Pandey
- Centre of Bio-Medical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Lucknow, Uttar Pradesh, 226014, India
| | - Mrutyunjaya Mishra
- Department of Special Education (Hearing Impairments), Dr. Shakuntala Misra National Rehabilitation University, Lucknow, India
| | - Amit Keshri
- Department of Neuro-otology, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Lucknow, India
| | - Uttam Kumar
- Centre of Bio-Medical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Lucknow, Uttar Pradesh, 226014, India.
| |
Collapse
|
5
|
Duymuş H, Verma M, Güçlütürk Y, Öztürk M, Varol AB, Kurt Ş, Gezici T, Akgür BF, Giray İ, Öksüz EE, Farooqui AA. The visual cortex in the blind but not the auditory cortex in the deaf becomes multiple-demand regions. Brain 2024; 147:3624-3637. [PMID: 38864500 PMCID: PMC11449128 DOI: 10.1093/brain/awae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 06/13/2024] Open
Abstract
The fate of deprived sensory cortices (visual regions in the blind and auditory regions in the deaf) exemplifies the extent to which experience can change brain regions. These regions are frequently seen to activate during tasks involving other sensory modalities, leading many authors to infer that these regions have started to process sensory information of other modalities. However, such observations can also imply that these regions are now activating in response to any task event, regardless of the sensory modality. Activating in response to task events, irrespective of the sensory modality involved, is a feature of the multiple-demands (MD) network. This is a set of regions within the frontal and parietal cortices that activate in response to any kind of control demand. Thus, demands as diverse as attention, perceptual difficulty, rule-switching, updating working memory, inhibiting responses, decision-making and difficult arithmetic all activate the same set of regions that are thought to instantiate domain-general cognitive control and underpin fluid intelligence. We investigated whether deprived sensory cortices, or foci within them, become part of the MD network. We tested whether the same foci within the visual regions of the blind and auditory regions of the deaf activated in response to different control demands. We found that control demands related to updating auditory working memory, difficult tactile decisions, time-duration judgments and sensorimotor speed all activated the entire bilateral occipital regions in the blind but not in the sighted. These occipital regions in the blind were the only regions outside the canonical frontoparietal MD regions to show such activation in response to multiple control demands. Furthermore, compared with the sighted, these occipital regions in the blind had higher functional connectivity with frontoparietal MD regions. Early deaf, in contrast, did not activate their auditory regions in response to different control demands, showing that auditory regions do not become MD regions in the deaf. We suggest that visual regions in the blind do not take a new sensory role but become part of the MD network, and this is not a response of all deprived sensory cortices but a feature unique to the visual regions.
Collapse
Affiliation(s)
- Hasan Duymuş
- Department of Psychology, Bilkent University, Ankara, 06800, Türkiye
- Department of Psychology, Ankara Yildirim Beyazıt University, Ankara, 06760, Türkiye
| | - Mohini Verma
- Department of Neuroscience, Bilkent University, Ankara, 06800, Türkiye
- Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, 06800, Türkiye
| | - Yasemin Güçlütürk
- Sign Language Program, TÖMER, Ankara University, Ankara, 06100, Türkiye
| | - Mesut Öztürk
- Sign Language Program, TÖMER, Ankara University, Ankara, 06100, Türkiye
| | - Ayşe B Varol
- Department of Neuroscience, Bilkent University, Ankara, 06800, Türkiye
| | - Şehmus Kurt
- Department of Psychology, Ankara Yildirim Beyazıt University, Ankara, 06760, Türkiye
| | - Tamer Gezici
- Department of Neuroscience, Bilkent University, Ankara, 06800, Türkiye
| | - Berhan F Akgür
- Department of Neuroscience, Bilkent University, Ankara, 06800, Türkiye
| | - İrem Giray
- Department of Neuroscience, Bilkent University, Ankara, 06800, Türkiye
| | - Elif E Öksüz
- Department of Psychology, Ankara Yildirim Beyazıt University, Ankara, 06760, Türkiye
| | - Ausaf A Farooqui
- Department of Psychology, Bilkent University, Ankara, 06800, Türkiye
- Department of Neuroscience, Bilkent University, Ankara, 06800, Türkiye
- Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, 06800, Türkiye
- National Magnetic Resonance Research Center, Bilkent University, Ankara, 06800, Türkiye
| |
Collapse
|
6
|
Yang T, Fan X, Hou B, Wang J, Chen X. Linguistic network in early deaf individuals: A neuroimaging meta-analysis. Neuroimage 2024; 299:120720. [PMID: 38971484 DOI: 10.1016/j.neuroimage.2024.120720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024] Open
Abstract
This meta-analysis summarizes evidence from 44 neuroimaging experiments and characterizes the general linguistic network in early deaf individuals. Meta-analytic comparisons with hearing individuals found that a specific set of regions (in particular the left inferior frontal gyrus and posterior middle temporal gyrus) participates in supramodal language processing. In addition to previously described modality-specific differences, the present study showed that the left calcarine gyrus and the right caudate were additionally recruited in deaf compared with hearing individuals. In addition, this study showed that the bilateral posterior superior temporal gyrus is shaped by cross-modal plasticity, whereas the left frontotemporal areas are shaped by early language experience. Although an overall left-lateralized pattern for language processing was observed in the early deaf individuals, regional lateralization was altered in the inferior frontal gyrus and anterior temporal lobe. These findings indicate that the core language network functions in a modality-independent manner, and provide a foundation for determining the contributions of sensory and linguistic experiences in shaping the neural bases of language processing.
Collapse
Affiliation(s)
- Tengyu Yang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Xinmiao Fan
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Bo Hou
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Jian Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China.
| | - Xiaowei Chen
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
7
|
Zimmermann M, Cusack R, Bedny M, Szwed M. Auditory areas are recruited for naturalistic visual meaning in early deaf people. Nat Commun 2024; 15:8035. [PMID: 39289375 PMCID: PMC11408683 DOI: 10.1038/s41467-024-52383-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/04/2024] [Indexed: 09/20/2024] Open
Abstract
Congenital deafness enhances responses of auditory cortices to non-auditory tasks, yet the nature of the reorganization is not well understood. Here, naturalistic stimuli are used to induce neural synchrony across early deaf and hearing individuals. Participants watch a silent animated film in an intact version and three versions with gradually distorted meaning. Differences between groups are observed in higher-order auditory cortices in all stimuli, with no statistically significant effects in the primary auditory cortex. Comparison between levels of scrambling revealed a heterogeneity of function in secondary auditory areas. Both hemispheres show greater synchrony in the deaf than in the hearing participants for the intact movie and high-level variants. However, only the right hemisphere shows an increased inter-subject synchrony in the deaf people for the low-level movie variants. An event segmentation validates these results: the dynamics of the right secondary auditory cortex in the deaf people consist of shorter-length events with more transitions than the left. Our results reveal how deaf individuals use their auditory cortex to process visual meaning.
Collapse
Affiliation(s)
- Maria Zimmermann
- Institute of Psychology, Jagiellonian University, Krakow, Poland.
- Department of Psychology and Brain Sciences, Johns Hopkins University, Baltimore, USA.
| | - Rhodri Cusack
- Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Marina Bedny
- Department of Psychology and Brain Sciences, Johns Hopkins University, Baltimore, USA
| | - Marcin Szwed
- Institute of Psychology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
8
|
Snir A, Cieśla K, Ozdemir G, Vekslar R, Amedi A. Localizing 3D motion through the fingertips: Following in the footsteps of elephants. iScience 2024; 27:109820. [PMID: 38799571 PMCID: PMC11126990 DOI: 10.1016/j.isci.2024.109820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/07/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Each sense serves a different specific function in spatial perception, and they all form a joint multisensory spatial representation. For instance, hearing enables localization in the entire 3D external space, while touch traditionally only allows localization of objects on the body (i.e., within the peripersonal space alone). We use an in-house touch-motion algorithm (TMA) to evaluate individuals' capability to understand externalized 3D information through touch, a skill that was not acquired during an individual's development or in evolution. Four experiments demonstrate quick learning and high accuracy in localization of motion using vibrotactile inputs on fingertips and successful audio-tactile integration in background noise. Subjective responses in some participants imply spatial experiences through visualization and perception of tactile "moving" sources beyond reach. We discuss our findings with respect to developing new skills in an adult brain, including combining a newly acquired "sense" with an existing one and computation-based brain organization.
Collapse
Affiliation(s)
- Adi Snir
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, The Baruch Ivcher School of Psychology, Reichman University, HaUniversita 8, Herzliya 461010, Israel
| | - Katarzyna Cieśla
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, The Baruch Ivcher School of Psychology, Reichman University, HaUniversita 8, Herzliya 461010, Israel
- World Hearing Centre, Institute of Physiology and Pathology of Hearing, Mokra 17, 05-830 Kajetany, Nadarzyn, Poland
| | - Gizem Ozdemir
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, The Baruch Ivcher School of Psychology, Reichman University, HaUniversita 8, Herzliya 461010, Israel
| | - Rotem Vekslar
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, The Baruch Ivcher School of Psychology, Reichman University, HaUniversita 8, Herzliya 461010, Israel
| | - Amir Amedi
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, The Baruch Ivcher School of Psychology, Reichman University, HaUniversita 8, Herzliya 461010, Israel
| |
Collapse
|
9
|
Kozak A, Ninghetto M, Wieteska M, Fiedorowicz M, Wełniak-Kamińska M, Kossowski B, Eysel UT, Arckens L, Burnat K. Visual training after central retinal loss limits structural white matter degradation: an MRI study. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:13. [PMID: 38789988 PMCID: PMC11127408 DOI: 10.1186/s12993-024-00239-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Macular degeneration of the eye is a common cause of blindness and affects 8% of the worldwide human population. In adult cats with bilateral lesions of the central retina, we explored the possibility that motion perception training can limit the associated degradation of the visual system. We evaluated how visual training affects behavioral performance and white matter structure. Recently, we proposed (Kozak et al. in Transl Vis Sci Technol 10:9, 2021) a new motion-acuity test for low vision patients, enabling full visual field functional assessment through simultaneous perception of shape and motion. Here, we integrated this test as the last step of a 10-week motion-perception training. RESULTS Cats were divided into three groups: retinal-lesioned only and two trained groups, retinal-lesioned trained and control trained. The behavioral data revealed that trained cats with retinal lesions were superior in motion tasks, even when the difficulty relied only on acuity. 7 T-MRI scanning was done before and after lesioning at 5 different timepoints, followed by Fixel-Based and Fractional Anisotropy Analysis. In cats with retinal lesions, training resulted in a more localized and reduced percentage decrease in Fixel-Based Analysis metrics in the dLGN, caudate nucleus and hippocampus compared to untrained cats. In motion-sensitive area V5/PMLS, the significant decreases in fiber density were equally strong in retinal-lesioned untrained and trained cats, up to 40% in both groups. The only cortical area with Fractional Anisotropy values not affected by central retinal loss was area V5/PMLS. In other visual ROIs, the Fractional Anisotropy values increased over time in the untrained retinal lesioned group, whereas they decreased in the retinal lesioned trained group and remained at a similar level as in trained controls. CONCLUSIONS Overall, our MRI results showed a stabilizing effect of motion training applied soon after central retinal loss induction on white matter structure. We propose that introducing early motion-acuity training for low vision patients, aimed at the intact and active retinal peripheries, may facilitate brain plasticity processes toward better vision.
Collapse
Affiliation(s)
- Anna Kozak
- Laboratory of Brain Imaging, Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marco Ninghetto
- Laboratory of Brain Imaging, Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Wieteska
- Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Marlena Wełniak-Kamińska
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Bartosz Kossowski
- Laboratory of Brain Imaging, Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ulf T Eysel
- Department of Neurophysiology, Ruhr University, Bochum, Germany
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Louvain, Belgium
- KU Leuven Brain Institute, KU Leuven, Louvain, Belgium
| | - Kalina Burnat
- Laboratory of Brain Imaging, Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
10
|
Gioiosa Maurno N, Phillips-Silver J, Daza González MT. Research of visual attention networks in deaf individuals: a systematic review. Front Psychol 2024; 15:1369941. [PMID: 38800679 PMCID: PMC11120974 DOI: 10.3389/fpsyg.2024.1369941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
The impact of deafness on visual attention has been widely discussed in previous research. It has been noted that deficiencies and strengths of previous research can be attributed to temporal or spatial aspects of attention, as well as variations in development and clinical characteristics. Visual attention is categorized into three networks: orienting (exogenous and endogenous), alerting (phasic and tonic), and executive control. This study aims to contribute new neuroscientific evidence supporting this hypothesis. This paper presents a systematic review of the international literature from the past 15 years focused on visual attention in the deaf population. The final review included 24 articles. The function of the orienting network is found to be enhanced in deaf adults and children, primarily observed in native signers without cochlear implants, while endogenous orienting is observed only in the context of gaze cues in children, with no differences found in adults. Results regarding alerting and executive function vary depending on clinical characteristics and paradigms used. Implications for future research on visual attention in the deaf population are discussed.
Collapse
Affiliation(s)
- Nahuel Gioiosa Maurno
- Department of Psychology, University of Almería, Almería, Spain
- CIBIS Research Center, University of Almería, Almería, Spain
| | | | - María Teresa Daza González
- Department of Psychology, University of Almería, Almería, Spain
- CIBIS Research Center, University of Almería, Almería, Spain
| |
Collapse
|
11
|
Jafari Z, Kolb BE, Mohajerani MH. A systematic review of altered resting-state networks in early deafness and implications for cochlear implantation outcomes. Eur J Neurosci 2024; 59:2596-2615. [PMID: 38441248 DOI: 10.1111/ejn.16295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 05/22/2024]
Abstract
Auditory deprivation following congenital/pre-lingual deafness (C/PD) can drastically affect brain development and its functional organisation. This systematic review intends to extend current knowledge of the impact of C/PD and deafness duration on brain resting-state networks (RSNs), review changes in RSNs and spoken language outcomes post-cochlear implant (CI) and draw conclusions for future research. The systematic literature search followed the PRISMA guideline. Two independent reviewers searched four electronic databases using combined keywords: 'auditory deprivation', 'congenital/prelingual deafness', 'resting-state functional connectivity' (RSFC), 'resting-state fMRI' and 'cochlear implant'. Seventeen studies (16 cross-sectional and one longitudinal) met the inclusion criteria. Using the Crowe Critical Appraisal Tool, the publications' quality was rated between 65.0% and 92.5% (mean: 84.10%), ≥80% in 13 out of 17 studies. A few studies were deficient in sampling and/or ethical considerations. According to the findings, early auditory deprivation results in enhanced RSFC between the auditory network and brain networks involved in non-verbal communication, and high levels of spontaneous neural activity in the auditory cortex before CI are evidence of occupied auditory cortical areas with other sensory modalities (cross-modal plasticity) and sub-optimal CI outcomes. Overall, current evidence supports the idea that moreover intramodal and cross-modal plasticity, the entire brain adaptation following auditory deprivation contributes to spoken language development and compensatory behaviours.
Collapse
Affiliation(s)
- Zahra Jafari
- School of Communication Sciences and Disorders (SCSD), Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- Douglas Research Centre, Department of Psychiatry, McGill University, Montreal, Québec, Canada
| |
Collapse
|
12
|
Sacco A, Gordon SG, Lomber SG. Connectome alterations following perinatal deafness in the cat. Neuroimage 2024; 290:120554. [PMID: 38431180 DOI: 10.1016/j.neuroimage.2024.120554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024] Open
Abstract
Following sensory deprivation, areas and networks in the brain may adapt and reorganize to compensate for the loss of input. These adaptations are manifestations of compensatory crossmodal plasticity, which has been documented in both human and animal models of deafness-including the domestic cat. Although there are abundant examples of structural plasticity in deaf felines from retrograde tracer-based studies, there is a lack of diffusion-based knowledge involving this model compared to the current breadth of human research. The purpose of this study was to explore white matter structural adaptations in the perinatally-deafened cat via tractography, increasing the methodological overlap between species. Plasticity was examined by identifying unique group connections and assessing altered connectional strength throughout the entirety of the brain. Results revealed a largely preserved connectome containing a limited number of group-specific or altered connections focused within and between sensory networks, which is generally corroborated by deaf feline anatomical tracer literature. Furthermore, five hubs of cortical plasticity and altered communication following perinatal deafness were observed. The limited differences found in the present study suggest that deafness-induced crossmodal plasticity is largely built upon intrinsic structural connections, with limited remodeling of underlying white matter.
Collapse
Affiliation(s)
- Alessandra Sacco
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Stephen G Gordon
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Stephen G Lomber
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
13
|
Saccone EJ, Tian M, Bedny M. Developing cortex is functionally pluripotent: Evidence from blindness. Dev Cogn Neurosci 2024; 66:101360. [PMID: 38394708 PMCID: PMC10899073 DOI: 10.1016/j.dcn.2024.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/25/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024] Open
Abstract
How rigidly does innate architecture constrain function of developing cortex? What is the contribution of early experience? We review insights into these questions from visual cortex function in people born blind. In blindness, occipital cortices are active during auditory and tactile tasks. What 'cross-modal' plasticity tells us about cortical flexibility is debated. On the one hand, visual networks of blind people respond to higher cognitive information, such as sentence grammar, suggesting drastic repurposing. On the other, in line with 'metamodal' accounts, sighted and blind populations show shared domain preferences in ventral occipito-temporal cortex (vOTC), suggesting visual areas switch input modality but perform the same or similar perceptual functions (e.g., face recognition) in blindness. Here we bring these disparate literatures together, reviewing and synthesizing evidence that speaks to whether visual cortices have similar or different functions in blind and sighted people. Together, the evidence suggests that in blindness, visual cortices are incorporated into higher-cognitive (e.g., fronto-parietal) networks, which are a major source long-range input to the visual system. We propose the connectivity-constrained experience-dependent account. Functional development is constrained by innate anatomical connectivity, experience and behavioral needs. Infant cortex is pluripotent, the same anatomical constraints develop into different functional outcomes.
Collapse
Affiliation(s)
- Elizabeth J Saccone
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.
| | - Mengyu Tian
- Center for Educational Science and Technology, Beijing Normal University at Zhuhai, China
| | - Marina Bedny
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
14
|
Song L, Wang P, Li H, Weiss PH, Fink GR, Zhou X, Chen Q. Increased functional connectivity between the auditory cortex and the frontoparietal network compensates for impaired visuomotor transformation after early auditory deprivation. Cereb Cortex 2023; 33:11126-11145. [PMID: 37814363 DOI: 10.1093/cercor/bhad351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 10/11/2023] Open
Abstract
Early auditory deprivation leads to a reorganization of large-scale brain networks involving and extending beyond the auditory system. It has been documented that visuomotor transformation is impaired after early deafness, associated with a hyper-crosstalk between the task-critical frontoparietal network and the default-mode network. However, it remains unknown whether and how the reorganized large-scale brain networks involving the auditory cortex contribute to impaired visuomotor transformation after early deafness. Here, we asked deaf and early hard of hearing participants and normal hearing controls to judge the spatial location of a visual target. Compared with normal hearing controls, the superior temporal gyrus showed significantly increased functional connectivity with the frontoparietal network and the default-mode network in deaf and early hard of hearing participants, specifically during egocentric judgments. However, increased superior temporal gyrus-frontoparietal network and superior temporal gyrus-default-mode network coupling showed antagonistic effects on egocentric judgments. In deaf and early hard of hearing participants, increased superior temporal gyrus-frontoparietal network connectivity was associated with improved egocentric judgments, whereas increased superior temporal gyrus-default-mode network connectivity was associated with deteriorated performance in the egocentric task. Therefore, the data suggest that the auditory cortex exhibits compensatory neuroplasticity (i.e. increased functional connectivity with the task-critical frontoparietal network) to mitigate impaired visuomotor transformation after early auditory deprivation.
Collapse
Affiliation(s)
- Li Song
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Pengfei Wang
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Hui Li
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Peter H Weiss
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Wilhelm-Johnen-Strasse, Jülich 52428, Germany
- Department of Neurology, University Hospital Cologne, Cologne University, Cologne 509737, Germany
| | - Gereon R Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Wilhelm-Johnen-Strasse, Jülich 52428, Germany
- Department of Neurology, University Hospital Cologne, Cologne University, Cologne 509737, Germany
| | - Xiaolin Zhou
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Qi Chen
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou 510631, China
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Wilhelm-Johnen-Strasse, Jülich 52428, Germany
| |
Collapse
|
15
|
Damera SR, Malone PS, Stevens BW, Klein R, Eberhardt SP, Auer ET, Bernstein LE, Riesenhuber M. Metamodal Coupling of Vibrotactile and Auditory Speech Processing Systems through Matched Stimulus Representations. J Neurosci 2023; 43:4984-4996. [PMID: 37197979 PMCID: PMC10324991 DOI: 10.1523/jneurosci.1710-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 03/10/2023] [Accepted: 04/29/2023] [Indexed: 05/19/2023] Open
Abstract
It has been postulated that the brain is organized by "metamodal," sensory-independent cortical modules capable of performing tasks (e.g., word recognition) in both "standard" and novel sensory modalities. Still, this theory has primarily been tested in sensory-deprived individuals, with mixed evidence in neurotypical subjects, thereby limiting its support as a general principle of brain organization. Critically, current theories of metamodal processing do not specify requirements for successful metamodal processing at the level of neural representations. Specification at this level may be particularly important in neurotypical individuals, where novel sensory modalities must interface with existing representations for the standard sense. Here we hypothesized that effective metamodal engagement of a cortical area requires congruence between stimulus representations in the standard and novel sensory modalities in that region. To test this, we first used fMRI to identify bilateral auditory speech representations. We then trained 20 human participants (12 female) to recognize vibrotactile versions of auditory words using one of two auditory-to-vibrotactile algorithms. The vocoded algorithm attempted to match the encoding scheme of auditory speech while the token-based algorithm did not. Crucially, using fMRI, we found that only in the vocoded group did trained-vibrotactile stimuli recruit speech representations in the superior temporal gyrus and lead to increased coupling between them and somatosensory areas. Our results advance our understanding of brain organization by providing new insight into unlocking the metamodal potential of the brain, thereby benefitting the design of novel sensory substitution devices that aim to tap into existing processing streams in the brain.SIGNIFICANCE STATEMENT It has been proposed that the brain is organized by "metamodal," sensory-independent modules specialized for performing certain tasks. This idea has inspired therapeutic applications, such as sensory substitution devices, for example, enabling blind individuals "to see" by transforming visual input into soundscapes. Yet, other studies have failed to demonstrate metamodal engagement. Here, we tested the hypothesis that metamodal engagement in neurotypical individuals requires matching the encoding schemes between stimuli from the novel and standard sensory modalities. We trained two groups of subjects to recognize words generated by one of two auditory-to-vibrotactile transformations. Critically, only vibrotactile stimuli that were matched to the neural encoding of auditory speech engaged auditory speech areas after training. This suggests that matching encoding schemes is critical to unlocking the brain's metamodal potential.
Collapse
Affiliation(s)
- Srikanth R Damera
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007
| | - Patrick S Malone
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007
| | - Benson W Stevens
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007
| | - Richard Klein
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007
| | - Silvio P Eberhardt
- Department of Speech Language & Hearing Sciences, George Washington University, Washington, DC 20052
| | - Edward T Auer
- Department of Speech Language & Hearing Sciences, George Washington University, Washington, DC 20052
| | - Lynne E Bernstein
- Department of Speech Language & Hearing Sciences, George Washington University, Washington, DC 20052
| | | |
Collapse
|
16
|
Cardin V, Kremneva E, Komarova A, Vinogradova V, Davidenko T, Zmeykina E, Kopnin PN, Iriskhanova K, Woll B. Resting-state functional connectivity in deaf and hearing individuals and its link to executive processing. Neuropsychologia 2023; 185:108583. [PMID: 37142052 DOI: 10.1016/j.neuropsychologia.2023.108583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Sensory experience shapes brain structure and function, and it is likely to influence the organisation of functional networks of the brain, including those involved in cognitive processing. Here we investigated the influence of early deafness on the organisation of resting-state networks of the brain and its relation to executive processing. We compared resting-state connectivity between deaf and hearing individuals across 18 functional networks and 400 ROIs. Our results showed significant group differences in connectivity between seeds of the auditory network and most large-scale networks of the brain, in particular the somatomotor and salience/ventral attention networks. When we investigated group differences in resting-state fMRI and their link to behavioural performance in executive function tasks (working memory, inhibition and switching), differences between groups were found in the connectivity of association networks of the brain, such as the salience/ventral attention and default-mode networks. These findings indicate that sensory experience influences not only the organisation of sensory networks, but that it also has a measurable impact on the organisation of association networks supporting cognitive processing. Overall, our findings suggest that different developmental pathways and functional organisation can support executive processing in the adult brain.
Collapse
Affiliation(s)
- Velia Cardin
- Deafness, Cognition and Language Research Centre, UCL, London, UK.
| | - Elena Kremneva
- Department of Radiology, Research Center of Neurology, Moscow, Russia
| | - Anna Komarova
- Galina Zaitseva Centre for Deaf Studies and Sign Language, Moscow, Russia; Language Department, Moscow State Linguistics University, Moscow, Russia
| | - Valeria Vinogradova
- Deafness, Cognition and Language Research Centre, UCL, London, UK; Galina Zaitseva Centre for Deaf Studies and Sign Language, Moscow, Russia; School of Psychology, University of East Anglia, Norwich, UK
| | - Tatiana Davidenko
- Galina Zaitseva Centre for Deaf Studies and Sign Language, Moscow, Russia
| | - Elina Zmeykina
- Department of Radiology, Research Center of Neurology, Moscow, Russia; Department of Neurology, University Medical Center Göttingen, Germany
| | - Petr N Kopnin
- Department of Neurorehabilitation and Physiotherapy, Research Center of Neurology, Moscow, Russia
| | - Kira Iriskhanova
- Language Department, Moscow State Linguistics University, Moscow, Russia
| | - Bencie Woll
- Deafness, Cognition and Language Research Centre, UCL, London, UK
| |
Collapse
|
17
|
Kral A, Sharma A. Crossmodal plasticity in hearing loss. Trends Neurosci 2023; 46:377-393. [PMID: 36990952 PMCID: PMC10121905 DOI: 10.1016/j.tins.2023.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/27/2023] [Accepted: 02/21/2023] [Indexed: 03/29/2023]
Abstract
Crossmodal plasticity is a textbook example of the ability of the brain to reorganize based on use. We review evidence from the auditory system showing that such reorganization has significant limits, is dependent on pre-existing circuitry and top-down interactions, and that extensive reorganization is often absent. We argue that the evidence does not support the hypothesis that crossmodal reorganization is responsible for closing critical periods in deafness, and crossmodal plasticity instead represents a neuronal process that is dynamically adaptable. We evaluate the evidence for crossmodal changes in both developmental and adult-onset deafness, which start as early as mild-moderate hearing loss and show reversibility when hearing is restored. Finally, crossmodal plasticity does not appear to affect the neuronal preconditions for successful hearing restoration. Given its dynamic and versatile nature, we describe how this plasticity can be exploited for improving clinical outcomes after neurosensory restoration.
Collapse
Affiliation(s)
- Andrej Kral
- Institute of AudioNeuroTechnology and Department of Experimental Otology, Otolaryngology Clinics, Hannover Medical School, Hannover, Germany; Australian Hearing Hub, School of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Anu Sharma
- Department of Speech Language and Hearing Science, Center for Neuroscience, Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
18
|
Maimon A, Netzer O, Heimler B, Amedi A. Testing geometry and 3D perception in children following vision restoring cataract-removal surgery. Front Neurosci 2023; 16:962817. [PMID: 36711132 PMCID: PMC9879291 DOI: 10.3389/fnins.2022.962817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
As neuroscience and rehabilitative techniques advance, age-old questions concerning the visual experience of those who gain sight after blindness, once thought to be philosophical alone, take center stage and become the target for scientific inquiries. In this study, we employ a battery of visual perception tasks to study the unique experience of a small group of children who have undergone vision-restoring cataract removal surgery as part of the Himalayan Cataract Project. We tested their abilities to perceive in three dimensions (3D) using a binocular rivalry task and the Brock string task, perceive visual illusions, use cross-modal mappings between touch and vision, and spatially group based on geometric cues. Some of the children in this study gained a sense of sight for the first time in their lives, having been born with bilateral congenital cataracts, while others suffered late-onset blindness in one eye alone. This study simultaneously supports yet raises further questions concerning Hubel and Wiesel's critical periods theory and provides additional insight into Molyneux's problem, the ability to correlate vision with touch quickly. We suggest that our findings present a relatively unexplored intermediate stage of 3D vision development. Importantly, we spotlight some essential geometrical perception visual abilities that strengthen the idea that spontaneous geometry intuitions arise independently from visual experience (and education), thus replicating and extending previous studies. We incorporate a new model, not previously explored, of testing children with congenital cataract removal surgeries who perform the task via vision. In contrast, previous work has explored these abilities in the congenitally blind via touch. Taken together, our findings provide insight into the development of what is commonly known as the visual system in the visually deprived and highlight the need to further empirically explore an amodal, task-based interpretation of specializations in the development and structure of the brain. Moreover, we propose a novel objective method, based on a simple binocular rivalry task and the Brock string task, for determining congenital (early) vs. late blindness where medical history and records are partial or lacking (e.g., as is often the case in cataract removal cases).
Collapse
Affiliation(s)
- Amber Maimon
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, Baruch Ivcher School of Psychology, Reichman University, Herzliya, Israel,The Ruth & Meir Rosenthal Brain Imaging Center, Reichman University, Herzliya, Israel,*Correspondence: Amber Maimon,
| | - Ophir Netzer
- Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Benedetta Heimler
- Center of Advanced Technologies in Rehabilitation (CATR), Sheba Medical Center, Ramat Gan, Israel
| | - Amir Amedi
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, Baruch Ivcher School of Psychology, Reichman University, Herzliya, Israel,The Ruth & Meir Rosenthal Brain Imaging Center, Reichman University, Herzliya, Israel
| |
Collapse
|
19
|
Mathias B, von Kriegstein K. Enriched learning: behavior, brain, and computation. Trends Cogn Sci 2023; 27:81-97. [PMID: 36456401 DOI: 10.1016/j.tics.2022.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/05/2022] [Accepted: 10/25/2022] [Indexed: 11/29/2022]
Abstract
The presence of complementary information across multiple sensory or motor modalities during learning, referred to as multimodal enrichment, can markedly benefit learning outcomes. Why is this? Here, we integrate cognitive, neuroscientific, and computational approaches to understanding the effectiveness of enrichment and discuss recent neuroscience findings indicating that crossmodal responses in sensory and motor brain regions causally contribute to the behavioral benefits of enrichment. The findings provide novel evidence for multimodal theories of enriched learning, challenge assumptions of longstanding cognitive theories, and provide counterevidence to unimodal neurobiologically inspired theories. Enriched educational methods are likely effective not only because they may engage greater levels of attention or deeper levels of processing, but also because multimodal interactions in the brain can enhance learning and memory.
Collapse
Affiliation(s)
- Brian Mathias
- School of Psychology, University of Aberdeen, Aberdeen, UK; Chair of Cognitive and Clinical Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.
| | - Katharina von Kriegstein
- Chair of Cognitive and Clinical Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
20
|
Gori M, Amadeo MB, Pavani F, Valzolgher C, Campus C. Temporal visual representation elicits early auditory-like responses in hearing but not in deaf individuals. Sci Rep 2022; 12:19036. [PMID: 36351944 PMCID: PMC9646881 DOI: 10.1038/s41598-022-22224-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022] Open
Abstract
It is evident that the brain is capable of large-scale reorganization following sensory deprivation, but the extent of such reorganization is to date, not clear. The auditory modality is the most accurate to represent temporal information, and deafness is an ideal clinical condition to study the reorganization of temporal representation when the audio signal is not available. Here we show that hearing, but not deaf individuals, show a strong ERP response to visual stimuli in temporal areas during a time-bisection task. This ERP response appears 50-90 ms after the flash and recalls some aspects of the N1 ERP component usually elicited by auditory stimuli. The same ERP is not evident for a visual space-bisection task, suggesting that the early recruitment of temporal cortex is specific for building a highly resolved temporal representation within the visual modality. These findings provide evidence that the lack of auditory input can interfere with typical development of complex visual temporal representations.
Collapse
Affiliation(s)
- Monica Gori
- grid.25786.3e0000 0004 1764 2907Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152 Genoa, Italy
| | - Maria Bianca Amadeo
- grid.25786.3e0000 0004 1764 2907Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152 Genoa, Italy
| | - Francesco Pavani
- grid.11696.390000 0004 1937 0351Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy ,grid.11696.390000 0004 1937 0351Centro Interateneo di Ricerca Cognizione, Linguaggio e Sordità (CIRCLeS), University of Trento, Trento, Italy ,grid.461862.f0000 0004 0614 7222Integrative, Multisensory, Perception, Action and Cognition Team (IMPACT), Centre de Recherche en Neuroscience de Lyon (CRNL), Bron, France
| | - Chiara Valzolgher
- grid.11696.390000 0004 1937 0351Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy ,grid.461862.f0000 0004 0614 7222Integrative, Multisensory, Perception, Action and Cognition Team (IMPACT), Centre de Recherche en Neuroscience de Lyon (CRNL), Bron, France
| | - Claudio Campus
- grid.25786.3e0000 0004 1764 2907Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152 Genoa, Italy
| |
Collapse
|
21
|
Martolini C, Amadeo MB, Campus C, Cappagli G, Gori M. Effects of audio-motor training on spatial representations in long-term late blindness. Neuropsychologia 2022; 176:108391. [DOI: 10.1016/j.neuropsychologia.2022.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 08/16/2022] [Accepted: 10/01/2022] [Indexed: 11/15/2022]
|
22
|
Manini B, Vinogradova V, Woll B, Cameron D, Eimer M, Cardin V. Sensory experience modulates the reorganization of auditory regions for executive processing. Brain 2022; 145:3698-3710. [PMID: 35653493 PMCID: PMC9586534 DOI: 10.1093/brain/awac205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/20/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Crossmodal plasticity refers to the reorganization of sensory cortices in the absence of their typical main sensory input. Understanding this phenomenon provides insights into brain function and its potential for change and enhancement. Using functional MRI, we investigated how early deafness influences crossmodal plasticity and the organization of executive functions in the adult human brain. Deaf (n = 25; age: mean = 41.68, range = 19-66, SD = 14.38; 16 female, 9 male) and hearing (n = 20; age: mean = 37.50, range = 18-66, SD = 16.85; 15 female, 5 male) participants performed four visual tasks tapping into different components of executive processing: task switching, working memory, planning and inhibition. Our results show that deaf individuals specifically recruit 'auditory' regions during task switching. Neural activity in superior temporal regions, most significantly in the right hemisphere, are good predictors of behavioural performance during task switching in the group of deaf individuals, highlighting the functional relevance of the observed cortical reorganization. Our results show executive processing in typically sensory regions, suggesting that the development and ultimate role of brain regions are influenced by perceptual environmental experience.
Collapse
Affiliation(s)
- Barbara Manini
- Deafness, Cognition and Language Research Centre and Department of Experimental Psychology, UCL, London WC1H 0PD, UK
| | | | - Bencie Woll
- Deafness, Cognition and Language Research Centre and Department of Experimental Psychology, UCL, London WC1H 0PD, UK
| | - Donnie Cameron
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Martin Eimer
- Department of Psychological Sciences, Birkbeck, University of London, London WC1E 7HX, UK
| | - Velia Cardin
- Deafness, Cognition and Language Research Centre and Department of Experimental Psychology, UCL, London WC1H 0PD, UK
| |
Collapse
|
23
|
Korczyk M, Zimmermann M, Bola Ł, Szwed M. Superior visual rhythm discrimination in expert musicians is most likely not related to cross-modal recruitment of the auditory cortex. Front Psychol 2022; 13:1036669. [PMID: 36337485 PMCID: PMC9632485 DOI: 10.3389/fpsyg.2022.1036669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/06/2022] [Indexed: 11/25/2022] Open
Abstract
Training can influence behavioral performance and lead to brain reorganization. In particular, training in one modality, for example, auditory, can improve performance in another modality, for example, visual. Previous research suggests that one of the mechanisms behind this phenomenon could be the cross-modal recruitment of the sensory areas, for example, the auditory cortex. Studying expert musicians offers a chance to explore this process. Rhythm is an aspect of music that can be presented in various modalities. We designed an fMRI experiment in which professional pianists and non-musicians discriminated between two sequences of rhythms presented auditorily (series of sounds) or visually (series of flashes). Behavioral results showed that musicians performed in both visual and auditory rhythmic tasks better than non-musicians. We found no significant between-group differences in fMRI activations within the auditory cortex. However, we observed that musicians had increased activation in the right Inferior Parietal Lobe when compared to non-musicians. We conclude that the musicians’ superior visual rhythm discrimination is not related to cross-modal recruitment of the auditory cortex; instead, it could be related to activation in higher-level, multimodal areas in the cortex.
Collapse
Affiliation(s)
| | | | - Łukasz Bola
- Intitute of Psychology, Jagiellonian University, Kraków, Poland
- Institute of Psychology, Polish Academy of Sciences, Warszawa, Poland
| | - Marcin Szwed
- Intitute of Psychology, Jagiellonian University, Kraków, Poland
- *Correspondence: Marcin Szwed,
| |
Collapse
|
24
|
Villwock A, Grin K. Somatosensory processing in deaf and deafblind individuals: How does the brain adapt as a function of sensory and linguistic experience? A critical review. Front Psychol 2022; 13:938842. [PMID: 36324786 PMCID: PMC9618853 DOI: 10.3389/fpsyg.2022.938842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
How do deaf and deafblind individuals process touch? This question offers a unique model to understand the prospects and constraints of neural plasticity. Our brain constantly receives and processes signals from the environment and combines them into the most reliable information content. The nervous system adapts its functional and structural organization according to the input, and perceptual processing develops as a function of individual experience. However, there are still many unresolved questions regarding the deciding factors for these changes in deaf and deafblind individuals, and so far, findings are not consistent. To date, most studies have not taken the sensory and linguistic experiences of the included participants into account. As a result, the impact of sensory deprivation vs. language experience on somatosensory processing remains inconclusive. Even less is known about the impact of deafblindness on brain development. The resulting neural adaptations could be even more substantial, but no clear patterns have yet been identified. How do deafblind individuals process sensory input? Studies on deafblindness have mostly focused on single cases or groups of late-blind individuals. Importantly, the language backgrounds of deafblind communities are highly variable and include the usage of tactile languages. So far, this kind of linguistic experience and its consequences have not been considered in studies on basic perceptual functions. Here, we will provide a critical review of the literature, aiming at identifying determinants for neuroplasticity and gaps in our current knowledge of somatosensory processing in deaf and deafblind individuals.
Collapse
Affiliation(s)
- Agnes Villwock
- Sign Languages, Department of Rehabilitation Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | | |
Collapse
|
25
|
Sanganahalli BG, Pavuluri S, Chitturi J, Herman P, Elkabes S, Heary R, Hyder F, Kannurpatti SS. Lateralized Supraspinal Functional Connectivity Correlate with Pain and Motor Dysfunction in Rat Hemicontusion Cervical Spinal Cord Injury. Neurotrauma Rep 2022; 3:421-432. [PMID: 36337081 PMCID: PMC9622206 DOI: 10.1089/neur.2022.0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Afferent nociceptive activity in the reorganizing spinal cord after SCI influences supraspinal regions to establish pain. Clinical evidence of poor motor functional recovery in SCI patients with pain, led us to hypothesize that sensory-motor integration transforms into sensory-motor interference to manifest pain. This was tested by investigating supraspinal changes in a rat model of hemicontusion cervical SCI. Animals displayed ipsilateral forelimb motor dysfunction and pain, which persisted at 6 weeks after SCI. Using resting state fMRI at 8 weeks after SCI, RSFC across 14 ROIs involved in nociception, indicated lateral differences with a relatively weaker right-right connectivity (deafferented-contralateral) compared to left-left (unaffected-ipsilateral). However, the sensory (S1) and motor (M1/M2) networks showed greater RSFC using right hemisphere ROI seeds when compared to left. Voxel seeds from the somatosensory forelimb (S1FL) and M1/M2 representations reproduced the SCI-induced sensory and motor RSFC enhancements observed using the ROI seeds. Larger local connectivity occurred in the right sensory and motor networks amidst a decreasing overall local connectivity. This maladaptive reorganization of the right (deafferented) hemisphere localized the sensory component of pain emerging from the ipsilateral forepaw. A significant expansion of the sensory and motor network s overlap occurred globally after SCI when compared to sham, supporting the hypothesis that sensory and motor interference manifests pain. Voxel-seed based analysis revealed greater sensory and motor network overlap in the left hemisphere when compared to the right. This left predominance of the overlap suggested relatively larger pain processing in the unaffected hemisphere, when compared to the deafferented side.
Collapse
Affiliation(s)
- Basavaraju G. Sanganahalli
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Swathi Pavuluri
- Department of Radiology, Rutgers Biomedical and Health Sciences–New Jersey Medical School, Newark, New Jersey, USA
| | - Jyothsna Chitturi
- Department of Radiology, Rutgers Biomedical and Health Sciences–New Jersey Medical School, Newark, New Jersey, USA
| | - Peter Herman
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Stella Elkabes
- Department of Neurosurgery, Rutgers Biomedical and Health Sciences–New Jersey Medical School, Newark, New Jersey, USA
| | - Robert Heary
- Hackensack Meridian School of Medicine, Mountainside Medical Center, Montclair, New Jersey, USA
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sridhar S. Kannurpatti
- Department of Radiology, Rutgers Biomedical and Health Sciences–New Jersey Medical School, Newark, New Jersey, USA.,Address correspondence to: Sridhar S. Kannurpatti, PhD, Department of Radiology, RUTGERS–New Jersey Medical School, MSB, F-506, 185 South Orange Avenue, Newark, NJ 07103, USA.
| |
Collapse
|
26
|
Rönnberg J, Signoret C, Andin J, Holmer E. The cognitive hearing science perspective on perceiving, understanding, and remembering language: The ELU model. Front Psychol 2022; 13:967260. [PMID: 36118435 PMCID: PMC9477118 DOI: 10.3389/fpsyg.2022.967260] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The review gives an introductory description of the successive development of data patterns based on comparisons between hearing-impaired and normal hearing participants' speech understanding skills, later prompting the formulation of the Ease of Language Understanding (ELU) model. The model builds on the interaction between an input buffer (RAMBPHO, Rapid Automatic Multimodal Binding of PHOnology) and three memory systems: working memory (WM), semantic long-term memory (SLTM), and episodic long-term memory (ELTM). RAMBPHO input may either match or mismatch multimodal SLTM representations. Given a match, lexical access is accomplished rapidly and implicitly within approximately 100-400 ms. Given a mismatch, the prediction is that WM is engaged explicitly to repair the meaning of the input - in interaction with SLTM and ELTM - taking seconds rather than milliseconds. The multimodal and multilevel nature of representations held in WM and LTM are at the center of the review, being integral parts of the prediction and postdiction components of language understanding. Finally, some hypotheses based on a selective use-disuse of memory systems mechanism are described in relation to mild cognitive impairment and dementia. Alternative speech perception and WM models are evaluated, and recent developments and generalisations, ELU model tests, and boundaries are discussed.
Collapse
Affiliation(s)
- Jerker Rönnberg
- Linnaeus Centre HEAD, Department of Behavioural Sciences and Learning, Linköping University, Linköping, Sweden
| | | | | | | |
Collapse
|
27
|
Stroh AL, Grin K, Rösler F, Bottari D, Ossandón J, Rossion B, Röder B. Developmental experiences alter the temporal processing characteristics of the visual cortex: Evidence from deaf and hearing native signers. Eur J Neurosci 2022; 55:1629-1644. [PMID: 35193156 DOI: 10.1111/ejn.15629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 01/26/2022] [Accepted: 02/18/2022] [Indexed: 12/01/2022]
Abstract
To date, the extent to which early experience shapes the functional characteristics of neural circuits is still a matter of debate. In the present study, we tested whether congenital deafness and/or the acquisition of a sign language alter the temporal processing characteristics of the visual system. Moreover, we investigated whether, assuming cross-modal plasticity in deaf individuals, the temporal processing characteristics of possibly reorganised auditory areas resemble those of the visual cortex. Steady-state visual evoked potentials (SSVEPs) were recorded in congenitally deaf native signers, hearing native signers, and hearing nonsigners. The luminance of the visual stimuli was periodically modulated at 12, 21, and 40 Hz. For hearing nonsigners, the optimal driving rate was 12 Hz. By contrast, for the group of hearing signers the optimal driving rate was 12 and 21 Hz, whereas for the group of deaf signers the optimal driving rate was 21 Hz. We did not observe evidence for cross-modal recruitment of auditory cortex in the group of deaf signers. These results suggest a higher preferred neural processing rate as a consequence of the acquisition of a sign language.
Collapse
Affiliation(s)
- Anna-Lena Stroh
- Biological Psychology and Neuropsychology, University of Hamburg, Germany.,Institute of Psychology, Jagiellonian University, Kraków, Poland
| | - Konstantin Grin
- Biological Psychology and Neuropsychology, University of Hamburg, Germany
| | - Frank Rösler
- Biological Psychology and Neuropsychology, University of Hamburg, Germany
| | - Davide Bottari
- Biological Psychology and Neuropsychology, University of Hamburg, Germany.,IMT School for Advanced Studies Lucca, Italy
| | - José Ossandón
- Biological Psychology and Neuropsychology, University of Hamburg, Germany
| | - Bruno Rossion
- Université de Lorraine, CNRS, CRAN, Nancy, France.,Université de Lorraine, CHRU-Nancy, Service de Neurochirurgie, Nancy, France
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, University of Hamburg, Germany
| |
Collapse
|
28
|
Andin J, Holmer E. Reorganization of large-scale brain networks in deaf signing adults: The role of auditory cortex in functional reorganization following deafness. Neuropsychologia 2022; 166:108139. [PMID: 34990695 DOI: 10.1016/j.neuropsychologia.2021.108139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/17/2021] [Accepted: 12/31/2021] [Indexed: 01/24/2023]
Abstract
If the brain is deprived of input from one or more senses during development, functional and structural reorganization of the deprived regions takes place. However, little is known about how sensory deprivation affects large-scale brain networks. In the present study, we use data-driven independent component analysis (ICA) to characterize large-scale brain networks in 15 deaf early signers and 24 hearing non-signers based on resting-state functional MRI data. We found differences between the groups in independent components representing the left lateralized control network, the default network, the ventral somatomotor network, and the attention network. In addition, we showed stronger functional connectivity for deaf compared to hearing individuals from the middle and superior temporal cortices to the cingulate cortex, insular cortex, cuneus and precuneus, supramarginal gyrus, supplementary motor area, and cerebellum crus 1, and stronger connectivity for hearing non-signers to hippocampus, middle and superior frontal gyri, pre- and postcentral gyri, and cerebellum crus 8. These results show that deafness induces large-scale network reorganization, with the middle/superior temporal cortex as a central node of plasticity. Cross-modal reorganization may be associated with behavioral adaptations to the environment, including superior ability in some visual functions such as visual working memory and visual attention, in deaf signers.
Collapse
Affiliation(s)
- Josefine Andin
- Linnaeus Centre HEAD, Department of Behavioural Sciences and Learning, Linköping University, SE, 581 83, Linköping, Sweden.
| | - Emil Holmer
- Linnaeus Centre HEAD, Department of Behavioural Sciences and Learning, Linköping University, SE, 581 83, Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping University, Sweden.
| |
Collapse
|
29
|
Benetti S, Collignon O. Cross-modal integration and plasticity in the superior temporal cortex. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:127-143. [PMID: 35964967 DOI: 10.1016/b978-0-12-823493-8.00026-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In congenitally deaf people, temporal regions typically believed to be primarily auditory enhance their response to nonauditory information. The neural mechanisms and functional principles underlying this phenomenon, as well as its impact on auditory recovery after sensory restoration, yet remain debated. In this chapter, we demonstrate that the cross-modal recruitment of temporal regions by visual inputs in congenitally deaf people follows organizational principles known to be present in the hearing brain. We propose that the functional and structural mechanisms allowing optimal convergence of multisensory information in the temporal cortex of hearing people also provide the neural scaffolding for feeding visual or tactile information into the deafened temporal areas. Innate in their nature, such anatomo-functional links between the auditory and other sensory systems would represent the common substrate of both early multisensory integration and expression of selective cross-modal plasticity in the superior temporal cortex.
Collapse
Affiliation(s)
- Stefania Benetti
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Trento, Italy
| | - Olivier Collignon
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Trento, Italy; Institute for Research in Psychology and Neuroscience, Faculty of Psychology and Educational Science, UC Louvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
30
|
Lai K, Liu J, Wang J, Zheng Y, Liang M, Wang S. Resting-state EEG reveals global network deficiency in prelingually deaf children with late cochlear implantation. Front Pediatr 2022; 10:909069. [PMID: 36147821 PMCID: PMC9487891 DOI: 10.3389/fped.2022.909069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
There are individual differences in rehabilitation after cochlear implantation that can be explained by brain plasticity. However, from the perspective of brain networks, the effect of implantation age on brain plasticity is unclear. The present study investigated electroencephalography functional networks in the resting state, including eyes-closed and eyes-open conditions, in 31 children with early cochlear implantation, 24 children with late cochlear implantation, and 29 children with normal hearing. Resting-state functional connectivity was measured with phase lag index, and we investigated the connectivity between the sensory regions for each frequency band. Network topology was examined using minimum spanning tree to obtain the network backbone characteristics. The results showed stronger connectivity between auditory and visual regions but reduced global network efficiency in children with late cochlear implantation in the theta and alpha bands. Significant correlations were observed between functional backbone characteristics and speech perception scores in children with cochlear implantation. Collectively, these results reveal an important effect of implantation age on the extent of brain plasticity from a network perspective and indicate that characteristics of the brain network can reflect the extent of rehabilitation of children with cochlear implantation.
Collapse
Affiliation(s)
- Kaiying Lai
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
| | - Jiahao Liu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Junbo Wang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Maojin Liang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Suiping Wang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
| |
Collapse
|
31
|
Whitton S, Kim JM, Scurry AN, Otto S, Zhuang X, Cordes D, Jiang F. Multisensory temporal processing in early deaf. Neuropsychologia 2021; 163:108069. [PMID: 34715119 PMCID: PMC8653765 DOI: 10.1016/j.neuropsychologia.2021.108069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 08/01/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
Abstract
Navigating the world relies on understanding progressive sequences of multisensory events across time. Early deaf (ED) individuals are more precise in visual detection of space and motion than their normal hearing (NH) counterparts. However, whether ED individuals show altered multisensory temporal processing abilities is less clear. According to the connectome model, brain development depends on experience, and therefore the lack of audition may affect how the brain responds to remaining senses and how they are functionally connected. We used a temporal order judgment (TOJ) task to examine multisensory (visuotactile) temporal processing in ED and NH groups. We quantified BOLD responses and functional connectivity (FC) in both groups. ED and NH groups performed similarly for the visuotactile TOJ task. Bilateral posterior superior temporal sulcus (pSTS) BOLD responses during the TOJ task were significantly larger in the ED group than in NH. Using anatomically defined pSTS seeds, our FC analysis revealed stronger somatomotor and weaker visual regional connections in the ED group than in NH during the TOJ task. These results suggest that a lack of auditory input might alter the balance of tactile and visual area FC with pSTS when a multisensory temporal task is involved.
Collapse
Affiliation(s)
- Simon Whitton
- Department of Psychology, University of Nevada, Reno, USA.
| | - Jung Min Kim
- Department of Psychology, University of Nevada, Reno, USA
| | | | - Stephanie Otto
- Department of Psychology, University of Nevada, Reno, USA
| | - Xiaowei Zhuang
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, USA
| | - Dietmar Cordes
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, USA
| | - Fang Jiang
- Department of Psychology, University of Nevada, Reno, USA
| |
Collapse
|
32
|
Amadeo MB, Tonelli A, Campus C, Gori M. Reduced flash lag illusion in early deaf individuals. Brain Res 2021; 1776:147744. [PMID: 34848173 DOI: 10.1016/j.brainres.2021.147744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/21/2021] [Accepted: 11/24/2021] [Indexed: 11/28/2022]
Abstract
When a brief flash is quickly presented aligned with a moving target, the flash typically appears to lag behind the moving stimulus. This effect is widely known in the literature as a flash-lag illusion (FLI). The flash-lag is an example of a motion-induced position shift. Since auditory deprivation leads to both enhanced visual skills and impaired temporal abilities, both crucial for the perception of the flash-lag effect, here we hypothesized that lack of audition could influence the FLI. 13 early deaf and 18 hearing individuals were tested in a visual FLI paradigm to investigate this hypothesis. As expected, results demonstrated a reduction of the flash-lag effect following early deafness, both in the central and peripheral visual fields. Moreover, only for deaf individuals, there is a positive correlation between the flash-lag effect in the peripheral and central visual field, suggesting that the mechanisms underlying the effect in the center of the visual field expand to the periphery following deafness. Overall, these findings reveal that lack of audition early in life profoundly impacts early visual processing underlying the flash-lag effect.
Collapse
Affiliation(s)
- Maria Bianca Amadeo
- U-VIP Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Via E. Melen 83, 16152 Genova, Italy.
| | - Alessia Tonelli
- U-VIP Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Via E. Melen 83, 16152 Genova, Italy
| | - Claudio Campus
- U-VIP Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Via E. Melen 83, 16152 Genova, Italy
| | - Monica Gori
- U-VIP Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Via E. Melen 83, 16152 Genova, Italy
| |
Collapse
|
33
|
Zimmermann M, Mostowski P, Rutkowski P, Tomaszewski P, Krzysztofiak P, Jednoróg K, Marchewka A, Szwed M. The Extent of Task Specificity for Visual and Tactile Sequences in the Auditory Cortex of the Deaf and Hard of Hearing. J Neurosci 2021; 41:9720-9731. [PMID: 34663627 PMCID: PMC8612642 DOI: 10.1523/jneurosci.2527-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/21/2022] Open
Abstract
It has been proposed that the auditory cortex in the deaf humans might undergo task-specific reorganization. However, evidence remains scarce as previous experiments used only two very specific tasks (temporal processing and face perception) in visual modality. Here, congenitally deaf/hard of hearing and hearing women and men were enrolled in an fMRI experiment as we sought to fill this evidence gap in two ways. First, we compared activation evoked by a temporal processing task performed in two different modalities, visual and tactile. Second, we contrasted this task with a perceptually similar task that focuses on the spatial dimension. Additional control conditions consisted of passive stimulus observation. In line with the task specificity hypothesis, the auditory cortex in the deaf was activated by temporal processing in both visual and tactile modalities. This effect was selective for temporal processing relative to spatial discrimination. However, spatial processing also led to significant auditory cortex recruitment which, unlike temporal processing, occurred even during passive stimulus observation. We conclude that auditory cortex recruitment in the deaf and hard of hearing might involve interplay between task-selective and pluripotential mechanisms of cross-modal reorganization. Our results open several avenues for the investigation of the full complexity of the cross-modal plasticity phenomenon.SIGNIFICANCE STATEMENT Previous studies suggested that the auditory cortex in the deaf may change input modality (sound to vision) while keeping its function (e.g., rhythm processing). We investigated this hypothesis by asking deaf or hard of hearing and hearing adults to discriminate between temporally and spatially complex sequences in visual and tactile modalities. The results show that such function-specific brain reorganization, as has previously been demonstrated in the visual modality, also occurs for tactile processing. On the other hand, they also show that for some stimuli (spatial) the auditory cortex activates automatically, which is suggestive of a take-over by a different kind of cognitive function. The observed differences in processing of sequences might thus result from an interplay of task-specific and pluripotent plasticity.
Collapse
Affiliation(s)
- M Zimmermann
- Institute of Psychology, Jagiellonian University, 30-060 Krakow, Poland
| | - P Mostowski
- Section for Sign Linguistics, University of Warsaw, 00-927 Warsaw, Poland
| | - P Rutkowski
- Section for Sign Linguistics, University of Warsaw, 00-927 Warsaw, Poland
| | - P Tomaszewski
- Polish Sign Language and Deaf Communication Research Laboratory, Faculty of Psychology, University of Warsaw, 00-183 Warsaw, Poland
| | - P Krzysztofiak
- Faculty of Psychology, University of Social Sciences and Humanities, 03-815 Warsaw, Poland
| | - K Jednoróg
- Laboratory of Language Neurobiology, Nencki Institute for Experimental Biology, 02-093 Warsaw, Poland
| | - A Marchewka
- Laboratory of Brain Imaging, Nencki Institute for Experimental Biology, 02-093 Warsaw, Poland
| | - M Szwed
- Institute of Psychology, Jagiellonian University, 30-060 Krakow, Poland
| |
Collapse
|
34
|
Rezaul Karim AKM, Proulx MJ, de Sousa AA, Likova LT. Neuroplasticity and Crossmodal Connectivity in the Normal, Healthy Brain. PSYCHOLOGY & NEUROSCIENCE 2021; 14:298-334. [PMID: 36937077 PMCID: PMC10019101 DOI: 10.1037/pne0000258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Objective Neuroplasticity enables the brain to establish new crossmodal connections or reorganize old connections which are essential to perceiving a multisensorial world. The intent of this review is to identify and summarize the current developments in neuroplasticity and crossmodal connectivity, and deepen understanding of how crossmodal connectivity develops in the normal, healthy brain, highlighting novel perspectives about the principles that guide this connectivity. Methods To the above end, a narrative review is carried out. The data documented in prior relevant studies in neuroscience, psychology and other related fields available in a wide range of prominent electronic databases are critically assessed, synthesized, interpreted with qualitative rather than quantitative elements, and linked together to form new propositions and hypotheses about neuroplasticity and crossmodal connectivity. Results Three major themes are identified. First, it appears that neuroplasticity operates by following eight fundamental principles and crossmodal integration operates by following three principles. Second, two different forms of crossmodal connectivity, namely direct crossmodal connectivity and indirect crossmodal connectivity, are suggested to operate in both unisensory and multisensory perception. Third, three principles possibly guide the development of crossmodal connectivity into adulthood. These are labeled as the principle of innate crossmodality, the principle of evolution-driven 'neuromodular' reorganization and the principle of multimodal experience. These principles are combined to develop a three-factor interaction model of crossmodal connectivity. Conclusions The hypothesized principles and the proposed model together advance understanding of neuroplasticity, the nature of crossmodal connectivity, and how such connectivity develops in the normal, healthy brain.
Collapse
|
35
|
Zaforas M, Rosa JM, Alonso-Calviño E, Fernández-López E, Miguel-Quesada C, Oliviero A, Aguilar J. Cortical layer-specific modulation of neuronal activity after sensory deprivation due to spinal cord injury. J Physiol 2021; 599:4643-4669. [PMID: 34418097 PMCID: PMC9292026 DOI: 10.1113/jp281901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/19/2021] [Indexed: 11/28/2022] Open
Abstract
Abstract Cortical areas have the capacity of large‐scale reorganization following sensory deafferentation. However, it remains unclear whether this phenomenon is a unique process that homogeneously affects the entire deprived cortical region or whether it is susceptible to changes depending on neuronal networks across distinct cortical layers. Here, we studied how the local circuitry within each layer of the deafferented cortex forms the basis for neuroplastic changes after immediate thoracic spinal cord injury (SCI) in anaesthetized rats. In vivo electrophysiological recordings from deafferented hindlimb somatosensory cortex showed that SCI induces layer‐specific changes mediating evoked and spontaneous activity. In supragranular layer 2/3, SCI increased gamma oscillations and the ability of these neurons to initiate up‐states during spontaneous activity, suggesting an altered corticocortical network and/or intrinsic properties that may serve to maintain the excitability of the cortical column after deafferentation. On the other hand, SCI enhanced the infragranular layers’ ability to integrate evoked sensory inputs leading to increased and faster neuronal responses. Delayed evoked response onsets were also observed in layer 5/6, suggesting alterations in thalamocortical connectivity. Altogether, our data indicate that SCI immediately modifies the local circuitry within the deafferented cortex allowing supragranular layers to better integrate spontaneous corticocortical information, thus modifying column excitability, and infragranular layers to better integrate evoked sensory inputs to preserve subcortical outputs. These layer‐specific neuronal changes may guide the long‐term alterations in neuronal excitability and plasticity associated with the rearrangements of somatosensory networks and the appearance of central sensory pathologies usually associated with spinal cord injury. Key points Sensory stimulation of forelimb produces cortical evoked responses in the somatosensory hindlimb cortex in a layer‐dependent manner. Spinal cord injury favours the input statistics of corticocortical connections between intact and deafferented cortices. After spinal cord injury supragranular layers exhibit better integration of spontaneous corticocortical information while infragranular layers exhibit better integration of evoked sensory stimulation. Cortical reorganization is a layer‐specific phenomenon.
Collapse
Affiliation(s)
- Marta Zaforas
- Experimental Neurophysiology and Neuronal Circuits Group, Research Unit, Hospital Nacional de Parapléjicos - SESCAM, Toledo, 45071, Spain.,FENNSI Group, Hospital Nacional de Parapléjicos - SESCAM, Research Unit, Toledo, 45071, Spain
| | - Juliana M Rosa
- Experimental Neurophysiology and Neuronal Circuits Group, Research Unit, Hospital Nacional de Parapléjicos - SESCAM, Toledo, 45071, Spain
| | - Elena Alonso-Calviño
- Experimental Neurophysiology and Neuronal Circuits Group, Research Unit, Hospital Nacional de Parapléjicos - SESCAM, Toledo, 45071, Spain
| | - Elena Fernández-López
- Experimental Neurophysiology and Neuronal Circuits Group, Research Unit, Hospital Nacional de Parapléjicos - SESCAM, Toledo, 45071, Spain
| | - Claudia Miguel-Quesada
- Experimental Neurophysiology and Neuronal Circuits Group, Research Unit, Hospital Nacional de Parapléjicos - SESCAM, Toledo, 45071, Spain
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos - SESCAM, Research Unit, Toledo, 45071, Spain
| | - Juan Aguilar
- Experimental Neurophysiology and Neuronal Circuits Group, Research Unit, Hospital Nacional de Parapléjicos - SESCAM, Toledo, 45071, Spain
| |
Collapse
|
36
|
Neural Plasticity in a French Horn Player with Bilateral Amelia. Neural Plast 2021; 2021:4570135. [PMID: 34373687 PMCID: PMC8349270 DOI: 10.1155/2021/4570135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/01/2021] [Accepted: 07/19/2021] [Indexed: 11/26/2022] Open
Abstract
Precise control of movement and timing play a key role in musical performance. This motor skill requires coordination across multiple joints, muscles, and limbs, which is acquired through extensive musical training from childhood on. Thus, making music can be a strong driver for neuroplasticity. We here present the rare case of a professional french horn player with a congenital bilateral amelia of the upper limbs. We were able to show a unique cerebral and cerebellar somatotopic representation of his toe and feet, that do not follow the characteristic patterns of contralateral cortical and ipsilateral cerebellar layout. Although being a professional horn player who trained his embouchure muscles, including tongue, pharyngeal, and facial muscle usage excessively, there were no obvious signs for an expanded somatosensory representation in this part of the classic homunculus. Compared to the literature and in contrast to control subjects, the musicians' foot movement-related activations occurred in cerebellar areas that are typically more related to hand than to foot activation.
Collapse
|
37
|
Abstract
Early sensory deprivation, such as deafness, shapes brain development in multiple ways. Deprived auditory areas become engaged in the processing of stimuli from the remaining modalities and in high-level cognitive tasks. Yet, structural and functional changes were also observed in non-deprived brain areas, which may suggest the whole-brain network changes in deaf individuals. To explore this possibility, we compared the resting-state functional network organization of the brain in early deaf adults and hearing controls and examined global network segregation and integration. Relative to hearing controls, deaf adults exhibited decreased network segregation and an altered modular structure. In the deaf, regions of the salience network were coupled with the fronto-parietal network, while in the hearing controls, they were coupled with other large-scale networks. Deaf adults showed weaker connections between auditory and somatomotor regions, stronger coupling between the fronto-parietal network and several other large-scale networks (visual, memory, cingulo-opercular and somatomotor), and an enlargement of the default mode network. Our findings suggest that brain plasticity in deaf adults is not limited to changes in the auditory cortex but additionally alters the coupling between other large-scale networks and the development of functional brain modules. These widespread functional connectivity changes may provide a mechanism for the superior behavioral performance of the deaf in visual and attentional tasks.
Collapse
|
38
|
Abstract
Coordination between different sensory systems is a necessary element of sensory processing. Where and how signals from different sense organs converge onto common neural circuitry have become topics of increasing interest in recent years. In this article, we focus specifically on visual-auditory interactions in areas of the mammalian brain that are commonly considered to be auditory in function. The auditory cortex and inferior colliculus are two key points of entry where visual signals reach the auditory pathway, and both contain visual- and/or eye movement-related signals in humans and other animals. The visual signals observed in these auditory structures reflect a mixture of visual modulation of auditory-evoked activity and visually driven responses that are selective for stimulus location or features. These key response attributes also appear in the classic visual pathway but may play a different role in the auditory pathway: to modify auditory rather than visual perception. Finally, while this review focuses on two particular areas of the auditory pathway where this question has been studied, robust descending as well as ascending connections within this pathway suggest that undiscovered visual signals may be present at other stages as well. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Meredith N Schmehl
- Department of Neurobiology, Duke University, Durham, North Carolina 27708, USA; , .,Center for Cognitive Neuroscience, Duke University, Durham, North Carolina 27708, USA.,Duke Institute for Brain Sciences, Duke University, Durham, North Carolina 27708, USA
| | - Jennifer M Groh
- Department of Neurobiology, Duke University, Durham, North Carolina 27708, USA; , .,Department of Psychology & Neuroscience, Duke University, Durham, North Carolina 27708, USA.,Department of Computer Science, Duke University, Durham, North Carolina 27708, USA.,Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA.,Center for Cognitive Neuroscience, Duke University, Durham, North Carolina 27708, USA.,Duke Institute for Brain Sciences, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
39
|
Opoku-Baah C, Schoenhaut AM, Vassall SG, Tovar DA, Ramachandran R, Wallace MT. Visual Influences on Auditory Behavioral, Neural, and Perceptual Processes: A Review. J Assoc Res Otolaryngol 2021; 22:365-386. [PMID: 34014416 PMCID: PMC8329114 DOI: 10.1007/s10162-021-00789-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/07/2021] [Indexed: 01/03/2023] Open
Abstract
In a naturalistic environment, auditory cues are often accompanied by information from other senses, which can be redundant with or complementary to the auditory information. Although the multisensory interactions derived from this combination of information and that shape auditory function are seen across all sensory modalities, our greatest body of knowledge to date centers on how vision influences audition. In this review, we attempt to capture the state of our understanding at this point in time regarding this topic. Following a general introduction, the review is divided into 5 sections. In the first section, we review the psychophysical evidence in humans regarding vision's influence in audition, making the distinction between vision's ability to enhance versus alter auditory performance and perception. Three examples are then described that serve to highlight vision's ability to modulate auditory processes: spatial ventriloquism, cross-modal dynamic capture, and the McGurk effect. The final part of this section discusses models that have been built based on available psychophysical data and that seek to provide greater mechanistic insights into how vision can impact audition. The second section reviews the extant neuroimaging and far-field imaging work on this topic, with a strong emphasis on the roles of feedforward and feedback processes, on imaging insights into the causal nature of audiovisual interactions, and on the limitations of current imaging-based approaches. These limitations point to a greater need for machine-learning-based decoding approaches toward understanding how auditory representations are shaped by vision. The third section reviews the wealth of neuroanatomical and neurophysiological data from animal models that highlights audiovisual interactions at the neuronal and circuit level in both subcortical and cortical structures. It also speaks to the functional significance of audiovisual interactions for two critically important facets of auditory perception-scene analysis and communication. The fourth section presents current evidence for alterations in audiovisual processes in three clinical conditions: autism, schizophrenia, and sensorineural hearing loss. These changes in audiovisual interactions are postulated to have cascading effects on higher-order domains of dysfunction in these conditions. The final section highlights ongoing work seeking to leverage our knowledge of audiovisual interactions to develop better remediation approaches to these sensory-based disorders, founded in concepts of perceptual plasticity in which vision has been shown to have the capacity to facilitate auditory learning.
Collapse
Affiliation(s)
- Collins Opoku-Baah
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Adriana M Schoenhaut
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Sarah G Vassall
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - David A Tovar
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Ramnarayan Ramachandran
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
- Department of Hearing and Speech, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Vision Research Center, Nashville, TN, USA
| | - Mark T Wallace
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Department of Psychology, Vanderbilt University, Nashville, TN, USA.
- Department of Hearing and Speech, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Vision Research Center, Nashville, TN, USA.
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
40
|
Kumar U, Keshri A, Mishra M. Alteration of brain resting-state networks and functional connectivity in prelingual deafness. J Neuroimaging 2021; 31:1135-1145. [PMID: 34189809 DOI: 10.1111/jon.12904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Early hearing loss causes several changes in the brain structure and function at multiple levels; these changes can be observed through neuroimaging. These changes are directly associated with sensory loss (hearing) and the acquisition of alternative communication strategies. Such plasticity changes in the brain might establish a different connectivity pattern with resting-state networks (RSNs) and other brain regions. We performed resting-state functional magnetic resonance imaging (rsfMRI) to evaluate these intrinsic modifications. METHODS We used two methods to characterize the functional connectivity (FC) of RSN components in 20 prelingual deaf adults and 20 demographic-matched hearing adults. rsfMRI data were analyzed using independent component analysis (ICA) and region-of-interest seed-to-voxel correlation analysis. RESULTS In ICA, we identified altered FC of RSNs in the deaf group. RSNs with altered FC were observed in higher visual, auditory, default mode, salience, and sensorimotor networks. The findings of seed-to-voxel correlation analysis suggested increased temporal coherence with other neural networks in the deaf group compared with the hearing control group. CONCLUSION These findings suggest a highly diverse resting-state connectivity pattern in prelingual deaf adults resulting from compensatory cross-modal plasticity that includes both auditory and nonauditory regions.
Collapse
Affiliation(s)
- Uttam Kumar
- Centre of Bio-Medical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Lucknow, India
| | - Amit Keshri
- Department of Neuro-otology, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Lucknow, India
| | - Mrutyunjaya Mishra
- Department of Special Education (Hearing Impairments), Dr. Shakuntala Misra National Rehabilitation University, Lucknow, India
| |
Collapse
|
41
|
Andin J, Holmer E, Schönström K, Rudner M. Working Memory for Signs with Poor Visual Resolution: fMRI Evidence of Reorganization of Auditory Cortex in Deaf Signers. Cereb Cortex 2021; 31:3165-3176. [PMID: 33625498 PMCID: PMC8196262 DOI: 10.1093/cercor/bhaa400] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022] Open
Abstract
Stimulus degradation adds to working memory load during speech processing. We investigated whether this applies to sign processing and, if so, whether the mechanism implicates secondary auditory cortex. We conducted an fMRI experiment where 16 deaf early signers (DES) and 22 hearing non-signers performed a sign-based n-back task with three load levels and stimuli presented at high and low resolution. We found decreased behavioral performance with increasing load and decreasing visual resolution, but the neurobiological mechanisms involved differed between the two manipulations and did so for both groups. Importantly, while the load manipulation was, as predicted, accompanied by activation in the frontoparietal working memory network, the resolution manipulation resulted in temporal and occipital activation. Furthermore, we found evidence of cross-modal reorganization in the secondary auditory cortex: DES had stronger activation and stronger connectivity between this and several other regions. We conclude that load and stimulus resolution have different neural underpinnings in the visual–verbal domain, which has consequences for current working memory models, and that for DES the secondary auditory cortex is involved in the binding of representations when task demands are low.
Collapse
Affiliation(s)
- Josefine Andin
- Department of Behavioural Science and Learning, Linköping University, Linköping, Sweden.,Swedish Institute for Disability Research, Linnaeus Centre HEAD, Sweden
| | - Emil Holmer
- Department of Behavioural Science and Learning, Linköping University, Linköping, Sweden.,Swedish Institute for Disability Research, Linnaeus Centre HEAD, Sweden.,Center for Medical Image Science and Visualization, Linköping, Sweden
| | | | - Mary Rudner
- Department of Behavioural Science and Learning, Linköping University, Linköping, Sweden.,Swedish Institute for Disability Research, Linnaeus Centre HEAD, Sweden.,Center for Medical Image Science and Visualization, Linköping, Sweden
| |
Collapse
|
42
|
Kuhnke P, Kiefer M, Hartwigsen G. Task-Dependent Functional and Effective Connectivity during Conceptual Processing. Cereb Cortex 2021; 31:3475-3493. [PMID: 33677479 PMCID: PMC8196308 DOI: 10.1093/cercor/bhab026] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 11/13/2022] Open
Abstract
Conceptual knowledge is central to cognition. Previous neuroimaging research indicates that conceptual processing involves both modality-specific perceptual-motor areas and multimodal convergence zones. For example, our previous functional magnetic resonance imaging (fMRI) study revealed that both modality-specific and multimodal regions respond to sound and action features of concepts in a task-dependent fashion (Kuhnke P, Kiefer M, Hartwigsen G. 2020b. Task-dependent recruitment of modality-specific and multimodal regions during conceptual processing. Cereb Cortex. 30:3938–3959.). However, it remains unknown whether and how modality-specific and multimodal areas interact during conceptual tasks. Here, we asked 1) whether multimodal and modality-specific areas are functionally coupled during conceptual processing, 2) whether their coupling depends on the task, 3) whether information flows top-down, bottom-up or both, and 4) whether their coupling is behaviorally relevant. We combined psychophysiological interaction analyses with dynamic causal modeling on the fMRI data of our previous study. We found that functional coupling between multimodal and modality-specific areas strongly depended on the task, involved both top-down and bottom-up information flow, and predicted conceptually guided behavior. Notably, we also found coupling between different modality-specific areas and between different multimodal areas. These results suggest that functional coupling in the conceptual system is extensive, reciprocal, task-dependent, and behaviorally relevant. We propose a new model of the conceptual system that incorporates task-dependent functional interactions between modality-specific and multimodal areas.
Collapse
Affiliation(s)
- Philipp Kuhnke
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Markus Kiefer
- Department of Psychiatry, Ulm University, Ulm 89081, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| |
Collapse
|
43
|
Kowalczyk‐Grębska N, Skorko M, Dobrowolski P, Kossowski B, Myśliwiec M, Hryniewicz N, Gaca M, Marchewka A, Kossut M, Brzezicka A. Lenticular nucleus volume predicts performance in real-time strategy game: cross-sectional and training approach using voxel-based morphometry. Ann N Y Acad Sci 2021; 1492:42-57. [PMID: 33372699 PMCID: PMC8246877 DOI: 10.1111/nyas.14548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/05/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023]
Abstract
It is unclear why some people learn faster than others. We performed two independent studies in which we investigated the neural basis of real-time strategy (RTS) gaming and neural predictors of RTS game skill acquisition. In the first (cross-sectional) study, we found that experts in the RTS game StarCraft® II (SC2) had a larger lenticular nucleus volume (LNV) than non-RTS players. We followed a cross-validation procedure where we used the volume of regions identified in the first study to predict the quality of learning a new, complex skill (SC2) in a sample of individuals who were naive to RTS games (a second (training) study). Our findings provide new insights into how the LNV, which is associated with motor as well as cognitive functions, can be utilized to predict successful skill learning and be applied to a much broader context than just video games, such as contributing to optimizing cognitive training interventions.
Collapse
Affiliation(s)
| | - Maciek Skorko
- Institute of Psychology, Polish Academy of SciencesWarsawPoland
| | | | - Bartosz Kossowski
- Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Monika Myśliwiec
- Faculty of PsychologySWPS University of Social Sciences and HumanitiesWarsawPoland
| | - Nikodem Hryniewicz
- CNS Lab, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of SciencesWarsawPoland
| | - Maciej Gaca
- Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Artur Marchewka
- Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Małgorzata Kossut
- Laboratory of Neuroplasticity, Department of Molecular and Cellular NeurobiologyNencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Aneta Brzezicka
- Faculty of PsychologySWPS University of Social Sciences and HumanitiesWarsawPoland
- Department of NeurosurgeryCedars‐Sinai Medical CenterLos AngelesCalifornia
| |
Collapse
|
44
|
Araneda R, Silva Moura S, Dricot L, De Volder AG. Beat Detection Recruits the Visual Cortex in Early Blind Subjects. Life (Basel) 2021; 11:life11040296. [PMID: 33807372 PMCID: PMC8066101 DOI: 10.3390/life11040296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022] Open
Abstract
Using functional magnetic resonance imaging, here we monitored the brain activity in 12 early blind subjects and 12 blindfolded control subjects, matched for age, gender and musical experience, during a beat detection task. Subjects were required to discriminate regular ("beat") from irregular ("no beat") rhythmic sequences composed of sounds or vibrotactile stimulations. In both sensory modalities, the brain activity differences between the two groups involved heteromodal brain regions including parietal and frontal cortical areas and occipital brain areas, that were recruited in the early blind group only. Accordingly, early blindness induced brain plasticity changes in the cerebral pathways involved in rhythm perception, with a participation of the visually deprived occipital brain areas whatever the sensory modality for input. We conclude that the visually deprived cortex switches its input modality from vision to audition and vibrotactile sense to perform this temporal processing task, supporting the concept of a metamodal, multisensory organization of this cortex.
Collapse
Affiliation(s)
- Rodrigo Araneda
- Motor Skill Learning and Intensive Neurorehabilitation Laboratory (MSL-IN), Institute of Neuroscience (IoNS; COSY Section), Université Catholique de Louvain, 1200 Brussels, Belgium; (R.A.); (S.S.M.)
| | - Sandra Silva Moura
- Motor Skill Learning and Intensive Neurorehabilitation Laboratory (MSL-IN), Institute of Neuroscience (IoNS; COSY Section), Université Catholique de Louvain, 1200 Brussels, Belgium; (R.A.); (S.S.M.)
| | - Laurence Dricot
- Institute of Neuroscience (IoNS; NEUR Section), Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Anne G. De Volder
- Motor Skill Learning and Intensive Neurorehabilitation Laboratory (MSL-IN), Institute of Neuroscience (IoNS; COSY Section), Université Catholique de Louvain, 1200 Brussels, Belgium; (R.A.); (S.S.M.)
- Correspondence: ; Tel.: +32-2-764-54-82
| |
Collapse
|
45
|
Senna I, Cuturi LF, Gori M, Ernst MO, Cappagli G. Editorial: Spatial and Temporal Perception in Sensory Deprivation. Front Neurosci 2021; 15:671836. [PMID: 33859550 PMCID: PMC8042209 DOI: 10.3389/fnins.2021.671836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Irene Senna
- Department of Applied Cognitive Psychology, Ulm University, Ulm, Germany
| | | | - Monica Gori
- Italian Institute of Technology (IIT), Genoa, Italy
| | - Marc O Ernst
- Department of Applied Cognitive Psychology, Ulm University, Ulm, Germany
| | - Giulia Cappagli
- Italian Institute of Technology (IIT), Genoa, Italy.,Neurological Institute Foundation Casimiro Mondino (Istituto di Ricovero e Cura a Carattere Scientifico), Pavia, Italy
| |
Collapse
|
46
|
Cortical Activity Linked to Clocking in Deaf Adults: fNIRS Insights with Static and Animated Stimuli Presentation. Brain Sci 2021; 11:brainsci11020196. [PMID: 33562848 PMCID: PMC7914875 DOI: 10.3390/brainsci11020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 11/16/2022] Open
Abstract
The question of the possible impact of deafness on temporal processing remains unanswered. Different findings, based on behavioral measures, show contradictory results. The goal of the present study is to analyze the brain activity underlying time estimation by using functional near infrared spectroscopy (fNIRS) techniques, which allow examination of the frontal, central and occipital cortical areas. A total of 37 participants (19 deaf) were recruited. The experimental task involved processing a road scene to determine whether the driver had time to safely execute a driving task, such as overtaking. The road scenes were presented in animated format, or in sequences of 3 static images showing the beginning, mid-point, and end of a situation. The latter presentation required a clocking mechanism to estimate the time between the samples to evaluate vehicle speed. The results show greater frontal region activity in deaf people, which suggests that more cognitive effort is needed to process these scenes. The central region, which is involved in clocking according to several studies, is particularly activated by the static presentation in deaf people during the estimation of time lapses. Exploration of the occipital region yielded no conclusive results. Our results on the frontal and central regions encourage further study of the neural basis of time processing and its links with auditory capacity.
Collapse
|
47
|
Baumgartner JE, Baumgartner LS, Baumgartner ME, Moore EJ, Messina SA, Seidman MD, Shook DR. Progenitor cell therapy for acquired pediatric nervous system injury: Traumatic brain injury and acquired sensorineural hearing loss. Stem Cells Transl Med 2021; 10:164-180. [PMID: 33034162 PMCID: PMC7848325 DOI: 10.1002/sctm.20-0026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
While cell therapies hold remarkable promise for replacing injured cells and repairing damaged tissues, cell replacement is not the only means by which these therapies can achieve therapeutic effect. For example, recent publications show that treatment with varieties of adult, multipotent stem cells can improve outcomes in patients with neurological conditions such as traumatic brain injury and hearing loss without directly replacing damaged or lost cells. As the immune system plays a central role in injury response and tissue repair, we here suggest that multipotent stem cell therapies achieve therapeutic effect by altering the immune response to injury, thereby limiting damage due to inflammation and possibly promoting repair. These findings argue for a broader understanding of the mechanisms by which cell therapies can benefit patients.
Collapse
Affiliation(s)
- James E. Baumgartner
- Advent Health for ChildrenOrlandoFloridaUSA
- Department of Neurological SurgeryUniversity of Central Florida College of MedicineOrlandoFloridaUSA
| | | | | | - Ernest J. Moore
- Department of Audiology and Speech Language PathologyUniversity of North TexasDentonTexasUSA
| | | | - Michael D. Seidman
- Advent Health CelebrationCelebrationFloridaUSA
- Department of OtorhinolaryngologyUniversity of Central FloridaOrlandoFloridaUSA
| | | |
Collapse
|
48
|
Yusuf PA, Hubka P, Tillein J, Vinck M, Kral A. Deafness Weakens Interareal Couplings in the Auditory Cortex. Front Neurosci 2021; 14:625721. [PMID: 33551733 PMCID: PMC7858676 DOI: 10.3389/fnins.2020.625721] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/30/2020] [Indexed: 12/22/2022] Open
Abstract
The function of the cerebral cortex essentially depends on the ability to form functional assemblies across different cortical areas serving different functions. Here we investigated how developmental hearing experience affects functional and effective interareal connectivity in the auditory cortex in an animal model with years-long and complete auditory deprivation (deafness) from birth, the congenitally deaf cat (CDC). Using intracortical multielectrode arrays, neuronal activity of adult hearing controls and CDCs was registered in the primary auditory cortex and the secondary posterior auditory field (PAF). Ongoing activity as well as responses to acoustic stimulation (in adult hearing controls) and electric stimulation applied via cochlear implants (in adult hearing controls and CDCs) were analyzed. As functional connectivity measures pairwise phase consistency and Granger causality were used. While the number of coupled sites was nearly identical between controls and CDCs, a reduced coupling strength between the primary and the higher order field was found in CDCs under auditory stimulation. Such stimulus-related decoupling was particularly pronounced in the alpha band and in top–down direction. Ongoing connectivity did not show such a decoupling. These findings suggest that developmental experience is essential for functional interareal interactions during sensory processing. The outcomes demonstrate that corticocortical couplings, particularly top-down connectivity, are compromised following congenital sensory deprivation.
Collapse
Affiliation(s)
- Prasandhya Astagiri Yusuf
- Department of Medical Physics/Medical Technology Core Cluster IMERI, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia.,Institute of AudioNeuroTechnology, Hannover Medical School, Hanover, Germany.,Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hanover, Germany
| | - Peter Hubka
- Institute of AudioNeuroTechnology, Hannover Medical School, Hanover, Germany.,Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hanover, Germany
| | - Jochen Tillein
- Institute of AudioNeuroTechnology, Hannover Medical School, Hanover, Germany.,Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hanover, Germany.,Department of Otorhinolaryngology, Goethe University, Frankfurt am Main, Germany.,MedEL Company, Innsbruck, Austria
| | - Martin Vinck
- Ernst Strüngmann Institut for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany.,Donders Centre for Neuroscience, Radboud University, Department of Neuroinformatics, Nijmegen, Netherlands
| | - Andrej Kral
- Institute of AudioNeuroTechnology, Hannover Medical School, Hanover, Germany.,Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hanover, Germany.,Department of Biomedical Sciences, School of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
49
|
Perrotta MV, Asgeirsdottir T, Eagleman DM. Deciphering Sounds Through Patterns of Vibration on the Skin. Neuroscience 2021; 458:77-86. [PMID: 33465416 DOI: 10.1016/j.neuroscience.2021.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/04/2020] [Accepted: 01/05/2021] [Indexed: 11/26/2022]
Abstract
Sensory substitution refers to the concept of feeding information to the brain via an atypical sensory pathway. We here examined the degree to which participants (deaf and hard of hearing) can learn to identify sounds that are algorithmically translated into spatiotemporal patterns of vibration on the skin of the wrist. In a three-alternative forced choice task, participants could determine the identity of up to 95% and on average 70% of the stimuli simply by the spatial pattern of vibrations on the skin. Performance improved significantly over the course of 1 month. Younger participants tended to score better, possibly because of higher brain plasticity, more sensitive skin, or better skills at playing digital games. Similar results were obtained with pattern discrimination, in which a pattern representing the sound of one word was presented to the skin, followed by that of a second word. Participants answered whether the word was the same or different. With minimal difference pairs (distinguished by only one phoneme, such as "house" and "mouse"), the best performance was 83% (average of 62%), while with non-minimal pairs (such as "house" and "zip") the best performance was 100% (average of 70%). Collectively, these results demonstrate that participants are capable of using the channel of the skin to interpret auditory stimuli, opening the way for low-cost, wearable sensory substitution for the deaf and hard of hearing communities.
Collapse
Affiliation(s)
| | | | - David M Eagleman
- Neosensory, 4 West 4th Street, Suite 301, San Mateo, CA 94402, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA 94304, USA.
| |
Collapse
|
50
|
White matter alteration in adults with prelingual deafness: A TBSS and SBM analysis of fractional anisotropy data. Brain Cogn 2020; 148:105676. [PMID: 33388552 DOI: 10.1016/j.bandc.2020.105676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 11/23/2022]
Abstract
A loss of hearing in early life leads to diversifications of important white matter networks. Previous studies related to WM alterations in adult deaf individuals mainly involved univariate analysis of fractional anisotropy (FA) data and volumetric analysis, which yielded inconsistent results. To address this issue, we investigated the FA value alterations in 38 prelingual adult deaf individuals and compared the results with those obtained from the same number of adults with normal hearing by using univariate (tract-based spatial statistics) and multivariate (source-based morphometry) methods. The findings from tract-based spatial statistics suggested an increased FA value in regions such as the left cingulate gyrus, left inferior frontal occipital fasciculus, left inferior longitudinal fasciculus and superior corona radiata; however, the results indicated a decreased FA value in the left planum temporale of adult deaf individuals. While source-based morphometry analysis outlined higher FA values in regions such as bilateral lingual gyrus, bilateral cerebellum, bilateral putamen and bilateral caudate, a considerable decrease was observed in the bilateral superior temporal region of the deaf group. These alterations in multiple neural regions might be linked to the compensatory cross-modal reorganizations attributed to early hearing loss.
Collapse
|